JP2006320816A - Treatment material of organohalogen compound - Google Patents

Treatment material of organohalogen compound Download PDF

Info

Publication number
JP2006320816A
JP2006320816A JP2005145247A JP2005145247A JP2006320816A JP 2006320816 A JP2006320816 A JP 2006320816A JP 2005145247 A JP2005145247 A JP 2005145247A JP 2005145247 A JP2005145247 A JP 2005145247A JP 2006320816 A JP2006320816 A JP 2006320816A
Authority
JP
Japan
Prior art keywords
powder
iron powder
organic halogen
treatment material
halogen compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005145247A
Other languages
Japanese (ja)
Other versions
JP4786936B2 (en
Inventor
Masaaki Matsubara
正明 松原
Yasuko Yakou
靖子 矢古宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2005145247A priority Critical patent/JP4786936B2/en
Publication of JP2006320816A publication Critical patent/JP2006320816A/en
Application granted granted Critical
Publication of JP4786936B2 publication Critical patent/JP4786936B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fire-Extinguishing Compositions (AREA)
  • Processing Of Solid Wastes (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Catalysts (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a treatment material of an organohalogen compound capable of efficiently decomposing the organohalogen compound in spite of any kind. <P>SOLUTION: The treatment material of the organohalogen compound is constituted of a powder mixture prepared by mixing an iron powder with an Ni-containing powder and the Ni-containing powder has a mean particle size of 0.8 μm or below. The treatment material of the organohalogen compound is useful for the aromatic organohalogen compound such as chlorobenzenes, chlorophenols, dioxins, polychlorobiphenyls, etc. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、有機ハロゲン化合物で汚染された物質(特に土壌、地下水など)を浄化するのに有用な有機ハロゲン化合物処理材に関するものである。   The present invention relates to an organic halogen compound treatment material useful for purifying substances contaminated with organic halogen compounds (especially soil, groundwater, etc.).

トリクロロエチレンなどの揮発性有機塩素化合物は、半導体工場や金属加工工場における脱脂洗浄剤として、またドライクリーニングの洗浄剤として広く使用されている。しかしこれら有機塩素化合物は、過去より排出・投棄されることがあった。有機塩素化合物は自然界において分解を受けにくいため、土壌中や地下水中に徐々に蓄積され、土壌や地下水を汚染し社会問題となっている。   Volatile organic chlorine compounds such as trichlorethylene are widely used as degreasing cleaners in semiconductor factories and metal processing factories and as cleaning agents for dry cleaning. However, these organochlorine compounds have been discharged and dumped from the past. Since organochlorine compounds are not easily decomposed in nature, they are gradually accumulated in soil and groundwater, and contaminate soil and groundwater, which is a social problem.

土壌中や地下水中の汚染物質を無害化する処理方法としては、汚染土壌を掘削除去しロータリーキルン等で燃焼除去する熱分解法、地下水中に溶解した汚染物質を真空ポンプによって吸引し回収除去するガス吸引法、地下水を汲み上げ抽出除去する揚水曝気法、微生物の汚染物質分解能を利用した微生物法などが知られている。   Treatment methods for detoxifying pollutants in soil and groundwater include pyrolysis, which excavates and removes contaminated soil and burns and removes it using a rotary kiln, etc. A suction method, a pumped-water aeration method that draws and removes groundwater, and a microbial method that utilizes the microbial contaminant resolution are known.

しかしながら、熱分解法では土壌掘削に大がかりな設備が必要となり、熱処理後の土壌を埋め戻して再利用する場合には高コストとなる。ガス吸引法では、気化している汚染物質しか回収することができず、さらには回収後に汚染物質を分解処理する必要が生じる。揚水曝気でも水に溶解する汚染物質しか回収することができず、しかも回収後に汚染物質を分解する必要がある。微生物法では、土壌条件によっては適用することができない場合があり、さらには微生物による分解反応であるため、高濃度汚染の場合には他の方法に比べて処理期間が長くなったり、分解反応が途中までしか進行しないこともある。   However, the pyrolysis method requires large-scale equipment for soil excavation, and the cost becomes high when the soil after heat treatment is backfilled and reused. In the gas suction method, only vaporized contaminants can be recovered, and further, it is necessary to decompose the contaminants after recovery. Even with pumped aeration, only pollutants that dissolve in water can be recovered, and the contaminants need to be decomposed after recovery. The microbial method may not be applied depending on the soil conditions. Furthermore, since it is a decomposition reaction by microorganisms, in the case of high-concentration contamination, the treatment period becomes longer or the decomposition reaction does not occur compared to other methods. Sometimes it only progresses halfway.

大がかりな設備や回収後の分解操作が不要であって安定して有機塩素化合物を無害化できる方法として、鉄粉を使用して有機塩素化合物を還元分解する方法が提案されている。この方法では、鉄粉が酸化されることによって発生する電子を利用して、有機塩素化合物を還元分解している。しかし本来、鉄粉による有機塩素化合物の分解効率はそれほど高くないため、実用化の為に種々の方法が提案されている。   As a method capable of stably detoxifying an organic chlorine compound without requiring a large-scale facility or a decomposition operation after recovery, a method of reducing and decomposing an organic chlorine compound using iron powder has been proposed. In this method, an organic chlorine compound is reductively decomposed using electrons generated by oxidation of iron powder. However, since the decomposition efficiency of organochlorine compounds by iron powder is not so high, various methods have been proposed for practical use.

例えば、特許文献1では、難分解性ハロゲン化炭化水素を含有する被処理水と鉄粉を添加して振盪することによってハロゲン化炭化水素を分解するに際して、被処理水から予め溶存酸素を除去し、pH6.5〜9.5に調整しておくことを提案している。しかしこの方法では、溶存酸素の除去やpH調整などの複雑な操作が必要となるため、汚染現場での原位置処理に適用するのが困難である。   For example, in Patent Document 1, when decomposing a halogenated hydrocarbon by adding water to be treated and iron powder containing a hardly decomposable halogenated hydrocarbon and shaking, the dissolved oxygen is previously removed from the water to be treated. It is proposed to adjust the pH to 6.5 to 9.5. However, this method requires complicated operations such as removal of dissolved oxygen and pH adjustment, and thus is difficult to apply to in-situ processing at a contamination site.

特許文献2には、有機塩素化合物を含有する汚染水を、鉄や鋼のヤスリ屑に通すことによって分解・無害化するに際して、前記鉄や鋼のヤスリ屑を活性炭と混合しておき、この混合物層に汚染水を通すことを提案している。しかしこの方法では、高価な活性炭を使用する必要があるため、処理費用が高くなる。   In patent document 2, when decomposing and detoxifying contaminated water containing an organic chlorine compound by passing it through iron or steel file scrap, the iron or steel file scrap is mixed with activated carbon, and this mixture It is proposed to pass contaminated water through the bed. However, in this method, since it is necessary to use expensive activated carbon, processing cost becomes high.

近年、鉄粉そのものの反応性を高め、汚染土壌・汚染水の前処理や活性炭などを必要としない方法が提案されている。例えば、特許文献3には、炭素含有量が0.1重量%以上であって、比表面積が500cm2/g以上である鉄粉と土壌とを混合し、土壌中の有機塩素系化合物を分解する方法が開示されている。前記比表面積が大きな鉄粉としては、鉄鉱石を還元することによって得られる鉄粉(海綿状鉱石還元鉄粉)が使用されている。しかしこの方法は、比表面積を小さくすると反応性が低下するため、海綿状鉱石還元鉄粉以外には実質的に使用することができない。 In recent years, a method has been proposed in which the reactivity of iron powder itself is increased and pretreatment of contaminated soil and contaminated water and activated carbon are not required. For example, in Patent Document 3, iron powder having a carbon content of 0.1% by weight or more and a specific surface area of 500 cm 2 / g or more is mixed with soil to decompose organochlorine compounds in the soil. A method is disclosed. As the iron powder having a large specific surface area, iron powder (sponge-like ore reduced iron powder) obtained by reducing iron ore is used. However, this method cannot be used for anything other than spongy ore reduced iron powder because the reactivity decreases when the specific surface area is reduced.

また特許文献4は、金属鉄による有機ハロゲン化合物の分解反応が金属銅によって著しく促進されることに着目し、銅含有鉄粉を用いることを提案している。しかし前記銅は原料コストが高く、さらには銅含有鉄粉を製造する際には硫酸銅水溶液等の銅イオン溶液中に鉄粉を混合し、得られる沈殿物を回収するという煩雑な製造工程を必要とするため製造コストも高くなる。   Patent Document 4 proposes using copper-containing iron powder, paying attention to the fact that the decomposition reaction of the organic halogen compound by metallic iron is significantly accelerated by metallic copper. However, the copper has a high raw material cost. Furthermore, when producing copper-containing iron powder, the copper powder is mixed with a copper ion solution such as an aqueous copper sulfate solution, and a complicated production process of collecting the resulting precipitate is performed. The manufacturing cost is also increased because of the necessity.

ところで鉄粉としては上述のような海綿状鉄粉の他、アトマイズ鉄粉も知られている。アトマイズ鉄粉とは、アトマイズ法によって溶鋼を粉砕した後(表面が黒く酸化されているため、黒粉と称される)、この黒粉を完全に還元して製造されるものであり(前記黒粉に対して、白粉と称される場合がある)、さらに表面にバインダーとしての樹脂をコートすることによって、粉末冶金の用途に利用されている。上述のような海綿状鉄粉ではなく、粉末冶金用鉄粉(アトマイズ鉄粉)を土壌浄化用途に利用する方法も提案されている。   By the way, as iron powder, atomized iron powder is known in addition to the above-described spongy iron powder. Atomized iron powder is produced by pulverizing molten steel by the atomizing method (referred to as black powder because the surface is oxidized black) and then completely reducing this black powder (the black In some cases, the powder is called white powder), and is further used for powder metallurgy by coating the surface with a resin as a binder. There has also been proposed a method in which iron powder for powder metallurgy (atomized iron powder) is used for soil purification instead of the spongy iron powder as described above.

例えば、特許文献5は、Ni表面で生成する水素によって分解反応(含ハロゲン有機汚染物質の還元反応、金属の酸化反応)が促進されることに着目し、粉末冶金用鉄粉にNiを0.01〜4.0質量%含有させることを提案している。しかしながら、この技術においても、表面に酸化物が形成されると浄化反応性が低下するとしている。   For example, Patent Document 5 pays attention to the fact that decomposition reaction (reduction reaction of halogen-containing organic pollutants, metal oxidation reaction) is promoted by hydrogen generated on the Ni surface, and Ni is reduced to 0.1% in iron powder for powder metallurgy. It is proposed to contain 01-4.0 mass%. However, even in this technique, the purification reactivity decreases when oxides are formed on the surface.

本発明者らは、有機ハロゲン化合物を効果的に分解処理するための技術についてかねてより研究を重ねており、その研究の一環として特許文献6のような技術を提案している。この技術において、有機ハロゲン化合物を効果的に処理する浄化用鉄粉の様々な形態を例示しており、その一つの形態として、「目開き300μmの篩を通過する割合が90%以上、Hによる還元減量が0.1〜1.0%、組織がマルテンサイトまたは焼戻しマルテンサイトである鉄粉」と、「Ni含有量が40%以上で、目開き45μmの篩を通過する割合が90%以上であるNi含有粉」を混合した混合粉末(浄化用鉄粉)が有用な浄化効果を発揮し得ることを示している。
特公平2−49158号公報 特表平6−506631号公報 特開平11−235577号公報 特開2001−9475号公報 特開2002−20806号公報 特開2004−8210号公報、特許請求の範囲の請求項3等
The inventors of the present invention have been further researching on a technique for effectively decomposing an organic halogen compound, and proposed a technique such as Patent Document 6 as part of the research. In this technique, various forms of iron powder for purification that effectively treats an organic halogen compound are exemplified. As one form, “the ratio of passing through a sieve having an opening of 300 μm is 90% or more, H 2 "Iron powder with 0.1% to 1.0% reduction in weight and microstructure is martensite or tempered martensite" It shows that the mixed powder (iron powder for purification) mixed with the “Ni-containing powder as described above” can exhibit a useful purification effect.
Japanese Examined Patent Publication No. 2-49158 JP-T 6-506631 Japanese Patent Application Laid-Open No. 11-235577 JP 2001-9475 A Japanese Patent Laid-Open No. 2002-20806 Japanese Patent Laid-Open No. 2004-8210, Claim 3 of Claims, etc.

上記のような技術によって、トリクロロエチレン等の有機ハロゲン化合物を、効果的に分解・除去できるようになったのであるが、こうした技術においても更なる改善が望まれているのが実情である。即ち、上記技術によっては、トリクロロエチレン等の有機ハロゲン化合物については、効果的に分解できたのであるが、他の有機ハロゲン化合物についてはその種類によっては、分解除去できないことがあった。例えば、有機ハロゲン化合物のうちでも、芳香族系の有機ハロゲン化合物であるクロロベンゼン類、クロロフェノール類、ダイオキシン類およびポリ塩化ビフェニル類については、上記のような技術によってもトリクロロエチレンほど効果的に分解除去できないのが実情である。また、トリクロロエチレンの分解除去についても更に効率良く分解除去できることが望まれている。   Although the organic halogen compounds such as trichlorethylene can be effectively decomposed and removed by the above-described techniques, further improvements are desired in these techniques. That is, depending on the technique, organic halogen compounds such as trichlorethylene could be effectively decomposed, but other organic halogen compounds could not be decomposed and removed depending on the type. For example, among organic halogen compounds, aromatic organic halogen compounds such as chlorobenzenes, chlorophenols, dioxins, and polychlorinated biphenyls cannot be decomposed and removed as effectively as trichloroethylene by the above-described techniques. Is the actual situation. In addition, it is desired that trichlorethylene can be decomposed and removed more efficiently.

本発明は上記の様な事情に着目してなされたものであって、その目的は、その種類の如何に拘らず有機ハロゲン化合物を効率よく分解できる有機ハロゲン化合物処理材を提供することにある。   The present invention has been made paying attention to the above-described circumstances, and an object thereof is to provide an organic halogen compound treatment material capable of efficiently decomposing an organic halogen compound regardless of the type.

上記目的を達成することのできた本発明の有機ハロゲン化合物処理材とは、鉄粉とNi含有粉を混合した混合粉末で構成される有機ハロゲン処理材であって、前記Ni含有粉は、平均粒径:0.8μm以下である点に要旨を有するものである。   The organic halogen compound treatment material of the present invention that has achieved the above object is an organic halogen treatment material composed of a mixed powder obtained by mixing iron powder and Ni-containing powder, and the Ni-containing powder has an average particle size. Diameter: It has a gist in that it is 0.8 μm or less.

本発明の有機ハロゲン化合物処理材において、前記Ni含有粉は、Ni含有量が50質量%以上のものであることが好ましい。また、前記Ni含有粉の混合割合は、混合粉末全体に対して0.01〜20質量%であることが好ましい。   In the organic halogen compound treatment material of the present invention, the Ni-containing powder preferably has a Ni content of 50% by mass or more. Moreover, it is preferable that the mixing rate of the said Ni containing powder is 0.01-20 mass% with respect to the whole mixed powder.

本発明の有機ハロゲン化合物処理材では、トリクロロエチレンは勿論のこと、クロロベンゼン類、クロロフェノール類、ダイオキシン類およびポリ塩化ビフェニル類(PCB類)の少なくともいずれかの芳香族の有機ハロゲン化合物であっても効果的に分解できるものとなる。   The organohalogen compound-treated material of the present invention is effective even if it is an aromatic organic halogen compound of at least one of chlorobenzenes, chlorophenols, dioxins and polychlorinated biphenyls (PCBs) as well as trichloroethylene. Can be decomposed automatically.

本発明の有機ハロゲン化合物処理材は、平均粒径:0.8μm以下であるNi含有粉と、鉄粉とを混合した混合粉末で構成したので、有機ハロゲン化合物をその種類の如何に係わらず効果的に分解できるようになり、こうした処理材は有機ハロゲン化合物に汚染された土壌や地下水を浄化するために有用に利用できる。   The organohalogen compound-treated material of the present invention is composed of a mixed powder in which an Ni-containing powder having an average particle size of 0.8 μm or less and an iron powder are mixed. Therefore, the organohalogen compound is effective regardless of the type. These treatment materials can be used effectively to purify soil and groundwater contaminated with organic halogen compounds.

本発明者らは、前記課題を解決するために鋭意研究を重ねた。その結果、鉄粉とNi含有粉を混合した混合粉末で構成される有機ハロゲン化合物処理材において、鉄粉に混合されるNi含有粉の粒径をより微細なものとすれば、様々な有機ハロゲン化合物を効率よく分解できることを見出し、本発明を完成した。   The inventors of the present invention have made extensive studies to solve the above problems. As a result, in the organic halogen compound treatment material composed of a mixed powder in which iron powder and Ni-containing powder are mixed, if the particle size of Ni-containing powder mixed with iron powder is made finer, various organic halogens can be obtained. The present inventors have found that the compound can be efficiently decomposed and completed the present invention.

本発明にかかる有機ハロゲン処理材は、有機ハロゲン化合物の分解(脱ハロゲン化)に利用されるものであるが、この処理材に含まれる鉄粉による脱ハロゲン作用の基本原理について詳細に説明すると、以下の通りである。   The organic halogen treatment material according to the present invention is used for decomposition (dehalogenation) of an organic halogen compound, and the basic principle of the dehalogenation action by the iron powder contained in this treatment material will be described in detail. It is as follows.

鉄粉の表面に有機ハロゲン化合物が付着すると、鉄粉表面において金属側と有機ハロゲン化合物側(環境側)の条件の差異によってアノード分極とカソード分極が生じる。このため電子の流れが生じ、アノード側では鉄の溶出(酸化)が起こって電子を放出し、カソード側では前記電子による還元作用によって脱ハロゲン反応(分解)が生じる。従ってトータルとして、下記式(1)に示す化学反応が起こる。
Fe+H2O+RX → Fe2++OH-+RH+X- …(1)
(式中、Rは有機基を示し、Xは塩素原子などのハロゲン原子を示す)
When the organic halogen compound adheres to the surface of the iron powder, anodic polarization and cathodic polarization occur due to the difference in conditions between the metal side and the organic halogen compound side (environment side) on the iron powder surface. For this reason, an electron flow occurs, iron elution (oxidation) occurs on the anode side to release electrons, and a dehalogenation reaction (decomposition) occurs on the cathode side due to the reduction action of the electrons. Therefore, as a total, a chemical reaction represented by the following formula (1) occurs.
Fe + H 2 O + RX → Fe 2+ + OH + RH + X (1)
(Wherein R represents an organic group and X represents a halogen atom such as a chlorine atom)

本発明の有機ハロゲン化合物処理材では、上記のような鉄粉とNi含有粉とを混合したものであるが、このNi含有粉は、鉄粉と水が反応して発生する水素[上記(1)式]を使って、Ni含有粉が有機ハロゲン化合物からのハロゲンの還元的引き抜きを触媒する作用を発揮するものと考えられる。   The organohalogen compound-treated material of the present invention is a mixture of iron powder and Ni-containing powder as described above. This Ni-containing powder is hydrogen generated by the reaction of iron powder and water [above (1 It is considered that the Ni-containing powder exerts an action of catalyzing the reductive extraction of the halogen from the organic halogen compound using the formula].

鉄粉自体も、有機ハロゲン化合物のうちでも比較的分解し易いトリクロロエチレン類(トリクロロエチレン、テトラクロロエチレン、ジクロロエチレン、モノクロロエチレン等)等に対しては、分解能力が発揮されるのであるが、Ni含有粉を混合することによって分解反応が促進されることになる。特に、その平均粒径が0.8μm以下となるNi含有粉を鉄粉に混合した場合には、有機ハロゲン化合物に対する分解効果が著しく高まり、トリクロロエチレン類等の分解が促進されるものは勿論のこと、非常に難分解性である芳香族系の有機ハロゲン化合物(例えば、クロルベンゼン類、クロロフェノール類、ダイオキシン類、PCB類等)についても、常温、常圧の条件下で十分に分解(還元)できたのである。   Iron powder itself is also capable of decomposing trichloroethylenes (trichloroethylene, tetrachloroethylene, dichloroethylene, monochloroethylene, etc.) that are relatively easily decomposed among organic halogen compounds, but mixed with Ni-containing powder. By doing so, the decomposition reaction is promoted. In particular, when Ni-containing powder having an average particle size of 0.8 μm or less is mixed with iron powder, the decomposition effect on organic halogen compounds is remarkably enhanced and the decomposition of trichlorethylenes and the like is promoted. Aromatic organic halogen compounds (eg chlorobenzenes, chlorophenols, dioxins, PCBs, etc.) that are extremely difficult to decompose are also sufficiently decomposed (reduced) under normal temperature and normal pressure conditions. It was done.

上記のような微細Ni含有粉を鉄粉と併用することによって、上記のような効果が得られた理由については、その全てを解明し得た訳ではないが、おそらくNi含有粉を微細化することによって、水素を使った還元的ハロゲン引き抜き反応の触媒作用が高まったためであると考えることができた。また、こうした観点からすれば、Ni含有粉の平均粒径は0.5μm以下であることが好ましい。   The reason why the above effect was obtained by using the fine Ni-containing powder as described above in combination with the iron powder is not necessarily all of the reason, but perhaps the Ni-containing powder is refined. Therefore, it was considered that the catalytic action of the reductive halogen abstraction reaction using hydrogen was enhanced. From this point of view, the average particle size of the Ni-containing powder is preferably 0.5 μm or less.

上記Ni含有粉は、Niの純度がある程度低くても有機ハロゲン化物を分解(還元)することができるものの、Ni含有量が少なすぎると触媒効果が不十分となる。従ってNi含有量は、50質量%以上であることが好ましく、より好ましくは70質量%以上(100質量%を含む)である。尚、Ni含有粉は、超高圧アトマイズ法、カーボニル法などによって製造することができる。   Although the Ni-containing powder can decompose (reduce) the organic halide even if the purity of Ni is low to some extent, if the Ni content is too small, the catalytic effect becomes insufficient. Therefore, the Ni content is preferably 50% by mass or more, more preferably 70% by mass or more (including 100% by mass). The Ni-containing powder can be produced by an ultra-high pressure atomization method, a carbonyl method, or the like.

一方、本発明で用いる鉄粉の種類については、特に限定されないが、代表的なものとしてアトマイズ鉄粉が挙げられる。この鉄粉の平均粒径が小さ過ぎると製造コストが高くなり、大き過ぎると有機ハロゲン化合物の分解効果が低くなるので、1μm〜5mm程度が適当である。また、この鉄粉には、実質的にFeからなるものであるが、微量の他の成分(C,Mnなど)、不可避的不純物(P,Sなど)、およびその他の成分を含有していてもよい。   On the other hand, although it does not specifically limit about the kind of iron powder used by this invention, Atomized iron powder is mentioned as a typical thing. If the average particle size of the iron powder is too small, the production cost is increased. If the average particle size is too large, the decomposition effect of the organic halogen compound is decreased. Therefore, about 1 μm to 5 mm is appropriate. The iron powder is substantially composed of Fe, but contains trace amounts of other components (C, Mn, etc.), inevitable impurities (P, S, etc.), and other components. Also good.

前記Ni含有粉の混合割合は、混合粉末全体に対して0.01〜20質量%程度が好ましく、より好ましくは0.05〜10質量%程度である。Ni含有粉の混合割合が低過ぎると、Ni含有粉の添加効果が小さくなり、過剰になると効果が飽和してコストアップに繋がって好ましくない。   The mixing ratio of the Ni-containing powder is preferably about 0.01 to 20% by mass, more preferably about 0.05 to 10% by mass with respect to the entire mixed powder. If the mixing ratio of the Ni-containing powder is too low, the effect of adding the Ni-containing powder is reduced, and if it is excessive, the effect is saturated and the cost is increased, which is not preferable.

本発明の有機ハロゲン化合物処理材は、有機ハロゲン化物によって汚染された物質を浄化するのに有用である。例えば、有機ハロゲン化合物によって汚染された土壌と混合することにより、または有機ハロゲン化合物によって汚染された地下水を混合または透過させることにより、これら土壌や地下水を浄化することができる。そのため大規模な処理装置が不要となり、汚染現場(原位置)で処理することもできる。また上記浄化処理(土壌浄化処理、地下水浄化処理など)に際しては、他の浄化方法(例えば、微生物法など)と組み合わせてもよい。   The organic halogen compound treatment material of the present invention is useful for purifying substances contaminated by organic halides. For example, these soils and groundwater can be purified by mixing with soil contaminated with organic halogen compounds, or by mixing or permeating groundwater contaminated with organic halogen compounds. Therefore, a large-scale processing apparatus is not necessary, and processing can be performed at the contamination site (original position). Further, the purification treatment (soil purification treatment, groundwater purification treatment, etc.) may be combined with other purification methods (for example, microbial methods, etc.).

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention.

実施例1
[試験材料]
(a)鉄粉:一般的なアトマイズ鉄粉(平均粒径:65μm)
(b)Ni含有粉
(1)平均粒径:10μmのNi粉(ニッケル粉1)
(2)平均粒径:5μmのNi粉(ニッケル粉2)
(3)平均粒径:0.5μmのNi粉(ニッケル粉3)
尚、Ni粉の平均粒径は、「マイクロトラック粒子径分布測定装置X−100」[商品名:日機装(株)製]を使って測定したものである。
(c)有機ハロゲン化合物(被処理物)として、土壌や地下汚染で社会問題となっているトリクロロエチレンを使用した。
(d)上記鉄粉とNi粉末を混合し、下記の各種混合粉末を調製して試料(試料1〜8)とした。
(1)試料1:上記アトマイズ鉄粉のみ
(2)試料2:鉄粉に1質量%のNiを加えて製造したNi合金アトマイズ鉄粉
(平均粒径65μm)
(3)試料3:アトマイズ鉄粉に、ニッケル粉1を混合したもの(混合割合:
1質量%)
(4)試料4:アトマイズ鉄粉に、ニッケル粉2を混合したもの(混合割合:
1質量%)
(5)試料5:アトマイズ鉄粉に、ニッケル粉3を混合したもの(混合割合:
1質量%)
(6)試料6:アトマイズ鉄粉に、ニッケル粉1を混合したもの(混合割合:
0.1質量%)
(7)試料7:アトマイズ鉄粉に、ニッケル粉2を混合したもの(混合割合:
0.1質量%)
(8)試料8:アトマイズ鉄粉に、ニッケル粉3を混合したもの(混合割合:
0.1質量%)
Example 1
[Test material]
(A) Iron powder: general atomized iron powder (average particle size: 65 μm)
(B) Ni-containing powder (1) Average particle diameter: 10 μm Ni powder (nickel powder 1)
(2) Ni powder (nickel powder 2) having an average particle diameter of 5 μm
(3) Average particle diameter: 0.5 μm Ni powder (nickel powder 3)
In addition, the average particle diameter of Ni powder is measured using "Microtrack particle diameter distribution measuring apparatus X-100" [trade name: manufactured by Nikkiso Co., Ltd.].
(C) Trichlorethylene, which is a social problem due to soil and underground pollution, was used as the organic halogen compound (object to be treated).
(D) The above iron powder and Ni powder were mixed, and the following various mixed powders were prepared as samples (samples 1 to 8).
(1) Sample 1: Atomized iron powder only (2) Sample 2: Ni alloy atomized iron powder produced by adding 1% by mass of Ni to iron powder
(Average particle size 65μm)
(3) Sample 3: Atomized iron powder mixed with nickel powder 1 (mixing ratio:
1% by mass)
(4) Sample 4: Atomized iron powder mixed with nickel powder 2 (mixing ratio:
1% by mass)
(5) Sample 5: Atomized iron powder mixed with nickel powder 3 (mixing ratio:
1% by mass)
(6) Sample 6: Atomized iron powder mixed with nickel powder 1 (mixing ratio:
0.1% by mass)
(7) Sample 7: Atomized iron powder mixed with nickel powder 2 (mixing ratio:
0.1% by mass)
(8) Sample 8: Atomized iron powder mixed with nickel powder 3 (mixing ratio:
0.1% by mass)

[試験方法]
容量125mlのバイアル瓶に2.5gの試料を添加し、10mg/Lのトリクロロエチレン水溶液を125mL添加して密栓した。このときブランクとして、容量125mlのバイアル瓶に、10mg/Lのトリクロロエチレン水溶液を125mL添加して密栓したものも準備した(試料を添加しない系)。
[Test method]
A 2.5 g sample was added to a 125 ml capacity vial, and 125 mL of a 10 mg / L trichlorethylene aqueous solution was added and sealed. At this time, a blank was prepared by adding 125 mL of a 10 mg / L aqueous trichlorethylene solution to a 125 mL vial (sealing system in which no sample was added).

鉄粉が適度に流動するように攪拌しながら、25℃で反応させた。そして、24時間後および48時間後に、水中のトリクロロエチレンの濃度をガスクロマトグラフ質量分析装置にて測定し、(試験系における水中のトリクロロエチレン濃度:A)を、(ブランクにおける水中のトリクロロエチレン濃度:B)で除した値(A/B)を、トリクロロエチレン残存率として算出した。   It was made to react at 25 degreeC, stirring so that iron powder might flow moderately. Then, after 24 hours and 48 hours, the concentration of trichlorethylene in water was measured with a gas chromatograph mass spectrometer, and (trichloroethylene concentration in water in the test system: A) was (trichloroethylene concentration in water in the blank: B) The divided value (A / B) was calculated as the residual rate of trichlorethylene.

[試験結果]
試料1〜5による分解試験結果を図1に、試料1、6〜8による分解試験結果を図2に、夫々示す。これらの結果から明らかな様に、平均粒径:0.8μm以下のNi粉を含む試料5、8で処理したものは、トリクロロエチレンが効率良く分解されていることが分かる。
[Test results]
FIG. 1 shows the results of the decomposition tests using samples 1 to 5, and FIG. 2 shows the results of the decomposition tests using samples 1 and 6 to 8, respectively. As is clear from these results, it can be seen that those treated with Samples 5 and 8 containing Ni powder having an average particle size of 0.8 μm or less were efficiently decomposed with trichlorethylene.

実施例2
[試験材料]
(a)鉄粉:一般的なアトマイズ鉄粉(平均粒径:65μm:実施例1で使用したものと同じ)
(b)Ni含有粉
(1)平均粒径:5μmのNi粉(前記ニッケル粉2と同じもの)
(2)平均粒径:0.5μmのNi粉(前記ニッケル粉3と同じもの)
(c)有機ハロゲン化合物(被処理物)として、モノクロロベンゼン、ペンタクロロフェノールを使用した。
(d)上記鉄粉とNi粉末を混合し、下記の各種混合粉末を調製して試料(試料1、2、4、5)とした。
(1)試料1:上記アトマイズ鉄粉のみ
(2)試料2:鉄粉に1質量%のNiを加えて製造したNi合金アトマイズ鉄粉
(平均粒径65μm)
(3)試料4:アトマイズ鉄粉に、ニッケル粉2を混合したもの(混合割合:
1質量%)
(4)試料5:アトマイズ鉄粉に、ニッケル粉3を混合したもの(混合割合:
1質量%)
Example 2
[Test material]
(A) Iron powder: general atomized iron powder (average particle diameter: 65 μm: the same as that used in Example 1)
(B) Ni-containing powder (1) Average particle diameter: 5 μm Ni powder (same as the nickel powder 2)
(2) Ni powder having an average particle diameter of 0.5 μm (the same as the nickel powder 3)
(C) Monochlorobenzene and pentachlorophenol were used as the organic halogen compound (object to be treated).
(D) The above iron powder and Ni powder were mixed to prepare the following various mixed powders, which were used as samples (Samples 1, 2, 4, 5).
(1) Sample 1: Atomized iron powder only (2) Sample 2: Ni alloy atomized iron powder produced by adding 1% by mass of Ni to iron powder
(Average particle size 65μm)
(3) Sample 4: Atomized iron powder mixed with nickel powder 2 (mixing ratio:
1% by mass)
(4) Sample 5: Atomized iron powder mixed with nickel powder 3 (mixing ratio:
1% by mass)

[試験方法]
容量125mlのバイアル瓶に2.5gの試料を添加し、10mg/Lのモノクロロベンゼン水溶液またはペンタクロロフェノール水溶液を125mL添加して密栓した。このときブランクとして、容量125mlのバイアル瓶に、100mg/Lのモノクロロベンゼン水溶液またはペンタクロロフェノール水溶液を125mL添加して密栓したものも準備した(試料を添加しない系)。
[Test method]
A sample of 2.5 g was added to a vial with a capacity of 125 ml, and 125 mL of a 10 mg / L monochlorobenzene aqueous solution or a pentachlorophenol aqueous solution was added and sealed. At this time, a blank was prepared by adding 125 mL of a 100 mg / L monochlorobenzene aqueous solution or a pentachlorophenol aqueous solution to a 125 ml capacity vial (system in which no sample was added).

鉄粉が適度に流動するように攪拌しながら、25℃で反応させた。そして、7日後および14日後に、水中のモノクロロベンゼンまたはペンタクロロフェノールの濃度をガスクロマトグラフ質量分析装置にて測定し、実施例1と同様にして夫々の残存率を算出した。   It was made to react at 25 degreeC, stirring so that iron powder might flow moderately. Then, after 7 days and 14 days, the concentration of monochlorobenzene or pentachlorophenol in water was measured with a gas chromatograph mass spectrometer, and the residual ratio was calculated in the same manner as in Example 1.

[試験結果]
モノクロロベンゼンの分解試験結果を図3に、ペンタクロロフェノールの分解試験結果を図4に、夫々示す。これらの結果から明らかな様に、平均粒径:0.8μm以下のNi粉を含む試料5で処理したものは、モノクロロベンゼンやペンタクロロフェノール等の難分解性の有機ハロゲン化合物を対象とした場合であっても、効率良く分解できることが分かる。
[Test results]
The decomposition test results of monochlorobenzene are shown in FIG. 3, and the decomposition test results of pentachlorophenol are shown in FIG. As is apparent from these results, the sample treated with Sample 5 containing Ni powder having an average particle size of 0.8 μm or less is intended for a hard-to-decompose organic halogen compound such as monochlorobenzene or pentachlorophenol. However, it turns out that it can decompose | disassemble efficiently.

実施例1における試料1〜5による分解試験結果を示すグラフである。3 is a graph showing the results of a decomposition test using samples 1 to 5 in Example 1. FIG. 実施例1における試料1、6〜8による分解試験結果を示すグラフである。3 is a graph showing the results of a decomposition test using Samples 1 and 6 to 8 in Example 1. FIG. 実施例2におけるモノクロロベンゼンの分解試験結果を示すグラフである。6 is a graph showing the results of a monochlorobenzene decomposition test in Example 2. 実施例2におけるペンタクロロフェノールの分解試験結果を示すグラフである。6 is a graph showing the results of a pentachlorophenol decomposition test in Example 2.

Claims (5)

鉄粉とNi含有粉を混合した混合粉末で構成される有機ハロゲン化合物処理材であって、前記Ni含有粉は、平均粒径:0.8μm以下のものであることを特徴とする有機ハロゲン化合物処理材。   An organic halogen compound treatment material comprising a mixed powder obtained by mixing iron powder and Ni-containing powder, wherein the Ni-containing powder has an average particle size of 0.8 μm or less. Treatment material. 前記Ni含有粉は、Ni含有量が50質量%以上のものである請求項1に記載の有機ハロゲン化合物処理材。   The organohalogen compound-treated material according to claim 1, wherein the Ni-containing powder has a Ni content of 50% by mass or more. 前記Ni含有粉の混合割合が、混合粉末全体に対して0.01〜20質量%である請求項1または2に記載の有機ハロゲン化合物処理材。   The organic halogen compound treatment material according to claim 1 or 2, wherein a mixing ratio of the Ni-containing powder is 0.01 to 20 mass% with respect to the entire mixed powder. 有機ハロゲン化合物が芳香族の有機ハロゲン化合物である請求項1〜3のいずれかに記載の有機ハロゲン化合物処理材。   The organic halogen compound treatment material according to claim 1, wherein the organic halogen compound is an aromatic organic halogen compound. 芳香族の有機ハロゲン化合物は、クロロベンゼン類、クロロフェノール類、ダイオキシン類およびポリ塩化ビフェニル類の少なくともいずれかである請求項4に記載の有機ハロゲン化合物処理材。   The organic halogen compound treatment material according to claim 4, wherein the aromatic organic halogen compound is at least one of chlorobenzenes, chlorophenols, dioxins, and polychlorinated biphenyls.
JP2005145247A 2005-05-18 2005-05-18 Organohalogen compound treatment material Active JP4786936B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005145247A JP4786936B2 (en) 2005-05-18 2005-05-18 Organohalogen compound treatment material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005145247A JP4786936B2 (en) 2005-05-18 2005-05-18 Organohalogen compound treatment material

Publications (2)

Publication Number Publication Date
JP2006320816A true JP2006320816A (en) 2006-11-30
JP4786936B2 JP4786936B2 (en) 2011-10-05

Family

ID=37540873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005145247A Active JP4786936B2 (en) 2005-05-18 2005-05-18 Organohalogen compound treatment material

Country Status (1)

Country Link
JP (1) JP4786936B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009072742A (en) * 2007-09-25 2009-04-09 Dowa Eco-System Co Ltd Powder for decomposing organic chlorine compound, decomposing agent for organic chlorine compound, and purification method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1046283A (en) * 1996-05-17 1998-02-17 Kobe Steel Ltd Composite powder for high strength sintered steel, and its production
JP2003136051A (en) * 2001-11-01 2003-05-13 Dowa Mining Co Ltd Metal powder for decomposing organic halogen compound and method for cleaning soil using the same
JP2004058051A (en) * 2002-06-07 2004-02-26 Toda Kogyo Corp Iron composite particle powder for cleaning soil and underground water containing aromatic halogen compound, its manufacturing method, cleaning agent containing the iron composite particle powder, its manufacturing method, and method of cleaning soil and underground water containing aromatic halogen compound
JP2004082106A (en) * 2002-06-26 2004-03-18 Kobe Steel Ltd Iron-based cleaning powder

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1046283A (en) * 1996-05-17 1998-02-17 Kobe Steel Ltd Composite powder for high strength sintered steel, and its production
JP2003136051A (en) * 2001-11-01 2003-05-13 Dowa Mining Co Ltd Metal powder for decomposing organic halogen compound and method for cleaning soil using the same
JP2004058051A (en) * 2002-06-07 2004-02-26 Toda Kogyo Corp Iron composite particle powder for cleaning soil and underground water containing aromatic halogen compound, its manufacturing method, cleaning agent containing the iron composite particle powder, its manufacturing method, and method of cleaning soil and underground water containing aromatic halogen compound
JP2004082106A (en) * 2002-06-26 2004-03-18 Kobe Steel Ltd Iron-based cleaning powder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009072742A (en) * 2007-09-25 2009-04-09 Dowa Eco-System Co Ltd Powder for decomposing organic chlorine compound, decomposing agent for organic chlorine compound, and purification method

Also Published As

Publication number Publication date
JP4786936B2 (en) 2011-10-05

Similar Documents

Publication Publication Date Title
JP3862394B2 (en) Detoxification method of soil
US20030083195A1 (en) Iron powder for remediation and method for remediating soil, water, or gas
JP2002210452A (en) Cleaning method of soil, water and/or gas and iron powder for dehalogenating halogenated organic compound
JP4786936B2 (en) Organohalogen compound treatment material
JP4833505B2 (en) Iron powder for purification
JP2004058051A (en) Iron composite particle powder for cleaning soil and underground water containing aromatic halogen compound, its manufacturing method, cleaning agent containing the iron composite particle powder, its manufacturing method, and method of cleaning soil and underground water containing aromatic halogen compound
JP2008142693A (en) Iron powder for organic chlorinated compound decomposition, its manufacturing method, and detoxifying treatment method using the same
JP4586325B2 (en) Detoxification treatment agent for object contaminated with organic halogen compound and detoxification treatment method using the same
JP2002020806A (en) Method for producing iron powder for removing contamination
JP4904309B2 (en) Organic halogen compound treatment material and organic halogen compound treatment method
JP2007296408A (en) Metal iron-magnetite mixed particle powder for purifying soil/groundwater, purification agent containing metal iron-magnetite mixed particle powder, and method for cleaning soil/groundwater
JP2021074692A (en) Method for extracting organic pollutant
JPH11239783A (en) Method for purifying organic halogen compound pollutant by dehalogenation
JP2005131569A (en) Soil cleaning agent and soil cleaning method
JP4660958B2 (en) Purification of soil, water and gas contaminated with organochlorine compounds
JP2010194451A (en) Organic halide cleaning agent and cleaning method using the same
JP2013208527A (en) Iron composite particle powder for purifying soil, ground water, and waste water, purifying agent including the iron composite particle powder, and method for purifying soil, ground water, and waste water contaminated by organic halogen compound
KR20040002637A (en) Iron-Based cleaning powder and cleaning method using same
JP2008194542A (en) Noble metal-carrying metal iron particle for purification of soil and ground water and purification method of soil and ground water
JP2006249319A (en) Slurry containing iron, its manufacturing method, treating agent for making organic halogenide contaminant harmless and method for making harmless by using it
JP4557126B2 (en) Iron composite particle powder for purification treatment of soil and groundwater contaminated with organic halogen compounds, its production method, purification agent containing the iron composite particle powder, its production method and purification treatment of soil and groundwater contaminated with organic halogen compounds Method
JP4921856B2 (en) Purifying material for decomposition of organic halogen compounds and use thereof
JP4387648B2 (en) Decomposing agent and decomposing method of organic halogen compounds
JP2005131570A (en) Soil cleaning agent
JP2004243226A (en) Exuding prevention method for contaminant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100406

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100830

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110425

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110712

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110714

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4786936

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140722

Year of fee payment: 3