JP2003136051A - Metal powder for decomposing organic halogen compound and method for cleaning soil using the same - Google Patents

Metal powder for decomposing organic halogen compound and method for cleaning soil using the same

Info

Publication number
JP2003136051A
JP2003136051A JP2001336808A JP2001336808A JP2003136051A JP 2003136051 A JP2003136051 A JP 2003136051A JP 2001336808 A JP2001336808 A JP 2001336808A JP 2001336808 A JP2001336808 A JP 2001336808A JP 2003136051 A JP2003136051 A JP 2003136051A
Authority
JP
Japan
Prior art keywords
metal
metal powder
powder
phase
organic halogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001336808A
Other languages
Japanese (ja)
Inventor
Masaru Tomoguchi
勝 友口
Hiroshi Uehara
大志 上原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Mining Co Ltd filed Critical Dowa Mining Co Ltd
Priority to JP2001336808A priority Critical patent/JP2003136051A/en
Publication of JP2003136051A publication Critical patent/JP2003136051A/en
Pending legal-status Critical Current

Links

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Removal Of Specific Substances (AREA)
  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a metal powder for decomposing organic halogen compounds capable of decomposing persistent organic halogen compounds as pollutants contained in soil, underground water and the like at a high speed. SOLUTION: As the metal powder for decomposing the organic halogen compounds capable of decomposing and cleaning at a high speed the persistent organic halogen compounds, such metal powder is prepared as that is constituted of a metal powder both having an adhesion metal phase 2 in which metal particles 3 composing a metal powder 4 contain nickel as a main component and having a base metal phase 1 in which metal particles contain iron as a main component, a metal powder 4 both having an adhesion metal phase 2 containing manganese as a main component and having a base metal phase 1 containing aluminum as a main component, or a metal powder composed of aluminum dross generated in a refining molten aluminum process. The organic halogen compounds in the environment are decomposed and cleaned at a high speed by using the methods of mixing any of the above metal powders with the soil polluted by the organic halogen compounds.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、土壌、河川水、地
下水、大気等の環境を汚染している汚染物質の一つであ
る有機ハロゲン化合物を、高速度で分解することのでき
る有機ハロゲン化合物分解用金属粉に関する。
TECHNICAL FIELD The present invention relates to an organohalogen compound capable of decomposing at a high speed an organohalogen compound which is one of pollutants polluting the environment such as soil, river water, groundwater and the atmosphere. Dissolving metal powder.

【0002】[0002]

【従来の技術】近年、テトラクロロエチレン(以下、P
CEと記載する。)、トリクロロエチレン(以下、TC
Eと記載する。)、ジクロロエチレン(以下、DCEと
記載する。)等の有機塩素化合物に代表される有機ハロ
ゲン化合物による土壌および地下水等の汚染が顕在化
し、一つの社会問題としても取り上げられている。そし
て、これらの有機ハロゲン化合物浄化方法については種
々のものが考案されている。例えば、特開平7−178
395号公報には、微生物による好気または嫌気分解処
理の方法が記載されている。また例えば、特開平7−1
44137号公報には、光触媒による酸化分解処理の方
法が記載されている。さらに例えば、前記特開平11−
235577号公報には、海綿状を有する特殊鉄粉(以
下、特殊鉄粉と記載する。)による還元的分解処理の方
法が記載されている。
2. Description of the Related Art In recent years, tetrachloroethylene (hereinafter referred to as P
It is described as CE. ), Trichlorethylene (hereinafter TC
Write E. ), Dichloroethylene (hereinafter referred to as DCE) and other organohalogen compounds such as organochlorine compounds have contaminated soil and groundwater, and have been taken up as a social problem. Various methods for purifying these organic halogen compounds have been devised. For example, JP-A-7-178
Japanese Patent Publication No. 395 describes a method of aerobic or anaerobic decomposition treatment by microorganisms. Further, for example, Japanese Patent Laid-Open No. 7-1
Japanese Patent No. 44137 describes a method of oxidative decomposition treatment with a photocatalyst. Further, for example, the above-mentioned JP-A-11-
Japanese Patent No. 235577 discloses a method of reductive decomposition treatment using sponge-like special iron powder (hereinafter referred to as special iron powder).

【0003】さらに加えて、例えば、特開2000−5
740号公報には、金属鉄粉表面に金属銅を0.2〜2
0wt%付着させた銅含有鉄粉(以下、銅含有鉄粉と記
載する。)を調製し、金属鉄粉の有機ハロゲン化合物へ
の分解活性を高めることが可能になったことが開示され
ている。
In addition to this, for example, Japanese Patent Laid-Open No. 2000-5
In Japanese Patent No. 740, the metallic iron powder surface is coated with metallic copper in an amount of 0.2-2.
It is disclosed that it is possible to prepare a copper-containing iron powder (hereinafter referred to as a copper-containing iron powder) having 0 wt% adhered thereto, and to enhance the decomposition activity of the metal iron powder into an organic halogen compound. .

【0004】[0004]

【発明が解決しようとする課題】有機ハロゲン化合物に
よる土壌および地下水等の汚染を浄化するため、上述の
ような技術が開示、提案されているが、有機ハロゲン化
合物は広範囲な化合物群を含み、例えば、前記DCEの
ように、従来の技術では分解が困難で浄化に長時間を要
するものもある。このため、例えば土壌浄化の分野で
は、難分解性の有機ハロゲン化合物をより速く浄化でき
る方法が強く望まれている。本発明は、以上のような状
況を背景としてなされたものであり、土壌等の環境を汚
染している難分解性の有機ハロゲン化合物を、高速度で
分解、浄化可能な金属粉を提供することにある。
The above-mentioned techniques have been disclosed and proposed in order to purify soil, groundwater and the like caused by organohalogen compounds. However, organohalogen compounds include a wide range of compounds. In some cases, like the DCE, it is difficult to decompose with conventional techniques and it takes a long time for purification. Therefore, for example, in the field of soil remediation, there is a strong demand for a method that can more rapidly purify persistent organic halogen compounds. The present invention has been made against the background of the above circumstances, and provides a metal powder capable of decomposing and purifying a hardly decomposable organic halogen compound contaminating the environment such as soil at a high speed. It is in.

【0005】[0005]

【課題を解決するための手段】本発明者らは、まず、種
々の金属粉試料を準備し、難分解性の有機ハロゲン化合
物としてDCEを選択して、これら金属粉試料によるD
CEの分解速度試験をおこなった。試行錯誤の結果、本
発明者らは、2種以上の金属種、特に、ニッケルと鉄と
を各々主成分とする相を有する金属粉、およびアルミニ
ウムとマンガンとを各々主成分する相を有する金属粉
は、DCEの分解速度が速いことを見出し、さらに研究
の結果、これらの金属粉が、DCEを始めとする難分解
性有機ハロゲン化合物を高速度で分解、浄化可能な金属
粉であることに想到した。さらに、アルミニウム製錬工
程やアルミニウム加工製品製造工程におけるアルミニウ
ムの熔練工程で副生するアルミドロスより製造した金属
粉も、難分解性有機ハロゲン化合物を高速度で分解、浄
化可能な金属粉であることにも想到して本発明を完成し
たものである。
The inventors of the present invention first prepared various metal powder samples, selected DCE as a hardly decomposable organohalogen compound, and prepared D by these metal powder samples.
A decomposition rate test of CE was performed. As a result of trial and error, the inventors of the present invention have two or more metal species, particularly metal powder having a phase containing nickel and iron as main components, and a metal powder having a phase containing aluminum and manganese as main components. It was found that the powder has a high decomposition rate of DCE, and as a result of further research, these metal powders are metal powders capable of decomposing and purifying persistent organic halogen compounds such as DCE at a high speed. I thought about it. Furthermore, the metal powder produced from aluminum dross, which is a by-product of the aluminum smelting process in the aluminum smelting process and aluminum processed product manufacturing process, is also a metal powder that can decompose and purify persistent organic halogen compounds at high speed. The present invention has been completed with this in mind.

【0006】すなわち上述の課題を解決する第1の発明
は、金属粉を構成する金属粒子であって、前記各々の金
属粒子は、ニッケルを主成分とする相と、鉄を主成分と
する相とを有することを特徴とする有機ハロゲン化合物
分解用金属粉である。
That is, a first invention for solving the above-mentioned problems is a metal particle constituting a metal powder, wherein each of the metal particles comprises a phase containing nickel as a main component and a phase containing iron as a main component. It is a metal powder for decomposing an organic halogen compound, which comprises:

【0007】この構成を有する金属粉は、PCE、TC
E、cis−1,2−DCE、trans−1,2−D
CEを始めとする各種の難分解性有機ハロゲン化合物、
例えば、モノクロロベンゼン(以下、MCBと記載す
る。)、1,2−ジクロロベンゼン(以下、1,2−D
CBと記載する。)、1,3−ジクロロベンゼン(以
下、1,3−DCBと記載する。)、ジクロロメタン、
四塩化炭素、1,2−ジクロロエタン(以下、1,2−
DCAと記載する。)、1,1−ジクロロエタン(以
下、1,1−DCAと記載する。)、1,1,1−トリ
クロロエタン、1,1,2−トリクロロエタン、1,3
−ジクロロプロペン、トリハロメタン、1,1−ジクロ
ロエチレン、PCB等に適用可能であり、なかでも、特
に塩素系有機化合物を高速度で分解浄化することができ
る。この結果、本発明に係る金属粉を用いることによ
り、有機ハロゲン化合物に汚染された土壌、地下水、お
よび地表水の浄化が可能である。
Metal powders having this structure are PCE and TC.
E, cis-1,2-DCE, trans-1,2-D
Various persistent halogen compounds such as CE,
For example, monochlorobenzene (hereinafter, referred to as MCB), 1,2-dichlorobenzene (hereinafter, 1,2-D)
It describes as CB. ), 1,3-dichlorobenzene (hereinafter referred to as 1,3-DCB), dichloromethane,
Carbon tetrachloride, 1,2-dichloroethane (hereinafter 1,2-
It is described as DCA. ), 1,1-dichloroethane (hereinafter referred to as 1,1-DCA), 1,1,1-trichloroethane, 1,1,2-trichloroethane, 1,3
-It is applicable to dichloropropene, trihalomethane, 1,1-dichloroethylene, PCB and the like, and in particular, chlorine-based organic compounds can be decomposed and purified at high speed. As a result, by using the metal powder according to the present invention, it is possible to purify soil, groundwater, and surface water contaminated with organic halogen compounds.

【0008】第2の発明は、前記鉄を主成分とする相の
表面に、前記ニッケルを主成分とする相が点在して付着
していることを特徴とする第1の発明に記載の有機ハロ
ゲン化合物分解用金属粉である。
A second invention is characterized in that the phase containing nickel as a main component is scattered and adhered to the surface of the phase containing iron as a main component. It is a metal powder for decomposing organic halogen compounds.

【0009】第3の発明は、前記金属粉におけるニッケ
ルの含有率が、0wt%を含まない20wt%以下であ
ることを特徴とする第1または第2の発明に記載の有機
ハロゲン化合物分解用金属粉である。
A third invention is the metal for decomposing an organohalogen compound according to the first or second invention, wherein the content of nickel in the metal powder is 20 wt% or less not including 0 wt%. It is powder.

【0010】第4の発明は、金属粉を構成する金属粒子
であって、前記各々の金属粒子は、マンガンを主成分と
する相と、アルミニウムを主成分とする相とを有するこ
とを特徴とする有機ハロゲン化合物分解用金属粉であ
る。
A fourth aspect of the present invention is a metal particle constituting a metal powder, wherein each of the metal particles has a phase containing manganese as a main component and a phase containing aluminum as a main component. It is a metal powder for decomposing an organic halogen compound.

【0011】第5の発明は、前記アルミニウムを主成分
とする相の表面に、前記マンガンを主成分とする相が点
在して付着していることを特徴とする第4の発明に記載
の有機ハロゲン化合物分解用金属粉である。
A fifth aspect of the present invention is characterized in that the phase containing manganese as a main component is scattered and adhered to the surface of the phase containing aluminum as a main component. It is a metal powder for decomposing organic halogen compounds.

【0012】第6の発明は、前記金属粉におけるマンガ
ンの含有率が、0wt%を含まない30wt%以下であ
ることを特徴とする第4または第5の発明に記載の有機
ハロゲン化合物分解用金属粉である。
A sixth invention is the metal for decomposing an organohalogen compound according to the fourth or fifth invention, wherein the content of manganese in the metal powder is 30 wt% or less not including 0 wt%. It is powder.

【0013】第7の発明は、アルミニウムの熔練工程で
産するアルミドロスより製造される金属粉であって、酸
化アルミニウムを主成分とし、C、Na、Mg、Al、
Si、Ca、Mn、Fe、Co、Ni、Cu、Znのい
ずれかの少なくとも1種以上の元素を主成分とする相を
含有することを特徴とする有機ハロゲン化合物分解用金
属粉である。
A seventh invention is a metal powder produced from aluminum dross produced in the aluminum melting step, which contains aluminum oxide as a main component and contains C, Na, Mg, Al,
A metal powder for decomposing an organohalogen compound, which contains a phase containing at least one element selected from the group consisting of Si, Ca, Mn, Fe, Co, Ni, Cu, and Zn as a main component.

【0014】この構成を採ることで、アルミドロスとい
うアルミニウムの熔練工程での副産物の有効活用法を見
出し、併せて極めて低コストな有機ハロゲン化合物分解
用金属粉を得ることができた。この結果、本発明に係る
金属粉を用いることにより、有機ハロゲン化合物に汚染
された土壌、地下水、および地表水の浄化が低コストで
可能となる。
By adopting this constitution, a method of effectively utilizing aluminum dross, which is a by-product in the aluminum melting step, was found, and at the same time, an extremely low cost metal powder for decomposing organic halogen compounds could be obtained. As a result, the use of the metal powder according to the present invention enables purification of soil, groundwater, and surface water contaminated with organic halogen compounds at low cost.

【0015】第8の発明は、第1から第7の発明のいず
れかに記載の有機ハロゲン化合物分解用金属粉を用いる
ことを特徴とする、土壌および/または地下水および/
または地表水の浄化方法である。
An eighth invention is characterized by using the metal powder for decomposing an organohalogen compound according to any one of the first to seventh inventions, and soil and / or groundwater and / or
Or it is a purification method of surface water.

【0016】[0016]

【発明の実施の形態】(有機ハロゲン化合物分解用金属
粉の成分および構造)本発明の実施の形態に係る有機ハ
ロゲン化合物分解用金属粉(以下、金属粉と記載す
る。)は、少なくとも、鉄(以下、Feと記載する。)
−ニッケル(以下、Niと記載する。)の2種の金属元
素を主成分とする相を有し、Feを主成分とする相を母
材金属相とし、Niを主成分とする相を付着金属相と
し、付着金属相は母材金属相に付着してNi付着Fe粒
子の形態となり、この粒子が集合したものである。
BEST MODE FOR CARRYING OUT THE INVENTION (Components and structure of metal powder for decomposing organic halogen compounds) The metal powder for decomposing organic halogen compounds (hereinafter referred to as metal powder) according to the embodiment of the present invention is at least iron. (Hereinafter, described as Fe.)
-Has a phase mainly composed of two kinds of metal elements of nickel (hereinafter referred to as Ni), a phase mainly composed of Fe is a base metal phase, and a phase mainly composed of Ni is attached A metal phase is formed, and the adhered metal phase adheres to the base metal phase to form Ni adhered Fe particles, and these particles are aggregated.

【0017】次に、本発明の異なる実施の形態に係る金
属粉は、少なくともアルミニウム(以下、Alと記載す
る。)−マンガン(以下、Mnと記載する。)の2種の
金属元素を主成分とする相を有し、Alを主成分とする
相を母材金属相とし、Mnを主成分とする相を付着金属
相とし、付着金属相は母材金属相に付着してMn付着A
l粒子の形態となり、この粒子が集合体したものであ
る。
Next, the metal powder according to another embodiment of the present invention contains at least two kinds of metal elements of aluminum (hereinafter referred to as Al) -manganese (hereinafter referred to as Mn) as a main component. And a phase containing Al as a main component is a base metal phase, a phase containing Mn as a main component is an adhering metal phase, and the adhering metal phase is adhered to the base metal phase and Mn adhering A
It is in the form of 1 particle, and is an aggregate of these particles.

【0018】さらに、本発明の異なる実施の形態に係る
金属粉は、Al熔錬工程等の副産物であるアルミドロス
より製造した金属粉である。
Further, the metal powder according to another embodiment of the present invention is a metal powder produced from aluminum dross which is a by-product of the Al smelting process and the like.

【0019】まず、Ni付着Fe粉およびMn付着Al
粉について、図1を参照しながら説明する。図1は、本
発明に係る金属粉中の金属粒子を模式的に表現した拡大
図である。図1において、符号1は母材金属相、符号2
は付着金属相であり、この母材金属相1へ付着金属相2
が付着して符号3に示す金属粉粒子の形態となる。この
金属粉粒子3の多数集合したものが金属粉4である。さ
らに符号5は母材金属相1と付着金属相2との界面であ
り、符号dは付着金属相2の付着膜厚を示す。Ni付着
Fe粉およびMn付着Al粉とも、母材金属相1である
Fe相、Al相の形状は、球状、針状、海綿状等どの様
なものでも良いが、単位重量当たりの比表面積が大きい
ことが好ましい。付着金属相2であるNi相、Mn相
は、前記母材金属相1の表面において付着金属相2同士
が連続することなく、独立して分散し、点在する形で付
着している形態が好ましい。すなわち、金属粉粒子3を
構成する少なくとも2つの相が金属粉粒子3の表面に露
出していることが好ましい。この構成を有することで金
属粉4は、周囲にある有機ハロゲン化合物を効率的に分
解できると考えられる。しかし、この母材金属相1と付
着金属相2との界面5内に、例えば、母材金属の酸化物
等の化合物形態を有する部分が一部存在したとしても、
有機ハロゲン化合物の分解特性に大きな悪影響を与える
ことはない。
First, Ni-deposited Fe powder and Mn-deposited Al
The powder will be described with reference to FIG. FIG. 1 is an enlarged view schematically showing metal particles in a metal powder according to the present invention. In FIG. 1, reference numeral 1 is a base metal phase, reference numeral 2
Is the adherent metal phase, and the adherent metal phase 2 to the base metal phase 1
Adhere to form the form of metal powder particles indicated by reference numeral 3. A large number of the metal powder particles 3 are aggregated to form the metal powder 4. Further, reference numeral 5 is an interface between the base metal phase 1 and the adhered metal phase 2, and reference numeral d is the adhered film thickness of the adhered metal phase 2. Both the Ni-adhered Fe powder and the Mn-adhered Al powder may have any shape such as a spherical shape, a needle shape, and a sponge shape of the Fe phase and the Al phase, which are the base metal phase 1, but have a specific surface area per unit weight. It is preferably large. The Ni phase and the Mn phase, which are the adhered metal phases 2, have a form in which the adhered metal phases 2 are independently dispersed on the surface of the base metal phase 1 without being continuous with each other and adhered in a scattered manner. preferable. That is, it is preferable that at least two phases forming the metal powder particles 3 are exposed on the surface of the metal powder particles 3. It is considered that the metal powder 4 having this configuration can efficiently decompose the surrounding organic halogen compound. However, even if a portion having a compound form such as an oxide of the base metal exists in the interface 5 between the base metal phase 1 and the adhered metal phase 2,
It does not significantly affect the decomposition characteristics of the organic halogen compound.

【0020】付着金属相2の付着膜厚dには、特に制限
はないが、付着金属としてNi、Mnのような金属を用
いる場合はコストの観点より、できる限り薄くすること
が好ましい。
The thickness d of the deposited metal phase 2 is not particularly limited, but when a metal such as Ni or Mn is used as the deposited metal, it is preferably as thin as possible from the viewpoint of cost.

【0021】Ni付着Fe粉およびMn付着Al粉と
も、金属粉粒子3の粒径は、1〜500μmが好まし
い。何となれば、粒径が1μm以下の場合、土壌への分
散性は優れるが、例えば地下水流などとともに、土壌粒
子間隙を通過してより下層の方へ流失してしまう可能性
があるからであり、一方、500μmを超える場合は、
土壌中での位置は安定するものの、単位土壌面積当たり
の金属粉4の使用量が増えるので、コストの点を考える
と500μm以下の粒径が好ましいからである。但し、
例えば母材金属相1として海綿状粒子のような比表面積
の大きな金属相を用いる場合はこの限りではではない。
比表面積の大きな金属相の場合、金属相の単位重量あた
りの有効反応サイトが増えるので、単位土壌面積当たり
の使用量を低減することができ、金属粒子3の粒径が5
00μmを超える金属粉4であっても好ましく使用でき
る。
In both the Ni-adhered Fe powder and the Mn-adhered Al powder, the metal powder particles 3 preferably have a particle size of 1 to 500 μm. This is because when the particle size is 1 μm or less, the dispersibility in the soil is excellent, but there is a possibility that the particles may pass through the soil particle gap and be washed away toward the lower layer, for example, along with the groundwater flow. On the other hand, when it exceeds 500 μm,
This is because the position in the soil is stable, but the amount of the metal powder 4 used per unit soil area increases, so that a particle size of 500 μm or less is preferable in terms of cost. However,
For example, this is not the case when a metal phase having a large specific surface area such as sponge-like particles is used as the base metal phase 1.
In the case of a metal phase having a large specific surface area, the number of effective reaction sites per unit weight of the metal phase increases, so that the amount used per unit soil area can be reduced, and the particle size of the metal particles 3 is 5
Even the metal powder 4 having a diameter of more than 00 μm can be preferably used.

【0022】Ni付着Fe粉において、Ni相中のNi
元素とFe相中のFe元素との重量の和を100wt%
としたとき、Fe相へのNi相付着量が0wt%では有
機ハロゲン化合物の分解速度が遅く、10wt%以上に
なると有機ハロゲン化合物の分解速度が飽和してしま
う。ここでNiは原料コストの高い金属であることよ
り、有機ハロゲン化合物の分解速度と原料コストとを考
慮すると、Ni付着Fe粉におけるNi付着量は、0w
t%を含まない20wt%以下が好ましく、さらに好ま
しくは0wt%を含まない5wt%以下である。
In the Ni-adhered Fe powder, Ni in the Ni phase
The sum of the weight of the element and the Fe element in the Fe phase is 100 wt%
When the amount of Ni phase adhered to the Fe phase is 0 wt%, the decomposition rate of the organohalogen compound is slow, and when it is 10 wt% or more, the decomposition rate of the organohalogen compound is saturated. Here, since Ni is a metal having a high raw material cost, the Ni deposition amount in the Ni-deposited Fe powder is 0 w, considering the decomposition rate of the organic halogen compound and the raw material cost.
It is preferably 20 wt% or less without t%, and more preferably 5 wt% or less without 0 wt%.

【0023】次に、Mn付着Al粉において、Mn相中
のMn元素とAl相中のAl元素との重量の和を100
wt%としたとき、AlへのMn付着量が、0wt%で
は有機ハロゲン化合物の分解速度が遅く、30wt%以
上になると有機ハロゲン化合物の分解速度が飽和してし
まう。ここでMnは原料コストの高い金属であることよ
り、有機ハロゲン化合物の分解速度と原料コストとを考
慮すると、Mn付着Al粉におけるMn付着量は、0w
t%を含まない30wt%以下が好ましい。
Next, in the Mn-adhered Al powder, the sum of the weights of the Mn element in the Mn phase and the Al element in the Al phase is 100.
When the amount of Mn attached to Al is 0 wt%, the decomposition rate of the organohalogen compound is slow, and when it is 30 wt% or more, the decomposition rate of the organohalogen compound is saturated. Since Mn is a metal having a high raw material cost, the Mn deposition amount in the Mn-deposited Al powder is 0 w, considering the decomposition rate of the organic halogen compound and the raw material cost.
30 wt% or less not including t% is preferable.

【0024】ここで上述した金属粉4を、汚染土壌等へ
施工するコストの観点より、Ni付着Fe粉およびMn
付着Al粉とも、金属粒子3の粒径は、1〜500μm
が好ましく、さらには10〜100μm程度が好まし
い。何となれば、粒径が1μm以下の場合、土壌への分
散性は優れるが、例えば地下水流などとともに、土壌粒
子間隙を通過してより下層の方へ流失してしまう可能性
があるあるからであり、一方、500μmを超える場合
は、土壌中での位置は安定するものの、単位土壌面積当
たりの金属粉4の使用量が増えるので、施工のコストを
考えると金属粒子3の粒径が500μm以下の粒径が好
ましいからであり、金属粒子3の粒径が10〜100μ
m程度の金属粉4はさらに好ましいからである。但し、
例えば海綿状粒子のような比表面積の大きな母材金属相
1を用いる場合はこの限りではではない。比表面積の大
きな母材金属相1の場合、母材金属相1の単位重量あた
りの有効反応サイトが増えるので、単位土壌面積当たり
の使用量を低減することができ、金属粒子3の粒径が5
00μmを超える金属粉4であっても好ましく使用でき
る。
From the viewpoint of the cost of constructing the above-mentioned metal powder 4 on contaminated soil or the like, Ni-adhered Fe powder and Mn are added.
With the adhered Al powder, the particle size of the metal particles 3 is 1 to 500 μm.
Is preferable, and about 10 to 100 μm is more preferable. If the particle size is 1 μm or less, the dispersibility in the soil is excellent, but there is a possibility that the particles may pass through the soil particle gap and be lost to the lower layer, for example, along with the groundwater flow. On the other hand, when it exceeds 500 μm, although the position in the soil is stable, the amount of the metal powder 4 used per unit soil area increases, so considering the construction cost, the particle size of the metal particles 3 is 500 μm or less. Is preferable, and the particle size of the metal particles 3 is 10 to 100 μm.
This is because the metal powder 4 of about m is more preferable. However,
This is not the case when the base metal phase 1 having a large specific surface area such as spongy particles is used. In the case of the base metal phase 1 having a large specific surface area, the number of effective reaction sites per unit weight of the base metal phase 1 increases, so that the amount used per unit soil area can be reduced, and the particle size of the metal particles 3 can be reduced. 5
Even the metal powder 4 having a diameter of more than 00 μm can be preferably used.

【0025】次に、アルミドロスより製造した金属粉に
ついて説明する。まず、アルミドロスとは、Alの製錬
工程やアルミ加工製品製造工程におけるAl鉱石やAl
化合物を含有する廃棄物の熔練工程の際、Al溶湯面上
に生成する不純物を含む副産物である。アルミドロス
は、Alを数十wt%含むため、従来は、不純物含有量
の低い下層部を分離して採取した後、再度のAl製錬工
程を行ってAl分を回収した後、残余の部分は廃棄物と
して処分される状況であった。この再度のAl製錬工程
には高温熱処理工程が含まれるため、大きなエネルギー
を必要とするうえに、残余部分の廃棄物中には、まだ約
5〜10wt%のAlと約10〜50wt%のアルミナ成
分が含有されており、Al分の回収、再利用という意味
でも効率の悪いものであった。
Next, the metal powder produced from aluminum dross will be described. First, aluminum dross means Al ore and Al in the Al smelting process and aluminum product manufacturing process.
It is a by-product containing impurities that is generated on the surface of the molten Al during the step of melting the waste containing the compound. Since Almidros contains several tens wt% of Al, conventionally, after the lower layer portion having a low impurity content is separated and collected, the Al smelting step is performed again to recover the Al content, and then the remaining portion. Was disposed of as waste. Since the high temperature heat treatment step is included in this second Al smelting step, a large amount of energy is required and, in addition, about 5 to 10 wt% of Al and about 10 to 50 wt% of Al are still contained in the remaining waste. Since it contained an alumina component, it was also inefficient in terms of recovery and reuse of Al content.

【0026】このアルミドロスは、母材金属相を形成す
る酸化Al相中にC、Na、Mg、Al、Si、Ca、
Mn、Fe、Co、Ni、Cu、Zn等のいずれかの少
なくとも1種以上の元素が、合金および/または付着金
属相の形で、混入および/または付着している。前記付
着金属相は、概ね、前記酸化Al相上において付着金属
相同士が連続することなく、独立して分散し、点在する
形態となっている。
This aluminum dross contains C, Na, Mg, Al, Si, Ca in the oxidized Al phase forming the base metal phase.
At least one element selected from the group consisting of Mn, Fe, Co, Ni, Cu and Zn is mixed and / or adhered in the form of an alloy and / or an adhering metal phase. The adhering metal phase is generally in a form in which the adhering metal phases are independently dispersed and scattered on the Al oxide phase without being continuous with each other.

【0027】そして、上記Alの熔錬工程において回収
されるアルミドロスであって、Al含有量が概ね0.0
1〜70wt%であり、 粒子径は0.1〜300mm
の範囲であり、比表面積が0.2〜120m2/gの範
囲にあるものは、有機ハロゲン化合物の分解速度が速
く、有機ハロゲン化合物分解用金属粉として好個に用い
ることができる。このアルミドロスより製造した金属粉
も、上述したMn付着Al粉と類似の機構により難分解
性の有機ハロゲン化合物を高速度で分解、浄化している
ものと考えられる。
The aluminum dross recovered in the Al smelting step has an Al content of about 0.0.
1 to 70 wt%, particle size is 0.1 to 300 mm
And the specific surface area is in the range of 0.2 to 120 m 2 / g, the decomposition rate of the organic halogen compound is high, and it can be favorably used as the metal powder for decomposing the organic halogen compound. It is considered that the metal powder produced from this aluminum dross also decomposes and purifies the hardly-decomposable organic halogen compound at a high speed by a mechanism similar to that of the above-mentioned Mn-adhered Al powder.

【0028】もちろん、前記アルミドロスを粉砕して、
粒子径を0.1〜80μmの範囲に調製したものを金属
粉とするのも好ましい構成である。上記の構成を採るこ
とで、金属粉の土壌等への添加作業が容易にり、さらに
土壌に添加後は、難分解性の有機ハロゲン化合物を高速
度で分解、浄化することが可能となる。
Of course, by crushing the aluminum dross,
It is also a preferable configuration that the metal powder has a particle size adjusted to a range of 0.1 to 80 μm. By adopting the above configuration, the work of adding the metal powder to the soil or the like becomes easy, and after addition to the soil, it becomes possible to decompose and purify the hardly-decomposable organic halogen compound at a high speed.

【0029】この結果、アルミドロスの再処理工程とい
う大きなエネルギーを必要とし、かつ効率の悪いAl分
の回収、再利用工程に替えて、安価な製造コストで金属
粉を製造するという工業的メリットの大きな金属粉製造
工程、およびアルミドロスの有益な使用用途を実現でき
る。
As a result, the industrial advantage of producing metal powder at a low production cost instead of the aluminum dross reprocessing step, which requires a large amount of energy, and which is a less efficient Al content recovery and reuse step. It is possible to realize a large metal powder manufacturing process and a beneficial application of aluminum dross.

【0030】(有機ハロゲン化合物分解用金属粉による
有機ハロゲン化合物分解特性)Ni付着Fe粉、Mn付
着Al粉、アルミドロスより製造した金属粉とも、PC
E、TCE、cis−1,2−DCE、trans−
1,2−DCEはもとより、MCBを始めとする各種の
難分解性有機ハロゲン化合物、例えば、1,2−DC
B、1,3−DCB、ジクロロメタン、四塩化炭素、
1,2−DCA、1,1−DCA、1,1,1−トリク
ロロエタン、1,1,2−トリクロロエタン、1,3−
ジクロロプロペン、トリハロメタン、1,1−DCE、
PCB等の分解に適用可能であり、なかでも、特に塩素
系有機化合物の分解に適している。さらに、上述した金
属粉により、重金属と有機ハロゲン化合物とに混合汚染
された土壌、地下水、および地表水の浄化も可能であ
る。特にAlを含有する金属粉を用いた場合、施工環境
が、弱酸性、中性および弱アルカリ性のいずれ場合でも
有機ハロゲン化合物の分解作用を発揮する点で優れてい
る。
(Organic Halogen Compound Decomposition Characteristics by Metallic Powder for Decomposing Organic Halogen Compounds) Ni-adhered Fe powder, Mn-adhered Al powder, and metal powder manufactured from aluminum dross are both PC
E, TCE, cis-1,2-DCE, trans-
In addition to 1,2-DCE, various persistent halogenated organic compounds such as MCB, for example, 1,2-DCE
B, 1,3-DCB, dichloromethane, carbon tetrachloride,
1,2-DCA, 1,1-DCA, 1,1,1-trichloroethane, 1,1,2-trichloroethane, 1,3-
Dichloropropene, trihalomethane, 1,1-DCE,
It is applicable to decomposition of PCB and the like, and is particularly suitable for decomposition of chlorine-based organic compounds. Furthermore, the above-mentioned metal powder can also purify soil, groundwater, and surface water mixed and contaminated with heavy metals and organic halogen compounds. In particular, when a metal powder containing Al is used, it is excellent in that it exhibits a decomposition action of the organic halogen compound regardless of whether the construction environment is weakly acidic, neutral or weakly alkaline.

【0031】上述のような方法で調製した金属粉の粒子
表面に、難分解性有機ハロゲン化合物が接触する際、そ
の難分解性有機ハロゲン化合物が揮発性であればガス吸
着という形態で、不揮発性であれば流動または混合に伴
う接触という形態で接触すると考えられる。この金属粉
の粒子表面に、ガス吸着または接触した難分解性有機ハ
ロゲン化合物は、金属粉の組成・表面状態等と、有機ハ
ロゲン化合物の構成元素・立体構造との相互作用により
分解される。この相互作用とは、金属粉が有機ハロゲン
化合物中のハロゲン元素に与える直接作用や、二重結合
部への作用や、各種の錯体的な構造を形成する作用等で
あるものと考えられる。
When the hard-to-decompose organic halogen compound is brought into contact with the surface of the metal powder particles prepared by the above-mentioned method, if the hard-to-decompose organic halogen compound is volatile, it is adsorbed in the form of gas, which is non-volatile. If so, it is considered that they come into contact with each other in the form of contact with flowing or mixing. The hardly-decomposable organohalogen compound which is adsorbed or brought into contact with the particle surface of the metal powder is decomposed by the interaction between the composition and surface state of the metal powder and the constituent elements and three-dimensional structure of the organohalogen compound. It is considered that the interaction is a direct action of the metal powder on the halogen element in the organic halogen compound, an action on the double bond portion, an action of forming various complex-like structures, and the like.

【0032】(有機ハロゲン化合物分解用金属粉の施行
方法)上述した金属粉を用いて、各種の有機ハロゲン化
合物で汚染された土壌、地下水、ガス等の浄化処理を行
う場合、例えば次のような方法が好ましい。まず、土壌
の浄化処理をおこなう場合には、掘削された土壌へ土壌
改良機やバックホー等の重機を用いて金属粉を混合する
方法がある。次には振動ミル、回転ミル等の設備に掘削
された土壌と、金属粉と、粉砕メディアとを投入し攪拌
混合処理を行う方法がある。さらには、汚染された土壌
へ、有機ハロゲン化合物分解用金属粉を局所的に混合し
た箇所を適宜、配置し、揮発性の有機ハロゲン化合物を
拡散移動させながら分解処理していく方法等が適用でき
る。
(Method of Enforcing Metallic Powder for Decomposing Organic Halogen Compound) When the above-mentioned metal powder is used to purify soil, groundwater, gas, etc. contaminated with various organic halogenated compounds, for example, The method is preferred. First, in the case of performing soil purification treatment, there is a method of mixing metal powder into excavated soil by using a heavy machine such as a soil conditioner or a backhoe. Next, there is a method in which soil excavated in equipment such as a vibration mill and a rotary mill, metal powder, and pulverizing media are charged and a stirring and mixing process is performed. Furthermore, a method of decomposing the volatile organic halogen compound while diffusing and moving it can be applied to the contaminated soil by appropriately arranging a location where the metal powder for decomposing the organic halogen compound is locally mixed. .

【0033】また、地下水の浄化処理をおこなう場合に
は、地中において、地下水が透過するような金属粉を含
む反応壁を造成するのが好ましい。このとき地中に造成
される反応壁は、地下水が金属粉へ接するように配置す
るが、そのためには汚染土壌深部の地下水の易透過層を
カバーするように、そして易透過層下方に位置する難透
過層にまで反応壁下端部を配置させるか、または埋設さ
れるように反応壁を設けることが好ましい。さらに反応
壁の透水係数が回りの土質と比較して、同レベルである
か、またはそれより高くなるように反応壁の透水性を良
好な状態に調節することが好ましい。そこで例えば、高
砂質土壌等に金属粉を0.1〜50wt%程度の範囲で
均一または不均一に分散させた材料で反応壁を造成する
のが好ましい。
In the case of purifying groundwater, it is preferable to construct a reaction wall containing metal powder in the ground so that groundwater can permeate. At this time, the reaction wall formed in the ground is arranged so that groundwater is in contact with the metal powder, and for that purpose, it is located so as to cover the easily permeable layer of groundwater deep in the contaminated soil and below the easily permeable layer. It is preferable to dispose the lower end of the reaction wall up to the impermeable layer or to provide the reaction wall so as to be buried. Further, it is preferable to adjust the water permeability of the reaction wall to a good state so that the water permeability of the reaction wall is at the same level as or higher than that of the surrounding soil. Therefore, for example, it is preferable to construct the reaction wall with a material in which metal powder is uniformly or non-uniformly dispersed in a range of about 0.1 to 50 wt% in high sandy soil or the like.

【0034】(有機ハロゲン化合物分解用金属粉の製造
方法)Ni付着Fe粉およびMn付着Al粉とも、化学
的製造方法と物理的製造方法とにより製造することがで
きる。化学的製造方法とは、付着金属を酸等で溶解した
溶液中へ母材金属粉を浸せきし、両金属のイオン化傾向
の差を利用して母材金属相へ付着金属相を付着させる方
法である。このとき、付着金属の溶解液濃度および浸せ
き時間等を制御することで、付着金属相の母材金属相へ
の付着状態、付着膜厚等を制御することができる。この
方法は、均一な特性を有する金属粉を容易に調製できる
点で好ましい方法である。
(Manufacturing Method of Metallic Powder for Decomposing Organic Halogen Compound) Both Ni-adhered Fe powder and Mn-adhered Al powder can be manufactured by a chemical manufacturing method and a physical manufacturing method. The chemical manufacturing method is a method in which the base metal powder is immersed in a solution in which the adhered metal is dissolved with an acid, etc., and the adhered metal phase is attached to the base metal phase by utilizing the difference in the ionization tendency of both metals. is there. At this time, it is possible to control the adhesion state of the adhesion metal phase to the base metal phase, the adhesion film thickness, etc. by controlling the concentration of the solution of the adhesion metal and the immersion time. This method is a preferable method because a metal powder having uniform properties can be easily prepared.

【0035】物理的製造方法とは、予め粒状化した母材
金属相を含む粒子と、付着金属相を含む粒子とをミキサ
ー等で混合し、その混合時に生じる粒子同士の接触に伴
う衝突圧力を利用して付着金属相を母材金属相へ付着さ
せる方法である。この方法で調製した金属粉を電子顕微
鏡で観察した結果、母材金属相と付着金属相との界面に
両者の合金層が存在せず、界面を境に互いの金属相が直
接接合されていることが判明した。さらに付着金属相
は、圧力を受けたように変形していることが観察された
ことより、母材金属相に圧着しているものと考えられ
る。この方法によれば、酸による溶解の容易性やイオン
化傾向の差違を考慮する必要がない。そこで、母材金属
相と付着金属相として、広い範囲での金属の組み合わせ
を考慮する際に好ましい方法である。ここで、付着金属
相が、NiまたはMnという高コストな金属等を含む場
合は、母材金属相を含む粒子と付着金属相を含む粒子と
の混合割合において、母材金属相を含む粒子の比率を高
くする構成としてもよい。この構成を採ると、金属粉の
殆どを母材金属相を含む粒子が占め、高コストの付着金
属相を含む粒子は、母材金属相を含む粒子の表面に点在
して付着している構造をとることになり、金属粉の製造
コストを低減する観点より好ましい。
The physical production method is to mix particles containing a pre-granulated base metal phase and particles containing an adhering metal phase with a mixer or the like, and to determine the collision pressure caused by the contact between the particles generated during the mixing. It is a method of utilizing the adhered metal phase to adhere to the base metal phase. As a result of observing the metal powder prepared by this method with an electron microscope, the alloy layers of the base metal phase and the adhered metal phase do not exist at the interface, and the metal phases are directly bonded at the interface. It has been found. Further, since it was observed that the adhered metal phase was deformed as if it was subjected to pressure, it is considered that the adhered metal phase is pressure-bonded to the base metal phase. According to this method, it is not necessary to consider the ease of dissolution with an acid and the difference in ionization tendency. Therefore, it is a preferable method when considering a combination of metals in a wide range as the base metal phase and the adhering metal phase. Here, when the adhered metal phase contains a high-cost metal such as Ni or Mn, in the mixing ratio of the particles containing the base metal phase and the particles containing the adhered metal phase, the particles containing the base metal phase are mixed. It may be configured to increase the ratio. With this configuration, most of the metal powder is occupied by the particles containing the base metal phase, and the high-cost particles containing the adhered metal phase are scattered and adhered to the surface of the particles containing the base metal phase. This is preferable from the viewpoint of having a structure and reducing the manufacturing cost of the metal powder.

【0036】アルミドロスより製造した金属粉は、上述
したように、Alの熔錬工程よりアルミドロスを回収
し、必要に応じてこれを適宜に粉砕することで得ること
ができる。さらに、このアルミドロスの粉砕粉へ、C、
Na、Mg、Al、Si、Ca、Mn、Fe、Co、N
i、Cu、Zn等のいずれかの少なくとも1種以上の元
素を、付着金属相の形で添加する構成としてもよい。こ
の構成を採ると、アルミドロスより製造した金属粉が、
有機ハロゲン化合物を分解する速度をさらに速めること
が可能となり好ましい。ここで、アルミドロスの粉砕粉
へ付着金属相を添加する方法として、上述したNi付着
Fe粉等を製造する際に用いた物理的製造方法等が好個
に適用できる。
The metal powder produced from aluminum dross can be obtained by recovering aluminum dross from the Al smelting step and appropriately crushing it as necessary, as described above. Furthermore, to this crushed powder of aluminum dross, C,
Na, Mg, Al, Si, Ca, Mn, Fe, Co, N
At least one element selected from i, Cu, Zn and the like may be added in the form of an adhered metal phase. With this configuration, the metal powder produced from aluminum dross is
It is preferable because the rate of decomposing the organic halogen compound can be further increased. Here, as the method for adding the adhered metal phase to the pulverized powder of aluminum dross, the physical production method used when producing the Ni-adhered Fe powder or the like described above can be suitably applied.

【0037】以下、実施例に基づいて本発明をさらに詳
細に説明する。 (実施例1) (金属粉試料の調製)母材金属相の主成分をFe、付着
金属相の主成分をNiとして、Ni被着Fe粉試料を、
物理的方法の乾式共粉砕(メカノケミカル)法を用いて
次のように調製した。
The present invention will be described in more detail based on the following examples. (Example 1) (Preparation of metal powder sample) With the main component of the base metal phase being Fe and the main component of the adhering metal phase being Ni, a Ni-adhered Fe powder sample was prepared.
It was prepared as follows using a physical dry co-milling (mechanochemical) method.

【0038】まず、平均粒径50μmのFe粉、もう1
つの金属として平均粒径0.3μmのNi粉を準備し
た。この、Fe粉を95wt%、Ni粉を5wt%とな
るように配合し混合の後、500gを秤量し容量2Lの
粉砕ポットに投入する。粉砕ポットにはさらに粉砕メデ
ィアとして20mm径のZrO2ボールを5kg投入
し、回転ミルに設置した。そしてミルの回転数を100
rpmとし5分間粉砕処理をおこなって、Ni付着Fe
粉試料を調製した。
First, Fe powder having an average particle size of 50 μm and another 1
Ni powder having an average particle diameter of 0.3 μm was prepared as one metal. The Fe powder is mixed at 95 wt% and the Ni powder is mixed at 5 wt%, and after mixing, 500 g is weighed and put into a crushing pot having a capacity of 2 L. Further, 5 kg of ZrO 2 balls having a diameter of 20 mm was put into the crushing pot as a crushing medium and set in a rotary mill. And the rotation speed of the mill is 100
After crushing for 5 minutes at rpm, Ni-adhered Fe
A flour sample was prepared.

【0039】(調製試料の観察)前記調製された試料を
電子顕微鏡で観察したところ、Fe金属相の表面にNi
金属が直接接合された形態にて点在しており、境となる
界面に合金相が存在していないことが判明した。
(Observation of Prepared Sample) When the prepared sample was observed with an electron microscope, Ni was observed on the surface of the Fe metal phase.
It was found that the metals were scattered in the form of being directly joined, and no alloy phase was present at the boundary interface.

【0040】(調製試料による有機ハロゲン化合物の分
解試験)次に、前記調製されたNi付着Fe粉を用い
て、有機ハロゲン化合物の分解試験を実施した。まずイ
オン交換水に、有機ハロゲン化合物として、cis−
1,2−DCEを25.6mg/Lの濃度で含有させた
試験用汚染物質溶液を調製した。100mlのバイアル
瓶へNi付着Fe粉試料を0.5g投入し、そこへ前記
試験用汚染物質溶液を50ml注ぎ、密封後、攪拌震盪
し、一定時間毎にバイアル瓶のヘッドスペース部のガス
をサンプリングして、このガスをGC−MS(ガスクロ
マト−質量分析装置)装置にて定性・定量分析し、ヘッ
ドスペース部ガス中の有機塩素化合物濃度と前記攪拌震
盪処理時間とより、試験用汚染物質の分解の半減期を測
定した。
(Decomposition test of organohalogen compound by prepared sample) Next, a decomposition test of the organohalogen compound was carried out using the Ni-deposited Fe powder prepared above. First, cis- as an organic halogen compound was added to ion-exchanged water.
A test contaminant solution was prepared containing 1,2-DCE at a concentration of 25.6 mg / L. Into a 100 ml vial bottle, 0.5 g of the Ni-adhered Fe powder sample was poured, and 50 ml of the test contaminant solution was poured into the vial bottle. Then, this gas is qualitatively and quantitatively analyzed by a GC-MS (gas chromatograph-mass spectrometer) device, and the concentration of the organic chlorine compound in the headspace gas and the stirring and shaking treatment time are used to determine the contaminant for the test. The half-life of degradation was measured.

【0041】この測定結果より、Ni付着Fe粉試料に
よるcis−1,2−DCEの分解の半減期は1.1日
であることが判明した。
From these measurement results, it was found that the half-life of decomposition of cis-1,2-DCE by the Ni-adhered Fe powder sample was 1.1 days.

【0042】(実施例2)実施例1において、有機ハロ
ゲン化合物を1,2−DCAとし、含有量を25mgと
した以外は同様に行ったこの測定結果より、Ni付着F
e粉試料による1,2−DCAの分解の半減期は3.1
日であることが判明した。
(Example 2) From the results of this measurement performed in the same manner as in Example 1 except that the organic halogen compound was 1,2-DCA and the content was 25 mg, the Ni-adhered F
The half-life of decomposition of 1,2-DCA by e powder sample is 3.1.
Turned out to be a day.

【0043】(実施例3)実施例1において、1つの金
属粒子として平均粒径50μmのAl粉、もう1つの金
属として平均粒径30μmのMn粉とし、配合比は、A
l粉を80wt%、Mn粉を20wt%となるようにし
た以外は実施例1と同様にcis−1,2−DCEの分
解試験を行った。その結果、Mn付着Al粉試料による
cis−1,2−DCEの分解の半減期は1.9日であ
ることが判明した。
Example 3 In Example 1, one metal particle was Al powder having an average particle size of 50 μm, another metal was Mn powder having an average particle size of 30 μm, and the compounding ratio was A.
The decomposition test of cis-1,2-DCE was performed in the same manner as in Example 1 except that the amount of 1 powder was 80 wt% and the amount of Mn powder was 20 wt%. As a result, it was found that the half-life of the decomposition of cis-1,2-DCE by the Mn-adhered Al powder sample was 1.9 days.

【0044】(比較例1)硫酸銅の1M水溶液を300
mL調製し、平均粒径50μmのFe粉を20wt%投
入しスラリーとし5分間攪拌し、この銅含有鉄粉試料を
用いて、実施例1と同様にcis−1,2−DCEの分
解試験を行った。この試験結果より、銅含有Fe粉試料
によるcis−1,2−DCEの分解の半減期は3.2
日であることが判明した。
Comparative Example 1 A 1M aqueous solution of copper sulfate was added to 300 parts.
mL was prepared, 20 wt% of Fe powder having an average particle diameter of 50 μm was added, the mixture was made into a slurry and stirred for 5 minutes, and a decomposition test of cis-1,2-DCE was performed using this copper-containing iron powder sample in the same manner as in Example 1. went. From this test result, the half-life of the decomposition of cis-1,2-DCE by the copper-containing Fe powder sample was 3.2.
Turned out to be a day.

【0045】(実施例4)Al系廃材の製錬工程におい
て、その溶湯液面上に分離されたアルミドロスを回収、
冷却後、粉砕処理を行い平均粒径1〜50μmの金属粉
を得た。このアルミドロスより製造された金属粉に、X
線回折による定性分析を行った結果、この金属粉には、
酸化アルミニウムを主成分とする母材金属相に、Alを
始めとして、C、Na、Mg、Al、Si、Ca、M
n、Fe、Co、Ni、Cu、Znが含まれていた。
(Example 4) In the smelting process of Al-based waste material, the aluminum dross separated on the liquid surface of the molten metal is recovered,
After cooling, pulverization treatment was performed to obtain metal powder having an average particle size of 1 to 50 μm. X is added to the metal powder manufactured from this aluminum dross.
As a result of qualitative analysis by line diffraction, this metal powder
In addition to Al, C, Na, Mg, Al, Si, Ca, M is added to the base metal phase mainly composed of aluminum oxide.
It contained n, Fe, Co, Ni, Cu and Zn.

【0046】このアルミドロスより製造された金属粉を
用いて、TCEに対する分解試験を以下のように行っ
た。容量124mlのバイアル瓶中に、イオン交換水5
0ml、TCE1μl、およびアルミドロスの粉砕粉
0.5gを投入し、シリコンライナー付きブチルゴムセ
プタムとアルミシールにより密封した。この密封時点か
らバイアル瓶内のTCE濃度を経時的に分析評価し、T
CE濃度の半減期を求めたところ、4.2日であること
が判明した。
Using the metal powder produced from this aluminum dross, the decomposition test for TCE was conducted as follows. Ion-exchanged water 5
0 ml, 1 μl of TCE, and 0.5 g of crushed aluminum dross powder were added, and the mixture was sealed with a butyl rubber septum with a silicon liner and an aluminum seal. From this sealing point, the TCE concentration in the vial was analyzed and evaluated over time,
When the half-life of the CE concentration was determined, it was found to be 4.2 days.

【0047】(分解反応速度定数の算出)本発明のアル
ミドロスより製造した金属粉によるTCE分解の反応速
度は、バイアル瓶内のTCEの初期濃度をC0(例:m
g/kg)、経過時間をt(day)、t(day-1
後におけるバイアル瓶内のTCEの濃度をC(例:mg
/kg)とすると、以下の式1に示す擬一次反応式に従
うことが明らかとなった。 ln(C/C0)=−k・t ……(式1) ここで、k(day-1)を分解反応速度定数と呼び、本
発明のアルミドロスより製造した金属粉による、TCE
分解の分解性能を表す指標として用いることができる。
(Calculation of Decomposition Reaction Rate Constant) The reaction rate of TCE decomposition by the metal powder produced from the aluminum dross of the present invention is the initial concentration of TCE in the vial C 0 (example: m
g / kg), the elapsed time is t (day), t (day -1 )
After that, the concentration of TCE in the vial was changed to C (example: mg
/ Kg), it was clarified that the quasi-first-order reaction formula shown in Formula 1 below was followed. ln (C / C 0 ) = − k · t (Equation 1) Here, k (day −1 ) is called a decomposition reaction rate constant, and TCE by the metal powder produced from the aluminum dross of the present invention is used.
It can be used as an index showing the decomposition performance of decomposition.

【0048】(実施例5)シルト質土壌50gへTCE
を1μlの割合で混合し、TCE濃度29.4mg/k
gの模擬汚染土壌を調製した。この模擬汚染土壌に対し
て、実施例4に記載のアルミドロスより製造した金属粉
を1.0wt%添加し、攪拌羽根付き粉体混合装置にて
1分間混合処理を行い、20日間密閉容器内で静置した
後に土壌中のTCE含有量を測定した。この結果、処理
後のTCE濃度7.2mg/kgとなり、初期濃度2
9.4mg/kgから大きく減少した。分解反応速度定
数は0.07day-1であった。
(Example 5) TCE to 50 g of silty soil
Were mixed at a ratio of 1 μl, and the TCE concentration was 29.4 mg / k.
g of simulated contaminated soil was prepared. To this simulated contaminated soil, 1.0 wt% of metal powder produced from aluminum dross described in Example 4 was added, and mixed for 1 minute with a powder mixing device with stirring blades, and kept in a closed container for 20 days. The TCE content in the soil was measured after standing still at. As a result, the TCE concentration after treatment was 7.2 mg / kg, and the initial concentration was 2
It was greatly reduced from 9.4 mg / kg. The decomposition reaction rate constant was 0.07 day -1 .

【0049】(実施例6)実施例4に記載のアルミドロ
スより製造した金属粉に、Fe粉を1wt%混合した
後、容量2Lの粉砕ポットに投入する。粉砕ポットには
さらに粉砕メディアとして20mm径のZrO2ボール
を5kg投入し、回転ミルに設置した。そしてミルの回
転数を100rpmとし20分間粉砕処理をおこなっ
て、金属粉にFe相を付着させた。ここで得られたFe
相が付着した金属粉を用いて、実施例5に記載したのと
同様の模擬汚染土壌中のTCE分解試験を実施した。こ
の結果、処理後のTCE濃度5.4mg/kgとなり、
初期濃度29.4mg/kgから大きく減少した。分解
反応速度定数は0.08day-1であった。
Example 6 1 wt% of Fe powder was mixed with the metal powder produced from the aluminum dross described in Example 4, and then charged into a crushing pot having a capacity of 2 L. Further, 5 kg of ZrO 2 balls having a diameter of 20 mm was put into the crushing pot as a crushing medium and set in a rotary mill. Then, the number of revolutions of the mill was set to 100 rpm, and pulverization processing was performed for 20 minutes to attach the Fe phase to the metal powder. Fe obtained here
A TCE degradation test in simulated contaminated soil similar to that described in Example 5 was performed using the phase-attached metal powder. As a result, the TCE concentration after treatment was 5.4 mg / kg,
The initial concentration was greatly reduced from 29.4 mg / kg. The decomposition reaction rate constant was 0.08 day -1 .

【0050】(比較例2)Cを0.1wt%含有する平
均粒径50μmの鉄粉を用い、実施例3と同様のTCE
に対する分解試験を行なって、TCE濃度の半減期と分
解反応速度定数とを求めた。この結果、半減期は11.
6日、分解反応速度定数は0.06day-1であった。
(Comparative Example 2) The same TCE as in Example 3 was performed using iron powder containing 0.1 wt% of C and having an average particle size of 50 μm.
Was carried out to determine the half-life of TCE concentration and the decomposition reaction rate constant. As a result, the half-life is 11.
On the 6th, the decomposition reaction rate constant was 0.06 day -1 .

【0051】[0051]

【発明の効果】以上詳述したように、本発明は、難分解
性の有機ハロゲン化合物を高速度で分解、浄化可能な金
属粉を、金属粉を構成する金属粒子がニッケルを主成分
とする相と鉄を主成分とする相とを有する金属粉、また
は、金属粉を構成する金属粒子がマンガンを主成分とす
る相とアルミニウムを主成分とする相とを有する金属
粉、または、アルミニウムの熔練工程で産するアルミド
ロスより構成された金属粉として提供するものである。
As described in detail above, the present invention provides a metal powder capable of decomposing and purifying a hardly decomposable organic halogen compound at a high rate, in which the metal particles constituting the metal powder have nickel as a main component. Powder having a phase and a phase containing iron as the main component, or metal powder having metal particles forming the metal powder having a phase containing manganese as the main component and a phase containing aluminum as the main component, or aluminum It is provided as a metal powder composed of aluminum dross produced in the kneading process.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る金属粉中の金属粒子を模式的に表
現した拡大図である。
FIG. 1 is an enlarged view schematically showing metal particles in a metal powder according to the present invention.

【符号の説明】[Explanation of symbols]

1.母材金属相 2.付着金属相 3.金属粒子 4.金属粉 5.母材金属相と付着金属相との界面 d.付着金属相の付着膜厚 1. Base metal phase 2. Adhering metal phase 3. Metal particles 4. Metal powder 5. Interface between base metal phase and adherent metal phase d. Thickness of deposited metal phase

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C02F 1/58 Fターム(参考) 4D004 AA41 AB06 AC07 CA34 CC09 DA03 DA10 4D038 AA02 AB14 4K018 AA07 AA15 AA25 BA04 BA08 BA14 BB10 BC08 BC09 BC19 BD10 JA01 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme coat (reference) C02F 1/58 F term (reference) 4D004 AA41 AB06 AC07 CA34 CC09 DA03 DA10 4D038 AA02 AB14 4K018 AA07 AA15 AA25 BA04 BA08 BA14 BB10 BC08 BC09 BC19 BD10 JA01

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 金属粉を構成する金属粒子であって、 前記各々の金属粒子は、ニッケルを主成分とする相と、
鉄を主成分とする相とを有することを特徴とする有機ハ
ロゲン化合物分解用金属粉。
1. Metal particles constituting metal powder, wherein each of the metal particles comprises a phase containing nickel as a main component,
A metal powder for decomposing an organohalogen compound, which has a phase containing iron as a main component.
【請求項2】 前記鉄を主成分とする相の表面に、前記
ニッケルを主成分とする相が点在して付着していること
を特徴とする請求項1に記載の有機ハロゲン化合物分解
用金属粉。
2. The decomposition of organohalogen compound according to claim 1, wherein the phase containing nickel as a main component is scattered and adhered to the surface of the phase containing iron as a main component. Metal powder.
【請求項3】 前記金属粉におけるニッケルの含有率
が、0wt%を含まない20wt%以下であることを特
徴とする請求項1または2に記載の有機ハロゲン化合物
分解用金属粉。
3. The metal powder for decomposing organic halogen compounds according to claim 1, wherein the content of nickel in the metal powder is 20 wt% or less not including 0 wt%.
【請求項4】 金属粉を構成する金属粒子であって、 前記各々の金属粒子は、マンガンを主成分とする相と、
アルミニウムを主成分とする相とを有することを特徴と
する有機ハロゲン化合物分解用金属粉。
4. Metal particles constituting metal powder, wherein each of the metal particles comprises a phase containing manganese as a main component,
A metal powder for decomposing an organic halogen compound, which has a phase containing aluminum as a main component.
【請求項5】 前記アルミニウムを主成分とする相の表
面に、前記マンガンを主成分とする相が点在して付着し
ていることを特徴とする請求項4に記載の有機ハロゲン
化合物分解用金属粉。
5. The decomposition of organohalogen compound according to claim 4, wherein the phase containing manganese as a main component is scattered and adhered to the surface of the phase containing aluminum as a main component. Metal powder.
【請求項6】 前記金属粉におけるマンガンの含有率
が、0wt%を含まない30wt%以下であることを特
徴とする請求項4または5に記載の有機ハロゲン化合物
分解用金属粉。
6. The metal powder for decomposing organohalogen compounds according to claim 4, wherein the content of manganese in the metal powder is 30 wt% or less not including 0 wt%.
【請求項7】 アルミニウムの熔練工程で産するアルミ
ドロスより製造される金属粉であって、酸化アルミニウ
ムを主成分とし、C、Na、Mg、Al、Si、Ca、
Mn、Fe、Co、Ni、Cu、Znのいずれかの少な
くとも1種以上の元素を主成分とする相を含有すること
を特徴とする有機ハロゲン化合物分解用金属粉。
7. A metal powder produced from aluminum dross produced in the aluminum melting step, which contains aluminum oxide as a main component and contains C, Na, Mg, Al, Si, Ca,
A metal powder for decomposing an organohalogen compound, comprising a phase containing at least one element selected from the group consisting of Mn, Fe, Co, Ni, Cu and Zn as a main component.
【請求項8】 請求項1から7のいずれかに記載の有機
ハロゲン化合物分解用金属粉を用いることを特徴とす
る、土壌および/または地下水および/または地表水の
浄化方法。
8. A method for purifying soil and / or groundwater and / or surface water, which comprises using the metal powder for decomposing an organic halogen compound according to any one of claims 1 to 7.
JP2001336808A 2001-11-01 2001-11-01 Metal powder for decomposing organic halogen compound and method for cleaning soil using the same Pending JP2003136051A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001336808A JP2003136051A (en) 2001-11-01 2001-11-01 Metal powder for decomposing organic halogen compound and method for cleaning soil using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001336808A JP2003136051A (en) 2001-11-01 2001-11-01 Metal powder for decomposing organic halogen compound and method for cleaning soil using the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007036892A Division JP4848540B2 (en) 2007-02-16 2007-02-16 Metal powder for decomposing organohalogen compounds, method for producing the same, and method for purifying soil and the like using the same

Publications (1)

Publication Number Publication Date
JP2003136051A true JP2003136051A (en) 2003-05-13

Family

ID=19151570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001336808A Pending JP2003136051A (en) 2001-11-01 2001-11-01 Metal powder for decomposing organic halogen compound and method for cleaning soil using the same

Country Status (1)

Country Link
JP (1) JP2003136051A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005034696A (en) * 2003-07-16 2005-02-10 Tosoh Corp Treatment method for making object to be treated contaminated by organic halogen compound harmless
JP2005095750A (en) * 2003-09-24 2005-04-14 Tosoh Corp Treatment method for detoxicating object matter polluted with organic halogen compound
JP2006022166A (en) * 2004-07-06 2006-01-26 Tosoh Corp Method for detoxifying object contaminated with organic halogen compound
JP2006320816A (en) * 2005-05-18 2006-11-30 Kobe Steel Ltd Treatment material of organohalogen compound
JP2006326561A (en) * 2005-05-30 2006-12-07 Kobe Steel Ltd IRON-BASED POWDER FOR PURIFICATION AND ITS MANUFACTURING METHOD, AND MANUFACTURING METHOD OF SPHERICAL METAL Ni PARTICULATE
JP2007009179A (en) * 2005-03-25 2007-01-18 Dowa Holdings Co Ltd Agent for decomposing organic halogen-containing compound
JP2007063528A (en) * 2005-03-25 2007-03-15 Dowa Holdings Co Ltd Method for producing organic halogen-based compound-decomposing agent
JP2010017219A (en) * 2008-07-08 2010-01-28 Dowa Eco-System Co Ltd Organochlorine pesticide decomposition agent and decontamination method
US7718843B2 (en) 2006-11-14 2010-05-18 Tosoh Corporation Iron powder for organic chlorinated compound decomposition and detoxifying treatment method using the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005034696A (en) * 2003-07-16 2005-02-10 Tosoh Corp Treatment method for making object to be treated contaminated by organic halogen compound harmless
JP4701588B2 (en) * 2003-07-16 2011-06-15 東ソー株式会社 A treatment method for detoxifying a workpiece contaminated with an organic halogen compound
JP2005095750A (en) * 2003-09-24 2005-04-14 Tosoh Corp Treatment method for detoxicating object matter polluted with organic halogen compound
JP4492075B2 (en) * 2003-09-24 2010-06-30 東ソー株式会社 A processing method for detoxifying a workpiece contaminated with an organic halogen compound
JP2006022166A (en) * 2004-07-06 2006-01-26 Tosoh Corp Method for detoxifying object contaminated with organic halogen compound
JP2007009179A (en) * 2005-03-25 2007-01-18 Dowa Holdings Co Ltd Agent for decomposing organic halogen-containing compound
JP2007063528A (en) * 2005-03-25 2007-03-15 Dowa Holdings Co Ltd Method for producing organic halogen-based compound-decomposing agent
JP2006320816A (en) * 2005-05-18 2006-11-30 Kobe Steel Ltd Treatment material of organohalogen compound
JP2006326561A (en) * 2005-05-30 2006-12-07 Kobe Steel Ltd IRON-BASED POWDER FOR PURIFICATION AND ITS MANUFACTURING METHOD, AND MANUFACTURING METHOD OF SPHERICAL METAL Ni PARTICULATE
JP4637649B2 (en) * 2005-05-30 2011-02-23 株式会社神戸製鋼所 Iron powder for purification
US7718843B2 (en) 2006-11-14 2010-05-18 Tosoh Corporation Iron powder for organic chlorinated compound decomposition and detoxifying treatment method using the same
JP2010017219A (en) * 2008-07-08 2010-01-28 Dowa Eco-System Co Ltd Organochlorine pesticide decomposition agent and decontamination method

Similar Documents

Publication Publication Date Title
KR100921261B1 (en) Iron Particles for Purifying Contaminated Soil or Ground Water, Process for Producing the Iron Particles, Purifying Agent Comprising the Iron Particles, Process for Producing the Purifying Agent and Method of Purifying Contaminated Soil or Ground Water
JP2003136051A (en) Metal powder for decomposing organic halogen compound and method for cleaning soil using the same
KR101107450B1 (en) Iron composite particles for purifying soil or ground water, process for producing the same, purifying agent containing the same, process for producing the purifying agent and method for purifying soil or ground water
JP2003080074A (en) Iron powder for dehalogenation decomposition of organic halogen compound and method for cleaning soil, water and/or gas
JP4448951B2 (en) Production method of organohalogen compound decomposer
JP5082043B2 (en) Method for treating water containing organic halogen compounds
JP4848540B2 (en) Metal powder for decomposing organohalogen compounds, method for producing the same, and method for purifying soil and the like using the same
JP4843776B2 (en) Metal powder for organic halogen decomposition and method for producing the same
TW200823154A (en) Iron powder for organic chlorinated compound decomposition and detoxifying treatment method using the same
JP2002167602A (en) Iron powder, its production method and method for cleaning, contaminated soil, water and gas
JP4352215B2 (en) Iron composite particle powder for purification treatment of soil and groundwater containing aromatic halogen compounds, its production method, purification agent containing said iron composite particle powder, its production method, and purification treatment of soil and groundwater containing aromatic halogen compounds Method
JP4833505B2 (en) Iron powder for purification
JP4110259B2 (en) Manufacturing method of copper-containing iron powder
JP4351022B2 (en) Organohalogen compound decomposer
JP4786936B2 (en) Organohalogen compound treatment material
JP2004076027A (en) Environmental clean-up material, and manufacturing and operating method therefor
JP2005021882A (en) Iron composite particle powder for cleaning soil and underground water, its manufacturing method, cleaning agent containing the iron composite particle powder, its manufacturing method and cleaning method for soil and underground water
JP4479890B2 (en) Purification agent for soil and groundwater purification, its production method, and soil and groundwater purification method
JP4660958B2 (en) Purification of soil, water and gas contaminated with organochlorine compounds
US20140030431A1 (en) Method of producing iron powder for treating halogenated organic compound and method of cleaning contaminated soil or groundwater
JP2010194451A (en) Organic halide cleaning agent and cleaning method using the same
JP2010240636A (en) Decomposer for organohalogen compound, method for producing the same and method for purifying soil or water
JP5076246B2 (en) Method for producing organohalogen compound decomposing agent
KR100582474B1 (en) Iron-Based cleaning powder
JP4904309B2 (en) Organic halogen compound treatment material and organic halogen compound treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061023

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070314