JP2006300243A - ベルト式無段変速機 - Google Patents

ベルト式無段変速機 Download PDF

Info

Publication number
JP2006300243A
JP2006300243A JP2005124007A JP2005124007A JP2006300243A JP 2006300243 A JP2006300243 A JP 2006300243A JP 2005124007 A JP2005124007 A JP 2005124007A JP 2005124007 A JP2005124007 A JP 2005124007A JP 2006300243 A JP2006300243 A JP 2006300243A
Authority
JP
Japan
Prior art keywords
movable sheave
shaft
pulley
conical surface
belt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005124007A
Other languages
English (en)
Inventor
Daisuke Kobayashi
大介 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2005124007A priority Critical patent/JP2006300243A/ja
Publication of JP2006300243A publication Critical patent/JP2006300243A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Pulleys (AREA)
  • Transmissions By Endless Flexible Members (AREA)

Abstract

【課題】可動シーブの滑らかな軸方向移動を阻害することなく、可動シーブの軸線に対する倒れや偏心による、ベルトの耐久性や伝達効率への悪影響を抑制し得るベルト式無段変速機を提供する。
【解決手段】 プーリ軸(SP、SS)に固定された固定シーブ(37,42)と、該プーリ軸に相対回動不能で軸方向移動可能に嵌合された可動シーブ(38、43)と、該可動シーブの背面側に配置され前記プーリ軸に固定された隔壁部材(70、90)とを含むベルト式無段変速機において、可動シーブ(38、43)を、最大変速比または最小変速比に対応する位置において、プーリ軸を含む固定部材(70、90)に対し楔作用で一体化させる構造(38E、70E、38F、SPF)が設けられている。
【選択図】 図2

Description

本発明は、ベルトの巻き掛け半径を変化させることにより所望の変速比を得ることができるベルト式無段変速機に関する。
従来から、車両用の変速装置として、ベルト式無段変速機が知られている。この種のベルト式無段変速機は、互いに平行に配列されたプライマリシャフト(駆動側回転軸)およびセカンダリシャフト(従動側回転軸)と、プライマリシャフトに装着されたプライマリプーリと、セカンダリシャフトに装着されたセカンダリプーリとを備える。プライマリプーリおよびセカンダリプーリは、何れも、固定シーブと、固定シーブに対して移動可能な可動シーブとを含むものである。また、各可動シーブは、ボールおよびボール溝(ボールスプライン)等を介して、対応するプーリ軸に対して軸方向に移動可能かつ周方向に移動不能とされている。固定シーブと可動シーブとの間には、略V字形状のプーリ溝が形成され、プライマリプーリおよびセカンダリプーリそれぞれのプーリ溝には、無端ベルトが巻き掛けられる。また、プライマリプーリおよびセカンダリプーリに対しては、それぞれの可動シーブを対応する固定シーブに対して接近離間させるためのプーリ油圧室が設けられている。各プーリ油圧室の油圧は別個に制御され、これにより、プーリの溝幅が変更されてベルトの巻き掛け半径が変化し、変速比が所望の値に設定されると共に、ベルトの張力が調整される。
かかるベルト式無段変速機において、組立を容易としたプーリの連結構造として、可動円錐板(可動シーブ)を軸線方向に移動させる流体圧シリンダ室を備え、該流体圧シリンダ室のシリンダ部材を、軸(プーリ軸)端に形成されたリング溝に嵌入されるリング部材で軸方向に拘束するようにした構造が特許文献1に開示されている。そして、組立に際しては、可動円錐板を軸に嵌合させた後、シリンダ部材を軸に外嵌させ、リング部材をリング溝に嵌入するようにしている。
特開平8−14347号公報
ところで、一般に、可動シーブとプーリ軸とは、その軸方向の相対移動を滑らかに行なわせるために、「すきまばめ」されている。その結果として、可動シーブに加えられるベルト張力による荷重によって、可動シーブの軸線に対する倒れや偏心が生じ、ベルトの耐久性や伝達効率に悪影響を与えることが知られている。そこで、この「すきまばめ」の嵌合精度を上げれば、上述の可動シーブの倒れや偏心の問題は解決可能であるが、背反として、可動シーブの滑らかな移動が阻害され変速応答性が悪化するという問題や、製造コストの大幅な上昇が避けられないという新たな問題が生ずる。
なお、上述の特許文献1にはかかる問題についての記載はない。
そこで、本発明の目的は、かかる問題を解消し、可動シーブの滑らかな軸方向移動を阻害することなく、可動シーブの軸線に対する倒れや偏心による、ベルトの耐久性や伝達効率への悪影響を抑制し得るベルト式無段変速機を提供することにある。
上記目的を達成する本発明の一形態によるベルト式無段変速機は、プーリ軸に固定された固定シーブと、該プーリ軸に相対回動不能で軸方向移動可能に嵌合された可動シーブと、該可動シーブの背面側に配置され前記プーリ軸に固定された隔壁部材とを含むベルト式無段変速機において、前記可動シーブを、最大変速比または最小変速比に対応する位置において、前記プーリ軸を含む固定部材に対し楔作用で一体化させる構造が設けられていることを特徴とする。
ここで、前記最大変速比に対応する位置において楔作用で一体化させる構造は、前記可動シーブと一体の内筒部の外周に形成された円錐面と、前記隔壁部材の内周に形成された円錐面とで構成されていることが好ましい。
また、前記最小変速比に対応する位置において楔作用で一体化させる構造は、前記可動シーブの内周に形成された円錐面と、前記プーリ軸の外周に形成された円錐面とで構成されていることが好ましい。
さらに、前記最大変速比に対応する位置において楔作用で一体化させる構造における円錐面のなす角度は、前記最小変速比に対応する位置において楔作用で一体化させる構造における円錐面のなす角度よりも小さいことが好ましい。
なお、本明細書において円錐面とは、プーリ軸に頂点を有する円錐の一側部面の意味で用いる。
本発明の一形態によるベルト式無段変速機によれば、プーリ軸に固定された固定シーブと、該プーリ軸に相対回動不能で軸方向移動可能に嵌合された可動シーブと、該可動シーブの背面側に配置され前記プーリ軸に固定された隔壁部材とを含むベルト式無段変速機において、前記可動シーブがその最大変速比または最小変速比に対応する位置に移動されると、その位置において設けられている構造により、前記プーリ軸を含む固定部材に対し楔作用で一体化される。この結果、可動シーブが固定部材に対してセンタリングされ可動シーブの軸線に対する倒れや偏心が抑制されるので、ベルトの耐久性や伝達効率への悪影響も抑制される。
ここで、前記最大変速比に対応する位置において楔作用で一体化させる構造が、前記可動シーブと一体の内筒部の外周に形成された円錐面と、前記隔壁部材の内周に形成された円錐面とで構成されている形態によれば、コスト上昇を伴わずに簡単に形成可能である。
また、前記最小変速比に対応する位置において楔作用で一体化させる構造が、前記可動シーブの内周に形成された円錐面と、前記プーリ軸の外周に形成された円錐面とで構成されている形態によれば、同様に、コスト上昇を伴わずに簡単に形成可能である。
さらに、前記最大変速比に対応する位置において楔作用で一体化させる構造における円錐面のなす角度が、前記最小変速比に対応する位置において楔作用で一体化させる構造における円錐面のなす角度よりも小さい形態によれば、最大変速比に対応する位置および最小変速比に対応する位置の両者において、同じ嵌合状態を得ることができる。
ここで、本発明に係るベルト式無段変速機の実施の形態を、図面を参照しながら具体的に説明する。
図1は、本発明に係るベルト式無段変速機が適用された車両の一部を示す概略構成図である。図1に示される車両1は、いわゆるFF車(フロントエンジンフロントドライブ:エンジン前置き前輪駆動車両)として構成されており、駆動源としてのエンジン2を備える。エンジン2としては、ガソリンエンジン、ディーゼルエンジン、LPGエンジン、水素エンジン、あるいは、バイフューエルエンジン等が採用され得るが、ここでは、エンジン2としてガソリンエンジンが用いられるものとして説明する。
図1に示されるように、車両1は、横置きにされたエンジン2の側方に配置され、エンジン2のクランクシャフトSCと連結されるトランスアクスル3を有する。トランスアクスル3は、トランスアクスルハウジング4、トランスアクスルケース5およびトランスアクスルリヤカバー6を含む。ハウジング4は、エンジン2の側方に配置され、ケース5は、ハウジング4のエンジン2とは反対側の開口端に固定されている。また、リヤカバー6は、ケース5のハウジング4とは反対側の開口端に固定されている。そして、トランスアクスルハウジング4の内部には、トルクコンバータ7が配置されており、トランスアクスルケース5およびトランスアクスルリヤカバー6の内部には、前後進切り換え機構8、本発明に係るベルト式無段変速装置(CVT)9、最終減速機(差動装置)10が配置されている。
トルクコンバータ7は、ドライブプレート11と、ドライブプレート11を介してエンジン2のクランクシャフトSCに固定されるフロントカバー12とを有する。フロントカバー12には、図1に示されるように、ポンプインペラ14が取り付けられている。また、トルクコンバータ7は、ポンプインペラ14と対向する状態で回転可能なタービンランナ15を含む。
タービンランナ15は、クランクシャフトSCと概ね同軸に延びる入力シャフトSIに固定されている。更に、ポンプインペラ14およびタービンランナ15の内側にはステータ16が配置されており、ステータ16の回転方向は、ワンウェイクラッチ17によって一方向にのみ設定される。ステータ16は、ワンウェイクラッチ17を介して中空軸18に固定されており、上述の入力シャフトSIは、この中空軸18の内部に挿通されている。そして、入力シャフトSIのフロントカバー12側の端部には、ダンパ機構19を介してロックアップクラッチ20が取り付けられている。また、中空軸18はケース5に固定されている。
上述のポンプインペラ14、タービンランナ15およびステータ16は、作動液作動油室を画成し、この作動液作動油室には、トルクコンバータ7と前後進切り換え機構8との間に配置されたオイルポンプ21から作動液作動油が供給される。そして、エンジン2が作動し、フロントカバー12およびポンプインペラ14が回転すると、作動液作動油の流れによりタービンランナ15が引きずられるようにして回転し始める。また、ステータ16は、ポンプインペラ14とタービンランナ15との回転速度差が大きい時に、作動液作動油の流れをポンプインペラ14の回転を助ける方向に変換する。
これにより、トルクコンバータ7は、ポンプインペラ14とタービンランナ15との回転速度差が大きい時には、トルク増幅機として作動し、両者の回転速度差が小さくなると、流体継手として作動する。そして、車両1の発進後、車速が所定速度に達すると、ロックアップクラッチ20が作動され、エンジン2からフロントカバー12に伝えられた動力が入力シャフトSIに機械的かつ直接に伝達されるようになる。また、フロントカバー12から入力シャフトSIに伝達されるトルクの変動は、ダンパ機構19によって吸収される。
トルクコンバータ7と前後進切り換え機構8との間のオイルポンプ21は、ロータ22を有し、このロータ22は、ハブ23を介してポンプインペラ14と接続されている。なおまた、ハブ23は、中空軸18に対してスプライン嵌合されており、オイルポンプ21の本体24は、トランスアクスルケース5側に回転可能に支持されている。従って、エンジン2の動力は、ポンプインペラ14を介してロータ22に伝達されることになり、これにより、オイルポンプ21が駆動される。
前後進切り換え機構8は、ダブルピニオン形式の遊星歯車機構25を有している。遊星歯車機構25は、入力シャフトSIの無段変速装置9側の端部に取り付けられたサンギヤ26と、サンギヤ26の外周側に同心状に配置されたリングギヤ27と、サンギヤ26と噛み合う複数のピニオンギヤ28と、リングギヤ27およびピニオンギヤ28の双方と噛み合う複数のピニオンギヤ29と、各ピニオンギヤ28を自転可能に保持し、かつ、ピニオンギヤ28をサンギヤ26の周囲で一体的に公転可能な状態に保持するキャリヤ30とを含む。
前後進切り換え機構8のキャリヤ30は、ベルト式無段変速装置9に含まれるプライマリシャフトSPに固定され、キャリヤ30と入力シャフトSIとの間の動力伝達経路は、フォワードクラッチCLを用いて接続または遮断される。また、前後進切り換え機構8は、リングギヤ27の回転・固定を制御するリバースブレーキBRを有している。
一方、本発明に係るベルト式無段変速装置9は、入力シャフトSIと概ね同軸に延びる上述のプライマリシャフト(駆動側回転軸)SPと、プライマリシャフトSPと平行をなすように配置されたセカンダリシャフト(従動側回転軸)SSとを有する。プライマリシャフトSPは、軸受31および32によって回転自在に支持されており、セカンダリシャフトSSは、軸受33および34によって回転自在に支持されている。そして、プライマリシャフトSPには、プライマリプーリ35が、セカンダリシャフトSSには、セカンダリプーリ36がそれぞれ装備されている。
プライマリプーリ35は、プライマリシャフトSPの外周に一体に形成された固定シーブ37と、プライマリシャフトSPの外周に摺動自在に装着された可動シーブ38とにより構成されている。固定シーブ37と可動シーブ38とは互いに対向し合い、両者間には、略V字形状のプーリ溝39が形成される。また、可動シーブ38は、固定シーブ37に対してプライマリシャフトSPの軸方向に移動可能であり、ベルト式無段変速装置9は、可動シーブ38をプライマリシャフトSPの軸方向に移動させて可動シーブ38と固定シーブ37とを接近・離間させる油圧アクチュエータ40を有している。
同様に、セカンダリプーリ36も、セカンダリシャフトSSの外周に一体に形成された固定シーブ42と、セカンダリシャフトSSの外周に摺動自在に装着された可動シーブ43とにより構成されている。固定シーブ42と可動シーブ43とは互いに対向し合い、両者間には、略V字形状のプーリ溝44が形成される。また、可動シーブ43も、固定シーブ42に対してセカンダリシャフトSSの軸方向に移動可能であり、ベルト式無段変速装置9は、可動シーブ43をセカンダリシャフトSSの軸方向に移動させて可動シーブ43と固定シーブ42とを接近・離間させる油圧アクチュエータ45を有している。
上述のプライマリプーリ35のプーリ溝39と、セカンダリプーリ36のプーリ溝44とには、多数の金属製の駒および複数本のスチールリングにより構成されるベルトBが巻き掛けられる。そして、各油圧アクチュエータ40および45による油圧が別個に制御され、これにより、プライマリプーリ35およびセカンダリプーリ36の溝幅が変更されてベルトBの巻き掛け半径が変化する。この結果、ベルト式無段変速装置9による変速比が所望の値に設定されると共に、ベルトBの張力が調整されることになる。なお、セカンダリシャフトSSを支持する軸受34はトランスアクスルリヤカバー6に固定されており、軸受34とセカンダリプーリ36との間には、パーキングギヤPGが設けられている。
図1に示されるように、ベルト式無段変速装置9のセカンダリシャフトSSには、軸受46および47によって支持されたシャフト48が連結されている。シャフト48には、ドライブギヤ49が固定されており、このドライブギヤ49を介して、ベルト式無段変速装置9から最終減速機10に動力が伝達される。最終減速機10は、セカンダリシャフトSSと平行をなすように配置されたインターミディエイトシャフト50を含む。インターミディエイトシャフト50は、軸受51および52によって支持されており、シャフト50には、セカンダリシャフトSSのドライブギヤ49と噛み合うカウンタドリブンギヤ53と、ファイナルドライブギヤ54とが固定されている。
また、最終減速機10は、中空のデフケース55を有している。デフケース55は、軸受56および57によって回転自在に支持されており、その外周には、リングギヤ58が形成されている。このリングギヤ58は、インターミディエイトシャフト50のファイナルドライブギヤ54と噛み合っている。更に、デフケース55は、その内部にピニオンシャフト59を支持しており、ピニオンシャフト59には、2体のピニオンギヤ60が固定されている。各ピニオンギヤ60には、2体のサイドギヤ61が噛み合わされており、各サイドギヤ61には、フロントドライブシャフト62がそれぞれ別個に接続され、各フロントドライブシャフト62には、車輪(前輪)FWが固定されている。
さて、図2および図3は、上述の本発明によるベルト式無段変速装置9の要部を示す拡大断面図であり、その上側にベルト式無段変速装置9のプライマリプーリ35およびプライマリシャフトSPに関連する上半分の構成、および下側にセカンダリプーリ36およびセカンダリシャフトSSに関連する下半分の構成をそれぞれ示し、図2は最大変速比位置、図3は最小変速比位置にある状態を示している。
プライマリシャフトSPは軸線を中心として回転可能であり、プライマリシャフトSPの一端には固定シーブ37が一体に形成され、内部には軸線方向に油路SPAが形成されている。そして、プライマリシャフトSPは固定シーブ37より外側で、上述のトランスアクスルケース5に固定された軸受31により回転自在に支持されている。プライマリシャフトSPの内部に軸線方向に形成された油路SPAは、不図示の油圧制御装置の油圧回路に連通されている。さらに、プライマリシャフトSPには、その外周面に向け半径方向に伸ばされ、かつ、油路SPAに連通された油路SPBが設けられている。
一方、可動シーブ38は、プライマリシャフトSPの外周面に沿ってスライドする内筒部38Aと、内筒部38Aの固定シーブ37側の端部から外周側に向けて連続された半径方向部38Bと、半径方向部38Bの外周端に連続され、かつ、軸受32側に向けて軸線方向に伸ばされた外筒部38Cとを有している。そして、内筒部38Aには、その内周面から外周面に亘って貫通する油路38Dが形成されている。この油路38Dと油路SPBとはプライマリシャフトSPの外周面に形成された後述のスプライン部を介して連通されている。
すなわち、可動シーブ38の内筒部38Aの内周面には複数のスプライン歯(溝)38Sが形成されている。他方、可動シーブ38を摺動自在に支持するプライマリシャフトSPの外周面には、複数のスプライン溝(歯)SPGが形成されている。スプライン歯38Sおよびスプライン溝SPGは、歯面または溝表面がインボリュート曲線をなすように形成されており、プライマリシャフトSPと可動シーブ38とは軸方向に滑らかに相対移動可能であるが、プライマリシャフトSPと可動シーブ38とが円周方向には相対移動が不可能な状態とされている。
なお、径方向の油路SPBは、プライマリシャフトSPに形成されたスプライン溝SPGより軸方向の外側に形成されている。このようにすると、ベルトBから可動シーブ38を介してプライマリシャフトSPに伝達されるトルクの伝達経路外に、径方向の油路SPBが位置されることになるので、径方向油路SPBへの応力集中が生じず、プライマリシャフトSPの強度を確保することができる。
更に、ベルト式無段変速装置9は、環状の隔壁部材であるシリンダ部材70を含む。シリンダ部材70は、図2および図3からわかるように、プライマリシャフトSPの径方向に延びる第一径方向部70Aと、第一径方向部70AからプライマリシャフトSPの軸線と概ね平行に延びる第一筒状部70Bと、第一筒状部70Bから可動シーブ38の背面に沿ってプライマリシャフトSPの径方向に延びる第二径方向部70Cと、さらにこの第二径方向部70CからプライマリシャフトSPの軸線と概ね平行に延びる第二筒状部70Dとを有している。
シリンダ部材70の第一径方向部70Aに形成されている中心孔部には、プライマリシャフトSPの先端部が圧入され、シリンダ部材70は、軸受32と共に不図示のロックナットを用いてプライマリシャフトSPの段部との間に固定されている。
そして、隔壁部材であるシリンダ部材70の第一筒状部70Bには、その内周に軸線に対し角度θ2をなすテーパ面ないしは円錐面70Eが形成されている。一方、上述の可動シーブ38には、その内筒部38Aの外周に軸線に対し角度θ2をなすテーパ面ないしは円錐面38Eが形成されている。かくて、シリンダ部材70の円錐面70Eと可動シーブ38の円錐面38Eとで、図2に示す可動シーブ38の最大変速比に対応する位置において楔作用で一体化させる構造が構成されている。
また、可動シーブ38の外筒部38Cの外縁部には、シリンダ部材70の第二筒状部70Dの内周面と摺接するようにシール部材72が配置されている。かくて、可動シーブ38の内筒部38A、半径方向部38B、外筒部38Cおよびシリンダ部材70によって、上述の油圧アクチュエータ40を構成する第一油圧室40Aが画成されている。一方、シリンダ部材70の第一径方向部70A、第一筒状部70B、可動シーブ38の内筒部38Aにおける軸方向端部およびプライマリシャフトSPによって、上述の油圧アクチュエータ40を構成する第二油圧室40Bが画成されている。この第一油圧室40Aおよび第二油圧室40B内の油圧を制御して、可動シーブ38を固定シーブ37に対して移動させてベルトBの巻き掛け半径を変化させることにより、所望の変速比を得ることができる。
また、可動シーブ38の内筒部38Aの内周には、軸線に対し角度θ1をなすテーパ面ないしは円錐面38Fが形成されている。一方、上述のプライマリシャフトSPには、その外周に軸線に対し角度θ1をなすテーパ面ないしは円錐面SPFが形成されている。かくて、可動シーブ38の円錐面38EとプライマリシャフトSPの円錐面SPFとで、図3に示す可動シーブ38の最小変速比に対応する位置において楔作用で一体化させる構造が構成されている。
一方、図2および図3の下側に示すセカンダリシャフトSSは軸線を中心として回転可能であり、セカンダリシャフトSSの一端には固定シーブ42が一体に形成され、内部には軸線方向に油路SSAおよびSSBが形成されている。そして、セカンダリシャフトSSは固定シーブ42より外側で、上述のトランスアクスルリヤカバー6に固定された軸受34により、回転自在に支持されていること前述の通りである。セカンダリシャフトSSの内部に軸線方向に形成された油路SSAおよびSSBは、後述のように油圧制御装置の油圧回路に連通されている。さらに、セカンダリシャフトSSには、その外周面に向け半径方向に伸ばされ油路SSAに連通された油路SSCと、同様にして油路SSBに連通された油路SSDとが設けられている。
一方、可動シーブ43は、セカンダリシャフトSSの外周面に沿ってスライドする内側筒状部43Aと、内側筒状部43Aの固定シーブ42側の端部から外周側に向けて連続された半径方向部43Bと、半径方向部43Bの外周端に連続され、かつ、軸受33側に向けて軸線方向に伸ばされた外側筒状部43Cとを有している。なお、可動シーブ43の内側筒状部43Aの内周面には複数のスプライン歯(溝)が形成され、他方、可動シーブ43を摺動自在に支持するセカンダリシャフトSSの外周面には、複数のスプライン溝(歯)が形成されている。スプライン歯およびスプライン溝は、歯面または溝表面が例えばインボリュート曲線をなすように形成されており、セカンダリシャフトSSと可動シーブ43とは軸方向に滑らかに相対移動可能であるが、セカンダリシャフトSSと可動シーブ43とが円周方向には相対移動が不可能な状態とされている。
なお、この可動シーブ43は、本実施の形態では、略椀形をした隔壁部材80を有している。この隔壁部材80は径方向に延在する半径方向部80Aと、この半径方向部80Aの内周端に連続され、かつ、軸受33側に向けて傾斜して延ばされた傾斜部80Bとを有している。そして、この半径方向部80Aが可動シーブ43の外側筒状部43Cに係合されると共に、不図示のスナップリングにより可動シーブ43に固定されている。
さらに、ベルト式無段変速装置9は、隔壁部材としての環状のピストン部材90を含む。ピストン部材90は、図2および図3からわかるように、セカンダリシャフトSSの径方向に延びる第一径方向基部90Aと、第一径方向基部90Aから傾斜して延ばされた傾斜部90Bと、傾斜部90Bから可動シーブ43の背面に沿いつつセカンダリシャフトSSの径方向に延びる第二径方向部90Cとを有している。そして、第二径方向部90Cの外周端には、可動シーブ43の外側筒状部43Cの内周面と摺接するようにシール部材92が配置されている。そして、ピストン部材90の第一径方向基部90Aの端面には、前述の油路SSDと後述する遠心油圧キャンセル油室に連通する複数個の油路溝90Dが放射状に形成されている。
そして、上述のピストン部材90は、ピストン部材90の第一径方向基部90Aに形成されている中心孔に対し、セカンダリシャフトSSの先端の小径部が圧入され、不図示のロックナットを用いてセカンダリシャフトSSの段部との間に、軸受33と共に固定されている。
かくて、可動シーブ43の内側筒状部43A、半径方向部43B、外側筒状部43Cおよびピストン部材90によって、上述の油圧アクチュエータ45の一部を構成する制御油圧室45Aが画成されている。一方、ピストン部材90と隔壁部材80によって、上述の油圧アクチュエータ45の他部を構成する遠心油圧キャンセル油室45Bが画成されている。この制御油圧室45Aには、セカンダリシャフトSSの軸方向に形成された油路SSA、同じく半径方向に形成された油路SSCを介して油圧制御装置の油圧回路から制御された油圧の作動油が供給される。一方、遠心油圧キャンセル油室45Bには、セカンダリシャフトSSの軸方向に形成された油路SSB、同じく半径方向に形成された油路SSD、ピストン部材90に形成された油路溝90Eを介して作動油が供給される。
ここで、本発明の実施形態において、最大変速比に対応する位置において楔作用で一体化させる構造を構成しているシリンダ部材70の円錐面70Eおよび可動シーブ38の円錐面38Eのなす角度θ2と、最小変速比に対応する位置において楔作用で一体化させる構造を構成している可動シーブ38の円錐面38FおよびプライマリシャフトSPの円錐面SPFのなす角度θ1との関係について、さらに図4以下をも参照して説明する。
図4は、一般的なVベルトBが一対のプライマリプーリ35とセカンダリプーリ36とに巻き掛けられている状態とそれぞれに作用している力の釣り合い関係を示す模式図であり、図4(A)は、変速比γが最大(以下、γmaxと称す)の状態、図4(B)は、変速比γが最小(以下、γminと称す)の状態を示している。ここで、FjはベルトBから加えられるプーリ軸間力であり、αpはプライマリプーリ35の巻き掛け角度、αsはセカンダリプーリ36の巻き掛け角度である。また、図2および図3に示すように、プライマリプーリ35の可動シーブ38に加えられるプライマリプーリ推力をFp、セカンダリプーリ36の可動シーブ43に加えられるセカンダリプーリ推力をFs、プーリ溝39、44を形成するプーリコーン面の角度をβおよびベルトBとプーリコーン面との間の摩擦係数をμbとする。
ここで、可動シーブ38が固定部材に対してセンタリングされる条件を、プライマリプーリ35における可動シーブ38の最大変速比対応位置についてモデル化した図5の力線図に基づいて説明する。図5において、MSは角度θの凸状円錐面(38E)を有する可動シーブ(38)相当部材であり、BHは角度θの凹状円錐面(70E)を有する隔壁(70)相当部材である。なお、図5には、可動シーブ相当部材MSと隔壁相当部材BHの中心軸が若干偏心(オフセット)した状態で示されており、このオフセットを解消すべくセンタリングが行なわれる。まず、可動シーブ相当部材MSの円錐面が隔壁相当部材BHの円錐面に当接した後、センタリングが行なわれるには、可動シーブ相当部材MSがオフセット分移動されねばならない。可動シーブ相当部材MSには軸方向の推力Fpが作用しており、これの円錐面に沿う方向の分力は「Fp×cosθ」と表される。次に、可動シーブ相当部材MSにはベルトBから加えられるプーリ軸間力Fjが作用しており、これは軸線に直交し偏心を助長する方向の力であり、これの円錐面に沿う方向の分力は「Fj×sinθ」と表される。また、円錐面上に発生する垂直抗力は「Fp×sinθ+Fj×cosθ」である。そこで、円錐面の摩擦係数をμとすると、円錐面上の摩擦力はμ(Fp×sinθ+Fj×cosθ)となる。従って、センタリングが行なわれる条件は下式(1)を満たすことである。
(1) Fp×cosθ−Fj×sinθ−μ(Fp×sinθ+Fj×cosθ)≧0
ここで、(1)式を変形して、プライマリプーリ35の可動シーブ38に加えられるプライマリプーリ推力Fpとプーリ軸間力Fjとの比Fp/Fjで表すと、下式(2)が得られる。
(2) Fp/Fj≧tan(θ+atan(μ))
今、可動シーブ相当部材MSおよび隔壁相当部材BHとして、鉄系の材料(代表的にμ=0.14)を用いた場合、比Fp/Fjと円錐面角度θとの関係は、図6に示すように表される。図6において、曲線Aはセンタリング発生限界線であり、これより右下側の領域はセンタリング作用が生じない「NG領域」、左上側の領域は「センタリング発生領域」を示している。なお、ここで、「センタリング発生領域」では、何処にあってもセンタリング作用が得られる。しかし、この曲線Aから離れる程、楔作用が強固に発揮され、場合によっては可動シーブ相当部材MSが隔壁相当部材BHから抜け難くなることがある。従って、実用化するに際しては、センタリング発生限界線A上か、その左上近傍域で円錐面角度θを設定するのが好ましい。
しかしながら、上述の可動シーブ相当部材MSの最大変速比対応位置における円錐面角度θを、可動シーブ38の最大変速比対応位置における円錐面角度θ2および最小変速比対応位置における円錐面角度θ1として、単に、同一の角度に設定するのでは、最大変速比対応位置と最小変速比対応位置とでベルトBの巻き掛け角度αpが異なることから、両位置において同一の嵌合状態を得るためには好ましくない。そこで、かかる可動シーブ38の最大変速比対応位置における円錐面角度θ2と最小変速比対応位置における円錐面角度θ1との好適な関係についてさらに説明する。
ここで、上述の図4(A)に示す最大変速比γmax対応位置および図4(B)に示す最小変速比γmin対応位置においては、一対のプライマリプーリ35とセカンダリプーリ36とこれらに巻き掛けられているベルトBに作用している力の釣り合いから、下式(3)が成立する。
(3) Fj=4×tan(β+atan(μb))×Fp×sin(αp/2)/αp
この(3)式から、比Fp/Fjの算出式(4)が以下のように求められる。
(4) Fp/Fj=αp/{4×tan(β+atan(μb))×sin(αp/2)}
すなわち、比Fp/Fjはプーリコーン面の角度βとプライマリプーリ35の巻き掛け角度αpとベルトBとプーリコーン面との間の摩擦係数μbとの関数であり、この比Fp/Fjと変速比γとの関係は図7に示すように表される。図7から理解されるように、比Fp/Fjは変速比γの変化に対応して変動し、最大変速比γmax対応位置における比Fp/Fjは、必ず最小変速比γmin対応位置における比Fp/Fjよりも小さくなる。
次に、上述した比Fp/Fjと円錐面角度θとの関係を表した図6のグラフのセンタリング発生限界線である曲線Aに、上で求めた最大変速比γmax対応位置における比Fp/Fjおよび最小変速比γmin対応位置における比Fp/Fjを対応させて、最大変速比対応位置における円錐面角度θ2および最小変速比対応位置における円錐面角度θ1を求める。すると、図8に示すように、最大変速比対応位置における円錐面角度θ2は最小変速比対応位置における円錐面角度θ1よりも必ず小さくなる。この関係は、最大変速比γmaxおよび最小変速比γminや、プーリコーン面角度βおよびベルトBとプーリコーン面との間の摩擦係数μbをどのように設定したとしても必ず成立する。これは、前述のように、プライマリプーリ35においては、その最大変速比対応位置における巻き掛け角度αpは図4(A)に示すように180°よりも小さく、また、最小変速比対応位置における巻き掛け角度αpは図4(B)に示すように180°よりも大きいからである。
従って、プライマリプーリ35において、最大変速比対応位置における円錐面角度θ2および最小変速比対応位置における円錐面角度θ1は、前述の図6のグラフにおいて、センタリング発生領域に設定する限り、本発明の楔作用による効果を享受し得ることは当然であるが、少なくとも、センタリング発生限界線A上で両者を設定するときは、最大変速比対応位置における円錐面角度θ2を最小変速比対応位置における円錐面角度θ1よりも所定角度小さくすることが、同じ嵌合状態を得る上で好ましい。
なお、上の説明においては、最大変速比または最小変速比に対応する位置において、プーリ軸を含む固定部材に対し楔作用で一体化させる構造をプライマリプーリ35にのみ設けた実施形態について説明したが、かかる構造をセカンダリプーリ36側に設けてもよいことはいうまでもない。セカンダリプーリ36側に設ける場合には、最大変速比に対応する位置において楔作用で一体化させる構造は、可動シーブ43の内周に形成された円錐面と、セカンダリプーリ軸SSの外周に形成された円錐面とで構成され、最小変速比に対応する位置において楔作用で一体化させる構造は、可動シーブ43と一体の内筒部の外周に形成された円錐面と、隔壁部材としてのピストン部材90の内周に形成された円錐面とで構成されることになる。
さらに、可動シーブが楔作用で一体化される隔壁部材としては、プーリ油圧室を形成する隔壁部材に限られず、可動シーブが電動モータ等で駆動される形態の場合には、かかる電動モータ等のケーシングを形成する隔壁部材であってもよい。
本発明に係る無段変速機が適用された車両の一部を示す概略構成図である。 本発明の要部を示す拡大断面図であり、その上側にベルト式無段変速装置のプライマリプーリ側の上半分の構成、および下側にセカンダリプーリ側の下半分の構成であって最大変速比位置にある状態を示している。 本発明の要部を示す拡大断面図であり、その上側にベルト式無段変速装置のプライマリプーリ側の上半分の構成、および下側にセカンダリプーリ側の下半分の構成であって最小変速比位置にある状態を示している。 ベルトBが一対のプライマリプーリとセカンダリプーリとに巻き掛けられている状態とそれぞれに作用している力の釣り合い関係を示す模式図であり、(A)は、変速比γが最大(γmax)の状態、(B)は、変速比γが最小(γmin)の状態を示している。 プライマリプーリにおける可動シーブの最大変速比対応位置についてモデル化した力線図である。 プライマリプーリ推力Fpとプーリ軸間力Fjとの比Fp/Fjと円錐面角度θとの関係を示すグラフである。 プライマリプーリ推力Fpとプーリ軸間力Fjとの比Fp/Fjと変速比γとの関係を示すグラフである。 最大変速比γmax対応位置における比Fp/Fjおよび最小変速比γmin対応位置における比Fp/Fjを対応させて、最大変速比対応位置における円錐面角度θ2および最小変速比対応位置における円錐面角度θ1を求める過程を説明するための図6と同じグラフである。
符号の説明
35 プライマリプーリ
36 セカンダリプーリ
37、42 固定シーブ
38、43 可動シーブ
38E、38F 円錐面
70 シリンダ部材(隔壁部材)
70E 円錐面
90 ピストン部材(隔壁部材)
SP プライマリシャフト
SPF 円錐面
SS セカンダリシャフト
Fp プライマリプーリ推力
Fs セカンダリプーリ推力
Fj プーリ軸間力
αp プライマリプーリの巻き掛け角度
αs セカンダリプーリの巻き掛け角度
β プーリコーン面角度
θ1 最小変速比対応位置における円錐面角度
θ2 最大変速比対応位置における円錐面角度

Claims (4)

  1. プーリ軸に固定された固定シーブと、該プーリ軸に相対回動不能で軸方向移動可能に嵌合された可動シーブと、該可動シーブの背面側に配置され前記プーリ軸に固定された隔壁部材とを含むベルト式無段変速機において、
    前記可動シーブを、最大変速比または最小変速比に対応する位置において、前記プーリ軸を含む固定部材に対し楔作用で一体化させる構造が設けられていることを特徴とするベルト式無段変速機。
  2. 前記最大変速比に対応する位置において楔作用で一体化させる構造は、前記可動シーブと一体の内筒部の外周に形成された円錐面と、前記隔壁部材の内周に形成された円錐面とで構成されていることを特徴とする請求項1に記載のベルト式無段変速機。
  3. 前記最小変速比に対応する位置において楔作用で一体化させる構造は、前記可動シーブの内周に形成された円錐面と、前記プーリ軸の外周に形成された円錐面とで構成されていることを特徴とする請求項1に記載のベルト式無段変速機。
  4. 前記最大変速比に対応する位置において楔作用で一体化させる構造における円錐面のなす角度は、前記最小変速比に対応する位置において楔作用で一体化させる構造における円錐面のなす角度よりも小さいことを特徴とする請求項2または3に記載のベルト式無段変速機。
JP2005124007A 2005-04-21 2005-04-21 ベルト式無段変速機 Pending JP2006300243A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005124007A JP2006300243A (ja) 2005-04-21 2005-04-21 ベルト式無段変速機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005124007A JP2006300243A (ja) 2005-04-21 2005-04-21 ベルト式無段変速機

Publications (1)

Publication Number Publication Date
JP2006300243A true JP2006300243A (ja) 2006-11-02

Family

ID=37468773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005124007A Pending JP2006300243A (ja) 2005-04-21 2005-04-21 ベルト式無段変速機

Country Status (1)

Country Link
JP (1) JP2006300243A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012131999A1 (ja) * 2011-03-31 2012-10-04 トヨタ自動車株式会社 ベルト式無段変速機
JP2015178868A (ja) * 2014-03-19 2015-10-08 ジヤトコ株式会社 プーリ機構,プーリ機構を有する変速機及びこれを備えた車両

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012131999A1 (ja) * 2011-03-31 2012-10-04 トヨタ自動車株式会社 ベルト式無段変速機
CN103459890A (zh) * 2011-03-31 2013-12-18 丰田自动车株式会社 带式无级变速器
JP5704230B2 (ja) * 2011-03-31 2015-04-22 トヨタ自動車株式会社 ベルト式無段変速機
US9182017B2 (en) 2011-03-31 2015-11-10 Toyota Jidosha Kabushiki Kaisha Belt-driven continuously variable transmission
JP2015178868A (ja) * 2014-03-19 2015-10-08 ジヤトコ株式会社 プーリ機構,プーリ機構を有する変速機及びこれを備えた車両

Similar Documents

Publication Publication Date Title
US7753814B2 (en) Belt type continuously variable transmission
EP1872032B1 (en) Belt type continuously variable transmission
JP4670904B2 (ja) 無段変速機
JP2008064125A (ja) ベルト式無段変速機
JP2006300243A (ja) ベルト式無段変速機
JP4514522B2 (ja) ベルト式無段変速機
JP2008232389A (ja) ベルト式無段変速機
JP2007303562A (ja) ベルト式無段変速機
JP4583139B2 (ja) 無段変速機の組立構造および組立方法
JP4039272B2 (ja) ベルト式無段変速機
JP4560769B2 (ja) ベルト式無段変速機
JP4427778B2 (ja) ベルト式無段変速機
JP2007298139A (ja) ベルト式無段変速機
JP2005299698A (ja) ベルト式無段変速機
JP4606124B2 (ja) 無段変速機
JP6493346B2 (ja) 車両用無段変速機
JP6517688B2 (ja) 動力伝達装置
JP2006105245A (ja) ベルト式無段変速機
JP2006132553A (ja) 前後進切替装置の潤滑構造
JP2008208849A (ja) 車両用ベルト式無段変速機
JP2009024764A (ja) 車両用ベルト式無段変速機
JP2006029562A (ja) ベルト式無段変速機
JP2005299804A (ja) ベルト式無段変速機
JP2008128439A (ja) ベルト式無段変速機
JP2009191991A (ja) ベルト式無段変速機及びその組付方法