JP2006295100A - Method of manufacturing rare earth sintered magnet and method of pulverizing raw alloy powder for sintered magnet - Google Patents

Method of manufacturing rare earth sintered magnet and method of pulverizing raw alloy powder for sintered magnet Download PDF

Info

Publication number
JP2006295100A
JP2006295100A JP2005184752A JP2005184752A JP2006295100A JP 2006295100 A JP2006295100 A JP 2006295100A JP 2005184752 A JP2005184752 A JP 2005184752A JP 2005184752 A JP2005184752 A JP 2005184752A JP 2006295100 A JP2006295100 A JP 2006295100A
Authority
JP
Japan
Prior art keywords
lubricant
particle size
sintered magnet
raw material
alloy powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005184752A
Other languages
Japanese (ja)
Other versions
JP4506973B2 (en
Inventor
Yasushi Enokido
靖 榎戸
Tsutomu Ishizaka
力 石坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2005184752A priority Critical patent/JP4506973B2/en
Publication of JP2006295100A publication Critical patent/JP2006295100A/en
Application granted granted Critical
Publication of JP4506973B2 publication Critical patent/JP4506973B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a rare earth sintered magnet suppressing the amount of a lubricant added to the utmost and obtaining a compact with high strength and a sintered magnet with high magnetic characteristics, and a method of pulverizing raw alloy powder for the sintered magnet. <P>SOLUTION: In manufacturing the rare earth sintered magnet, a lubricant is pulverized so that the particle size of the lubricant may be ≤1.5 times of the particle size of raw alloy powder to obtain lubricant particles. Then, it is added to the raw alloy powder and pulverized to obtain finely pulverized powder. Then, this finely pulverized powder is formed in a magnetic field to form a compact. This compact is sintered to obtain the rare earth sintered magnet. When adding the lubricant particles having a particle size of a prescribed size with respect to the particle size of the raw alloy powder to the raw alloy powder and pulverizing it like this, the lubricant is dispersed more uniformly. Thus, pulverization property of raw alloy in a pulverization process and orientation of the pulverized powder are improved. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、Nd−Fe−B系に代表される希土類焼結磁石の製造方法、焼結磁石用原料合金粉の粉砕方法に関する。   The present invention relates to a method for producing a rare earth sintered magnet typified by an Nd—Fe—B system and a method for pulverizing a raw alloy powder for a sintered magnet.

希土類焼結磁石は高性能な磁石として広く使用されており、各種電子デバイスの小型化、また、自動車における電子デバイスの増加に伴いますますその需要が増している。一般に磁石は、その配向度が高いほど高い残留磁束密度を示す。このため成形時には原料粉に磁場を与え、原料粉を配向させたまま加圧成形を行う(いわゆる磁場中成形)。
このとき磁場に対する原料粉の配向性を向上させるため、原料粉に潤滑剤が加えられることがある。
また、上記のように磁場中成形を行うに先立ち、原料合金を気流式粉砕機(ジェットミル)等で粉砕して原料粉を得る工程で、粉砕性を向上させるために潤滑剤を加えることがある(例えば、特許文献1参照)。
Rare earth sintered magnets are widely used as high-performance magnets, and their demand is increasing with the miniaturization of various electronic devices and the increase of electronic devices in automobiles. In general, the higher the degree of orientation of the magnet, the higher the residual magnetic flux density. For this reason, a magnetic field is applied to the raw material powder at the time of molding, and pressure molding is performed with the raw material powder oriented (so-called magnetic field molding).
At this time, in order to improve the orientation of the raw material powder with respect to the magnetic field, a lubricant may be added to the raw material powder.
In addition, before forming in a magnetic field as described above, a lubricant may be added to improve the grindability in the step of obtaining the raw material powder by grinding the raw material alloy with an airflow crusher (jet mill) or the like. Yes (see, for example, Patent Document 1).

特開平8−111308号公報(特許請求の範囲)JP-A-8-111308 (Claims)

粉砕工程における原料合金の粉砕性の向上、磁場中成形工程における原料粉の配向性向上のためには、潤滑剤の添加量を増やすのが好ましい。しかしながら、添加する潤滑剤の量が増えると、得られる希土類焼結磁石の磁気特性の低下に繋がる。
また、ただ添加するだけでは潤滑剤の凝集粒子が残ってしまい、焼結後、焼結体にこの凝集粒子に起因する空隙が形成されてしまう。さらに、添加した潤滑剤により、成形体の強度が低下する。そして、成形体に剥がれや亀裂が発生し、所望寸法精度の焼結体を得ることが困難であることも知られている(例えば、特許文献2参照)。
In order to improve the grindability of the raw material alloy in the grinding step and to improve the orientation of the raw material powder in the forming step in a magnetic field, it is preferable to increase the amount of lubricant added. However, an increase in the amount of lubricant to be added leads to a decrease in the magnetic properties of the obtained rare earth sintered magnet.
Moreover, the lubricant aggregated particles remain only by adding, and voids resulting from the aggregated particles are formed in the sintered body after sintering. Furthermore, the strength of the molded body is reduced by the added lubricant. It is also known that peeling or cracking occurs in the molded body, making it difficult to obtain a sintered body with desired dimensional accuracy (see, for example, Patent Document 2).

特開平7−240329号公報(発明が解決しようとする課題)Japanese Patent Laid-Open No. 7-240329 (problem to be solved by the invention)

本発明は、このような技術的課題に基づいてなされたもので、潤滑剤の添加量をなるべく抑制し、高強度の成形体、高い磁気特性の希土類焼結磁石を得ることのできる希土類焼結磁石の製造方法、焼結磁石用原料合金粉の粉砕方法を提供することを目的とする。   The present invention has been made on the basis of such a technical problem, and rare earth sintering capable of obtaining a high-strength molded article and a rare earth sintered magnet having high magnetic properties by suppressing the amount of lubricant added as much as possible. It aims at providing the manufacturing method of a magnet, and the grinding | pulverization method of the raw material alloy powder for sintered magnets.

上記の課題を解決すべく鋭意検討を行う過程で、本発明者は、粉砕工程において、原料合金に対する潤滑剤の分散性に着目した。本発明者は、当初、潤滑剤も気流式粉砕機により十分に粉砕されるものと考えていた。しかし、希土類焼結磁石の原料合金ようには潤滑剤は粉砕されないことが判明した。そこで、原料合金に対する潤滑剤の分散性を向上させるには、添加する潤滑剤の粒径を小さくするのが有効ではないか、と考えるに至った。
このようにしてなされた本発明の希土類焼結磁石の製造方法は、潤滑剤を粉砕して原料合金粉の粒径の1.5倍以下の粒径を有する潤滑剤粒子を得る工程と、潤滑剤粒子を原料合金粉に添加して粉砕し、粉砕粉を得る工程と、粉砕粉に磁場を印加し、かつ加圧成形することにより成形体を得る工程と、成形体を焼結する工程と、を備えることを特徴とする。
このように、原料合金粉の粒径に対して所定の大きさの粒径を持つ潤滑剤粒子を原料合金粉に添加して粉砕すると、潤滑剤がより均一に分散する。これにより、粉砕工程における原料合金の粉砕性、及び磁場中成形工程における粉砕粉の配向性を向上させることができる。また、潤滑剤の分散性が向上することで、従来よりも少ない量の潤滑剤で、同等の潤滑効果が期待できる。なお潤滑剤を粉砕する工程では、潤滑剤粒子の粒径が原料合金粉の粒径に対して1.5倍以下となるように潤滑剤を粉砕することが好ましい。このような粒径を有する潤滑剤粒子は、例えば潤滑剤を冷凍した後に粉砕して得ることができる。
In the course of earnest studies to solve the above problems, the present inventors paid attention to the dispersibility of the lubricant with respect to the raw material alloy in the pulverization step. The inventor initially thought that the lubricant was sufficiently pulverized by the airflow pulverizer. However, it has been found that the lubricant is not pulverized like the raw material alloy of the rare earth sintered magnet. Therefore, in order to improve the dispersibility of the lubricant with respect to the raw material alloy, it has been considered that it is effective to reduce the particle size of the lubricant to be added.
The method for producing a rare earth sintered magnet of the present invention thus made comprises a step of pulverizing a lubricant to obtain lubricant particles having a particle size not more than 1.5 times the particle size of the raw material alloy powder, A step of adding agent particles to the raw material alloy powder and pulverizing to obtain a pulverized powder, a step of applying a magnetic field to the pulverized powder and press-molding, and a step of sintering the compact It is characterized by providing.
As described above, when the lubricant particles having a predetermined particle size with respect to the particle size of the raw material alloy powder are added to the raw material alloy powder and pulverized, the lubricant is more uniformly dispersed. Thereby, the grindability of the raw material alloy in the grinding step and the orientation of the ground powder in the forming step in the magnetic field can be improved. Further, since the dispersibility of the lubricant is improved, an equivalent lubricating effect can be expected with a smaller amount of lubricant than in the prior art. In the step of pulverizing the lubricant, the lubricant is preferably pulverized so that the particle size of the lubricant particles is 1.5 times or less than the particle size of the raw material alloy powder. The lubricant particles having such a particle size can be obtained, for example, by pulverizing the lubricant after freezing.

本発明において、潤滑剤の材質は特に制限はないが、一般式R−CONH2又はR−CONH−R−HNCO−Rで示される化合物Aと、R−OCO−R、R−OH、(R−COO)Mからなる群のうちいずれか一種で示される化合物B(R1〜4はC2n+1又はC2n−1。R5はH、C2n+1又はC2n−1。Mは金属。nは整数。)とを含む混合物とすることが好ましい。また、一般式R−CONH2又はR−CONH−R−HNCO−Rで示される化合物Aと、R−OCO−R、R−OH、(R−COO)Mからなる群のうちいずれか一種で示される化合物B(R1〜4はC2n+1又はC2n−1。R5はH、C2n+1又はC2n−1。Mは金属。nは整数。)とが炭化水素を介して結合した化合物Dとすることも好ましい。 In the present invention, the material of the lubricant is not particularly limited, but the compound A represented by the general formula R 1 —CONH 2 or R 1 —CONH—R 3 —HNCO—R 2 , R 4 —OCO—R 5 , Compound B represented by any one of the group consisting of R 4 —OH and (R 4 —COO) n M (R 1-4 is C n H 2n + 1 or C n H 2n−1, R 5 is H, C n H 2n + 1 or C n H 2n−1, where M is a metal and n is an integer. In addition, compound A represented by the general formula R 1 —CONH 2 or R 1 —CONH—R 3 —HNCO—R 2 , R 4 —OCO—R 5 , R 4 —OH, (R 4 —COO) n M compound B (R 1 to 4 represented by any one of the group consisting of the or C n H 2n + 1 C n H 2n-1 .R 5 is H, C n H 2n + 1 or C n H 2n-1 .M is It is also preferable to use a compound D in which a metal (n is an integer) is bonded via a hydrocarbon.

また本発明は、原料合金粉と、粒径比率(潤滑剤の粒径/原料合金粉の粒径)が1.5以下の潤滑剤粒子とを粉砕機に投入し、原料合金粉を粉砕して粉砕粉を得ることを特徴とする焼結磁石用原料合金粉の粉砕方法も提供する。原料合金粉の粒径に対して1.5倍以下の粒径を有する潤滑剤粒子は、いかなる方法で形成しても良い。例えば、スプレードライ法等で所望の粒径の潤滑剤粒子を得ることができる。また、潤滑剤を冷凍して凝固させ、この状態で潤滑剤を粉砕することで、所望の粒径の潤滑剤粒子を得ても良い。また、原料合金粉の粉砕は、いかなる方式で行っても良いが、例えば粉砕機として気流式粉砕機を用いることができる。この場合、原料合金粉とともに潤滑剤粒子を気流式粉砕機に投入して、原料合金粉を粉砕する。   In the present invention, the raw material alloy powder and the lubricant particles having a particle size ratio (lubricant particle size / raw material alloy powder particle size) of 1.5 or less are put into a pulverizer to pulverize the raw material alloy powder. There is also provided a method for pulverizing a raw material alloy powder for a sintered magnet, characterized in that pulverized powder is obtained. Lubricant particles having a particle size not larger than 1.5 times the particle size of the raw material alloy powder may be formed by any method. For example, lubricant particles having a desired particle diameter can be obtained by a spray drying method or the like. Alternatively, the lubricant may be frozen and solidified, and the lubricant may be pulverized in this state to obtain lubricant particles having a desired particle size. The raw alloy powder may be pulverized by any method. For example, an airflow pulverizer can be used as the pulverizer. In this case, the lubricant particles together with the raw material alloy powder are put into an airflow pulverizer to pulverize the raw material alloy powder.

本発明によれば、粉砕され、原料合金粉の粒径と所定の関係の粒径を有する潤滑剤を添加することで、粉砕工程における原料合金粉の粉砕性、及び磁場中成形工程における粉砕粉の配向性を確保したうえで、成形体の強度、及び最終的に得られる希土類焼結磁石の磁気特性を高いものとすることが可能となる。また、より少ない量の潤滑剤で、従来と同等の成形体強度、あるいは磁気特性を得ることが可能となる。   According to the present invention, by adding a lubricant that is pulverized and has a predetermined relationship with the particle size of the raw material alloy powder, the pulverization property of the raw material alloy powder in the pulverization step and the pulverized powder in the forming step in a magnetic field are added. As a result, the strength of the compact and the magnetic properties of the finally obtained rare earth sintered magnet can be improved. In addition, it is possible to obtain the same molded body strength or magnetic characteristics as before with a smaller amount of lubricant.

本発明は、例えば、希土類焼結磁石、特にR−T−B系焼結磁石に適用することができる。
このR−T−B系焼結磁石は、希土類元素(R)を25〜37wt%含有する。ここで、本発明におけるRはYを含む概念を有しており、したがってY、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb及びLuの1種又は2種以上から選択される。Rの量が25wt%未満であると、R−T−B系焼結磁石の主相となるR14B相の生成が十分ではなく軟磁性を持つα−Feなどが析出し、保磁力が著しく低下する。一方、Rが37wt%を超えると主相であるR14B相の体積比率が低下し、残留磁束密度が低下する。またRが酸素と反応し、含有する酸素量が増え、これに伴い保磁力発生に有効なRリッチ相が減少し、保磁力の低下を招く。したがって、Rの量は25〜37wt%とする。好ましいRの量は28〜35wt%、さらに好ましいRの量は29〜33wt%である。
The present invention can be applied to, for example, a rare earth sintered magnet, particularly an RTB based sintered magnet.
This RTB-based sintered magnet contains 25 to 37 wt% of a rare earth element (R). Here, R in the present invention has a concept including Y, and therefore 1 of Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. It is selected from species or two or more species. If the amount of R is less than 25 wt%, the R 2 T 14 B phase, which is the main phase of the RTB-based sintered magnet, is not sufficiently generated, and α-Fe having soft magnetism is precipitated and retained. Magnetic force is significantly reduced. On the other hand, when R exceeds 37 wt%, the volume ratio of the R 2 T 14 B phase, which is the main phase, decreases, and the residual magnetic flux density decreases. Further, R reacts with oxygen, the amount of oxygen contained increases, and accordingly, the R-rich phase effective for the generation of coercive force decreases, leading to a decrease in coercive force. Therefore, the amount of R is set to 25 to 37 wt%. A preferable amount of R is 28 to 35 wt%, and a more preferable amount of R is 29 to 33 wt%.

また、このR−T−B系焼結磁石は、ホウ素(B)を0.5〜4.5wt%含有する。Bが0.5wt%未満の場合には高い保磁力を得ることができない。一方で、Bが4.5wt%を超えると残留磁束密度が低下する傾向がある。したがって、Bの上限を4.5wt%とする。好ましいBの量は0.5〜1.5wt%、さらに好ましいBの量は0.8〜1.2wt%である。
このR−T−B系焼結磁石は、Coを2.0wt%以下(0を含まず)、望ましくは0.1〜1.0wt%、さらに望ましくは、0.3〜0.7wt%含有することができる。CoはFeと同様の相を形成するが、キュリー温度の向上、粒界相の耐食性向上に効果がある。
The RTB-based sintered magnet contains 0.5 to 4.5 wt% of boron (B). When B is less than 0.5 wt%, a high coercive force cannot be obtained. On the other hand, when B exceeds 4.5 wt%, the residual magnetic flux density tends to decrease. Therefore, the upper limit of B is set to 4.5 wt%. A preferable amount of B is 0.5 to 1.5 wt%, and a more preferable amount of B is 0.8 to 1.2 wt%.
This RTB-based sintered magnet contains Co of 2.0 wt% or less (excluding 0), desirably 0.1 to 1.0 wt%, and more desirably 0.3 to 0.7 wt%. can do. Co forms the same phase as Fe, but is effective in improving the Curie temperature and improving the corrosion resistance of the grain boundary phase.

また、このR−T−B系焼結磁石は、Al及びCuの1種又は2種を0.02〜0.5wt%の範囲で含有することができる。この範囲でAl及びCuの1種又は2種を含有させることにより、得られるR−T−B系焼結磁石の高保磁力化、高耐食性化、温度特性の改善が可能となる。Alを添加する場合において、好ましいAlの量は0.03〜0.3wt%、さらに好ましいAlの量は、0.05〜0.25wt%である。また、Cuを添加する場合において、好ましいCuの量は0.15wt%以下(0を含まず)、さらに好ましいCuの量は0.03〜0.12wt%である。
さらに、このR−T−B系焼結磁石は、他の元素の含有を許容する。例えば、Zr、Ti、Bi、Sn、Ga、Nb、Ta、Si、V、Ag、Ge等の元素を適宜含有させることができる。一方で、酸素、窒素、炭素等の不純物元素を極力低減することが好ましい。特に磁気特性を害する酸素は、その量を5000ppm以下、さらには3000ppmと以下とすることが好ましい。酸素量が多いと非磁性成分である希土類酸化物相が増大して、磁気特性を低下させるからである。
In addition, this RTB-based sintered magnet can contain one or two of Al and Cu in the range of 0.02 to 0.5 wt%. By containing one or two of Al and Cu in this range, it is possible to increase the coercive force, the corrosion resistance, and the temperature characteristics of the obtained R-T-B sintered magnet. In the case of adding Al, a preferable amount of Al is 0.03 to 0.3 wt%, and a more preferable amount of Al is 0.05 to 0.25 wt%. In addition, in the case of adding Cu, the preferable amount of Cu is 0.15 wt% or less (not including 0), and the more preferable amount of Cu is 0.03 to 0.12 wt%.
Furthermore, this RTB-based sintered magnet allows the inclusion of other elements. For example, elements such as Zr, Ti, Bi, Sn, Ga, Nb, Ta, Si, V, Ag, and Ge can be appropriately contained. On the other hand, it is preferable to reduce impurity elements such as oxygen, nitrogen, and carbon as much as possible. In particular, the amount of oxygen that impairs magnetic properties is preferably 5000 ppm or less, more preferably 3000 ppm or less. This is because when the amount of oxygen is large, the rare-earth oxide phase, which is a nonmagnetic component, increases and the magnetic properties are deteriorated.

本発明は、上記したようなR−T−B系焼結磁石に限らず、他の希土類焼結磁石に適用することも可能である。例えば、R−Co系焼結磁石に本発明を適用することもできる。
R−Co系焼結磁石は、Rと、Fe、Ni、Mn及びCrから選ばれる1種以上の元素と、Coとを含有する。この場合、望ましくはさらにCu又は、Nb、Zr、Ta、Hf、Ti及びVから選ばれる1種以上の元素を含有し、特に望ましくはCuと、Nb、Zr、Ta、Hf、Ti及びVから選ばれる1種以上の元素とを含有する。これらのうち特に、SmとCoとの金属間化合物、望ましくはSmCo17金属間化合物を主相とし、粒界にはSmCo系を主体とする副相が存在する。具体的組成は、製造方法や要求される磁気特性等に応じて適宜選択すればよいが、例えば、R:20〜30wt%、特に22〜28wt%程度、Fe、Ni、Mn及びCrの1種以上:1〜35wt%程度、Nb、Zr、Ta、Hf、Ti及びVの1種以上:0〜6wt%、特に0.5〜4wt%程度、Cu:0〜10wt%、特に1〜10wt%程度、Co:残部の組成が好ましい。
以上、R−T−B系焼結磁石、R−Co系焼結磁石について言及したが、本発明は他の希土類焼結磁石への適用を妨げるものではない。
The present invention is not limited to the R-T-B based sintered magnet as described above, but can be applied to other rare earth sintered magnets. For example, the present invention can be applied to an R—Co based sintered magnet.
The R—Co based sintered magnet contains R, one or more elements selected from Fe, Ni, Mn, and Cr, and Co. In this case, it preferably further contains at least one element selected from Cu or Nb, Zr, Ta, Hf, Ti and V, and particularly preferably from Cu and Nb, Zr, Ta, Hf, Ti and V. Containing one or more selected elements. Among these, an intermetallic compound of Sm and Co, preferably an Sm 2 Co 17 intermetallic compound, is the main phase, and a subphase mainly composed of SmCo 5 is present at the grain boundary. The specific composition may be appropriately selected according to the production method, required magnetic characteristics, and the like. For example, R: 20 to 30 wt%, particularly about 22 to 28 wt%, Fe, Ni, Mn, and Cr Above: about 1 to 35 wt%, one or more of Nb, Zr, Ta, Hf, Ti and V: 0 to 6 wt%, especially about 0.5 to 4 wt%, Cu: 0 to 10 wt%, especially 1 to 10 wt% To the extent, the composition of Co: remainder is preferred.
The R-T-B sintered magnet and the R-Co sintered magnet have been described above, but the present invention does not prevent application to other rare earth sintered magnets.

以下、本発明による希土類焼結磁石の製造方法を工程順に説明する。
原料合金は、真空又は不活性ガス、望ましくはアルゴン雰囲気中でストリップキャスト法、その他公知の溶解法により作製することができる。ストリップキャスト法は、原料金属をアルゴンガス雰囲気などの非酸化雰囲気中で溶解して得た溶湯を回転するロールの表面に噴出させる。ロールで急冷された溶湯は、薄板又は薄片(鱗片)状に急冷凝固される。この急冷凝固された合金は、結晶粒径が1〜50μmの均質な組織を有している。原料合金は、ストリップキャスト法に限らず、高周波誘導溶解等の溶解法によって得ることができる。なお、溶解後の偏析を防止するため、例えば水冷銅板に傾注して凝固させることができる。また、還元拡散法によって得られた合金を原料合金として用いることもできる。
R−T−B系焼結磁石を得る場合、R14B結晶粒を主体とする合金(低R合金)と、低R合金よりRを多く含む合金(高R合金)とを用いる所謂混合法を本発明に適用することもできる。
Hereinafter, a method for producing a rare earth sintered magnet according to the present invention will be described in the order of steps.
The raw material alloy can be produced by a strip casting method or other known melting methods in a vacuum or an inert gas, preferably an argon atmosphere. In the strip casting method, a molten metal obtained by melting a raw metal in a non-oxidizing atmosphere such as an argon gas atmosphere is jetted onto the surface of a rotating roll. The melt rapidly cooled by the roll is rapidly solidified in the form of a thin plate or flakes (scales). This rapidly solidified alloy has a homogeneous structure with a crystal grain size of 1 to 50 μm. The raw material alloy can be obtained not only by the strip casting method but also by a melting method such as high frequency induction melting. In order to prevent segregation after dissolution, for example, it can be solidified by pouring into a water-cooled copper plate. An alloy obtained by the reduction diffusion method can also be used as a raw material alloy.
When obtaining an RTB-based sintered magnet, a so-called alloy using a R 2 T 14 B crystal grain (low R alloy) and an alloy containing more R than a low R alloy (high R alloy) is used. A mixing method can also be applied to the present invention.

まず、原料合金は粉砕工程に供される。混合法による場合には、低R合金及び高R合金は別々に又は一緒に粉砕される。粉砕工程には、粗粉砕工程と微粉砕工程とがある。
粗粉砕工程では、原料合金を、粒径数百μm程度になるまで粗粉砕し、粗粉砕粉末を得る。この粗粉砕粉末が本発明における原料合金粉に該当する。粗粉砕は、スタンプミル、ジョークラッシャー、ブラウンミル等を用い、不活性ガス雰囲気中にて行うことが好ましい。粗粉砕に先立って、原料合金に水素を吸蔵させた後に放出させることにより粉砕を行うことが効果的である。水素放出処理は、希土類焼結磁石として不純物となる水素を減少させることを目的として行われる。水素放出のための加熱保持の温度は、200℃以上、望ましくは350℃以上とする。保持時間は、保持温度との関係、原料合金の厚さ等によって変わるが、少なくとも30分以上、望ましくは1時間以上とする。水素放出処理は、真空中又はアルゴンガスフローにて行う。なお、水素吸蔵処理、水素放出処理は必須の処理ではない。この水素粉砕を粗粉砕と位置付けて、機械的な粗粉砕を省略することもできる。
First, the raw material alloy is subjected to a grinding process. In the case of the mixing method, the low R alloy and the high R alloy are pulverized separately or together. The pulverization process includes a coarse pulverization process and a fine pulverization process.
In the coarse pulverization step, the raw material alloy is coarsely pulverized to a particle size of about several hundred μm to obtain a coarsely pulverized powder. This coarsely pulverized powder corresponds to the raw material alloy powder in the present invention. The coarse pulverization is preferably performed in an inert gas atmosphere using a stamp mill, a jaw crusher, a brown mill or the like. Prior to coarse pulverization, it is effective to perform pulverization by allowing hydrogen to be stored in the raw material alloy and then releasing it. The hydrogen releasing treatment is performed for the purpose of reducing hydrogen as an impurity as a rare earth sintered magnet. The temperature of heating and holding for releasing hydrogen is 200 ° C. or higher, desirably 350 ° C. or higher. The holding time varies depending on the relationship with the holding temperature, the thickness of the raw material alloy, etc., but is at least 30 minutes or longer, preferably 1 hour or longer. The hydrogen release treatment is performed in a vacuum or with an argon gas flow. The hydrogen storage process and the hydrogen release process are not essential processes. This hydrogen pulverization can be regarded as coarse pulverization, and mechanical coarse pulverization can be omitted.

粗粉砕工程後、微粉砕工程に移る。
このとき、微粉砕工程における粉砕性の向上を目的として、潤滑剤を添加する。この潤滑剤としては、脂肪酸又は脂肪酸の誘導体、例えばステアリン酸系やオレイン酸系であるステアリン酸亜鉛、ステアリン酸カルシウム、ステアリン酸アミド、オレイン酸アミド等を挙げることができる。また、各種エステル系、アルコール系の誘導体を用いることもできる。これら潤滑剤は、成形時の潤滑及び配向性を向上する機能を兼ねることができる。
After the coarse pulverization process, the process proceeds to the fine pulverization process.
At this time, a lubricant is added for the purpose of improving grindability in the fine grinding step. Examples of the lubricant include fatty acids or fatty acid derivatives such as stearic acid-based and oleic acid-based zinc stearate, calcium stearate, stearamide, and oleic acid amide. Various ester-based and alcohol-based derivatives can also be used. These lubricants can also function to improve lubrication and orientation during molding.

潤滑剤としては、一般式R−CONH2又はR−CONH−R−HNCO−Rで示される化合物Aと、R−OCO−R、R−OH、(R−COO)M(Mは金属、nは整数)からなる群のうちいずれか一種で示される化合物B(R1〜4はC2n+1又はC2n−1。R5はH、C2n+1又はC2n−1で表される)を含む混合物を用いることが好ましい。 As the lubricant, the compound A represented by the general formula R 1 —CONH 2 or R 1 —CONH—R 3 —HNCO—R 2 , R 4 —OCO—R 5 , R 4 —OH, (R 4 —COO) may be used. ) n M (M is a metal, n represents the compound B represented by one any of the group consisting of integers) (R 1 to 4 is or C n H 2n + 1 C n H 2n-1 .R 5 is H, C n It is preferable to use a mixture containing H 2n + 1 or C n H 2n-1 .

化合物Aとは、例えば脂肪酸アミドのようにアミド基を有する化合物もしくは脂肪酸ビスアミドのようにアミド結合を有する化合物である。R、Rは炭素数7以上21以下の直鎖状飽和炭化水素であることが好ましい。このような化合物Aの具体例としてステアリン酸アミド(C1735−CONH)、エチレンビスステアリン酸アミド(C1735−CONH−(CH−NHCO−C1735)、ベヘン酸アミド(C2143−CONH)及びカプリル酸アミド(C15−CONH)を挙げることができ、この中でもステアリン酸アミドが特に好ましい。本発明において化合物Aは1種類のみの化合物を用いてもよいが、複数の化合物を組み合わせて用いるものであってもよい。 Compound A is, for example, a compound having an amide group such as fatty acid amide or a compound having an amide bond such as fatty acid bisamide. R 1 and R 2 are preferably straight-chain saturated hydrocarbons having 7 to 21 carbon atoms. Such stearic acid amide Specific examples of the compound A (C 17 H 35 -CONH 2 ), ethylene bis-stearic acid amide (C 17 H 35 -CONH- (CH 2) 2 -NHCO-C 17 H 35), behenic An acid amide (C 21 H 43 —CONH 2 ) and caprylic acid amide (C 7 H 15 —CONH 2 ) can be mentioned, and among these, stearic acid amide is particularly preferable. In the present invention, compound A may be a single type of compound, or may be a combination of a plurality of compounds.

化合物Bとは、例えば脂肪酸化合物やアルコールであり、具体的には炭素数が10以上の高級脂肪酸、高級脂肪酸エステル、高級脂肪酸金属塩、高級アルコール等が挙げられる。この中でも化合物Bは、Rが炭素数17及び18の炭化水素である化合物が好ましく、具体例としてステアリン酸(C1735−COOH)、モノステアリン酸グリセリン(C1735−COO−C)、ステアリン酸亜鉛((C1735−COO) Zn2+)及びステアリルアルコール(C1837−O−H)を挙げることができる。この中でもステアリン酸とモノステアリン酸グリセリンがさらに好ましく、特に好ましいのはステアリン酸である。化合物Bとしては1種類のみの化合物を用いてもよいが、複数の化合物を組み合わせて用いてもよい。 Compound B is, for example, a fatty acid compound or alcohol, and specific examples include higher fatty acids having 10 or more carbon atoms, higher fatty acid esters, higher fatty acid metal salts, higher alcohols, and the like. Among them, the compound B is preferably a compound in which R 4 is a hydrocarbon having 17 and 18 carbon atoms. Specific examples include stearic acid (C 17 H 35 —COOH) and glyceryl monostearate (C 17 H 35 —COO—C). 3 H 7 O 2), zinc stearate ((C 17 H 35 -COO) - can be exemplified 2 Zn 2+) and stearyl alcohol (C 18 H 37 -O-H ). Of these, stearic acid and glyceryl monostearate are more preferable, and stearic acid is particularly preferable. As compound B, only one type of compound may be used, or a plurality of compounds may be used in combination.

さらにこの他、化合物A、化合物Bが炭化水素を介して結合した化合物Dを潤滑剤として用いることもできる。例えば、アミド結合とエステル結合を有する化合物を挙げることができ、R−CONH−R−OCO−R(R、Rは炭化水素)で示される化合物である。具体的にはRがC2n+1(nが12以上17以下)で表される化合物であり、この中でもRの炭素数が17のステアリン酸から成るステアロイドエチルステアレート(C1735CONH(CHOCOC1735)を潤滑剤とすることも好ましい。 In addition, compound D in which compound A and compound B are bonded via a hydrocarbon can also be used as a lubricant. For example, there may be mentioned compounds having an amide bond and an ester bond, R 6 -CONH-R 7 -OCO -R 6 (R 6, R 7 is a hydrocarbon) is a compound represented by. Specifically, R 6 is a compound represented by C n H 2n + 1 (n is 12 or more and 17 or less), among which stearoid ethyl stearate (C 17 H 35) composed of stearic acid having 17 carbon atoms in R. It is also preferable to use CONH (CH 2 ) 2 OCOC 17 H 35 ) as a lubricant.

潤滑剤は、潤滑剤が予め粉砕されて粒径が小さくされたもの(潤滑剤粒子)を用いることができる。具体的には潤滑剤粒子の粒径が原料合金粉の粒径の1.5倍(粒径比率(潤滑剤の粒径/原料合金粉の粒径)が1.5)以下となるように潤滑剤を粉砕する。好ましくは潤滑剤粒子の粒径は原料合金粉の粒径の1.0倍(粒径比率が1.0)以下、さらに好ましくは0.7倍(粒径比率が0.7)以下である。例えば、粗粉砕粉末の粒径が100〜1000μm程度であれば、潤滑剤粒子の粒径は、150μm以下〜1500μm以下、好ましくは100μm以下〜1000μm以下、さらに好ましくは70μm以下〜700μm以下である。潤滑剤粒子は、いかなる方法で形成しても良い。例えば、スプレードライ法等で所望の粒径の潤滑剤粒子を得ることができる。また、液体窒素を用いて潤滑剤を冷凍して凝固させ、その状態のまま、粉砕ミル等で潤滑剤を粉砕することで、所望の粒径の潤滑剤粒子を得ても良い。また潤滑剤粒子を、上記粒径とするために潤滑剤の粉砕後、篩等で分級してもよい。   As the lubricant, a lubricant (lubricant particles) in which the lubricant is pulverized in advance to reduce the particle size can be used. Specifically, the particle size of the lubricant particles is 1.5 times the particle size of the raw material alloy powder (particle size ratio (the particle size of the lubricant / the particle size of the raw material alloy powder) is 1.5) or less. Grind the lubricant. Preferably, the particle size of the lubricant particles is 1.0 times (particle size ratio is 1.0) or less, more preferably 0.7 times (particle size ratio is 0.7) or less that of the raw material alloy powder. . For example, when the particle size of the coarsely pulverized powder is about 100 to 1000 μm, the particle size of the lubricant particles is 150 μm or less to 1500 μm or less, preferably 100 μm or less to 1000 μm or less, and more preferably 70 μm or less to 700 μm or less. The lubricant particles may be formed by any method. For example, lubricant particles having a desired particle diameter can be obtained by a spray drying method or the like. Alternatively, the lubricant may be frozen and solidified using liquid nitrogen, and the lubricant particles having a desired particle diameter may be obtained by pulverizing the lubricant with a pulverization mill or the like in that state. Further, the lubricant particles may be classified with a sieve or the like after the lubricant is pulverized in order to obtain the above particle diameter.

所定の粒径となった潤滑剤の添加量は、粉砕性を向上させるという点からすれば、なるべく多くするのが好ましいが、磁気特性及び成形体の強度の観点からすれば、なるべく少なくするのが好ましい。したがって、潤滑剤の添加量は、0.01〜1.0wt%とするのが好ましい。本発明では、その分散性が向上するために、潤滑剤の添加量を、0.5wt%以下、さらには0.3wt%以下と少量にすることができる。潤滑剤と粗粉砕粉末の混合は、例えばナウターミキサー等により5〜30分間ほど行う程度でよい。   The addition amount of the lubricant having a predetermined particle size is preferably as much as possible from the viewpoint of improving the grindability, but it is as small as possible from the viewpoint of magnetic properties and strength of the molded body. Is preferred. Therefore, the amount of lubricant added is preferably 0.01 to 1.0 wt%. In the present invention, in order to improve the dispersibility, the additive amount of the lubricant can be reduced to 0.5 wt% or less, further 0.3 wt% or less. Mixing of the lubricant and the coarsely pulverized powder may be performed for about 5 to 30 minutes using, for example, a Nauter mixer.

さて、潤滑剤が添加された粗粉砕粉末の微粉砕には主に気流式粉砕機が用いられ、粗粉砕粉末を微粉砕することで、平均粒径2.5〜6μm、望ましくは3〜5μmの微粉砕粉末(粉砕粉)を得る。気流式粉砕機は、高圧の不活性ガスを狭いノズルより開放して高速のガス流を発生させ、この高速のガス流により粗粉砕粉末を加速し、粗粉砕粉末同士の衝突やターゲットあるいは容器壁との衝突を発生させて粉砕する方法である。   Now, an airflow pulverizer is mainly used for fine pulverization of the coarsely pulverized powder to which the lubricant is added. By pulverizing the coarsely pulverized powder, the average particle size is 2.5 to 6 μm, desirably 3 to 5 μm. A finely pulverized powder (ground powder) is obtained. The airflow type pulverizer generates a high-speed gas flow by opening a high-pressure inert gas through a narrow nozzle, accelerates the coarsely pulverized powder by this high-speed gas flow, and collides between coarsely pulverized powders, targets or container walls. This is a method of pulverizing by causing a collision.

混合法による場合、2種の合金の混合のタイミングは限定されるものではないが、微粉砕工程において低R合金及び高R合金を別々に粉砕した場合には、微粉砕された低R合金粉末及び高R合金粉末を窒素雰囲気中で混合する。低R合金粉末及び高R合金粉末の混合比率は、重量比で80:20〜97:3程度とすればよい。低R合金及び高R合金を一緒に粉砕する場合の混合比率も同様である。   In the case of the mixing method, the timing of mixing the two kinds of alloys is not limited. However, when the low R alloy and the high R alloy are separately pulverized in the pulverization step, the pulverized low R alloy powder is used. And high R alloy powder in a nitrogen atmosphere. The mixing ratio of the low R alloy powder and the high R alloy powder may be about 80:20 to 97: 3 by weight. The mixing ratio when the low R alloy and the high R alloy are pulverized together is the same.

以上のようにして得られた微粉砕粉末は、金型キャビティに充填され、磁場中成形に供される。
磁場中成形における成形圧力は0.3〜3ton/cm(30〜300MPa)の範囲とすればよい。成形圧力は成形開始から終了まで一定であってもよく、漸増又は漸減してもよく、あるいは不規則変化してもよい。成形圧力が低いほど配向性は良好となるが、成形圧力が低すぎると成形体の強度が不足してハンドリングに問題が生じるので、この点を考慮して上記範囲から成形圧力を選択する。磁場中成形で得られる成形体の最終的な相対密度は、通常、50〜60%である。
また、印加する磁場は、12〜20kOe(960〜1600kA/m)程度とすればよい。また、印加する磁場は静磁場に限定されず、パルス状の磁場とすることもできる。また、静磁場とパルス状磁場を併用することもできる。
The finely pulverized powder obtained as described above is filled in a mold cavity and subjected to molding in a magnetic field.
The molding pressure in the magnetic field molding may be in the range of 0.3 to 3 ton / cm 2 (30 to 300 MPa). The molding pressure may be constant from the start to the end of molding, may increase or decrease gradually, or may vary irregularly. The lower the molding pressure is, the better the orientation is. However, if the molding pressure is too low, the strength of the molded body is insufficient and handling problems occur. Therefore, the molding pressure is selected from the above range in consideration of this point. The final relative density of the molded body obtained by molding in a magnetic field is usually 50 to 60%.
The applied magnetic field may be about 12 to 20 kOe (960 to 1600 kA / m). Further, the applied magnetic field is not limited to a static magnetic field, and may be a pulsed magnetic field. A static magnetic field and a pulsed magnetic field can also be used in combination.

次いで、磁場中成形により得られた成形体を真空又は不活性ガス雰囲気中で焼結する。焼結温度は、組成、粉砕方法、平均粒径と粒度分布の違い等、諸条件により調整する必要があるが、真空中で、1000〜1200℃で1〜10時間程度焼結すればよい。   Next, the compact obtained by molding in a magnetic field is sintered in a vacuum or an inert gas atmosphere. Although it is necessary to adjust sintering temperature by various conditions, such as a composition, a grinding | pulverization method, a difference of an average particle diameter, and a particle size distribution, what is necessary is just to sinter at 1000-1200 degreeC for about 1 to 10 hours in a vacuum.

さて、焼結後には、得られた焼結体に時効処理を施すことができる。この工程は、保磁力を制御する重要な工程である。時効処理を2段に分けて行う場合には、750〜1000℃、500〜700℃での所定時間の保持が有効である。750〜1000℃での熱処理を焼結後に行うと、保磁力が増大するため、混合法においては特に有効である。また、500〜700℃の熱処理で保磁力が大きく増加するため、時効処理を1段で行う場合には、500〜700℃の時効処理を施すとよい。   Now, after sintering, the obtained sintered body can be subjected to an aging treatment. This process is an important process for controlling the coercive force. When the aging treatment is performed in two stages, holding for a predetermined time at 750 to 1000 ° C. and 500 to 700 ° C. is effective. When the heat treatment at 750 to 1000 ° C. is performed after sintering, the coercive force increases, which is particularly effective in the mixing method. In addition, since the coercive force is greatly increased by heat treatment at 500 to 700 ° C., the aging treatment at 500 to 700 ° C. is preferably performed when the aging treatment is performed in one stage.

原料合金の組成を、24.5wt%Pr−6.0wt%Dy−1.8wt%Co−0.5wt%Al−0.2wt%Cu−0.07wt%B−1.0wt%Fe.balとし、ストリップキャスト法により原料合金薄板を溶解、鋳造した。得られた原料合金薄板を水素粉砕した後、ブラウンミルにて機械的粗粉砕を行い、粗粉砕粉末を得た。粗粉砕粉末は平板形状をしており、厚みは100〜300μm程度、大きさ(長さ)は100〜1000μm程度であった。これを篩い分けより分級した。
また、潤滑剤としてオレイン酸アミドを液体窒素にて冷凍し、粉砕ミルを用いて粉砕した。得られた潤滑剤(潤滑剤粒子)を篩い分けにより分級した。
The composition of the raw material alloy was 24.5 wt% Pr-6.0 wt% Dy-1.8 wt% Co-0.5 wt% Al-0.2 wt% Cu-0.07 wt% B-1.0 wt% Fe. The raw material alloy thin plate was melted and cast by a strip casting method. The obtained raw material alloy thin plate was hydrogen pulverized and then mechanically coarsely pulverized by a brown mill to obtain coarsely pulverized powder. The coarsely pulverized powder had a flat plate shape, and had a thickness of about 100 to 300 μm and a size (length) of about 100 to 1000 μm. This was classified by sieving.
Further, oleic amide as a lubricant was frozen in liquid nitrogen and pulverized using a pulverizing mill. The obtained lubricant (lubricant particles) was classified by sieving.

分級された粗粉砕粉末と分級された潤滑剤をそれぞれ表1に示す組み合わせで微粉砕した。潤滑剤の添加量はそれぞれ0.1wt%である。微粉砕には気流式粉砕機を使用し、高圧窒素ガス雰囲気中で粉砕ガス圧7kg/cm、投入速度40g/minで微粉砕し、微粉砕粉末を得た。得られた微粉砕粉末の粒度分布を測定して粒径(D50=累積体積比率が50%になる粒径)を求め表1に示す。 The classified coarsely pulverized powder and the classified lubricant were finely pulverized in the combinations shown in Table 1, respectively. The amount of lubricant added is 0.1 wt%. An airflow type pulverizer was used for fine pulverization, and fine pulverization was performed in a high-pressure nitrogen gas atmosphere at a pulverization gas pressure of 7 kg / cm 2 and an input speed of 40 g / min. The particle size distribution of the finely pulverized powder obtained is measured and the particle size (D50 = particle size at which the cumulative volume ratio becomes 50%) is determined and shown in Table 1.

Figure 2006295100
Figure 2006295100

表1からわかるように、潤滑剤の粒径が細かいほど粉砕効率が向上し、微粉砕粉末の粒径(D50)が小さくなった。このように、粒径の細かい潤滑剤は分散性が良くなり、その結果、粉砕効率が向上したと考えられる。   As can be seen from Table 1, the finer the particle size of the lubricant, the better the grinding efficiency and the smaller the particle size (D50) of the finely pulverized powder. Thus, it is considered that the lubricant having a small particle diameter has improved dispersibility, and as a result, the pulverization efficiency has been improved.

次に、上記と同様にして粒径が20μm以上100μm未満(20〜100μmと表記することがある、以下同様)、200μm以上500μm未満、500μm以上800μm未満、800μm以上1000μm未満に分級された潤滑剤と、100μm未満、200μm以上500μm未満、500μm以上800μm未満、800μm以上1100μm未満に分級された粗粉砕粉末を用意し、それぞれを表2に示すように組み合わせて微粉砕粉末を得た。それぞれの分級における潤滑剤の添加量は0.02wt%、0.06wt%又は0.1wt%とした。また、微粉砕粉末の粉砕効率は潤滑剤の粒径及び添加量によって変わるため、上記方法と同様にして微粉砕処理をする際、それぞれにおいて粉砕時間を調整し、最終的に得られる微粉砕粉末の粒径(D50)を、4.40μm<D50<4.60μmに調整した。なお、粒径の大きな粗粉砕粉末を粉砕する方が、粉砕に時間がかかる傾向があった。得られた実施例の潤滑剤の粒径と、粗粉砕粉末の粒径とから算出される粒径比率(潤滑剤の粒径/粗粉砕粉末の粒径)を表2に示す。なお、粒径比率の算出において、それぞれの粒径は、分級による粒径の範囲の中心値をもって粒径とした。例えば、20〜100μmであれば60μm、200〜500μmであれば350μm、というように粒径を定めた。
さらに、比較例として、粉砕されていない潤滑剤及び分級されていない粗粉砕粉末を用いた以外は実施例と同様にして微粉砕粉末を用意した。
Next, in the same manner as described above, the lubricant is classified into a particle size of 20 μm or more and less than 100 μm (may be expressed as 20 to 100 μm, hereinafter the same), 200 μm or more and less than 500 μm, 500 μm or more and less than 800 μm, or 800 μm or more and less than 1000 μm. Then, coarsely pulverized powders classified into less than 100 μm, 200 μm or more and less than 500 μm, 500 μm or more and less than 800 μm, or 800 μm or more and less than 1100 μm were prepared and combined as shown in Table 2 to obtain finely pulverized powder. The amount of lubricant added in each classification was 0.02 wt%, 0.06 wt%, or 0.1 wt%. In addition, since the pulverization efficiency of the finely pulverized powder varies depending on the particle diameter and the amount of addition of the lubricant, when the pulverization process is performed in the same manner as the above method, the pulverization time is adjusted in each case, and the finally obtained finely pulverized powder The particle size (D50) was adjusted to 4.40 μm <D50 <4.60 μm. In addition, the direction which grind | pulverized the coarsely pulverized powder with a big particle size tended to take time. Table 2 shows the particle diameter ratio (the particle diameter of the lubricant / the particle diameter of the coarsely pulverized powder) calculated from the particle diameter of the obtained lubricant and the particle diameter of the coarsely pulverized powder. In the calculation of the particle size ratio, each particle size is defined as the particle size with the center value of the particle size range by classification. For example, the particle size was determined such that 60 μm for 20-100 μm and 350 μm for 200-500 μm.
Furthermore, as a comparative example, a finely pulverized powder was prepared in the same manner as in the example except that an unpulverized lubricant and an unclassified coarsely pulverized powder were used.

Figure 2006295100
Figure 2006295100

このようにして得られた微粉砕粉末のそれぞれを磁場中成形した。具体的には、15kOeの磁場中で140MPaの圧力で成形を行い、20mm×18mm×6mmの成形体を得た。
得られた成形体の強度として抗折強度を以下の方法で測定した。抗折強度測定は、日本工業規格JIS R 1601に準じて行った。具体的には、図5に示すように、成形体11を丸棒状の2本の支持具12,13の上に載置し、成形体11上の中央位置に丸棒状の支持具14を配置して荷重を加えた。抗折圧を加える方向はプレス方向とした。丸棒状の支持具12,13,14の半径は3mm、支点間距離は10mm、荷重点移動速度は0.5mm/分とした。成形体11の長手方向と支持具14とを互いに平行となるように配置した。サンプル数nは10個で測定を行った。成形体強度は粒子径に依存して変化するが、本実施例では微粉砕粉末の粒径は上記の通り所定の範囲内(4.40μm<D50<4.60μm)に納めているため、成形体強度を比較し易いものとなっている。
Each of the finely pulverized powders thus obtained was molded in a magnetic field. Specifically, molding was performed at a pressure of 140 MPa in a magnetic field of 15 kOe to obtain a molded body of 20 mm × 18 mm × 6 mm.
As the strength of the obtained molded body, the bending strength was measured by the following method. The bending strength measurement was performed according to Japanese Industrial Standard JIS R 1601. Specifically, as shown in FIG. 5, the molded body 11 is placed on the two round bar-shaped supports 12 and 13, and the round bar-shaped support 14 is arranged at the center position on the molded body 11. The load was applied. The direction in which the bending pressure was applied was the pressing direction. The radius of the round bar-shaped supports 12, 13, and 14 was 3 mm, the distance between fulcrums was 10 mm, and the load point moving speed was 0.5 mm / min. The longitudinal direction of the molded body 11 and the support 14 were arranged so as to be parallel to each other. The measurement was carried out with 10 samples. Although the strength of the compact varies depending on the particle diameter, in this embodiment, the particle diameter of the finely pulverized powder is within the predetermined range (4.40 μm <D50 <4.60 μm) as described above. It is easy to compare body strength.

さらに、得られた成形体を1030℃で4時間焼成し、焼結体を得た。そして、得られた焼結体を時効処理(条件:900℃で1時間、530℃で1時間)し、希土類焼結磁石を得た後、この希土類焼結磁石の残留磁束密度(Br)をB−Hトレーサにより測定した。   Furthermore, the obtained molded body was fired at 1030 ° C. for 4 hours to obtain a sintered body. The obtained sintered body was subjected to an aging treatment (conditions: 900 ° C. for 1 hour, 530 ° C. for 1 hour) to obtain a rare earth sintered magnet, and then the residual magnetic flux density (Br) of the rare earth sintered magnet was determined. Measured with a BH tracer.

図1に、表2に示す粗粉砕粉末の粒径が100μm未満の実施例A(粒径比率1.20)と、比較例B〜E(粒径比率7.00、13.00、18.00、粉砕なし)の成形体強度と磁気特性の関係をグラフで示す。
図2に、表2に示す粗粉砕粉末の粒径が200〜500μmの実施例F、G(粒径比率0.17、1.00)と、比較例H〜J(粒径比率1.86、2.57、粉砕なし)の成形体強度と磁気特性の関係をグラフで示す。
図3に、表2に示す粗粉砕粉末の粒径が500〜800μmの実施例K〜N(粒径比率0.09、0.54、1.00、1.38)と、比較例O(粉砕なし)の成形体強度と磁気特性の関係をグラフで示す。
図4に、表2に示す粗粉砕粉末の粒径が800〜1000μmの実施例P〜S(粒径比率0.06、0.37、0.68、0.95)と、比較例T(粉砕なし)の成形体強度と磁気特性の関係をグラフで示す。
図1〜図4において、残留磁束密度(Br)が低い方から高い方に向かって、潤滑剤の添加量を順に0.02wt%、0.06wt%、0.1wt%とした場合の結果を示している。また図中のキャプションでは、数字は粒径比率(潤滑剤の粒径/粗粉砕粉末の粒径)を示している。図中に示される「original」は粉砕されていない潤滑剤及び分級されていない粗粉砕粉末を用いた場合の結果を示している。
In FIG. 1, Example A (particle size ratio 1.20) in which the particle size of the coarsely pulverized powder shown in Table 2 is less than 100 μm and Comparative Examples B to E (particle size ratios 7.00, 13.00, 18. (00, no pulverization) The relationship between the strength of the compact and the magnetic properties is shown in a graph.
FIG. 2 shows Examples F and G (particle size ratios 0.17 and 1.00) in which the particle size of the coarsely pulverized powder shown in Table 2 is 200 to 500 μm and Comparative Examples H to J (particle size ratio 1.86). , 2.57, no pulverization) is a graph showing the relationship between the strength of the compact and the magnetic properties.
3, Examples K to N (particle size ratios 0.09, 0.54, 1.00, 1.38) in which the particle size of the coarsely pulverized powder shown in Table 2 is 500 to 800 μm and Comparative Example O ( The relationship between the strength of the green compact and the magnetic properties is shown in a graph.
FIG. 4 shows Examples P to S (particle size ratios 0.06, 0.37, 0.68, 0.95) in which the particle size of the coarsely pulverized powder shown in Table 2 is 800 to 1000 μm, and Comparative Example T ( The relationship between the strength of the green compact and the magnetic properties is shown in a graph.
In FIG. 1 to FIG. 4, the results when the amount of lubricant added is 0.02 wt%, 0.06 wt%, and 0.1 wt% in order from the lower residual magnetic flux density (Br) to the higher one. Show. In the captions in the figure, the numbers indicate the particle size ratio (lubricant particle size / coarse pulverized powder particle size). “Original” shown in the figure indicates the result of using an unground lubricant and unclassified coarsely ground powder.

図1〜図4からわかるように、粗粉砕粉末の粒径を変化させずに添加量を変化させた場合には、潤滑剤の添加量が多い方が潤滑剤の分散が良くなり、粒子の配向がし易くなる結果、残留磁束密度(Br)が向上した。また、この場合、粒子同士の結合が弱くなるために成形強度は低下する傾向が見られた。また、図1〜図4の実施例を図毎に比較するとわかるように、潤滑剤の粒径が細かいほど潤滑剤の分散が良くなり、磁気配向が容易になって残留磁束密度(Br)が向上した。
さらに図1〜図4を比較するとわかるように、粗粉砕粉末の粒径が大きいものほど、残留磁束密度(Br)が大きくなる傾向が見られた。特に、粒径比率が1.5以下の実施例で顕著であった。これは、微粉砕粉末の粒径を揃えるために粉砕時間が長くかかっており、その分、潤滑剤がよく分散されたためと思われる。
As can be seen from FIGS. 1 to 4, when the addition amount is changed without changing the particle size of the coarsely pulverized powder, the larger the addition amount of the lubricant, the better the dispersion of the lubricant. As a result of easy orientation, the residual magnetic flux density (Br) was improved. Further, in this case, the bonding strength between the particles became weak, so that the molding strength tended to decrease. As can be seen by comparing the examples of FIGS. 1 to 4 for each figure, the finer the particle size of the lubricant, the better the dispersion of the lubricant, the easier the magnetic orientation, and the residual magnetic flux density (Br). Improved.
Further, as can be seen by comparing FIGS. 1 to 4, the larger the particle size of the coarsely pulverized powder, the larger the residual magnetic flux density (Br) tended to be observed. In particular, it was remarkable in Examples having a particle size ratio of 1.5 or less. This seems to be because the pulverization time is long in order to make the particle size of the finely pulverized powder uniform, and the lubricant is well dispersed accordingly.

ところで希土類焼結磁石としては、製造工程においては成形体強度が高く且つ希土類焼結磁石としては残留磁束密度(Br)が高いことが要求される。図1〜図4の各グラフにおいて、プロットが右上に存在するほどこの要求に応えることになる。そして、図1〜図4に示すように、粒度の細かい潤滑剤を用いた粒径比率が低いものほどこの要求に応えるものである。また、図1〜図4からわかるように、粗粉砕粉末の粒径より大きな粒径を有し、粒径比率が大きな潤滑剤を用いた場合、図中の「original」で示される、粉砕されていない潤滑剤及び分級されていない粗粉砕粉末を用いた場合の結果と大きくは変わらなかった。   By the way, the rare earth sintered magnet is required to have a high compact strength in the manufacturing process and a high residual magnetic flux density (Br) as the rare earth sintered magnet. In each of the graphs of FIGS. 1 to 4, this requirement is met as the plot is in the upper right. As shown in FIGS. 1 to 4, the lower the particle size ratio using a finer particle lubricant, the more this requirement is met. In addition, as can be seen from FIGS. 1 to 4, when a lubricant having a particle size larger than the particle size of the coarsely pulverized powder and a large particle size ratio is used, it is pulverized as indicated by “original” in the drawing. The results were not significantly different from the results obtained when using a non-classified lubricant and unclassified coarsely pulverized powder.

以上のように、細かい粒径の潤滑剤として、特に粒径比率が1.5以下となるように潤滑剤の粒径を調整することにより、優れた成形体の強度と磁気特性が得られ、さらに粒径比率が1.0以下、特に0.7以下になると、磁気特性や成形体の強度が顕著に改善された。一方、比較例のように潤滑剤の粒径が大きく粒径比率が大きいと分散しづらく、粗粉砕粉末同士を潤滑させる効果が充分に得られなかった。このことより、微粉砕工程で、特に粒径比率が1.5以下である潤滑剤を添加することで、粉砕工程における原料合金の粉砕性、及び磁場中成形工程における原料粉の配向性を確保したうえで、成形体の強度、及び最終的に得られる希土類焼結磁石の磁気特性を高いものとすることが可能となる。言い換えれば、従来よりも少ない量の潤滑剤で、従来と同等の成形体強度、あるいは磁気特性を得ることが可能となることが判明した。   As described above, as a fine particle size lubricant, by adjusting the particle size of the lubricant so that the particle size ratio is particularly 1.5 or less, excellent strength and magnetic properties of the molded product can be obtained, Further, when the particle size ratio is 1.0 or less, particularly 0.7 or less, the magnetic properties and the strength of the molded product are remarkably improved. On the other hand, when the particle size of the lubricant is large and the particle size ratio is large as in the comparative example, it is difficult to disperse and the effect of lubricating the coarsely pulverized powders cannot be sufficiently obtained. From this, by adding a lubricant with a particle size ratio of 1.5 or less in the fine pulverization process, the pulverization of the raw material alloy in the pulverization process and the orientation of the raw material powder in the forming process in a magnetic field are ensured. In addition, the strength of the compact and the magnetic properties of the finally obtained rare earth sintered magnet can be improved. In other words, it has been found that it is possible to obtain the same molded body strength or magnetic properties as conventional with a smaller amount of lubricant than before.

実施例1と同様にして粗粉砕粉末(粒径:200〜500μm未満)を作製した。粗粉砕粉末に潤滑剤として、表3に示す化合物Aと化合物Bをそれぞれ0.05wt%づつ、又は化合物A、化合物Bを各々0.1wt%添加した。なお、潤滑剤(化合物A、化合物B)は、いずれも粒径が300μm未満に調整されている。したがって、実施例2の粒径比率は0.43である。次いで、気流式粉砕機を使用して高圧窒素ガス雰囲気中で平均粒径D50=4.1μmとなるように微粉砕を行い、微粉砕粉を得た。   A coarsely pulverized powder (particle size: less than 200 to 500 μm) was prepared in the same manner as in Example 1. As a lubricant, 0.05% by weight of each of Compound A and Compound B shown in Table 3, or 0.1% by weight of each of Compound A and Compound B was added to the coarsely pulverized powder. The lubricants (Compound A and Compound B) are both adjusted to have a particle size of less than 300 μm. Therefore, the particle size ratio of Example 2 is 0.43. Subsequently, fine pulverization was performed using an airflow pulverizer in a high-pressure nitrogen gas atmosphere so that the average particle diameter D50 was 4.1 μm.

Figure 2006295100
Figure 2006295100

得られた微粉砕粉末を磁場中成形し、所定の形状の成形体を得た。磁場中成形では、微粉砕粉末を15kOeの磁場中において、成形圧150MPaで成形した。磁場方向はプレス方向と垂直な方向である。成形体の寸法は、20mm×18mm×6.5mm(成形体a)と20mm×18mm×13mm(成形体b)との2種類を得た。そして成形体aを用いて成形体強度を実施例1と同様にして測定した。その結果を表3に示す。   The obtained finely pulverized powder was molded in a magnetic field to obtain a molded body having a predetermined shape. In the molding in a magnetic field, the finely pulverized powder was molded at a molding pressure of 150 MPa in a magnetic field of 15 kOe. The magnetic field direction is a direction perpendicular to the pressing direction. As the dimensions of the molded body, two types of 20 mm × 18 mm × 6.5 mm (molded body a) and 20 mm × 18 mm × 13 mm (molded body b) were obtained. And the molded object strength was measured like Example 1 using the molded object a. The results are shown in Table 3.

成形体bを1030℃で4時間焼結した後、900℃で1時間、530℃で1時間の時効処理を行った。得られた焼結体表面を研削し直方体の試料とした。この試料を、BHトレーサを用いて磁気特性を評価した。その結果を表3に示す。   After the compact b was sintered at 1030 ° C. for 4 hours, an aging treatment was performed at 900 ° C. for 1 hour and 530 ° C. for 1 hour. The surface of the obtained sintered body was ground to obtain a rectangular parallelepiped sample. This sample was evaluated for magnetic properties using a BH tracer. The results are shown in Table 3.

表3に示すように、化合物Aのみを添加した場合、成形体強度は1.05MPa以上であったが、Brは13.2kGを下回り、化合物Bのみを添加した場合、Brは13.2kGを上回ったが成形体強度が0.9MPaを下回った。すなわち、化合物Aのみを添加した場合には、高い成形体強度を得ることができるものの磁気特性が低く、化合物Bのみを添加した場合には、高い磁気特性が得られるものの成形体強度が低くなった。
これに対し、化合物A、化合物Bの双方を添加した場合、Brは13.2kGを上回り、成形体強度も1.05MPaを上回った。すなわち、化合物A、化合物Bを複合添加することで、高い成形体強度と高い磁気特性を兼ね備えることができることが確認された。しかも、得られる成形体強度、磁気特性は、化合物Aを単独添加した場合の成形体強度、化合物Bを単独添加した場合の磁気特性と同等以上であることがわかる。
As shown in Table 3, when only compound A was added, the compact strength was 1.05 MPa or more, but Br was less than 13.2 kG, and when only compound B was added, Br was 13.2 kG. However, the strength of the compact was below 0.9 MPa. That is, when only compound A is added, high magnetic strength can be obtained, but the magnetic properties are low, and when only compound B is added, high magnetic properties can be obtained, but the strength of the compact is low. It was.
On the other hand, when both Compound A and Compound B were added, Br exceeded 13.2 kG, and the compact strength exceeded 1.05 MPa. That is, it was confirmed that the compound A and the compound B can be combined to have high molded body strength and high magnetic properties. Moreover, it can be seen that the strength and magnetic properties of the obtained molded product are equal to or higher than the strength of the molded product when Compound A is added alone and the magnetic property when Compound B is added alone.

潤滑剤として、化合物Aのステアリン酸アミドと化合物Bのステアリン酸の混合比率を表4に示す割合で混合し、合計0.1wt%となるように添加した以外は実施例2と同様にして試料を作製し、成形体と希土類焼結磁石を得て、成形体強度及び磁気特性の評価を行った。結果を表4に示す。   As a lubricant, a sample was prepared in the same manner as in Example 2 except that the mixing ratio of stearic acid amide of compound A and the mixing ratio of stearic acid of compound B were mixed in the ratio shown in Table 4 and added so that the total amount was 0.1 wt%. Were obtained, and a compact and a rare earth sintered magnet were obtained, and the strength and magnetic properties of the compact were evaluated. The results are shown in Table 4.

Figure 2006295100
Figure 2006295100

表4に示すように、化合物Bの配合比が75%以上となると、成形体強度が1.05MPaを下回る。したがって、化合物Aと化合物Bの混合比率は重量ベースで9:1〜1:2となるように混合するのが好ましいと言える。また、13.25kG以上という高いBrが得られることから、化合物Aと化合物Bの混合比率のさらに好ましい範囲は、9:1〜1:1、特に好ましいのはほぼ1:1である。   As shown in Table 4, when the compounding ratio of Compound B is 75% or more, the strength of the compact is less than 1.05 MPa. Therefore, it can be said that it is preferable that the mixing ratio of the compound A and the compound B is 9: 1 to 1: 2 on a weight basis. Further, since a high Br of 13.25 kG or more can be obtained, a more preferable range of the mixing ratio of Compound A and Compound B is 9: 1 to 1: 1, and particularly preferable is approximately 1: 1.

潤滑剤として、化合物Aのステアリン酸アミドと化合物Bのステアリン酸の混合比率を1:1とし、添加量を表5に示す量として添加した以外は実施例2と同様にして試料を作製し、成形体と希土類焼結磁石を得て、強度及び磁気特性の評価を行った。結果を表5に示す。   As a lubricant, a sample was prepared in the same manner as in Example 2 except that the mixing ratio of stearic acid amide of compound A and stearic acid of compound B was 1: 1 and the addition amount was added as shown in Table 5. A compact and a rare earth sintered magnet were obtained, and strength and magnetic properties were evaluated. The results are shown in Table 5.

Figure 2006295100
Figure 2006295100

表5に示すように、化合物Aと化合物Bがほぼ1:1で混合される場合、潤滑剤の添加量が合計で0.075〜0.1wt%の範囲で、Brが13.2kG以上であり、かつ成形体強度が1.05MPa以上となることがわかる。これにより、化合物Aと化合物Bがほぼ1:1で混合される場合、潤滑剤の添加量は合計で0.075〜0.1wt%とすることが好ましいと言える。   As shown in Table 5, when compound A and compound B are mixed at approximately 1: 1, the amount of lubricant added is in the range of 0.075 to 0.1 wt%, and Br is 13.2 kG or more. And the strength of the compact is 1.05 MPa or more. Thereby, when compound A and compound B are mixed by about 1: 1, it can be said that it is preferable that the addition amount of a lubricant shall be 0.075-0.1 wt% in total.

原料合金粗粉に添加する潤滑剤としてステアロイドエチルステアレートを0.1wt%添加した以外は実施例2と同様に試料を作製して成形体と希土類焼結磁石を得て評価を行った。得られた結果を表6に示す。   A sample was prepared in the same manner as in Example 2 except that 0.1 wt% of stearoid ethyl stearate was added as a lubricant to be added to the raw material alloy coarse powder, and a molded body and a rare earth sintered magnet were obtained and evaluated. The results obtained are shown in Table 6.

Figure 2006295100
Figure 2006295100

表6に示すように、ステアロイドエチルステアレートを添加した場合においても、実施例2〜4に示したように化合物A、Bを複合添加した場合と同様、Brが13.2kG以上であり、かつ成形体強度が1.05MPa以上となることが確認された。   As shown in Table 6, even when stearoid ethyl stearate was added, Br was 13.2 kG or more as in the case of compound addition of compounds A and B as shown in Examples 2 to 4, In addition, it was confirmed that the strength of the molded body was 1.05 MPa or more.

粒径が100μm未満の粗粉砕粉末に対し、潤滑剤粒子の粒径を変化させたときの、成形体強度と磁気特性の関係を示すグラフである。It is a graph which shows the relationship between a molded object strength and a magnetic characteristic when changing the particle size of lubricant particle | grains with respect to the coarsely pulverized powder whose particle size is less than 100 micrometers. 粒径が200〜500μmの粗粉砕粉末に対し、潤滑剤粒子の粒径を変化させたときの、成形体強度と磁気特性の関係を示すグラフである。It is a graph which shows the relationship between a molded object strength and a magnetic characteristic when changing the particle size of lubricant particle | grains with respect to the coarsely pulverized powder with a particle size of 200-500 micrometers. 粒径が500〜800μmの粗粉砕粉末に対し、潤滑剤粒子の粒径を変化させたときの、成形体強度と磁気特性の関係を示すグラフである。It is a graph which shows the relationship between a molded object strength and a magnetic characteristic when changing the particle size of lubricant particle | grains with respect to the coarsely pulverized powder with a particle size of 500-800 micrometers. 粒径が800〜1000μmの粗粉砕粉末に対し、潤滑剤粒子の粒径を変化させたときの、成形体強度と磁気特性の関係を示すグラフである。It is a graph which shows the relationship between a molded object strength and a magnetic characteristic when changing the particle size of lubricant particle | grains with respect to the coarsely pulverized powder with a particle size of 800-1000 micrometers. 成形体の抗折強度の測定方法を示す図である。It is a figure which shows the measuring method of the bending strength of a molded object.

Claims (7)

潤滑剤を粉砕し、原料合金粉の粒径の1.5倍以下の粒径を有する潤滑剤粒子を得る工程と、
前記潤滑剤粒子を前記原料合金粉に添加して粉砕し、粉砕粉を得る工程と、
前記粉砕粉に磁場を印加し、かつ加圧成形することにより成形体を得る工程と、
前記成形体を焼結する工程と、
を備えることを特徴とする希土類焼結磁石の製造方法。
Pulverizing the lubricant to obtain lubricant particles having a particle size not more than 1.5 times the particle size of the raw material alloy powder;
Adding and pulverizing the lubricant particles to the raw material alloy powder to obtain a pulverized powder;
Applying a magnetic field to the pulverized powder, and obtaining a molded body by pressure molding; and
Sintering the molded body;
A method for producing a rare earth sintered magnet.
前記潤滑剤を粉砕する前記工程では、前記潤滑剤粒子の径が前記原料合金粉の粒径以下となるように前記潤滑剤を粉砕することを特徴とする請求項1に記載の希土類焼結磁石の製造方法。   2. The rare earth sintered magnet according to claim 1, wherein in the step of pulverizing the lubricant, the lubricant is pulverized so that a diameter of the lubricant particles is equal to or less than a particle diameter of the raw material alloy powder. Manufacturing method. 前記潤滑剤を粉砕する前記工程では、前記潤滑剤を冷凍した後に粉砕して前記潤滑剤粒子を得ることを特徴とする請求項1又は2に記載の希土類焼結磁石の製造方法。   The method for producing a rare earth sintered magnet according to claim 1, wherein in the step of pulverizing the lubricant, the lubricant particles are obtained by pulverizing the lubricant after freezing. 前記潤滑剤は、
一般式R−CONH2又はR−CONH−R−HNCO−Rで示される化合物Aと、
−OCO−R、R−OH、(R−COO)Mからなる群のうちいずれか一種で示される化合物B(R1〜4はC2n+1又はC2n−1。R5はH、C2n+1又はC2n−1。Mは金属。nは整数。)とを含むことを特徴とする請求項1〜3のいずれかに記載の希土類焼結磁石の製造方法。
The lubricant is
Compound A represented by the general formula R 1 -CONH 2 or R 1 -CONH-R 3 -HNCO- R 2,
Compound B represented by any one of the group consisting of R 4 —OCO—R 5 , R 4 —OH, and (R 4 —COO) n M (R 1-4 is C n H 2n + 1 or C n H 2n— 1. R 5 is H, C n H 2n + 1 or C n H 2n−1, M is a metal, and n is an integer.) Rare earth sintering according to claim 1, Magnet manufacturing method.
前記潤滑剤は、
一般式R−CONH2又はR−CONH−R−HNCO−Rで示される化合物Aと、
−OCO−R、R−OH、(R−COO)Mからなる群のうちいずれか一種で示される化合物B(R1〜4はC2n+1又はC2n−1。R5はH、C2n+1又はC2n−1。Mは金属。nは整数。)とが炭化水素を介して結合した化合物Dであることを特徴とする請求項1〜3のいずれかに記載の希土類焼結磁石の製造方法。
The lubricant is
Compound A represented by the general formula R 1 -CONH 2 or R 1 -CONH-R 3 -HNCO- R 2,
Compound B represented by any one of the group consisting of R 4 —OCO—R 5 , R 4 —OH, and (R 4 —COO) n M (R 1-4 is C n H 2n + 1 or C n H 2n— 1. R 5 is H, C n H 2n + 1 or C n H 2n-1, M is a metal, and n is an integer), and is a compound D bonded with a hydrocarbon. 4. A method for producing a rare earth sintered magnet according to any one of 3 above.
原料合金粉と、粒径比率(潤滑剤の粒径/前記原料合金粉の粒径)が1.5以下の潤滑剤粒子とを粉砕機に投入し、前記原料合金粉を粉砕して粉砕粉を得ることを特徴とする焼結磁石用原料合金粉の粉砕方法。   Raw material alloy powder and lubricant particles having a particle size ratio (lubricant particle size / raw material alloy powder particle size) of 1.5 or less are charged into a pulverizer, and the raw material alloy powder is pulverized to be pulverized powder. A method for pulverizing a raw material alloy powder for a sintered magnet. 前記粉砕機として、気流式粉砕機を用いることを特徴とする請求項6に記載の焼結磁石用原料合金粉の粉砕方法。   The method for pulverizing a raw material alloy powder for a sintered magnet according to claim 6, wherein an airflow pulverizer is used as the pulverizer.
JP2005184752A 2005-03-17 2005-06-24 Method for producing rare earth sintered magnet, method for grinding raw alloy powder for sintered magnet Active JP4506973B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005184752A JP4506973B2 (en) 2005-03-17 2005-06-24 Method for producing rare earth sintered magnet, method for grinding raw alloy powder for sintered magnet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005077525 2005-03-17
JP2005184752A JP4506973B2 (en) 2005-03-17 2005-06-24 Method for producing rare earth sintered magnet, method for grinding raw alloy powder for sintered magnet

Publications (2)

Publication Number Publication Date
JP2006295100A true JP2006295100A (en) 2006-10-26
JP4506973B2 JP4506973B2 (en) 2010-07-21

Family

ID=37415303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005184752A Active JP4506973B2 (en) 2005-03-17 2005-06-24 Method for producing rare earth sintered magnet, method for grinding raw alloy powder for sintered magnet

Country Status (1)

Country Link
JP (1) JP4506973B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020167208A (en) * 2019-03-28 2020-10-08 Tdk株式会社 Method for production of alloy powder for rare earth permanent magnet, and method for production of rare earth permanent magnet

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62101628A (en) * 1985-10-29 1987-05-12 Asahi Chem Ind Co Ltd Fine resin powder and its production
JPH07292381A (en) * 1994-04-28 1995-11-07 Tousera Kk Lubricant for casting and hot processing
JPH08167515A (en) * 1994-12-09 1996-06-25 Sumitomo Special Metals Co Ltd Manufacturing for material of r-f-b-based permanent magnet
JP2003068551A (en) * 2001-08-27 2003-03-07 Tdk Corp Manufacturing method of rare earth permanent magnet
JP2004266151A (en) * 2003-03-03 2004-09-24 Sumitomo Metal Mining Co Ltd Composition for rare earth hybrid magnet, and rare earth hybrid magnet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62101628A (en) * 1985-10-29 1987-05-12 Asahi Chem Ind Co Ltd Fine resin powder and its production
JPH07292381A (en) * 1994-04-28 1995-11-07 Tousera Kk Lubricant for casting and hot processing
JPH08167515A (en) * 1994-12-09 1996-06-25 Sumitomo Special Metals Co Ltd Manufacturing for material of r-f-b-based permanent magnet
JP2003068551A (en) * 2001-08-27 2003-03-07 Tdk Corp Manufacturing method of rare earth permanent magnet
JP2004266151A (en) * 2003-03-03 2004-09-24 Sumitomo Metal Mining Co Ltd Composition for rare earth hybrid magnet, and rare earth hybrid magnet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020167208A (en) * 2019-03-28 2020-10-08 Tdk株式会社 Method for production of alloy powder for rare earth permanent magnet, and method for production of rare earth permanent magnet
JP7183912B2 (en) 2019-03-28 2022-12-06 Tdk株式会社 Method for producing alloy powder for rare earth permanent magnet and method for producing rare earth permanent magnet

Also Published As

Publication number Publication date
JP4506973B2 (en) 2010-07-21

Similar Documents

Publication Publication Date Title
JP6504044B2 (en) Rare earth permanent magnet
JP6424664B2 (en) Rare earth permanent magnet
JP6409867B2 (en) Rare earth permanent magnet
JP5708889B2 (en) R-T-B permanent magnet
JP2006270087A (en) Method of producing rare-earth sintered magnet
JP6380738B2 (en) R-T-B permanent magnet, raw alloy for R-T-B permanent magnet
WO2006001355A1 (en) Rare earth sintered magnet, raw material alloy powder for rare earth sintered magnet, and process for producing rare earth sintered magnet
JP6468435B2 (en) R-T-B sintered magnet
JP4282016B2 (en) Manufacturing method of rare earth sintered magnet
JP4955217B2 (en) Raw material alloy for RTB-based sintered magnet and method for manufacturing RTB-based sintered magnet
JP2008214661A (en) Manufacturing method of sintered rare-earth magnet
JP3367726B2 (en) Manufacturing method of permanent magnet
JP5188674B2 (en) Method for producing rare earth sintered magnet, method for grinding raw alloy powder for sintered magnet
JP4506973B2 (en) Method for producing rare earth sintered magnet, method for grinding raw alloy powder for sintered magnet
JP4506981B2 (en) Manufacturing method of rare earth sintered magnet
JP4618437B2 (en) Method for producing rare earth permanent magnet and raw material alloy thereof
JP4671024B2 (en) Manufacturing method of rare earth sintered magnet
JP7408921B2 (en) RTB series permanent magnet
JP4057563B2 (en) Granule, sintered body
JP2002285276A (en) R-t-b-c based sintered magnet and production method therefor
JP2007266037A (en) Manufacturing method of rare-earth permanent magnet
JP2005286174A (en) R-t-b-based sintered magnet
JP2005286173A (en) R-t-b based sintered magnet
JP4057562B2 (en) Method for producing raw material powder for rare earth sintered magnet and method for producing rare earth sintered magnet
JP4282017B2 (en) Manufacturing method of rare earth sintered magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100407

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100420

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4506973

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 4