JPS62101628A - Fine resin powder and its production - Google Patents

Fine resin powder and its production

Info

Publication number
JPS62101628A
JPS62101628A JP24057185A JP24057185A JPS62101628A JP S62101628 A JPS62101628 A JP S62101628A JP 24057185 A JP24057185 A JP 24057185A JP 24057185 A JP24057185 A JP 24057185A JP S62101628 A JPS62101628 A JP S62101628A
Authority
JP
Japan
Prior art keywords
less
resin
powder
polyethylene terephthalate
intrinsic viscosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24057185A
Other languages
Japanese (ja)
Inventor
Takashi Yokoi
横井 崇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP24057185A priority Critical patent/JPS62101628A/en
Publication of JPS62101628A publication Critical patent/JPS62101628A/en
Pending legal-status Critical Current

Links

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

PURPOSE:To produce a fine resin powder excellent in dispersibility, smoothness, filling property, toughness, etc., by dissolving a specified polyethylene terephthalate resin in a lactam and solid state-polymerizing the crystallized fine resin intermediate powder. CONSTITUTION:A lactam of the formula (wherein R is H or a 1-6C alkyl and n is 1-12) is added to a polyethylene terephthalate resin of intrinsic viscosity <0.3, containing 60mol% or above ethylene terephthalate units, and the obtained mixture is heated at a temperature <=the b.p. of the lactam for 30-40min to form a melt. This melt is added dropwise to a precipitation solvent such as water or methanol to crystallize a fine resin intermediate powder. This fine powder is filtered, washed, dried and solid state-polymerized at a temperature by 5-100 deg.C lower than the m.p. of the fine powder in a vacuum <=5mmHg or in an atmosphere of an inert gas to obtain a smooth-faced spherical fine resin powder having an average particle diameter <=10mum, a maximum particle diameter <=20mum, an intrinsic viscosity <0.7 and a crystallinity >=60%.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はポリエチレンテレフタレート系樹脂極微粉体及
びその製造方法に関するものである。さらに詳しくいえ
ば、不発nAは、例えば化粧品の添加剤、潤滑剤、滑剤
、多孔性高分子材料、粉体塗装剤、充てん剤、細胞培養
用培地材料として好適な分散性、平滑性、なめらかさ、
感触性、充てん性、さらに(は強靭性、硬さ、耐摩耗性
、耐候性などの諸特性に優れた新規ポリエチレンテレフ
タレート系樹脂微粉体、及びこの製造方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to ultrafine polyethylene terephthalate resin powder and a method for producing the same. More specifically, unexploited nA has good dispersibility, smoothness, and smoothness, making it suitable for use as, for example, cosmetic additives, lubricants, lubricants, porous polymer materials, powder coating agents, fillers, and cell culture medium materials. ,
The present invention relates to a novel polyethylene terephthalate resin fine powder that has excellent properties such as feel, fillability, toughness, hardness, abrasion resistance, and weather resistance, and a method for producing the same.

従来の技術 従来、ポリエチレン系テレフタレート系樹脂のようなポ
リエステル樹脂は、その優れた物理的性質、化学的性質
及び熱的特性を生かして種々の用途分野、例えば轍維や
フィルムなどとして使用されており、材料用並びに産業
生活関連用資材として広く実用に供されてbる。
BACKGROUND OF THE INVENTION Polyester resins such as polyethylene terephthalate resins have traditionally been used in various fields of application, such as rutting fibers and films, due to their excellent physical, chemical and thermal properties. It is widely used as a material and as a material for industrial life.

一万、該ポリエチレンテレフタレート系m 脂e、例え
ば化粧品への添加剤、潤滑剤、滑剤、多孔性高分子材料
、粉体塗装剤、充てん剤、細胞培養用培地材料、サスペ
ンション用粒子などとして使用する場合、分散性、平滑
性、なめらかさ、感触性などの優れた粉体とするために
、ポリエチレンテレフタレート系樹脂を微粉末化するこ
とが必要となる。
10,000, the polyethylene terephthalate-based fat is used, for example, as an additive to cosmetics, a lubricant, a lubricant, a porous polymer material, a powder coating agent, a filler, a medium material for cell culture, particles for suspensions, etc. In this case, it is necessary to pulverize the polyethylene terephthalate resin in order to obtain a powder with excellent dispersibility, smoothness, smoothness, and texture.

特に、化粧品などに用いる場合、クリーム、乳液、化粧
水などに代表される基礎化粧品と、おしろい(白粉)、
口紅のような仕上げ化粧品(メーキャップ化粧品)では
、要求される粉体特性が異なシ、その目的に応じてその
都度異なった種類の粉体が配合さ九ているのが実状であ
る。したがって、このような化粧品に利用する粉体は、
用途によって親水性、新油性のいずれか一万、若しくは
その両方の特性を備えなければならず、さらに効果面か
らは収斂性、皮脂吸収性、排水性、肌の保護などの特性
が要求される。そして、通常、化粧品などに使用さnる
場合、平均粒径が20μm以下、好ましくは10μm以
下、より好ましくは1〜5μmの微粉体が適当である。
In particular, when used in cosmetics, basic cosmetics such as creams, emulsions, lotions, powders,
The reality is that finished cosmetics (makeup cosmetics) such as lipsticks require different powder properties and are mixed with different types of powder each time depending on the purpose. Therefore, the powder used in such cosmetics is
Depending on the application, it must have either hydrophilicity, oiliness, or both, and in terms of effectiveness, properties such as astringency, sebum absorption, drainage, and skin protection are required. . Generally, when used in cosmetics, fine powder having an average particle size of 20 μm or less, preferably 10 μm or less, and more preferably 1 to 5 μm is suitable.

そして、粒径が小さくなるに従って比表面積は大きくな
り、他物質に対する吸着性や光の反射性のような表面の
性状に依存する特性は著しく増大し、また伸展性。
As the particle size decreases, the specific surface area increases, and properties that depend on surface properties such as adsorption to other substances and light reflectivity increase significantly, as well as extensibility.

粘結性も増大する結果、使用時における、肌へのつき、
伸び、滑フ、つや、バール効果、光の遮蔽効果などの向
上となって表われる。
As a result of increased caking, it may not stick to the skin during use,
This is manifested in improvements in elongation, smoothness, gloss, burl effect, light shielding effect, etc.

ところで、ポリエチレンテレフタレート系樹脂の微粉体
は、従来慣用されているタルク、カオリン、二酸化チタ
ンなどの微粉体とは、形状、物理的特性、化学的特性が
著しく異なるため、化粧品用を、はじめ、種々の用途に
用いた場合、独特の効果を生じる。
By the way, fine powder of polyethylene terephthalate resin has significantly different shape, physical properties, and chemical properties from conventionally used fine powder such as talc, kaolin, and titanium dioxide, so it is used for various purposes including cosmetics. When used for this purpose, it produces unique effects.

したがって、このポリエチレンテレフタレート系樹脂で
代表されるポリエステル樹脂の粉末化については、従来
種々の方法が試みられているが、一般にポリエステル樹
脂は強靭であるため、粉砕粉末化は極めて困難である上
に、粉砕時に生じる過度の摩擦熱のために、樹脂品質の
劣化を免れない。このような粉砕粉末化における問題全
解決するための方法として、例えば−147℃以下の液
体窒素のような超低温液体中にjM脂を浸せきしたのち
、粉砕機で粉末fヒする方法、特定の平均重合度を有す
る樹脂を微粉砕したのち、固相重合する方法(特開昭5
4−165439号公報)、低重合度のポリエステル樹
脂を溶融状態において細孔から不活性ガス中に噴霧せし
め粒状固体としたのち、固相重合する方法(特公昭46
−3192号公報、特公昭46−3193号公報)、ハ
ロゲンfヒ芳香族の特定溶媒に加熱溶解後、冷却、析出
させて微粉化する方法、塩素化炭化水素に溶解させたの
ち、該磐−媒を除去して粉末を得る方法、ベンジルアル
コールに溶解させ、これに希釈剤を加えてポリエステル
粉末を沈殿させる方法(特開昭49−73452号公報
)などが提案されている。
Therefore, various methods have been tried in the past for pulverizing polyester resins, typified by polyethylene terephthalate resins, but polyester resins are generally tough and it is extremely difficult to pulverize them into powder. Due to excessive frictional heat generated during crushing, resin quality inevitably deteriorates. As a method to solve all of these problems in pulverization, there is a method in which JM fat is immersed in an ultra-low temperature liquid such as liquid nitrogen at -147°C or lower, and then powdered in a pulverizer. A method of solid phase polymerization after finely pulverizing a resin having a degree of polymerization (Japanese Unexamined Patent Publication No. 5
4-165439), a method in which a polyester resin with a low degree of polymerization is sprayed in a molten state into an inert gas through pores to form a granular solid, and then solid-state polymerized (Japanese Patent Publication No. 46
(Japanese Patent Publication No. 46-3192, Japanese Patent Publication No. 46-3193), a method of heating and dissolving halogens in aromatic specific solvents, cooling them, precipitating them, and pulverizing them; A method of obtaining a powder by removing the medium, and a method of dissolving it in benzyl alcohol and adding a diluent to precipitate the polyester powder (Japanese Patent Laid-Open No. 73452/1983) have been proposed.

しかしながら、これらの従来方法によっては、前記用途
において要求される性能全方し、かつ平均粒径20μm
以下という微細な微粉体を得ることはできなかった。
However, depending on these conventional methods, it is difficult to meet all the performance requirements for the above-mentioned applications and to achieve an average particle size of 20 μm.
It was not possible to obtain the following fine powder.

発明が解決しようとする問題点 本発明の目的は、このような事情のもとで、従来方法で
は得られなかった分散性、平滑性、なめらかさ、感触性
、充てん性、さらには強靭性、硬さ、耐摩耗性、耐候性
などの諸特性に優れたポリエチレンテレフタレート系樹
脂微粉体を提供することにある。
Problems to be Solved by the Invention Under these circumstances, the purpose of the present invention is to improve dispersibility, smoothness, smoothness, feel, fillability, and toughness, which could not be obtained by conventional methods. The object of the present invention is to provide a polyethylene terephthalate resin fine powder that has excellent properties such as hardness, abrasion resistance, and weather resistance.

問題点を解決するための手段 本発明者らは前記目的を達成すべく鋭意研究を重ねた結
果、特定の固相粘度を有するポリエチレンテレフタレー
ト系樹脂をラクタム系溶媒に溶解したのち、晶析して得
られた樹脂微粉体を所定の温度で固相重合することによ
り、所望の性質を有し、平均粒径20μm以下のポリエ
チレンテレフタレート系樹脂微粉体が得られることを見
出し、この知見に基づいて本発明を完成するに至った。
Means for Solving the Problems The inventors of the present invention have conducted intensive research to achieve the above-mentioned object. As a result, the present inventors have solved the polyethylene terephthalate resin having a specific solid state viscosity in a lactam solvent, and then crystallized it. It was discovered that polyethylene terephthalate resin fine powder having the desired properties and an average particle size of 20 μm or less could be obtained by solid-phase polymerizing the obtained resin fine powder at a predetermined temperature.Based on this knowledge, this book was developed. The invention was completed.

すなわち1本発明は、固有粘度0.7未満、結晶化度6
0%以上のポリエチレンテレフタレート系樹脂から成る
平均粒径20μm以下の樹脂微粉体を提供するものであ
る。このような樹脂微粉体は、固有粘度が0.3未満の
原料ポリエチレンテレフタレート系樹脂を、一般式 %式%(1) (式中のRは水素原子又は炭素数1〜6のアルキル基、
nば1〜12の整数である) で示されるラクタムに溶解して晶析させ、得られた樹脂
中間品微粉体全減圧下又は不活性気体雰囲気下において
、該樹脂微粉体の融点よりも5〜100℃低い範囲の温
度において同相重合することにより、容易に製造するこ
とができる。
That is, 1 the present invention has an intrinsic viscosity of less than 0.7 and a crystallinity of 6
The present invention provides a fine resin powder having an average particle size of 20 μm or less and consisting of 0% or more polyethylene terephthalate resin. Such resin fine powder is obtained by converting raw material polyethylene terephthalate resin having an intrinsic viscosity of less than 0.3 into a compound of the general formula % formula % (1) (where R is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms,
(where n is an integer from 1 to 12) and crystallize the resulting intermediate resin fine powder. It can be easily produced by in-phase polymerization at a temperature in the range of ~100°C.

本発明の樹脂微粉体は、固有粘度が0.7未満でかつ結
晶化度が60%以上であるポリエチレンテレフタレート
系樹脂から成っている。固有粘度が0.7以上や結晶化
度が60%未満のものでは、化粧品等の添加剤として要
求される性質を備えたものとはならない。
The resin fine powder of the present invention is made of a polyethylene terephthalate resin having an intrinsic viscosity of less than 0.7 and a crystallinity of 60% or more. If the intrinsic viscosity is 0.7 or more or the crystallinity is less than 60%, it will not have the properties required as an additive for cosmetics and the like.

固有粘度や結晶化度が前記の範囲にあるポリエチレンテ
レフタール系樹脂は、通常エチレンテレフタレート単位
を60モル係以上、好ましくJ−j7575%以上含有
したものである。したがって、該ポリエチレンテレフタ
レート系樹脂は、40モル係以下、好ましくは25モル
係以下であれば、他の共重合成分から由来する単位を含
んでいてもよい。該共重合成分の中のジカルボン酸成分
としては、例えばフタール酸、イノフタール酸、アジピ
ン酸、シュウ酸、セバシン酸、スペリン酸、グルタル酸
、ピメリン醒、フマル酸、コノ・り酸、ナフタリン−2
,6−ジカルボン酸及び1,4−シクロヘキサンジカル
ボン酸などの中から選ばルた少なくとも1種が挙げられ
、一方グリコール成分としては、例えば炭素数3〜10
のポリメチジ/グリコール、/クロヘキサンー1.4−
ジメタツール及びペンタエリスリトールなどの中から選
ばれた少なくとも1種が挙げられる。
A polyethylene terephthal resin having an intrinsic viscosity and a degree of crystallinity within the above range usually contains ethylene terephthalate units in an amount of 60 molar or more, preferably J-j7575% or more. Therefore, the polyethylene terephthalate resin may contain units derived from other copolymer components as long as they are 40 molar or less, preferably 25 molar or less. Examples of dicarboxylic acid components in the copolymerization component include phthalic acid, inophthalic acid, adipic acid, oxalic acid, sebacic acid, speric acid, glutaric acid, pimeline acid, fumaric acid, cono-phosphoric acid, and naphthalene-2.
, 6-dicarboxylic acid, and 1,4-cyclohexanedicarboxylic acid, etc., while the glycol component includes, for example, a glycol component having 3 to 10 carbon atoms.
polymethydi/glycol,/chlorhexane-1.4-
At least one selected from dimethatol, pentaerythritol, etc. can be mentioned.

もちろん、前記ジカルボン酸の代りに、ジカルボン酸の
エステル形成誘導体、例えば低級アルキルエステル、ア
リールエステル、炭酸エステル、酸・・ロゲン化物など
も同等に用いることができ、またジオールもエステル形
成誘導体、例えばアセチル体、アルカリ金属塩などの形
で用いることができる。
Of course, ester-forming derivatives of dicarboxylic acids, such as lower alkyl esters, aryl esters, carbonic esters, acid chlorides, etc., can be used in place of the dicarboxylic acids, and diols can also be ester-forming derivatives, such as acetyl esters. It can be used in the form of body, alkali metal salt, etc.

さらに変性剤として、ジメチル−5−ヒドロキシイソフ
タレート、ジメチル−5−ヒドロキシヘキサヒドロイソ
フタレート、ベンゼン−1,3,5−トリカルボン酸、
p−カルボメトキシフェニルジエチルホスフェート、3
.5−ジカルボキシフェニルジエチルホスフェート、リ
ン酸、ト17フエニルホスフエート、トリーp−カルボ
メトキシフェニルホスフェート、トリカプリルボレート
、ソルビタン、トリメトシン酸などを1種又は2種以上
、少量含んでいてもなんら差し支えない。
Furthermore, as a modifier, dimethyl-5-hydroxyisophthalate, dimethyl-5-hydroxyhexahydroisophthalate, benzene-1,3,5-tricarboxylic acid,
p-carbomethoxyphenyl diethyl phosphate, 3
.. There is no problem even if one or more of 5-dicarboxyphenyldiethyl phosphate, phosphoric acid, tri-p-carbomethoxyphenyl phosphate, tricaprylborate, sorbitan, trimethosic acid, etc. are contained in small amounts. do not have.

これらの共重合成分などが40モル係を超えるとポリエ
チレンテレフタレートの優れた物理的性質を損うばかり
でなく、結晶性が著しく低下する。
If these copolymer components exceed 40 molar ratios, not only will the excellent physical properties of polyethylene terephthalate be impaired, but also the crystallinity will be significantly reduced.

本発明の樹脂微粉体の樹脂粒子は、平均粒径が20μm
以下であることが必要であるが、平均粒径が10μm以
下で最大粒径が20μm以下であり、かつ平滑な表面を
有し、実質状球状であるものが好ましい。
The resin particles of the resin fine powder of the present invention have an average particle size of 20 μm.
It is preferable that the average particle size be 10 μm or less, the maximum particle size be 20 μm or less, have a smooth surface, and be substantially spherical.

次に、本発明の樹脂微粉体の製造方法について説明する
と、まず固有粘度が0.3未満の原料ポリエチレンテレ
フタレート系樹脂を前記一般式(1)で示されるラクタ
ムに溶解して晶析させ、樹脂中間品微粉体を得る。
Next, to explain the method for manufacturing the resin fine powder of the present invention, first, a raw material polyethylene terephthalate resin having an intrinsic viscosity of less than 0.3 is dissolved in a lactam represented by the general formula (1) and crystallized. Obtain an intermediate fine powder.

該ラクタムとしては、例えばε−カプロラクタム、β−
プロピオラクタム、γ−ブチロラクタム、γ−バレロラ
クタム、δ−バレロラクタム、ヘプトラクタムなどが挙
げられ、これらはそれぞれ単独で用いてもよいし、2種
以上混合して用いてもよく、また操作上支障とならない
程度の耐熱性及び沸点を有し、かつ前記ラクタムと相溶
性のある化合物1例えばテトラヒドロフラノなどを必要
に応じて併用してもよい。
Examples of the lactam include ε-caprolactam and β-caprolactam.
Propiolactam, γ-butyrolactam, γ-valerolactam, δ-valerolactam, heptolactam, etc. may be used, and each of these may be used alone or in a mixture of two or more, and may be difficult to operate. Compound 1, such as tetrahydrofurano, which has heat resistance and boiling point that does not cause lactam and is compatible with the lactam, may be used in combination as necessary.

原料ポリエチレンテレフタレート系樹脂を該ラクタムに
溶解する方法については特に制限はないが、例えば密封
容器中にラクタムを入れ、170℃以上、ラクタムの沸
点以下の温度に加熱後、かき−まぜ下に該ポリエチレン
テレフタレート系樹脂を加え、30〜40分間前記温度
を維持しながらかきまぜることによって、溶解すればよ
い。
There are no particular restrictions on the method of dissolving the raw material polyethylene terephthalate resin in the lactam, but for example, put the lactam in a sealed container, heat it to a temperature of 170°C or higher and lower than the boiling point of the lactam, and then dissolve the polyethylene while stirring. The terephthalate resin may be added and stirred while maintaining the temperature for 30 to 40 minutes to dissolve it.

このようにして原料ポリエチレンテレフタレート系樹脂
を溶解したのち、この溶液を析出溶媒中に滴下、冷却し
て該樹脂を晶析させるが、この際に種々の添加剤、例え
ば公知の結晶核剤、滑剤、成形助剤、凝集防止剤、ある
いは公知の酸化防止剤や紫外吸収剤などの耐熱、耐光性
安定剤、耐加水分解性改良剤、顔料や染料などの着色剤
、帯電防止剤、導電剤、難燃剤、補強剤、充てん剤、離
型剤などを所望に応じ該溶液中に添加し、微粉体中に含
有させることができる。
After dissolving the raw material polyethylene terephthalate resin in this way, this solution is dropped into a precipitation solvent and cooled to crystallize the resin. At this time, various additives such as known crystal nucleating agents and lubricants are added. , molding aids, anti-aggregation agents, heat resistance and light resistance stabilizers such as known antioxidants and ultraviolet absorbers, hydrolysis resistance improvers, coloring agents such as pigments and dyes, antistatic agents, conductive agents, A flame retardant, a reinforcing agent, a filler, a mold release agent, etc. can be added to the solution as desired and contained in the fine powder.

特に、公知のアミン系、ヒンダードフェノール系などの
耐熱安定剤を添加すれば、微粉体の耐熱エージング性を
改善することができるし、また公知の結晶核剤として、
p−フェノールスルホン酸ナトリウムなどを添加するこ
とにより、よシ微細な粉体を得ることができる。この場
合、添加量は原料ポリエチレンテレフタレート系樹脂及
びラクタムの合計量に対して、好ましく u 0.00
3〜6.0重量係の範囲で選ばれる。さらに、耐加水分
解性改良剤として、公知のカルボジイミド化合物やエポ
キシ化合物などを添加すること知よシ、耐加水分解性が
著しく向上した微粉体を得ることができる。その添加量
は原料ポリエチレンテレフタレート系樹脂及びラクタム
の合計量に対して、0.03〜lO重量係の範囲である
ことが好ましく、その際種々の反応触媒、例えば酢酸金
属fヒ合物、ハロゲン化アルカリ化合物などを併用して
もよい。
In particular, the heat aging resistance of fine powder can be improved by adding known heat stabilizers such as amine type and hindered phenol type, and also known crystal nucleating agents.
By adding sodium p-phenolsulfonate or the like, a very fine powder can be obtained. In this case, the amount added is preferably u 0.00 based on the total amount of raw material polyethylene terephthalate resin and lactam.
It is selected in the range of 3 to 6.0 weight coefficient. Furthermore, by adding a known carbodiimide compound or epoxy compound as a hydrolysis resistance improver, a fine powder with significantly improved hydrolysis resistance can be obtained. The amount added is preferably in the range of 0.03 to 10% by weight based on the total amount of raw material polyethylene terephthalate resin and lactam. An alkaline compound or the like may be used in combination.

本発明において、収率よ〈微粉体を得るためには、原料
ポリエチレンテレフタレート系樹脂の固有粘度は0.3
未満、好ましくは0 、25未満であることが必要であ
る。この固有粘度が0.3以上であると晶析の際微粉体
とはならず、繊維固塊状になって、所望の粉体が得られ
にくい。原料ポリエチレンテレフタレート系樹脂として
、固有粘度が0.3未満、好ましくは0,25未満のも
のを用いることにより、初めて析出溶媒の種類に大きく
限定されることがなく、晶析が容易となり、高結晶性微
粉体を高収率で得ることができる。
In the present invention, the inherent viscosity of the raw material polyethylene terephthalate resin is 0.3 in order to obtain fine powder.
It needs to be less than 0.25, preferably less than 0.25. If the intrinsic viscosity is 0.3 or more, the crystallization process will not result in a fine powder, but will instead become a solid fibrous mass, making it difficult to obtain the desired powder. By using a raw material polyethylene terephthalate resin with an intrinsic viscosity of less than 0.3, preferably less than 0.25, crystallization becomes easy without being greatly limited by the type of precipitation solvent, and high crystallization is achieved. It is possible to obtain fine powder with high yield.

本発明における中間微粉体の晶析は、例えば原料ポリエ
チレンテレフタレート果樹@を溶解したラクタム溶液を
、水、メタノール、エタノール、テトラヒドロフランな
どの析出溶媒中にかきまぜながら滴下、冷却することに
より行われる。該微粉体の形状は晶析条件によって左右
さ汎、例えば析出溶媒として高沸点のものを用い、この
溶媒を加熱、高温下で冷却速it遅くして析出させれば
、よシ粒径の大きな実質上球状の微粉体を得ることがで
きるし、逆に低温で急冷却して速やかに析出させれば、
よシ粒径の小さい実質上球状の微粉体を得ることができ
る。また、加圧しながら析出させるなどの方法によって
、任意の結晶化度及び粒径分布を有する微粉体を得るこ
とができる。この際に使用する析出溶媒については、室
温若しくは沸点以下でラクタムを溶解し、かつポリエチ
レン系テレフタレート系樹脂を溶解しないものであれば
、特に制限はない。
Crystallization of the intermediate fine powder in the present invention is carried out, for example, by dropping a lactam solution in which raw material polyethylene terephthalate fruit wood @ is dissolved into a precipitation solvent such as water, methanol, ethanol, or tetrahydrofuran while stirring, and cooling the solution. The shape of the fine powder varies depending on the crystallization conditions.For example, if a high boiling point solvent is used as the precipitation solvent, and the solvent is heated and the cooling rate is slowed down at a high temperature, it is possible to obtain a large particle size. Substantially spherical fine powder can be obtained, and conversely, if it is quickly cooled at a low temperature and precipitated quickly,
Substantially spherical fine powder with a small particle size can be obtained. Further, by a method such as precipitation under pressure, a fine powder having an arbitrary degree of crystallinity and particle size distribution can be obtained. There are no particular limitations on the precipitation solvent used at this time, as long as it dissolves the lactam at room temperature or below its boiling point and does not dissolve the polyethylene terephthalate resin.

次に、このようにして晶析された樹脂中間品微粉体はこ
れをろ別したのち、洗浄乾燥後、例えば5mlHg以下
の減圧下又は不活性気体の雰囲気下に、該樹脂微粉体の
融点よりも5〜100℃低い範囲の温度において固相重
合させる。この際の反応時間には、要求される粉体震品
の物性によって適宜選ばれる。
Next, the resin intermediate fine powder crystallized in this way is filtered, washed and dried, and then placed under a reduced pressure of, for example, 5 mlHg or less or in an inert gas atmosphere, at a temperature lower than the melting point of the resin fine powder. Solid state polymerization is also carried out at a temperature in the lower range of 5 to 100°C. The reaction time at this time is appropriately selected depending on the required physical properties of the powder seismic product.

この固相重合によって、該樹脂微粉体の重合度及び結晶
化度は上昇し、かつ該粉体からラクタムがほぼ完全に除
去される。
This solid phase polymerization increases the degree of polymerization and crystallinity of the fine resin powder, and almost completely removes lactam from the powder.

このようにして得られたポリエチレンテレフタレート系
fM脂微粉体は、固有粘度が0.7未満でかつ結晶化度
が60%以上である。本発明で用いる原料ポリエチレン
テレフタレート系樹脂では、固相重合反応速度は比較的
遅く、実質状固有粘度が0.7以上のものを得ることは
難しい。敢えてこのようなものを得ようとすると、着色
問題や融着現象が生じる上に、生産コストが高くなる。
The thus obtained polyethylene terephthalate-based fM fat fine powder has an intrinsic viscosity of less than 0.7 and a crystallinity of 60% or more. In the raw material polyethylene terephthalate resin used in the present invention, the solid phase polymerization reaction rate is relatively slow, and it is difficult to obtain a material with a substantial intrinsic viscosity of 0.7 or more. If one dares to obtain such a product, coloring problems and fusion phenomena occur, and the production cost increases.

したがって、本発明においては、該樹脂微粉体の固有粘
度は帆7未満であることが必要でちる。
Therefore, in the present invention, it is necessary that the intrinsic viscosity of the fine resin powder be less than 7.

発明の効果 本発明のポリエチレンテレフタレート系樹脂微粉体は、
平均粒径20μm以下の、表面が平滑で実質上球状であ
る粒子から成っているので、分散性、平滑性、なめらか
さ、感触性などの優れた粉体特性効果が期待でき、特に
化粧品などの用途に供した場合、収斂性、皮脂吸収性、
抗水性、肌の保護、さらには肌へのつき、伸び、滑り、
つや、パール効果、光の遮蔽効果などを向上させる。ま
た、該微粉体は化粧品用以外に、潤滑剤、滑剤、多孔性
高分子材料、粉体塗装剤、充てん剤、細胞培養用培地な
どにも有用である。
Effects of the invention The polyethylene terephthalate resin fine powder of the present invention is
Since it is composed of particles with an average particle size of 20 μm or less and a smooth surface and substantially spherical shape, it can be expected to have excellent powder properties such as dispersibility, smoothness, smoothness, and texture, and is especially useful for cosmetics. When used for purposes, it has astringent properties, sebum absorption properties,
Water resistant, skin protection, adhesion to the skin, stretch, slip,
Improves gloss, pearl effect, light shielding effect, etc. In addition to cosmetics, the fine powder is useful for lubricants, lubricants, porous polymer materials, powder coatings, fillers, cell culture media, and the like.

さらに、本発明の樹脂微粉体の製造方法は、収率が良く
、かっ粒径、結晶化度、固有粘度などのコントロールが
比較的容易であって、その工業的価値は極めて高い。
Furthermore, the method for producing fine resin powder of the present invention has a high yield and relatively easy control of particle size, degree of crystallinity, intrinsic viscosity, etc., and has extremely high industrial value.

実施例 次に実施例により本発明をさらに詳細に説明するが、本
発明はこれらの例によってなんら限定されるものではな
い。
EXAMPLES Next, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to these Examples in any way.

なお、固有粘度、結晶化度及び粒径分布は次のようにし
て求めた。
Note that the intrinsic viscosity, crystallinity, and particle size distribution were determined as follows.

(1)  固有粘度 試料11を0CP(o−クロロフェノール)溶媒100
−に溶解し、ウベローデ改良型毛細管式粘度計を用いて
35℃の恒温にて測定した還元粘度の値を極限粘度に換
算したもので、固相重合後の微粉体固有帖1度は、29
0℃にて1分間再浴融したもの企用い測定した値である
(1) Intrinsic viscosity sample 11 was dissolved in 0CP (o-chlorophenol) solvent 100
The value of the reduced viscosity measured at a constant temperature of 35°C using an improved Ubbelohde capillary viscometer is converted to the intrinsic viscosity.
This value was measured using a sample that was re-bath melted at 0°C for 1 minute.

(2)結晶化度 ピタノメーターを用い、密度法九より以下の算出式にて
算出した。
(2) Crystallinity Calculated using a pitanometer using the density method 9 using the following calculation formula.

mo゛ ビクノメーター(グ) m6   ビクノメーター十試料(2)mt、ピクノメ
ーター十溶媒(り) msl  ビクノメーター十試料士溶媒(り)Pz  
溶媒の比重(2/洲) なお、密度測定溶媒にはエタノールを用い、Pz = 
0.7893 (?/cA)のイ直を用いた。
mo゛ Vicnometer (g) m6 Vicnometer 10 samples (2) mt, Pycnometer 10 samples (li) msl Vicnometer 10 samples (li) Pz
Specific gravity of solvent (2/s) Ethanol was used as the density measurement solvent, and Pz =
A directivity of 0.7893 (?/cA) was used.

結晶化度αは公知の算出式 %式%) 各種メツシュのふるいを用いて測定した。Crystallinity α is calculated using a known formula %formula%) Measurements were made using various mesh sieves.

実施例1〜13 ジメチルテレフタル酸100 Mfj(部、エチレング
リコール68重量部、酢酸マンガyO,05重量部を窒
素雰囲気下140〜220℃の温度に加熱し、発生する
メタノールを連続的に系外へ留去しながら、2.5時間
のエステル交換反応を行ったのち、さらにこれにトリメ
チルホスフェート0.03重量部、二酸化チタン0.5
重1部、三酸化アンチモン0.05重量部を加えた。
Examples 1 to 13 100 Mfj (parts) of dimethyl terephthalic acid, 68 parts by weight of ethylene glycol, and 0.5 parts by weight of manganese acetate are heated to a temperature of 140 to 220°C under a nitrogen atmosphere, and the generated methanol is continuously discharged from the system. After performing a transesterification reaction for 2.5 hours while distilling off, 0.03 parts by weight of trimethyl phosphate and 0.5 parts by weight of titanium dioxide were added to the transesterification reaction.
1 part by weight and 0.05 part by weight of antimony trioxide were added.

次に、このエステル交換生成物の温度を295℃に昇温
し゛、過剰のエチレングリコールを留去したのち、0.
5m11Hgの減圧下で0.15時間がきまぜなから重
縮合反応を行った。
Next, the temperature of this transesterified product was raised to 295°C, excess ethylene glycol was distilled off, and then the transesterification product was heated to 295°C.
The polycondensation reaction was carried out under a reduced pressure of 5 ml and 11 Hg for 0.15 hours with stirring.

得られた重縮合物は、275℃融解時12ボイズの溶融
粘度を有するもので、窒素雰囲気下に取り出し徐冷した
ところ、比較的もろい性状を有する固体となった。この
ものの固有粘度U0.15、結晶化度は15%、密度は
1.350?/c!であった。
The obtained polycondensate had a melt viscosity of 12 voids when melted at 275°C, and when it was taken out in a nitrogen atmosphere and slowly cooled, it became a relatively brittle solid. This thing has an intrinsic viscosity of U0.15, crystallinity of 15%, and density of 1.350? /c! Met.

このようにして得られたポリエチレンテレフタレート系
樹脂を、220℃に加熱したε−カグロラクタム中に別
表に示すような割合でかきまぜながら添加し、約10分
間加熱溶解した。溶解後、この浴液を該表に示す析出溶
媒中にかきまぜながら滴下して室温まで冷却せしめて晶
析させ、微粉体ドープを得た。このドープをろ別し、さ
らに析出溶媒にて洗浄し、乾燥工程を経て中間ポリエチ
レンテレフタレート系微粉体を得た。
The polyethylene terephthalate resin thus obtained was added to ε-caglolactam heated to 220° C. at the ratio shown in the attached table while stirring, and dissolved by heating for about 10 minutes. After dissolution, this bath liquid was added dropwise to the precipitation solvent shown in the table while stirring, and was cooled to room temperature to cause crystallization to obtain a fine powder dope. This dope was filtered, further washed with a precipitation solvent, and subjected to a drying process to obtain intermediate polyethylene terephthalate fine powder.

次に、該年間ポリエチレンテレフタレート系微粉体を固
相重合装置に移し、該表の凝集防止剤の存在下、501
1Hg の減圧下で140℃にて2時間乾燥したのち、
温度を230℃に昇温し、1.0IIIHgの減圧下で
、該表にそれぞれ示した時間固相重合反応を行い、最終
製品微粉体を得た。この微粉体の各測定値を該表に示す
。この微粉体の固有粘度(は0.51、結晶化度は92
%、密度は1.456 f/cAである。
Next, the polyethylene terephthalate fine powder was transferred to a solid phase polymerization apparatus, and 501
After drying at 140°C for 2 hours under a reduced pressure of 1Hg,
The temperature was raised to 230° C., and a solid phase polymerization reaction was carried out under a reduced pressure of 1.0 IIIHg for the times shown in the table to obtain a final product fine powder. The measured values of this fine powder are shown in the table. The intrinsic viscosity of this fine powder is 0.51, and the crystallinity is 92.
%, the density is 1.456 f/cA.

なお、比較のために、実施例の原料ポリエチレンテレフ
タレート系樹脂を用い、ミルを使用した従来の粉砕法に
より微粉体を製造した。この微粉体の固有粘度はQ、1
5.結晶化度は53壬、密度は1.347F、/c!で
あった。
For comparison, a fine powder was produced using the raw material polyethylene terephthalate resin of the example by a conventional pulverization method using a mill. The intrinsic viscosity of this fine powder is Q, 1
5. Crystallinity is 53mm, density is 1.347F, /c! Met.

比較例1〜3 別表に示すような固有粘度を有する原料ポリエチレンテ
レフタレート系樹脂と析出溶媒を用いる以外は、実施例
5と全く同様にして中間ポリエチレンテレフタレート系
樹脂微粉体を得ようとしたが、微粉体はほとんど得られ
ず、固塊状のものが得られた。このものは比較的固有粘
度が高いので、この中間体をもって最終製品とL、各物
性を測定した。その結果を該表に示す。
Comparative Examples 1 to 3 An attempt was made to obtain intermediate polyethylene terephthalate resin fine powder in exactly the same manner as in Example 5, except for using the raw material polyethylene terephthalate resin having an intrinsic viscosity as shown in the attached table and the precipitation solvent. Almost no body was obtained, and a solid lump was obtained. Since this product has a relatively high intrinsic viscosity, the final product, L, and various physical properties were measured using this intermediate. The results are shown in the table.

比較例4 原料ポリエチレンテレフタレート系樹脂とε−カブロラ
クタムの配合割合を別表に示すように変えた以外は、実
施例2と全く同様にして中間ポリエチレンテレフタレー
ト系樹脂微粉体を得ようとしたが、微粉体は全く得られ
ず、固塊状のものが得られた。このものを最終製品とし
、各物性を測定した。その結果を該衣に示す。
Comparative Example 4 An attempt was made to obtain intermediate polyethylene terephthalate resin fine powder in exactly the same manner as in Example 2, except that the blending ratio of the raw material polyethylene terephthalate resin and ε-cabrolactam was changed as shown in the attached table. was not obtained at all, and a solid lump was obtained. This product was used as a final product, and its physical properties were measured. The results are shown on the cloth.

手続補正書 昭和61年10月14日 持許庁艮官  黒 1)明 雄   殿1、事件の表示 昭和60年特許願第240571号 2、発明の名称 樹脂微粉本及びその製造方法 3、補正をする者 事件との関係   特許出願人 大阪府大阪市北区堂島浜1丁目2番6号(OO3)旭化
成工業株式会社 代表者世古真臣 4、代理人 6、補正により増加する発明の数 0 7、補正の′N求   明細書の特許請求の範囲の欄8
、補正の内容 (1)特許請求の範囲を別紙のとおシ訂正します。
Procedural amendment October 14, 1985, Licensing Office Officer Black 1) Mr. Akihiro 1, Indication of the case 1985 Patent Application No. 240571 2, Name of the invention Resin fine powder book and its manufacturing method 3, Amendment Patent applicant 1-2-6 Dojimahama, Kita-ku, Osaka-shi, Osaka Prefecture (OO3) Asahi Kasei Industries, Ltd. Representative Masaomi Seko 4, attorney 6, number of inventions increased by amendment 0 7, amendment Claims column 8 of the specification
, Contents of the amendment (1) The scope of the patent claims will be amended as shown in the attached sheet.

(2)明細書第3ページ第10行の「ポリエチVノ系テ
レフタンート系樹脂」ヲ「ポリエチレンテレ7タンート
系樹脂」に訂正します。
(2) On page 3, line 10 of the specification, "Polyethylene V-terephthanate resin" will be corrected to "Polyethylene Terephthane-7 resin."

(3)同第7ページ第5行の「固相粘度」ヲ「固有粘度
」に訂正します。
(3) "Solid viscosity" in line 5 of page 7 will be corrected to "intrinsic viscosity."

(4)同第8ページ第14〜15行の「ポリエチレンテ
レフタール系樹脂」ヲ「ポリエチレンテレフタ−ル系樹
脂」に訂正します。
(4) On page 8, lines 14-15, "polyethylene terephthal resin" has been corrected to "polyethylene terephthal resin."

(5)同第14ページ第11〜12行の「ポリ二チンン
系テレフタレート系樹脂」を「ポリ二チVンテレフタレ
ート系樹脂」に訂正します。
(5) On page 14, lines 11-12, "Polynitride terephthalate resin" has been corrected to "Polynitride terephthalate resin."

特許請求の範囲 1 固有粘度02未満、結晶化度60%以上のポリエチ
レンテンフタv−)系樹脂から成る平均粒径20μm以
下の樹脂微粉体。
Claim 1: A fine resin powder having an average particle size of 20 μm or less and made of a polyethylene tenfuta v-) resin having an intrinsic viscosity of less than 02 and a crystallinity of 60% or more.

2 平均粒径10μm以下、最大粒径20μm以下でち
り、かつ平滑な表面を有し、実質上球状である特許請求
の範囲第1項記載の樹脂微粉体。
2. The fine resin powder according to claim 1, which has an average particle size of 10 μm or less, a maximum particle size of 20 μm or less, has a dusty and smooth surface, and is substantially spherical.

3 固有粘度が0.3未満の原料ポリエチレンテレフタ
v−)系樹脂を、一般式 (式中のRは水素原子又は炭素数1〜6のアルキル基、
nは1〜12の整数である) で示されるラクタムに溶解して晶析させ、得られた樹脂
中間品微粉体全減圧下又は不活性気体雰囲気下において
、該樹脂微粉体の融点よりも5〜100℃低い範囲の温
度において固相重合させることを特徴とする、固有粘度
07未満、結晶化度60%以上のポリエチレンテレフタ
V−)系樹脂から成る平均粒径20μm以下の樹脂微粉
体の製造7方法。
3. A raw material polyethylene terephtha v-) type resin having an intrinsic viscosity of less than 0.3 is converted into a polyethylene terephthalate resin having a general formula (wherein R is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms,
(n is an integer of 1 to 12) and crystallize the resulting intermediate resin powder. Resin fine powder with an average particle size of 20 μm or less, consisting of a polyethylene terephtha V-) resin with an intrinsic viscosity of less than 07 and a crystallinity of 60% or more, characterized by solid phase polymerization at a temperature in the lower range of ~100°C. 7 manufacturing methods.

4 原料ポリエチレンテレフタレート系樹脂が固有粘度
0.25未満のものである特許請求の範囲第3項記載の
製造方法。
4. The manufacturing method according to claim 3, wherein the raw material polyethylene terephthalate resin has an intrinsic viscosity of less than 0.25.

5 固相重合で得られた樹脂極微粉体の粒子が平均粒径
10μm以下、最大粒径20μm以下であシ、かつ平滑
な表面を有し、実質上球状である特許請求の範囲第3項
又は第4項記載の製造方法。
5. The particles of the ultrafine resin powder obtained by solid phase polymerization have an average particle size of 10 μm or less, a maximum particle size of 20 μm or less, and have a smooth surface and are substantially spherical. Or the manufacturing method described in item 4.

Claims (1)

【特許請求の範囲】 1 固有粘度0.7未満、結晶化度60%のポリエチレ
ンテレフタレート系樹脂から成る平均粒径20μm以下
の樹脂微粉体。 2 平均粒径10μm以下、最大粒径20μm以下であ
り、かつ平滑な表面を有し、実質上球状である特許請求
の範囲第1項記載の樹脂微粉体。 3 固有粘度が0.3未満の原料ポリエチレンテレフタ
レート系樹脂を、一般式 ▲数式、化学式、表等があります▼ (式中のRは水素原子又は炭素数1〜6のアルキル基、
nは1〜12の整数である) で示されるラクタムに溶解して晶析させ、得られた樹脂
中間品微粉体を減圧下又は不活性気体雰囲気下において
、該樹脂微粉体の融点よりも5〜100℃低い範囲の温
度において固相重合させることを特徴とする、固有粘度
0.7未満、結晶化度60%以上のポリエチレンテレフ
タレート系樹脂から成る平均粒径20μm以下の樹脂微
粉体の製造方法。 4 原料ポリエチレンテレフタレート系樹脂が固有粘度
0.25未満のものである特許請求の範囲第3項記載の
製造方法。 5 固相重合で得られた樹脂極微粉体の粒子が平均粒径
10μm以下、最大粒径20μm以下であり、かつ平滑
な表面を有し、実質上球状である特許請求の範囲第3項
又は第4項記載の製造方法。
[Scope of Claims] 1. Fine resin powder having an average particle size of 20 μm or less and made of a polyethylene terephthalate resin with an intrinsic viscosity of less than 0.7 and a crystallinity of 60%. 2. The fine resin powder according to claim 1, which has an average particle size of 10 μm or less, a maximum particle size of 20 μm or less, has a smooth surface, and is substantially spherical. 3 The raw material polyethylene terephthalate resin with an intrinsic viscosity of less than 0.3 is prepared using the general formula ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ (R in the formula is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms,
(n is an integer of 1 to 12) and crystallize the resulting intermediate resin fine powder under reduced pressure or an inert gas atmosphere. A method for producing fine resin powder with an average particle size of 20 μm or less, consisting of a polyethylene terephthalate resin with an intrinsic viscosity of less than 0.7 and a crystallinity of 60% or more, characterized by solid-phase polymerization at a temperature in the range of ~100° C. . 4. The manufacturing method according to claim 3, wherein the raw material polyethylene terephthalate resin has an intrinsic viscosity of less than 0.25. 5. Particles of ultrafine resin powder obtained by solid phase polymerization have an average particle size of 10 μm or less, a maximum particle size of 20 μm or less, have a smooth surface, and are substantially spherical, or The manufacturing method according to item 4.
JP24057185A 1985-10-29 1985-10-29 Fine resin powder and its production Pending JPS62101628A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24057185A JPS62101628A (en) 1985-10-29 1985-10-29 Fine resin powder and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24057185A JPS62101628A (en) 1985-10-29 1985-10-29 Fine resin powder and its production

Publications (1)

Publication Number Publication Date
JPS62101628A true JPS62101628A (en) 1987-05-12

Family

ID=17061501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24057185A Pending JPS62101628A (en) 1985-10-29 1985-10-29 Fine resin powder and its production

Country Status (1)

Country Link
JP (1) JPS62101628A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006041501A (en) * 2004-06-25 2006-02-09 Tdk Corp Method of manufacturing rare earth sintered magnet and method of pulverizing raw alloy powder for sintered magnet
JP2006232878A (en) * 2005-02-22 2006-09-07 Asahi Kasei Chemicals Corp Fine powder composed of polytrimethylene terephthalate composition
JP2006295100A (en) * 2005-03-17 2006-10-26 Tdk Corp Method of manufacturing rare earth sintered magnet and method of pulverizing raw alloy powder for sintered magnet

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006041501A (en) * 2004-06-25 2006-02-09 Tdk Corp Method of manufacturing rare earth sintered magnet and method of pulverizing raw alloy powder for sintered magnet
JP2006232878A (en) * 2005-02-22 2006-09-07 Asahi Kasei Chemicals Corp Fine powder composed of polytrimethylene terephthalate composition
JP2006295100A (en) * 2005-03-17 2006-10-26 Tdk Corp Method of manufacturing rare earth sintered magnet and method of pulverizing raw alloy powder for sintered magnet
JP4506973B2 (en) * 2005-03-17 2010-07-21 Tdk株式会社 Method for producing rare earth sintered magnet, method for grinding raw alloy powder for sintered magnet

Similar Documents

Publication Publication Date Title
US3637595A (en) P-oxybenzoyl copolyesters
US4563508A (en) Injection moldable aromatic polyesters compositions and method of preparation
TWI280259B (en) Compositions and a method for improving reheat rate of PET using activated carbon
US4313870A (en) Process for producing polycondensates
JP2001187837A (en) Water-dispersible film and fiber based on sulfopolyester
US3598882A (en) Block copolyesters of linear saturated polyesters and polybutadiene-diols
JP2006502895A (en) Process for producing very low IV polyester resins
CA2147218C (en) Impact resistant acrylic powder coatings
JPS62101628A (en) Fine resin powder and its production
EP0376380A1 (en) Polymer processeable from the melt
CH656885A5 (en) MASS POLYMERIZATION METHOD FOR THE PRODUCTION OF THERMALLY RESISTANT, COMPLETELY AROMATIC HOMOPOLYESTERS OR COPOLYESTERS.
US3962314A (en) Oxybenzoyl dioxyarylene mono- and diesters
JPS6058431A (en) Production of easily slippery polyester
US5106941A (en) Process for the preparation of crystalline poly(cyclohexanedimethylene terephthalate)
JPH04202557A (en) Heat-resistant resin composition and heat-resistant tableware for oven produced by molding the resin
JPH0225932B2 (en)
JPH0714996B2 (en) Method for producing polyester
JP3148351B2 (en) Polyethylene naphthalate composition
US3600460A (en) Thermoplastic reaction product of a linear saturated polyester and a polyalkylene-diol
JP3275447B2 (en) Method for producing polyester composition
JPS6031212B2 (en) Manufacturing method of polyester spherical powder
JP2870358B2 (en) Method for producing polyester composition
JPS63241035A (en) Production of polyester powder
JP3575681B2 (en) Method for producing polyester and composition therefor
JPS6088029A (en) Production of internal particle-containing polyester