JP2006294521A - 電気化学素子 - Google Patents

電気化学素子 Download PDF

Info

Publication number
JP2006294521A
JP2006294521A JP2005116306A JP2005116306A JP2006294521A JP 2006294521 A JP2006294521 A JP 2006294521A JP 2005116306 A JP2005116306 A JP 2005116306A JP 2005116306 A JP2005116306 A JP 2005116306A JP 2006294521 A JP2006294521 A JP 2006294521A
Authority
JP
Japan
Prior art keywords
air electrode
fuel electrode
solid electrolyte
electrolyte layer
electrode body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005116306A
Other languages
English (en)
Inventor
Hiroya Ishikawa
浩也 石川
Hitoshi Yokoi
等 横井
Toru Shimamori
融 島森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2005116306A priority Critical patent/JP2006294521A/ja
Publication of JP2006294521A publication Critical patent/JP2006294521A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

【課題】 効率が高く、短時間で起動、且つ停止させることができ、更には低温で作動させることができる固体電解質形燃料電池素子等の電気化学素子を提供する。
【解決手段】 本発明の電気化学素子は、直線状の円筒形燃料極管と、円筒形燃料極管の外周面のうちの一端縁部を除く部分に設けられた固体電解質層とからなる外径2mm以下の複数の燃料極・固体電解質層積層管21の一端縁部の側の一端部を除く部分が、空気極体11の一部となる未焼成空気極体が有する複数の貫通孔に挿通され、且つ燃料極・固体電解質層積層管21の外周面と貫通孔の周面との間隙に、空気極体11の他部となる空気極用材料が充填され、未焼成空気極体及び空気極用材料が焼成されてなる。
【選択図】 図9

Description

本発明は、電気化学素子に関する。更に詳しくは、本発明は、小型で効率が高く、短時間、例えば、数分で起動させ、且つ停止させることができ、更には低温、例えば、500℃程度で作動させることができる固体電解質形燃料電池素子等の電気化学素子に関する。
本発明は、固体電解質形燃料電池、酸素発生器及び排ガス浄化リアクターなどの技術分野において用いることができる。
電気化学素子、例えば、固体電解質形燃料電池素子(以下、「SOFC素子」ということもある。)には、より短時間で起動及び停止させること、並びにより低温で作動させること等、が要求されており、改良、開発がなされている。短時間で起動及び停止させるには、熱容量を小さくすることが必要であり、そのためには素子を小型化する必要がある。また、従来は1000℃を越える高温で作動する燃料電池が多かったが、より低温で作動させるため、材料面及び構造面からの改良、開発もなされている。
現在、平板形セル、円筒形セル及び楕円体形セル等を用いた種々の構造のSOFC素子が提案されており、外径1〜5mmの円筒形セルを用いたSOFC素子が知られている(例えば、特許文献1参照。)。この円筒形セルとしては、一般的には、比較的大径、長尺の、例えば、外径が10〜30mmで、長さが200〜1500mm程度のものが多く、且つその形状は直線状であり、折り曲げられた形状等の屈曲部を有するものはみられない。更に、近年、固体電解質層をできるだけ薄層として内部抵抗を低減し、800℃以下の比較的低温域でSOFC素子を作動させる研究もなされている。
特表2001−518688号公報
しかし、これまでに知られている円筒形セル等を用いた比較的大型のSOFC素子では、その熱容量が大きいため、十分に短時間で起動及び停止させることができず、より熱容量の小さい、即ち、より小型のSOFC素子が必要とされている。また、作動温度についても、800℃から更に低温、例えば、500℃程度で作動させることができるSOFC素子が望まれている。このように低温で作動させることができれば、セラミックではなくステンレス鋼等の金属からなる部材を用いることができるばかりでなく、各種構成部材の機能劣化を防止することができ、SOFC素子の長寿命化が可能となるため好ましい。
本発明は上記の状況に鑑みてなされたものであり、外径が小さい円筒形セルを多数集積させることにより、小型で効率が高く、短時間、例えば、数分で起動させ、且つ停止させることができ、更には低温において電解質としての作用に優れる固体電解質を用いること等により、例えば、500℃程度の低温域で作動させることができるSOFC素子等の電気化学素子を提供することを目的とする。
本発明は以下の通りである。
1.直線状の円筒形燃料極管211と、該円筒形燃料極管211の外周面のうちの一端縁部を除く部分に設けられた固体電解質層212とからなる外径2mm以下の複数の燃料極・固体電解質層積層管21の少なくとも該一端縁部の側の一端部を除く部分が、空気極体11の一部となる未焼成空気極体11’が有する複数の貫通孔に挿通され、且つ該燃料極・固体電解質層積層管21の外周面と該貫通孔の周面との間隙に、該空気極体11の他部となる空気極用材料S3が充填され、該未焼成空気極体11’及び該空気極用材料S3が焼成されてなることを特徴とする電気化学素子。
2.直線状の円筒形燃料極管211と、該円筒形燃料極管211の外周面のうちの一端縁部を除く部分に設けられた固体電解質層212とからなる外径2mm以下の複数の燃料極・固体電解質層積層管21の少なくとも該一端縁部の側の一端部を除く部分が、未焼成空気極体11’が焼成されてなる空気極体11の一部が有する複数の貫通孔に挿通され、且つ該燃料極・固体電解質層積層管21の外周面と該貫通孔の周面との間隙に、該空気極体11の他部となる空気極用材料S3が充填され、該空気極用材料S3が焼成されてなることを特徴とする電気化学素子。
3.U字状且つ平面状の円筒形燃料極管221と、該円筒形燃料極管221の外周面のうちの両端縁部を除く部分に設けられた固体電解質層222とからなる外径2mm以下の複数の燃料極・固体電解質層積層管22の両端部及び屈曲部223を除く部分が、未焼成空気極体12’が焼成されてなる空気極体12の一部が有する複数の貫通孔に挿通され、且つ該燃料極・固体電解質層積層管22の外周面と該貫通孔の周面との間隙、及び該未焼成空気極体12’の、該燃料極・固体電解質層積層管22の該屈曲部223が突出している側の該屈曲部223を含む空間部に、該空気極体12の他部となる空気極用材料S3が充填され、該空気極用材料S3が焼成されてなることを特徴とする電気化学素子。
4.U字状且つ平面状の円筒形燃料極管221と、該円筒形燃料極管221の外周面のうちの両端縁部を除く部分に設けられた固体電解質層222とからなる外径2mm以下の複数の燃料極・固体電解質層積層管22の両端部及び屈曲部223を除く部分が、空気極体12の一部となる未焼成空気極体12’が有する複数の貫通孔に挿通され、且つ該燃料極・固体電解質層積層管22の外周面と該貫通孔の周面との間隙、及び該未焼成空気極体12’の、該燃料極・固体電解質層積層管22の該屈曲部223が突出している側の該屈曲部223を含む空間部に、該空気極体12の他部となる空気極用材料S3が充填され、該未焼成空気極体12’及び該空気極用材料S3が焼成されてなることを特徴とする電気化学素子。
5.U字状且つ平面状の円筒形燃料極管231と、該円筒形燃料極管231の外周面のうちの両端縁部を除く部分に設けられた固体電解質層232とからなる外径2mm以下の複数の燃料極・固体電解質層積層管23の両端部及び屈曲部233を除く部分が、未焼成空気極体13’が焼成されてなる空気極体13の一部が有する複数の貫通孔に挿通され、且つ該燃料極・固体電解質層積層管23の外周面と該貫通孔の周面との間隙、及び該未焼成空気極体13’の、該燃料極・固体電解質層積層管23の該屈曲部233が突出している側の該屈曲部233を含む空間部に、該空気極体13の他部となる空気極用材料S3が充填され、該空気極用材料S3が焼成され、その後、該燃料極・固体電解質層積層管23の該屈曲部233、及び該空気極体13の該燃料極・固体電解質層積層管23の該屈曲部233が埋設されている部分が除去され、該燃料極・固体電解質層積層管23が開口されてなることを特徴とする電気化学素子。
6.U字状且つ平面状の円筒形燃料極管231と、該円筒形燃料極管231の外周面のうちの両端縁部を除く部分に設けられた固体電解質層232とからなる外径2mm以下の複数の燃料極・固体電解質層積層管23の両端部及び屈曲部233を除く部分が、空気極体13の一部となる未焼成空気極体13’が有する複数の貫通孔に挿通され、且つ該燃料極・固体電解質層積層管23の外周面と該貫通孔の周面との間隙、及び該未焼成空気極体13’の、該燃料極・固体電解質層積層管23の該屈曲部233が突出している側の該屈曲部233を含む空間部に、該空気極体13の他部となる空気極用材料S3が充填され、該未焼成空気極体13’及び該空気極用材料S3が焼成され、その後、該燃料極・固体電解質層積層管23の該屈曲部233、及び該空気極体13の該燃料極・固体電解質層積層管23の該屈曲部233が埋設されている部分が除去され、該燃料極・固体電解質層積層管23が開口されてなることを特徴とする電気化学素子。
7.上記未焼成空気極体は、複数の開口部を有する未焼成空気極体用シートが複数枚積層されてなり、上記貫通孔は該開口部が連なって形成されている上記1.乃至6.のうちのいずれか1項に記載の電気化学素子。
8.上記未焼成空気極体用シートのうちの少なくとも1枚の未焼成空気極体用シートが焼成されてなる空気極体部の気孔率が、他の未焼成空気極体用シートが焼成されてなる空気極体部の気孔率より高い上記7.に記載の電気化学素子。
9.上記未焼成空気極体は、押出成形により形成された上記1.乃至6.のうちのいずれか1項に記載の電気化学素子。
10.上記空気極体の上記一部の気孔率が、該空気極体の上記他部の気孔率より高い上記1.乃至9.のうちのいずれか1項に記載の電気化学素子。
尚、上記1.〜10.に記載の電気化学素子における「未焼成空気極体」には、グリーン体のみでなく、グリーン体を熱処理することでバインダ等が除去された、所謂、仮焼体も含めるものとする。
11.直線状の円筒形空気極管411と、該円筒形空気極管411の外周面のうちの一端縁部を除く部分に設けられた固体電解質層412とからなる外径2mm以下の複数の空気極・固体電解質層積層管41の少なくとも該一端縁部の側の一端部を除く部分が、燃料極体31の一部となる未焼成燃料極体31’が有する複数の貫通孔に挿通され、且つ該空気極・固体電解質層積層管41の外周面と該貫通孔の周面との間隙に、該燃料極体31の他部となる燃料極用材料S1が充填され、該未焼成燃料極体31’及び該燃料極用材料S1が焼成されてなることを特徴とする電気化学素子。
12.直線状の円筒形空気極管411と、該円筒形空気極管411の外周面のうちの一端縁部を除く部分に設けられた固体電解質層412とからなる外径2mm以下の複数の空気極・固体電解質層積層管41の少なくとも該一端縁部の側の一端部を除く部分が、未焼成燃料極体31’が焼成されてなる燃料極体31の一部が有する複数の貫通孔に挿通され、且つ該空気極・固体電解質層積層管41の外周面と該貫通孔の周面との間隙に、該燃料極体31の他部となる燃料極用材料S1が充填され、該燃料極用材料S1が焼成されてなることを特徴とする電気化学素子。
13.U字状且つ平面状の円筒形空気極管421と、該円筒形空気極管421の外周面のうちの両端縁部を除く部分に設けられた固体電解質層422とからなる外径2mm以下の複数の空気極・固体電解質層積層管42の両端部及び屈曲部423を除く部分が、未焼成燃料極体32’が焼成されてなる燃料極体32の一部が有する複数の貫通孔に挿通され、且つ該空気極・固体電解質層積層管42の外周面と該貫通孔の周面との間隙、及び該未焼成燃料極体32’の、該空気極・固体電解質層積層管42の該屈曲部423が突出している側の該屈曲部423を含む空間部に、該燃料極体32の他部となる燃料極用材料S1が充填され、該燃料極用材料S1が焼成されてなることを特徴とする電気化学素子。
14.U字状且つ平面状の円筒形空気極管421と、該円筒形空気極管421の外周面のうちの両端縁部を除く部分に設けられた固体電解質層422とからなる外径2mm以下の複数の空気極・固体電解質層積層管42の両端部及び屈曲部423を除く部分が、燃料極体32の一部となる未焼成燃料極体32’が有する複数の貫通孔に挿通され、且つ該空気極・固体電解質層積層管42の外周面と該貫通孔の周面との間隙、及び該未焼成燃料極体32’の、該空気極・固体電解質層積層管42の該屈曲部423が突出している側の該屈曲部423を含む空間部に、該燃料極体32の他部となる燃料極用材料S1が充填され、該未焼成燃料極体32’及び該燃料極用材料S1が焼成されてなることを特徴とする電気化学素子。
15.U字状且つ平面状の円筒形空気極管431と、該円筒形空気極管431の外周面のうちの両端縁部を除く部分に設けられた固体電解質層432とからなる外径2mm以下の複数の空気極・固体電解質層積層管43の両端部及び屈曲部433を除く部分が、未焼成燃料極体33’が焼成されてなる燃料極体33の一部が有する複数の貫通孔に挿通され、且つ該空気極・固体電解質層積層管43の外周面と該貫通孔の周面との間隙、及び該未焼成燃料極体33’の、該空気極・固体電解質層積層管43の該屈曲部433が突出している側の該屈曲部433を含む空間部に、該燃料極体33の他部となる燃料極用材料S1が充填され、該燃料極用材料S1が焼成され、その後、該空気極・固体電解質層積層管43の該屈曲部433、及び該燃料極体33の該空気極・固体電解質層積層管43の該屈曲部433が埋設されている部分が除去され、該空気極・固体電解質層積層管43が開口されてなることを特徴とする電気化学素子。
16.U字状且つ平面状の円筒形空気極管431と、該円筒形空気極管431の外周面のうちの両端縁部を除く部分に設けられた固体電解質層432とからなる外径2mm以下の複数の空気極・固体電解質層積層管43の両端部及び屈曲部433を除く部分が、燃料極体33の一部となる未焼成燃料極体33’が有する複数の貫通孔に挿通され、且つ該空気極・固体電解質層積層管43の外周面と該貫通孔の周面との間隙、及び該未焼成燃料極体33’の、該空気極・固体電解質層積層管43の該屈曲部433が突出している側の該屈曲部433を含む空間部に、該燃料極体33の他部となる燃料極用材料S1が充填され、該未焼成燃料極体33’及び該燃料極用材料S1が焼成され、その後、該空気極・固体電解質層積層管43の該屈曲部433、及び該燃料極体33の該空気極・固体電解質層積層管43の該屈曲部433が埋設されている部分が除去され、該空気極・固体電解質層積層管43が開口されてなることを特徴とする電気化学素子。
17.上記未焼成燃料極体は、複数の開口部を有する未焼成燃料極体用シートが複数枚積層されてなり、上記貫通孔は該開口部が連なって形成されている上記11.乃至16.のうちのいずれか1項に記載の電気化学素子。
18.上記未焼成燃料極体用シートのうちの少なくとも1枚の未焼成燃料極体用シートが焼成されてなる燃料極体部の気孔率が、他の未焼成燃料極体用シートが焼成されてなる燃料極体部の気孔率より高い上記17.に記載の電気化学素子。
19.上記未焼成燃料極体は、押出成形により形成された上記11.乃至16.のうちのいずれか1項に記載の電気化学素子。
20.上記燃料極体の上記一部の気孔率が、該燃料極体の上記他部の気孔率より高い上記11.乃至19.のうちのいずれか1項に記載の電気化学素子。
尚、上記11.〜20.に記載の電気化学素子における「未焼成燃料極体」には、グリーン体のみでなく、グリーン体を熱処理することでバインダ等が除去された、所謂、仮焼体も含めるものとする。
直線状の燃料極・固体電解質層積層管が、未焼成空気極体又は空気極体の一部が有する貫通孔に挿通される、又は直線状の空気極・固体電解質層積層管が、未焼成燃料極体又は燃料極体の一部が有する貫通孔に挿通される本発明の電気化学素子は、効率が高く、短時間で起動及び停止させることができる。
また、U字状且つ平面状の燃料極・固体電解質層積層管が、空気極体の一部又は未焼成空気極体が有する貫通孔に挿通される、又はU字状且つ平面状の空気極・固体電解質層積層管が、燃料極体の一部又は未焼成燃料極体が有する貫通孔に挿通される本発明の他の電気化学素子は、効率が高く、短時間で起動及び停止させることができる。
更に、燃料極・固体電解質層積層管の屈曲部、及び空気極体の燃料極・固体電解質層積層管の屈曲部が埋設されている部分が除去され、燃料極・固体電解質層積層管が開口された、又は空気極・固体電解質層積層管の屈曲部、及び燃料極体の空気極・固体電解質層積層管の屈曲部が埋設されている部分が除去され、空気極・固体電解質層積層管が開口された本発明の更に他の電気化学素子は、効率が高く、短時間で起動及び停止させ得る電気化学素子とすることができる。
また、未焼成空気極体は、複数の開口部を有する未焼成空気極体用シートが複数枚積層されてなり、貫通孔は開口部が連なって形成されている場合、及び未焼成燃料極体は、複数の開口部を有する未焼成燃料極体用シートが複数枚積層されてなり、貫通孔は開口部が連なって形成されている場合は、電気化学素子を容易に製造することができる。
更に、未焼成空気極体用シートのうちの少なくとも1枚の未焼成空気極体用シートの気孔率が高い場合、及び未焼成燃料極体用シートのうちの少なくとも1枚の未焼成燃料極体用シートの気孔率が高い場合は、支燃性ガスを空気極体により均一に供給することができ、燃料ガスを燃料極体により均一に供給することができる。
また、未焼成空気極体及び未焼成燃料極体が、押出成形により作製された場合も、電気化学素子を容易に製造することができる。
更に、空気極体の一部の気孔率が、他部の気孔率より高い場合、及び燃料極体の一部の気孔率が、他部の気孔率より高い場合は、燃料極・固体電解質層積層管及び燃料極・固体電解質層積層管から離れた部分では通気性が高く、支燃性ガス及び燃料ガスを容易に流通させることができ、且つ燃料極と固体電解質層と空気極との三相界面を増加させることができ、効率の高い電気化学素子とすることができる。
以下、例えば、図1〜20を用いて電気化学素子が固体電解質形燃料電池素子である場合について本発明を詳細に説明する。
[1]未焼成空気極体及び未焼成燃料極体の形成
未焼成空気極体11’、12’、13’は、複数の開口部を有する未焼成空気極体用シート111’、121’、131’を複数枚積層して形成することができ(図1参照)、各々の未焼成空気極体用シートがそれぞれ有する複数の開口部が連なるように積層することで、複数の貫通孔112’、122’、132’を有する未焼成空気極体を形成することができる(図2参照)。また、未焼成燃料極体31’、32’、33’は、複数の開口部を有する未焼成燃料極体用シート311’、321’、331’を複数枚積層して形成することができ(図1参照)、各々の未焼成燃料極体用シートがそれぞれ有する複数の開口部が連なるように積層することで、複数の貫通孔312’、322’、332’を形成することができる(図2参照)。従って、通常、各々の未焼成空気極体用シート及び未焼成燃料極体用シートは同形状及び同寸法に形成され、それぞれのシートの平面方向の同一の位置に、同一の形状及び寸法の開口部が同数設けられる。
尚、この未焼成空気極体及び未焼成燃料極体は、前記のように熱処理し、それぞれ仮焼体として用いることもできる。
更に、通常、貫通孔の断面の形状となる、未焼成空気極体用シート111’、121’、131’及び未焼成燃料極体用シート311’、321’、331’の各々に設けられる開口部の形状は、特に限定されず、円形、楕円形並びに三角形及び四角形等の多角形などとすることができ、円形であることが好ましい。更に、この開口部の径方向の寸法(円形であるときは直径、その他の形状であるときは最大寸法とする。)も特に限定されないが、燃料極・固体電解質層積層管及び空気極・固体電解質層積層管の外周面と、貫通孔の周面との間隙が10〜500μm、特に20〜100μmとなる寸法であることが好ましい。また、未焼成空気極体用シート及び未焼成燃料極体用シートの各々の厚さは特に限定されず、固体電解質形燃料電池素子の大きさ等によって設定することが好ましい。この厚さは100〜2000μm、特に200〜1000μmとすることができる。
空気極体は支燃性ガスを流通させるため、燃料極体は燃料ガスを流通させるため、それぞれ多孔質体であり、未焼成空気極体用シートが積層されてなる未焼成空気極体及び未焼成燃料極用シートが積層されてなる未焼成燃料極体の各々は、それぞれ焼成されて多孔質空気極体及び多孔質燃料極体のそれぞれの一部を構成することとなる。また、未焼成空気極体用シート及び未焼成燃料極体用シートの各々のうちの少なくとも1枚のシートが焼成されてなる焼成シートの気孔率が、他のシートが焼成されてなる焼成シートの気孔率より高いことが好ましい。この気孔率の高い焼成シートとなる未焼成シートは、全未焼成シート枚数のうちの1/3〜2/3であることが好ましく、気孔率の高い焼成シートとなる未焼成シートと、気孔率の低い焼成シートとなる未焼成シートとが、未焼成空気極体及び未焼成燃料極体の各々の厚さ方向に偏在しないように積層することがより好ましい。更に、気孔率の高い焼成シートとなる未焼成シートと、気孔率の低い焼成シートとなる未焼成シートとを、交互に積層して未焼成空気極体及び未焼成燃料極体を形成することが特に好ましい。このように気孔率の高い部分を形成することで、支燃性ガスを空気極体の内部にまで十分に流通させることができ、燃料ガスを燃料極体の内部にまで十分に流通させることができる。
未焼成空気極体用シートが焼成されてなる焼成シート及び未焼成燃料極体用シートが焼成されてなる焼成シートの各々の気孔率は特に限定されないが、気孔率の高い焼成シートの気孔率は30〜70%、特に35〜60%であり、気孔率の低い焼成シートの気孔率は20〜50%、特に30〜40%であることが好ましい。それぞれの焼成シート(焼成後は空気極体及び燃料極体の一部を構成することとなる。)の気孔率は、空気極体及び燃料極体の強度と、各々の内部における支燃性ガス及び燃料ガスの流通のし易さ等を勘案して設定することが好ましい。この気孔率は水銀圧入法等により測定することができる。
未焼成空気極体11’、12’、13’及び未焼成燃料極体31’、32’、33’は押出成形により形成することもできる。この形成方法は特に限定されず、例えば、先端にダイが取り付けられた押出成形機等により成形し、その後、乾燥し、次いで、成形品を長さ方向に所定の寸法に切断することにより形成することができる。この押出成形によれば、押出方向に任意の断面形状の貫通孔を有する成形品を連続的に成形することができ、未焼成空気極体及び未焼成燃料極体を効率よく形成することができる。貫通孔の断面形状は、円形、楕円形並びに三角形及び四角形等の多角形などとすることができ、焼成により、例えば、ハニカム状の未焼成空気極体及び未焼成燃料極体とすることができる(図3参照)。尚、この押出成形により形成された未焼成空気極体及び未焼成燃料極体も、焼成により、それぞれ多孔質体である空気極体及び燃料極体の各々の一部を構成することとなる。その気孔率は20〜70%、特に30〜60%であることが好ましい。この気孔率は前記の方法等により測定することができる。
未焼成空気極体11’、12’、13’が有する複数の貫通孔112’、122’、132’又は未焼成空気極体が焼成されてなる空気極体の一部が有する複数の貫通孔には、後記のように燃料極・固体電解質層積層管21、22、23が挿通され、各々の燃料極・固体電解質層積層管の外周面と、それぞれの貫通孔の周面との間隙、又はこの間隙及び未焼成空気極体若しくは空気極体の一部の、燃料極・固体電解質層積層管の屈曲部が突出している側の屈曲部を含む空間部に、空気極体の他部を構成することとなる空気極用材料S3が充填される。このように空気極用材料S3が充填され、その後、未焼成空気極体と空気極用材料、又は空気極用材料が焼成され、未焼成空気極体が焼成されてなる空気極体の一部と、空気極用材料S3が焼成されてなる空気極体の他部とからなる空気極体が作製される。更に、未焼成燃料極体31’、32’、33’が有する複数の貫通孔312’、322’、332’又は未焼成燃料極体が焼成されてなる燃料極体の一部が有する複数の貫通孔には、後記のように空気極・固体電解質層積層管41、42、43が挿通され、各々の空気極・固体電解質層積層管の外周面と、それぞれの貫通孔の周面との間隙、又はこの間隙及び未焼成燃料極体若しくは燃料極体の一部の、空気極・固体電解質層積層管の屈曲部が突出している側の屈曲部を含む空間部に、燃料極体の他部を構成することとなる燃料極用材料S1が充填される。このように燃料極用材料S1が充填され、その後、未焼成燃料極体と燃料極用材料、又は燃料極用材料が焼成され、未焼成燃料極体が焼成されてなる燃料極体の一部と、燃料極用材料S1が焼成されてなる燃料極体の他部とからなる燃料極体が作製される。
上記のようにして形成される空気極体及び燃料極体において、各々の一部(未焼成空気極体及び未焼成燃料極体が焼成されてなる部分)の気孔率が、他部(空気極用材料S3及び燃料極用材料S1が焼成されてなる部分)の気孔率より高いことが好ましい。この空気極体及び燃料極体のそれぞれの一部の気孔率は30〜70%、特に35〜60%であり、且つ他部の気孔率は20〜50%、特に30〜40%であることが好ましい。このようにすることで、燃料極・固体電解質層積層管及び空気極・固体電解質層積層管から離れた部分では通気性が高く、支燃性ガス及び燃料ガスを容易に流通させることができ、且つそれぞれの積層管と空気極体及び燃料極体では、燃料極と固体電解質層と空気極との三相界面を増加させることができ、効率の高い電気化学素子とすることができる。この気孔率は前記の方法等により測定することができる。
尚、空気極体及び燃料極体の各々の一部及び他部のそれぞれの気孔率は、後記[5]、(3)に記載の空気極用材料及び後記[5]、(1)に記載の燃料極用材料の各々に含有される金属酸化物、セラミック等の平均粒径、並びにカーボン粉末等の造孔剤の種類及び配合量等により調整することができる。
[2]直線状の燃料極・固体電解質層積層管又は空気極・固体電解質層積層管を備えるSOFC素子及びその製造方法
(1)SOFC素子の構造
(A)空気極体に燃料極・固体電解質層積層管が埋設されたSOFC素子
このSOFC素子は、直線状の円筒形燃料極管211と、円筒形燃料極管211の外周面のうちの一端縁部を除く部分に設けられた固体電解質層212とからなる外径2mm以下の複数の燃料極・固体電解質層積層管21の少なくとも一端縁部の側の一端部を除く部分が、空気極体11の一部となる未焼成空気極体11’が有する複数の貫通孔、又は未焼成空気極体11’が焼成されてなる空気極体11の一部が有する複数の貫通孔、に挿通され、且つ燃料極・固体電解質層積層管21の外周面と貫通孔の周面との間隙に、空気極体11の他部となる空気極用材料S3が充填され、未焼成空気極体11’及び空気極用材料S3、又は空気極用材料S3が焼成されてなる。
上記「空気極体11」には、複数の上記「燃料極・固体電解質層積層管21」が埋設されている。空気極体11は、複数のSOFC素子が接続されて固体電解質形燃料電池(以下、「SOFC」ということもある。)とされる場合に、無用な空間が形成されることのないように、通常、立方体及び直方体等の外形を有する。空気極体11の大きさは特に限定されないが、例えば、立方体である場合、一辺が5〜50mm、特に5〜15mmの大きさとすることができる。また、直方体である場合、長辺が10〜100mm、特に15〜30mm、短辺が5〜50mm、特に5〜15mmの大きさとすることができる。尚、直方体であるときは、燃料極・固体電解質層積層管21の長さ方向が、直方体の長辺の方向となることが好ましい。この空気極体11は、例えば、後記[5]、(3)に記載の空気極用材料を用いて形成することができる。
上記「燃料極・固体電解質層積層管21」は、上記「円筒形燃料極管211」と、上記「固体電解質層212」とからなる。固体電解質層212は、円筒形燃料極管211の外周面のうちの一端縁部を除く部分に設けられており、この固体電解質層212が設けられていない円筒形燃料極管211の一端縁部から電力が取り出される。この一端縁部の長さは特に限定されず、円筒形燃料極管211の作製時及びSOFC素子の製造時等における操作性などを考慮して適宜の長さ、例えば、100〜3000μm、特に200〜1500μmとすることができる。
燃料極・固体電解質層積層管21は、その一端部が空気極体11の一面側に突出し、他端部が空気極体11の他面側に開口しておればよく(この他端部は、空気極体11の他面側の端面において開口していてもよく、端面から突出していてもよい。)、空気極体11に埋設されている部分の形状は特に限定されない。この部分の形状は、通常、直線状である。直線状であれば、複数の燃料極・固体電解質層積層管21を空気極体11に埋設したときに、無用な空間が形成されないように、密に集積させて埋設することができる。
尚、燃料極・固体電解質層積層管21は、密に集積させることができれば、蛇行していてもよく、この蛇行している場合も直線状に含めるものとする。
また、燃料極・固体電解質層積層管21が、空気極体11の他端側の端面から突出している場合は、空気極と燃料極との接触(短絡)を防止する効果があり、好ましい。この突出している部分の長さは特に限定されないが、例えば、10〜1000μm、特に20〜500μmとすることができる。
燃料極・固体電解質層積層管21の外径は2mm以下であり、1mm以下、特に0.7mm以下(通常、0.1mm以上)であることが好ましい。更に、燃料極・固体電解質層積層管21の管壁の厚さは特に限定されないが、20〜500μm、特に50〜200μmであることが好ましい。また、円筒形燃料極管211の管壁の厚さは、20〜500μm、特に50〜200μmとすることができ、固体電解質層212の厚さは2〜100μm、特に10〜50μmとすることができる。このような燃料極・固体電解質層積層管21であれば、効率が高く、小型のSOFC素子とすることができ、短時間で起動及び停止させることができる。この燃料極・固体電解質層積層管21が埋設される本数も特に限定されず、通常、5〜200本、特に50〜200本、更に100〜180本とすることができる。
この固体電解質形燃料電池素子101−11では、図9のように、燃料極・固体電解質層積層管21の一端部を除く部分が空気極体11に埋設されている。即ち、一端部は空気極体11の一面側に突出し、他端部は空気極体11の他面側に開口している。この一面側に突出している一端部の長さは特に限定されず、SOFC素子の製造時等における操作性などを考慮して適宜の長さ、例えば、500〜3000μm、特に500〜1500μmとすることができる。このSOFC素子は、空気極体11の側面に空気極側集電膜5が積層され、空気極体11の、燃料極・固体電解質層積層管21の一端部が突出している一面側に絶縁膜7が積層され、この絶縁膜7の表面に、円筒形燃料極管211と燃料ガス導入用マニホールド兼燃料極側端子811とが導通するように燃料極側集電膜6が積層された固体電解質形燃料電池素子101−12とすることができる(図10参照)。更に、この一面側の燃料極・固体電解質層積層管21の一端部を覆って燃料ガス導入用マニホールド兼燃料極側端子811が配設され、他面側の燃料極・固体電解質層積層管21の他端部の開口部を覆って燃料ガス排出用マニホールド812が配設されて形成された固体電解質形燃料電池素子101−13とすることができる(図11参照)。
(B)燃料極体に空気極・固体電解質層積層管が埋設されたSOFC素子
このSOFC素子は、直線状の円筒形空気極管411と、円筒形空気極管411の外周面のうちの一端縁部を除く部分に設けられた固体電解質層412とからなる外径2mm以下の複数の空気極・固体電解質層積層管41の少なくとも一端縁部の側の一端部を除く部分が、燃料極体31の一部となる未焼成燃料極体31’が有する複数の貫通孔、又は未焼成燃料極体31’が焼成されてなる燃料極体31の一部が有する複数の貫通孔、に挿通され、且つ空気極・固体電解質層積層管41の外周面と貫通孔の周面との間隙に、燃料極体31の他部となる燃料極用材料S1が充填され、未焼成燃料極体31’及び燃料極用材料S1、又は燃料極用材料S1が焼成されてなる。
上記「燃料極体31」には、複数の上記「空気極・固体電解質層積層管41」が埋設されている。燃料極体31は、複数のSOFC素子が接続されてSOFCとされる場合に、無用な空間が形成されることのないように、通常、立方体及び直方体等の外形を有する。燃料極体31の大きさは特に限定されないが、例えば、立方体である場合、一辺が5〜50mm、特に5〜15mmの大きさとすることができる。また、直方体である場合、長辺が10〜100mm、特に15〜30mm、短辺が5〜50mm、特に5〜15mmの大きさとすることができる。尚、直方体であるときは、空気極・固体電解質層積層管41の長さ方向が、直方体の長辺の方向となることが好ましい。この燃料極体31は、例えば、後記[5]、(1)に記載の燃料極用材料を用いて形成することができる。
上記「空気極・固体電解質層積層管41」は、上記「円筒形空気極管411」と、上記「固体電解質層412」とからなる。固体電解質層412は、円筒形空気極管411の外周面のうちの一端縁部を除く部分に設けられており、この固体電解質層412が設けられていない円筒形空気極管411の一端縁部から電力が取り出される。この一端縁部の長さは特に限定されず、円筒形空気極管411の作製時及びSOFC素子の製造時等における操作性などを考慮して適宜の長さ、例えば、100〜3000μm、特に200〜1500μmとすることができる。
空気極・固体電解質層積層管41は、その一端部が燃料極体31の一面側に突出し、他端部が燃料極体31の他面側に開口しておればよく(この他端部は、燃料極体31の他面側の端面において開口していてもよく、端面から突出していてもよい。)、燃料極体31に埋設されている部分の形状は特に限定されない。この部分の形状は、通常、直線状である。直線状であれば、複数の空気極・固体電解質層積層管41を燃料極体31に埋設したときに、無用な空間が形成されないように、密に集積させて埋設することができる。
尚、空気極・固体電解質層積層管41は、密に集積させることができれば、蛇行していてもよく、この蛇行している場合も直線状に含めるものとする。
また、空気極・固体電解質層積層管41が、燃料極体31の他端側の端面から突出している場合は、燃料極と空気極との接触(短絡)を防止する効果があり、好ましい。この突出している部分の長さは特に限定されないが、例えば、10〜1000μm、特に20〜500μmとすることができる。
空気極・固体電解質層積層管41の外径は2mm以下であり、1mm以下、特に0.7mm以下(通常、0.1mm以上)であることが好ましい。更に、空気極・固体電解質層積層管41の管壁の厚さは特に限定されないが、20〜500μm、特に50〜200μmであることが好ましい。また、円筒形空気極管411の管壁の厚さは、20〜500μm、特に50〜200μmとすることができ、固体電解質層412の厚さは2〜100μm、特に10〜50μmとすることができる。このような空気極・固体電解質層積層管41であれば、効率が高く、小型のSOFC素子とすることができ、短時間で起動及び停止させることができる。この空気極・固体電解質層積層管41が埋設される本数も特に限定されず、通常、5〜200本、特に50〜200本、更に100〜180本とすることができる。
この固体電解質形燃料電池素子101−21では、図9のように、空気極・固体電解質層積層管41の一端部を除く部分が燃料極体31に埋設されている。即ち、一端部は燃料極体31の一面側に突出し、他端部は燃料極体31の他面側に開口している。この一面側に突出している一端部の長さは特に限定されず、SOFC素子の製造時等における操作性などを考慮して適宜の長さ、例えば、500〜3000μm、特に500〜1500μmとすることができる。このSOFC素子は、燃料極体31の側面に燃料極側集電膜6が積層され、燃料極体31の、空気極・固体電解質層積層管41の一端部が突出している一面側に絶縁膜7が積層され、この絶縁膜7の表面に、円筒形空気極管411と支燃性ガス導入用マニホールド兼空気極側端子821とが導通するように空気極側集電膜5が積層された固体電解質形燃料電池素子101−22とすることができる(図10参照)。更に、この一面側の空気極・固体電解質層積層管41の一端部を覆って支燃性ガス導入用マニホールド兼燃料極側端子821が配設され、他面側の空気極・固体電解質層積層管41の他端部の開口部を覆って支燃性ガス排出用マニホールド822が配設されて形成された固体電解質形燃料電池素子101−23とすることができる(図11参照)。
(2)SOFC素子の製造方法
上記(1)に記載のSOFC素子の製造方法は特に限定されず、例えば、下記の方法により製造することができる。
空気極体に燃料極・固体電解質層積層管が埋設された燃料電池素子は、円筒形燃料極管211となる未焼成円筒形燃料極管211’を成形し、その後、熱処理する成形・熱処理工程と、熱処理された未焼成円筒形燃料極管の外周面のうちの一端縁部を除く部分に、固体電解質層212となる未焼成固体電解質層を形成し、一体に焼成して燃料極・固体電解質層積層管21を作製する同時焼成工程と、複数の燃料極・固体電解質層積層管21の少なくとも一端部を除く部分を、空気極体11の一部となる未焼成空気極体11’が有する複数の貫通孔、又は未焼成空気極体11’が焼成されてなる空気極体11の一部が有する複数の貫通孔、に挿通し、且つ燃料極・固体電解質層積層管21の外周面と貫通孔の周面との間隙に、空気極体11の他部となる空気極用材料S3を充填する挿通・充填工程と、未焼成空気極体11’及び空気極用材料S3、又は空気極用材料S3を焼成する焼成工程と、を備える製造方法により得ることができる。
また、燃料極体に空気極・固体電解質層積層管が埋設された燃料電池素子は、円筒形空気極管411となる未焼成円筒形空気極管411’を成形し、その後、熱処理する成形・熱処理工程と、熱処理された未焼成円筒形空気極管の外周面のうちの一端縁部を除く部分に、固体電解質層412となる未焼成固体電解質層を形成し、一体に焼成して空気極・固体電解質層積層管41を作製する同時焼成工程と、複数の空気極・固体電解質層積層管41の少なくとも一端部を除く部分を、燃料極体31の一部となる未焼成燃料極体31’が有する複数の貫通孔、又は未焼成燃料極体31’が焼成されてなる燃料極体31の一部が有する複数の貫通孔、に挿通し、且つ空気極・固体電解質層積層管41の外周面と貫通孔の周面との間隙に、燃料極体31の他部となる燃料極用材料S1を充填する挿通・充填工程と、未焼成燃料極体31’及び燃料極用材料S1、又は燃料極用材料S1を焼成する焼成工程と、を備える製造方法により得ることができる。
(a)成形・熱処理工程
未焼成円筒形燃料極管P1及び未焼成円筒形空気極管P2の形成方法は特に限定されない。未焼成円筒形燃料極管は、例えば、後記[5]、(1)に記載の燃料極用材料を用いて(通常、この燃料極用材料と、有機溶媒等の媒体及び有機バインダ等とが配合されたペースト状の原料が使用される。)、先端に環状ダイが取り付けられた押出成形機E等により管状体を成形し(図4参照)、その後、乾燥することにより形成することができる。また、未焼成円筒形空気極管は、例えば、後記[5]、(3)に記載の空気極用材料を用いて(通常、この空気極用材料と、有機溶媒等の媒体及び有機バインダ等とが配合されたペースト状の原料が使用される。)、同様に押出成形機E等により管状体とし(図4参照)、その後、乾燥することにより形成することができる。
燃料極用材料及び空気極用材料には有機バインダ等が含有されているため、この有機バインダ等を除去するため、未焼成円筒形燃料極管P1、及び未焼成円筒形空気極管P2を加熱して熱処理し、仮焼体である未焼成円筒形燃料極管211’、及び未焼成円筒形空気極管411’を形成する(図5参照)。熱処理温度及び熱処理時間は用いる原料粉末の種類等により設定することができる。また、熱処理雰囲気は、大気雰囲気等の酸化雰囲気とすることができる。
(b)同時焼成工程
未焼成円筒形燃料極管211’の外周面のうちの一端縁部を除く部分に未焼成固体電解質層を形成する方法、及び未焼成円筒形空気極管411’の外周面のうちの一端縁部を除く部分に未焼成固体電解質層を形成する方法は、特に限定されない。例えば、後記[5]、(2)に記載の固体電解質用材料(通常、この固体電解質用材料と、有機溶媒等の媒体及び有機バインダ等とが配合されたペースト状の原料が使用される。)S2が投入された容器に、未焼成円筒形燃料極管211’又は未焼成円筒形空気極管411’の各々の一端縁部を除く部分を浸漬し、その後、乾燥する方法(図6参照)、及び未焼成円筒形燃料極管又は未焼成円筒形空気極管の各々の一端縁部を除く部分に、固体電解質材料を吹付け塗布する方法等により未焼成固体電解質層を形成することができる。これらの方法のうちでは、より正確に所定の一端縁部を除く部分に未焼成固体電解質層を形成することができる浸漬法が好ましい。
未焼成固体電解質層と、未焼成円筒形燃料極管又は未焼成円筒形空気極管との同時焼成により、燃料極・固体電解質層積層管21又は空気極・固体電解質層積層管41が作製される(図7参照)。この同時焼成の焼成温度は用いるセラミック粉末の種類等にもよるが、後記[5]に記載の各種の材料を用いる場合、未焼成円筒形燃料極管のときは、1250〜1500℃、特に1250〜1450℃、更に1300〜1450℃とすることが好ましい。一方、未焼成円筒形空気極管のときは、1200〜1400℃、特に1200〜1350℃、更に1200〜1300℃とすることが好ましい。この温度範囲において各々を焼成することで、それぞれの未焼成体を十分に焼結させることができる。
尚、焼成温度を保持する時間は、焼成温度にもよるが、30分〜5時間、特に30分〜3時間とすることができる。また、焼成雰囲気は、通常、大気雰囲気等の酸化雰囲気である。
(c)挿通・充填工程
燃料極・固体電解質層積層管21を、未焼成空気極体11’が有する貫通孔、又は未焼成空気極体11’が焼成されてなる空気極体11[この焼成の条件は特に限定されないが、例えば、下記(d)焼成工程における未焼成空気極体のときと同様の条件とすることができる。]の一部が有する貫通孔、に挿通し、且つその外周面と貫通孔の周面との間隙に、空気極用材料を充填する方法、及び空気極・固体電解質層積層管41を、未焼成空気極体31’が有する貫通孔、又は未焼成燃料極31’が焼成されてなる燃料極体31[この焼成の条件は特に限定されないが、例えば、下記(d)焼成工程における未焼成燃料極体のときと同様の条件とすることができる。]の一部が有する複数の貫通孔、に挿通し、且つその外周面と貫通孔の周面との間隙に、燃料極用材料を充填するする方法、は特に限定されない。例えば、各々の貫通孔の径方向の中心部に、燃料極・固体電解質層積層管21及び空気極・固体電解質層積層管41の各々の一端部を除く部分を挿通し、その後、未焼成空気極体11’又は空気極体11の一部及び未焼成燃料極体31’又は燃料極体31の一部、を各々の外形と略同じ内寸法の容器に収容し、先端部を位置決め用ガイド板により固定し、次いで、燃料極・固体電解質層積層管21及び空気極・固体電解質層積層管41のそれぞれの外周面と貫通孔の周面との間隙に空気極用材料S3又は燃料極用材料S1を投入し、充填することができる。
尚、容器は、未焼成空気極体11’又は空気極体11の一部及び未焼成燃料極体31’又は燃料極体31の一部の各々の全体を収容することができる大きさでなくてもよく、未焼成空気極体11’及び未焼成燃料極体31’等のそれぞれの下方部分のみが収容される容器でもよい。また、空気極用材料及び燃料極用材料が多量に漏れ出ることがなければ、容器は用いず、未焼成空気極体11’及び未焼成燃料極体31’等をガラス、樹脂及び金属等からなるシート上に載置するのみでもよい。この場合、空気極用材料及び燃料極用材料が下端面に漏れ出ることがあっても、焼成後、研摩して除去すればよい。
(d)焼成工程
上記(c)のようにして空気極用材料及び燃料極用材料を充填し、その後、焼成する。この焼成により、空気極体11又は燃料極体31が形成され、固体電解質形燃料電池素子101−11又は固体電解質形燃料電池素子101−21を製造することができる(図9参照)。焼成温度は用いるセラミック粉末の種類等にもよるが、後記[5]に記載の各種の材料を用いる場合、未焼成空気極体のときは、800〜1300℃、特に800〜1250℃、更に800〜1200℃とすることが好ましい。一方、未焼成燃料極体のときは、1200〜1400℃、特に1200〜1350℃、更に1200〜1300℃とすることが好ましい。
尚、焼成温度を保持する時間は、焼成温度にもよるが、30分〜5時間、特に30分〜3時間とすることができる。また、焼成雰囲気は、通常、大気雰囲気等の酸化雰囲気である。
空気極側集電膜5は、空気極体11の側面、及び燃料極体31の一面側に形成された絶縁膜7の表面の所定部分に白金又は銀等のペーストを塗布し、加熱する等の方法により形成することができる。更に、燃料極側集電膜6は、燃料極体31の側面、及び空気極体11の一面側に形成された絶縁膜7の表面の所定部分に白金又は銀等のペーストを塗布し、加熱する等の方法により形成することができる。また、空気極体11の他面側の燃料ガス排出用マニホールド812が接合される部分、及び燃料極体31の他面側の支燃性ガス排出用マニホールド822が接合される部分、に絶縁膜7を形成し、固体電解質形燃料電池素子101−12又は固体電解質形燃料電池素子101−22を製造することができる(図10参照)。
更に、燃料極側集電膜6と燃料ガス導入用マニホールド兼燃料極側端子811、及び空気極側集電膜5と支燃性ガス導入用マニホールド兼空気極側端子821とは、未加熱燃料極側集電膜と燃料ガス導入用マニホールド兼燃料極側端子811、及び未加熱空気極側集電膜と支燃性ガス導入用マニホールド兼空気極側端子821、とを接触させ、その後、未加熱燃料極側集電膜及び未加熱空気極側集電膜を加熱することで接合することができる。また、燃料極側集電膜6又は空気極側集電膜5を予め形成しておき、燃料ガス導入用マニホールド兼燃料極側端子811の燃料極側集電膜6と接合させる面に金属ロウ材などを塗布し、及び支燃性ガス導入用マニホールド兼空気極側端子821の空気極側集電膜5と接合させる面に金属ロウ材などを塗布し、この塗布面と、燃料極側集電膜6又は空気極側集電膜5とを接触させ、加熱して、ロウ付けすることで接合することができる。
一方、空気極体11と燃料ガス排出用マニホールド812、及び燃料極体31と支燃性ガス排出用マニホールド822とは、燃料ガス排出用マニホールド812の、空気極体11の他面側に形成された絶縁膜7と接合される面に金属ロウ材などを塗布し、及び支燃性ガス排出用マニホールド822の、燃料極体31の他面側に形成された絶縁膜7と接合される面に金属ロウ材などを塗布し、この塗布面と、絶縁膜7とを接触させ、加熱して、ロウ付けすることで接合することができる。このようにして、固体電解質形燃料電池素子101−13又は固体電解質形燃料電池素子101−23を製造することができる(図11参照)。
[3]U字状の燃料極・固体電解質層積層管又は空気極・固体電解質層積層管を備えるSOFC素子及びその製造方法
(1)SOFC素子の構造
(A)空気極体に燃料極・固体電解質層積層管が埋設されたSOFC素子
このSOFC素子は、U字状且つ平面状の円筒形燃料極管221と、円筒形燃料極管221の外周面のうちの両端縁部を除く部分に設けられた固体電解質層222とからなる外径2mm以下の複数の燃料極・固体電解質層積層管22の両端部及び屈曲部223を除く部分が、未焼成空気極体12’が焼成されてなる空気極体12の一部が有する複数の貫通孔、又は空気極体12の一部となる未焼成空気極体12’が有する複数の貫通孔、に挿通され、且つ燃料極・固体電解質層積層管22の外周面と貫通孔の周面との間隙、及び空気極体12の一部又は未焼成空気極体12’の、燃料極・固体電解質層積層管22の屈曲部223が突出している側の屈曲部223を含む空間部に、空気極体12の他部となる空気極用材料S3が充填され、空気極用材料S3又は未焼成空気極体12’及び空気極用材料S3が焼成されてなる。
上記「空気極体12」には、複数の上記「燃料極・固体電解質層積層管22」が埋設されている。空気極体12は、前記[2]、(1)、(A)における空気極体11の場合と同様の理由で、通常、立方体及び直方体等の外形を有し、その大きさも空気極体11と同様とすることができる。尚、直方体であるときは、燃料極・固体電解質層積層管22の長さ方向が、直方体の長辺の方向となることが好ましい。この空気極体12は、後記[5]、(3)に記載の空気極用材料を使用して形成することができる。
燃料極・固体電解質層積層管22は、上記「円筒形燃料極管221」と、上記「固体電解質層222」とからなり、U字状且つ平面状に形成されている。固体電解質層222は、円筒形燃料極管221の外周面のうちの両端縁部を除く部分に設けられており、この固体電解質層222が設けられていない円筒形燃料極管221の両端縁部から電力が取り出される。この両端縁部の長さは特に限定されず、円筒形燃料極管221の作製時及びSOFC素子の製造時等における操作性などを考慮して適宜の長さ、例えば、100〜3000μm、特に200〜1500μmとすることができる。
燃料極・固体電解質層積層管22は、U字状且つ平面状に形成されている。U字状且つ平面状である場合、その平面方向における寸法、即ち、折り曲げられた燃料極・固体電解質層積層管22の長さ方向における寸法及び折り曲げられた燃料極・固体電解質層積層管22の幅方向の寸法は、いずれも限定されず、SOFC素子の大きさにより設定することができる。
燃料極・固体電解質層積層管22の外径は2mm以下であり、1mm以下、特に0.7mm以下(通常、0.1mm以上)であることが好ましい。更に、燃料極・固体電解質層積層管22の管壁の厚さ、円筒形燃料極管221の管壁の厚さ、及び固体電解質層222の厚さは、それぞれ前記[2]、(1)、(A)における燃料極・固体電解質層積層管21の場合と同様とすることができる。このような燃料極・固体電解質層積層管22であれば、効率が高く、小型のSOFC素子とすることができ、短時間で起動及び停止させることができる。この燃料極・固体電解質層積層管22が埋設される本数(U字状体を1本と数える。)も特に限定されず、通常、2〜100本、特に25〜100本、更に50〜90本とすることができる。
この固体電解質形燃料電池素子102−11では、図16のように、燃料極・固体電解質層積層管22の両端部を除く部分が空気極体12に埋設されており、両端部は空気極体12の同一面側に突出している。この突出している両端部の長さは特に限定されず、SOFC素子の製造時等における操作性などを考慮して適宜の長さ、例えば、500〜3000μm、特に500〜1500μmとすることができる。このSOFC素子は、空気極体12の側面に空気極側集電膜5が積層され、空気極体12の、燃料極・固体電解質層積層管22の両端部が突出している一面側に絶縁膜7が積層され、更にこの絶縁膜7の表面に燃料極側集電膜6が積層された固体電解質形燃料電池素子102−12とすることができる(図17参照)。更に、各々の燃料極・固体電解質層積層管22のそれぞれ一方の端部を覆って、燃料極側集電膜6と導通するように燃料ガス導入用マニホールド兼燃料極側端子811が配設され、それぞれ他方の端部を覆って、燃料極側集電膜6と導通するように燃料ガス排出用マニホールド812が配設されて形成された固体電解質形燃料電池素子102−13とすることができる(図18参照)。
(B)燃料極体に空気極・固体電解質層積層管が埋設されたSOFC素子
このSOFC素子は、U字状且つ平面状の円筒形空気極管421と、円筒形空気極管421の外周面のうちの両端縁部を除く部分に設けられた固体電解質層422とからなる外径2mm以下の複数の空気極・固体電解質層積層管42の両端部及び屈曲部423を除く部分が、未焼成燃料極体32’が焼成されてなる燃料極体32の一部が有する複数の貫通孔、又は燃料極体32の一部となる未焼成燃料極体32’が有する複数の貫通孔、に挿通され、且つ空気極・固体電解質層積層管42の外周面と貫通孔の周面との間隙、及び燃料極体32又は未焼成燃料極体32’の、空気極・固体電解質層積層管42の屈曲部423が突出している側の屈曲部423を含む空間部に、燃料極体32の他部となる燃料極用材料S1が充填され、燃料極用材料S1又は未焼成燃料極体32’及び燃料極用材料S1が焼成されてなる。
上記「燃料極体32」には、複数の上記「空気極・固体電解質層積層管42」が埋設されている。燃料極体32は、前記[2]、(1)、(B)における燃料極体31の場合と同様の理由で、通常、立方体及び直方体等の外形を有し、その大きさも燃料極体31と同様とすることができる。尚、直方体であるときは、空気極・固体電解質層積層管42の長さ方向が、直方体の長辺の方向となることが好ましい。この燃料極体32は、後記[5]、(1)に記載の燃料極用材料を用いて形成することができる。
空気極・固体電解質層積層管42は、上記「円筒形空気極管421」と、上記「固体電解質層422」とからなり、U字状且つ平面状に形成されている。固体電解質層422は、円筒形空気極管421の外周面のうちの両端縁部を除く部分に設けられており、この固体電解質層422が設けられていない円筒形空気極管421の両端縁部から電力が取り出される。この両端縁部の長さは特に限定されず、円筒形空気極管421の作製時及びSOFC素子の製造時等における操作性などを考慮して適宜の長さ、例えば、100〜3000μm、特に200〜1500μmとすることができる。
空気極・固体電解質層積層管42は、U字状且つ平面状に形成されている。U字状且つ平面状である場合、その平面方向における寸法、即ち、折り曲げられた空気極・固体電解質層積層管42の長さ方向における寸法及び折り曲げられた空気極・固体電解質層積層管42の幅方向の寸法は、いずれも限定されず、SOFC素子の大きさにより設定することができる。
空気極・固体電解質層積層管42の外径は2mm以下であり、1mm以下、特に0.7mm以下(通常、0.1mm以上)であることが好ましい。更に、空気極・固体電解質層積層管42の管壁の厚さ、円筒形空気極管421の管壁の厚さ、及び固体電解質層422の厚さは、それぞれ前記[2]、(1)、(B)における空気極・固体電解質層積層管41の場合と同様とすることができる。このような空気極・固体電解質層積層管42であれば、効率が高く、小型のSOFC素子とすることができ、短時間で起動及び停止させることができる。この空気極・固体電解質層積層管42が埋設される本数(U字状体を1本と数える。)も特に限定されず、通常、2〜100本、特に25〜100本、更に50〜90本とすることができる。
この固体電解質形燃料電池素子102−21では、図16のように、空気極・固体電解質層積層管42の両端部を除く部分が燃料極体32に埋設されており、両端部は燃料極体32の同一面側に突出している。この突出している両端部の長さは特に限定されず、SOFC素子の製造時等における操作性などを考慮して適宜の長さ、例えば、500〜3000μm、特に500〜1500μmとすることができる。このSOFC素子は、燃料極体32の側面に燃料極側集電膜6が積層され、燃料極体32の、空気極・固体電解質層積層管42の両端部が突出している一面側に絶縁膜7が積層され、更にこの絶縁膜7の表面に空気極側集電膜5が積層された固体電解質形燃料電池素子102−22とすることができる(図17参照)。更に、各々の空気極・固体電解質層積層管42のそれぞれ一方の端部を覆って、空気極側集電膜5と導通するように支燃性ガス導入用マニホールド兼空気極側端子821が配設され、それぞれ他方の端部を覆って、空気極側集電膜5と導通するように支燃性ガス排出用マニホールド822が配設されて形成された固体電解質形燃料電池素子102−23とすることができる(図18参照)。
(2)SOFC素子の製造方法
上記(1)に記載のSOFC素子を製造する方法は特に限定されず、例えば、下記の方法により製造することができる。
空気極体に燃料極・固体電解質層積層管が埋設されたSOFC素子は、円筒形燃料極管221となる未焼成円筒形燃料極管221’を成形し、未焼成円筒形燃料極管221’を屈曲させてU字状且つ平面状に形成する形状付与工程と、U字状且つ平面状の未焼成円筒形燃料極管221’を熱処理する熱処理工程と、熱処理された未焼成円筒形燃料極管の外周面のうちの両端縁部を除く部分に、固体電解質層222となる未焼成固体電解質層を形成し、一体に焼成して燃料極・固体電解質層積層管22を作製する同時焼成工程と、複数の燃料極・固体電解質層積層管22の両端部及び屈曲部223を除く部分を、未焼成空気極体12’が焼成されてなる空気極体12の一部が有する複数の貫通孔、又は空気極体12の一部となる未焼成空気極体12’が有する複数の貫通孔、に挿通し、且つ燃料極・固体電解質層積層管22の外周面と貫通孔の周面との間隙、及び空気極体12の一部又は未焼成空気極体12’の、燃料極・固体電解質層積層管22の屈曲部223が突出している側の屈曲部223を含む空間部に、空気極体12の他部となる空気極用材料S3を充填する挿通・充填工程と、空気極用材料S3又は未焼成空気極体12’及び空気極用材料S3を焼成する焼成工程と、を備える製造方法により得ることができる。
また、燃料極体に空気極・固体電解質層積層管が埋設されたSOFC素子は、円筒形空気極管421となる未焼成円筒形空気極管421’を成形し、未焼成円筒形空気極管421’を屈曲させてU字状且つ平面状に形成する形状付与工程と、U字状且つ平面状の未焼成円筒形空気極管421’を熱処理する熱処理工程と、熱処理された未焼成円筒形空気極管の外周面のうちの両端縁部を除く部分に、固体電解質層422となる未焼成固体電解質層を形成し、一体に焼成して空気極・固体電解質層積層管42を作製する同時焼成工程と、複数の空気極・固体電解質層積層管42の両端部及び屈曲部423を除く部分を、未焼成燃料極体32’が焼成されてなる燃料極体32の一部が有する複数の貫通孔、又は燃料極体32の一部となる未焼成燃料極体32’が有する複数の貫通孔に挿通し、且つ空気極・固体電解質層積層管42の外周面と貫通孔の周面との間隙、及び燃料極体32の一部又は未焼成燃料極体32’の、空気極・固体電解質層積層管42の屈曲部423が突出している側の屈曲部423を含む空間部に、燃料極体32の他部となる燃料極用材料S1を充填する挿通・充填工程と、燃料極用材料S1又は未焼成燃料極体32’及び燃料極用材料S1を焼成する焼成工程と、を備える製造方法により得ることができる。
(a)形状付与工程
未焼成円筒形燃料極管P1及び未焼成円筒形空気極管P2の形成方法は特に限定されない。この形成方法については前記[2]、(2)、(a)における成形に関する記載をそのまま適用することができる。この未焼成円筒形燃料極管P1及び未焼成円筒形空気極管P2は、十分に柔軟であって、所定のU字状の溝部を有する成形型を使用し、この溝部に未焼成円筒形燃料極管P1及び未焼成円筒形空気極管P2を嵌め込む等の方法により屈曲させることができる。これにより、所定のU字状且つ平面状の未焼成円筒形燃料極管221’若しくは未焼成円筒形空気極管421’(図12参照)とすることができる。
(b)熱処理工程
燃料極用材料及び空気極用材料には有機バインダ等が含有されているため、この有機バインダ等を除去するため、形状付与された未焼成円筒形燃料極管P1及び未焼成円筒形空気極管P2を加熱して熱処理し、仮焼体である未焼成円筒形燃料極管221’及び未焼成円筒形空気極管421’を形成する。熱処理温度及び熱処理時間は用いる原料粉末の種類等により設定することができる。また、熱処理雰囲気は、大気雰囲気等の酸化雰囲気とすることができる。
(c)同時焼成工程
熱処理された未焼成円筒形燃料極管221’の外周面のうちの両端縁部を除く部分に未焼成固体電解質層を形成する方法、並びに未焼成円筒形空気極管421’の外周面のうちの両端縁部を除く部分に未焼成固体電解質層を形成する方法は、特に限定されない。例えば、後記[5]、(2)に記載の固体電解質用材料S2が投入された容器に、未焼成円筒形燃料極管221’又は未焼成円筒形空気極管421’の各々の両端縁部を除く部分を浸漬し、その後、乾燥する方法(図13参照)、及び未焼成円筒形燃料極管又は未焼成円筒形空気極管の各々の両端縁部を除く部分に、固体電解質材料を吹付け塗布する方法等により未焼成固体電解質層を形成することができる。これらの方法のうちでは、より正確に所定の両端縁部を除く部分に未焼成固体電解質層を形成することができる浸漬法が好ましい。また、未焼成固体電解質層と、未焼成円筒形燃料極管221’又は未焼成円筒形空気極管421’との同時焼成については、前記[2]、(2)、(b)の記載をそのまま適用することができる。これにより、燃料極・固体電解質層積層管22及び空気極・固体電解質層積層管42を作製することができる(図14参照)。
(d)挿通・充填工程
燃料極・固体電解質層積層管22を、未焼成空気極体12’が焼成されてなる空気極体12[この焼成の条件は特に限定されないが、例えば、下記(e)焼成工程における未焼成空気極体のときと同様の条件とすることができる。]の一部が有する貫通孔、又は未焼成空気極体12’が有する貫通孔、に挿通し、且つその外周面と貫通孔の周面との間隙、及び屈曲部が突出している側の空間部に、空気極用材料を充填する方法、及び空気極・固体電解質層積層管42を、未焼成燃料極体32’が焼成されてなる燃料極体32[この焼成の条件は特に限定されないが、例えば、下記(e)焼成工程における未焼成燃料極体のときと同様の条件とすることができる。]の一部が有する貫通孔、又は未焼成燃料極体32’が有する貫通孔に挿通し、且つその外周面と貫通孔の周面との間隙、及び屈曲部が突出している側の空間部に、燃料極用材料を充填するする方法、は特に限定されない。例えば、空気極体12の一部又は未焼成空気極体12’及び燃料極体32の一部又は未焼成燃料極体32’の各々の貫通孔の一方の側の開口部から、燃料極・固体電解質層積層管22及び空気極・固体電解質層積層管42を挿入し、他方の側の開口部からそれぞれの両端部を突出させて挿通させることができる。この場合、燃料極・固体電解質層積層管22及び空気極・固体電解質層積層管42の各々の屈曲部は、燃料極体12の一部又は未焼成空気極体12’及び燃料極体32の一部又は未焼成燃料極体32’のそれぞれの貫通孔の一方の側の開口部から突出することになる。
燃料極・固体電解質層積層管22及び空気極・固体電解質層積層管42は、空気極体12の一部又は未焼成空気極体12’及び燃料極体32の一部又は未焼成燃料極体32’の各々の隣り合う貫通孔に順次挿入し、挿通させることが好ましい。このように挿通させたうえ、それぞれの燃料極・固体電解質層積層管22及び空気極・固体電解質層積層管42の、空気極体12の一部又は未焼成空気極体12’及び燃料極体32の一部又は未焼成燃料極体32’の各々の貫通孔の一方の側から突出する両端部が、縦方向及び横方向に規則正しく配列されるようにすることがより好ましい。このようにすれば、隣り合う燃料極・固体電解質層積層管22及び空気極・固体電解質層積層管42の、それぞれ隣り合う端部への燃料ガス若しくは支燃性ガスの供給又は排気のためのマニホールドを共用することができる(図18参照)。
空気極用材料S3及び燃料極用材料S1は、空気極体12の一部又は未焼成空気極体12’及び燃料極体32の一部又は未焼成燃料極体32’を、各々の外形と略同じ内寸法の容器に収容し、燃料極・固体電解質層積層管21及び空気極・固体電解質層積層管41の各々の両端部の先端部を位置決め用ガイド板により固定し、それぞれの外周面と貫通孔の周面との間隙、及び屈曲部が突出している側の空間部に投入し、充填することができる。
尚、容器は、未焼成空気極体12’及び未焼成燃料極体32’等の各々の全体を収容することができる大きさでなくてもよく、少なくとも未焼成空気極体12’及び未焼成燃料極体32’等のそれぞれの貫通孔の一方の側の開口部から突出している燃料極・固体電解質層積層管22及び空気極・固体電解質層積層管42の各々の屈曲部を収容することができる大きさの容器でもよい。
(e)焼成工程
上記(d)のようにして空気極用材料及び燃料極用材料を充填し、その後、焼成する。この焼成により、空気極体12又は燃料極体32が形成され、固体電解質形燃料電池素子102−11又は固体電解質形燃料電池素子102−21を製造することができる(図16参照)。焼成温度は用いるセラミック粉末の種類等にもよるが、後記[5]に記載の各種の材料を用いる場合、前記[2]、(2)、(d)の場合と同様とすることができる。焼成温度を保持する時間及び焼成雰囲気も、前記[2]、(2)、(d)の場合と同様とすることができる。
空気極側集電膜5は、空気極体12の側面、及び燃料極体32の一面側に形成された絶縁膜7の表面の所定部分に白金又は銀等のペーストを塗布し、加熱する等の方法により形成することができる。更に、燃料極側集電膜6は、燃料極体32の側面、及び空気極体12の一面側に形成された絶縁膜7の表面の所定部分に白金又は銀等のペーストを塗布し、加熱する等の方法により形成することができ、固体電解質形燃料電池素子102−12又は固体電解質形燃料電池素子102−22を製造することができる(図17参照)。
また、燃料極側集電膜6と、燃料ガス導入用マニホールド兼燃料極側端子811及び燃料ガス排出用マニホールド812、又は空気極側集電膜5と、支燃性ガス導入用マニホールド兼空気極側端子821及び支燃性ガス排出用マニホールド822とは、未加熱燃料極側集電膜又は未加熱空気極側集電膜と、燃料ガス導入用マニホールド兼燃料極側端子811及び燃料ガス排出用マニホールド812、又は支燃性ガス導入用マニホールド兼空気極側端子821及び支燃性ガス排出用マニホールド822とを接触させ、その後、未加熱燃料極側集電膜又は未加熱空気極側集電膜を加熱することで接合することができる。更に、燃料極側集電膜6又は空気極側集電膜5を予め形成しておき、燃料ガス導入用マニホールド兼燃料極側端子811及び燃料ガス排出用マニホールド812の接合面に金属ロウ材などを塗布し、又は支燃性ガス導入用マニホールド兼空気極側端子821及び支燃性ガス排出用マニホールド822の接合面に金属ロウ材などを塗布し、この塗布面と、燃料極側集電膜6又は空気極側集電膜5とを接触させ、加熱することで接合することができる。このようにして、固体電解質形燃料電池素子102−13又は固体電解質形燃料電池素子102−23を製造することができる(図18参照)。
[4]U字状且つ平面状の燃料極・固体電解質層積層管又は空気極・固体電解質層積層管の屈曲部が研削され、除去されてなる直線状の燃料極・固体電解質層積層管又は空気極・固体電解質層積層管を備えるSOFC素子及びその製造方法
(1)SOFC素子の構造
(A)空気極体に燃料極・固体電解質層積層管が埋設されたSOFC素子
このSOFC素子は、U字状且つ平面状の円筒形燃料極管231と、円筒形燃料極管231の外周面のうちの両端縁部を除く部分に設けられた固体電解質層232とからなる外径2mm以下の複数の燃料極・固体電解質層積層管23の両端部及び屈曲部233を除く部分が、未焼成空気極体13’が焼成されてなる空気極体13の一部が有する複数の貫通孔、又は空気極体13の一部となる未焼成空気極体13’が有する複数の貫通孔、に挿通され、且つ燃料極・固体電解質層積層管23の外周面と貫通孔の周面との間隙、及び空気極体13の一部又は未焼成空気極体13’の、燃料極・固体電解質層積層管23の屈曲部233が突出している側の屈曲部233を含む空間部に、空気極体13の他部となる空気極用材料S3が充填され、空気極用材料S3又は未焼成空気極体13’及び空気極用材料S3が焼成され、その後、燃料極・固体電解質層積層管23の屈曲部233、及び空気極体13の燃料極・固体電解質層積層管23の屈曲部233が埋設されている部分が除去され、燃料極・固体電解質層積層管23が開口されてなる。
上記「空気極体13」には、複数の上記「燃料極・固体電解質層積層管23」が埋設されている。空気極体13は、前記[2]、(1)、(A)における空気極体11の場合と同様の理由で、通常、立方体及び直方体等の外形を有し、その大きさも空気極体11と同様とすることができる。尚、直方体であるときは、燃料極・固体電解質層積層管23の長さ方向が直方体の長辺の方向となることが好ましい。この空気極体13は、後記[5]、(3)に記載の空気極用材料を使用して形成することができる。
燃料極・固体電解質層積層管23は、上記「円筒形燃料極管231」と、上記「固体電解質層232」とからなり、U字状且つ平面状に形成されている。固体電解質層232は、円筒形燃料極管231の外周面のうちの両端縁部を除く部分に設けられており、この固体電解質層232が設けられていない円筒形燃料極管231の両端縁部から電力が取り出される。この両端縁部の長さは特に限定されず、円筒形燃料極管231の作製時及びSOFC素子の製造時等における操作性などを考慮して適宜の長さ、例えば、100〜3000μm、特に200〜1500μmとすることができる。
燃料極・固体電解質層積層管23は、屈曲部233等が除去された後は、その一端部が空気極体13の一面側に突出し、他端部が空気極体13の他面側に開口しておればよく、空気極体13に埋設されている部分の形状は特に限定されない。この部分の形状は、通常、直線状である。直線状であれば、複数の燃料極・固体電解質層積層管23を空気極体13に埋設したときに、無用な空間が形成されないように、密に集積させて埋設することができる。
尚、燃料極・固体電解質層積層管23は、密に集積させることができれば、蛇行していてもよく、この蛇行している場合も直線状に含めるものとする。
燃料極・固体電解質層積層管23の外径は2mm以下であり、1mm以下、特に0.7mm以下(通常、0.1mm以上)であることが好ましい。更に、燃料極・固体電解質層積層管23の管壁の厚さ、円筒形燃料極管231の管壁の厚さ、及び固体電解質層232の厚さは、それぞれ前記[2]、(1)、(A)における燃料極・固体電解質層積層管21の場合と同様とすることができる。このような燃料極・固体電解質層積層管23であれば、効率が高く、小型のSOFC素子とすることができ、短時間で起動及び停止させることができる。この燃料極・固体電解質層積層管23が埋設される本数も特に限定されず、通常、5〜200本、特に50〜200本、更に100〜180本とすることができる。
この固体電解質形燃料電池素子103−11では、図20のように、燃料極・固体電解質層積層管23の一端部を除く部分が空気極体13に埋設されている。即ち、一端部は空気極体13の一面側に突出し、他端部は空気極体13の他面側に開口している。この一面側に突出している一端部の長さは特に限定されず、SOFC素子の製造時等における操作性などを考慮して適宜の長さ、例えば、500〜3000μm、特に500〜1500μmとすることができる。このSOFC素子は、空気極体13の側面に空気極側集電膜5が積層され、空気極体13の、燃料極・固体電解質層積層管23の一端部が突出している一面側に絶縁膜7が積層され、更にこの絶縁膜7の表面に、円筒形燃料極管231と燃料ガス導入用マニホールド兼燃料極側端子811とが導通するように燃料極側集電膜6が積層された固体電解質形燃料電池素子103−12とすることができる(図10参照、製造方法は異なるが、構造は同じになるため代用する)。更に、この一面側の燃料極・固体電解質層積層管23の一端部を覆って燃料ガス導入用マニホールド兼燃料極側端子811が配設され、他面側の燃料極・固体電解質層積層管23の他端部の開口部を覆って燃料ガス排出用マニホールド812が配設されて形成された固体電解質形燃料電池素子103−13とすることができる(図11参照、製造方法は異なるが、構造は同じになるため代用する)。
(B)燃料極体に空気極・固体電解質層積層管が埋設されたSOFC素子
このSOFC素子は、U字状且つ平面状の円筒形空気極管431と、円筒形空気極管431の外周面のうちの両端縁部を除く部分に設けられた固体電解質層432とからなる外径2mm以下の複数の空気極・固体電解質層積層管43の両端部及び屈曲部433を除く部分が、未焼成燃料極体33’が焼成されてなる燃料極体33の一部が有する複数の貫通孔、又は燃料極体33の一部となる未焼成燃料極体33’が有する複数の貫通孔、に挿通され、且つ空気極・固体電解質層積層管43の外周面と貫通孔の周面との間隙、及び燃料極体33の一部又は未焼成燃料極体33’の、空気極・固体電解質層積層管43の屈曲部433が突出している側の屈曲部433を含む空間部に、燃料極体33の他部となる燃料極用材料S1が充填され、燃料極用材料S1又は未焼成燃料極体33’及び燃料極用材料S1が焼成され、その後、空気極・固体電解質層積層管43の屈曲部433、及び燃料極体33の空気極・固体電解質層積層管43の屈曲部433が埋設されている部分が除去され、空気極・固体電解質層積層管43が開口されてなる。
上記「燃料極体33」には、複数の上記「空気極・固体電解質層積層管43」が埋設されている。燃料極体33は、前記[2]、(1)、(B)における燃料極体31の場合と同様の理由で、通常、立方体及び直方体等の外形を有し、その大きさも燃料極体31と同様とすることができる。尚、直方体であるときは、空気極・固体電解質層積層管43の長さ方向が直方体の長辺の方向となることが好ましい。この燃料極体33は、後記[5]、(1)に記載の燃料極用材料を使用して形成することができる。
空気極・固体電解質層積層管43は、上記「円筒形空気極管431」と、上記「固体電解質層432」とからなり、U字状且つ平面状に形成されている。固体電解質層432は、円筒形空気極管431の外周面のうちの両端縁部を除く部分に設けられており、この固体電解質層432が設けられていない円筒形空気極管431の両端縁部から電力が取り出される。この両端縁部の長さは特に限定されず、円筒形空気極管431の作製時及びSOFC素子の製造時等における操作性などを考慮して適宜の長さ、例えば、100〜3000μm、特に200〜1500μmとすることができる。
空気極・固体電解質層積層管43は、屈曲部433等が除去された後は、その一端部が燃料極体33の一面側に突出し、他端部が燃料極体33の他面側に開口しておればよく、燃料極体33に埋設されている部分の形状は特に限定されない。この部分の形状は、通常、直線状である。直線状であれば、複数の燃料極・固体電解質層積層管43を燃料極体33に埋設したときに、無用な空間が形成されないように、密に集積させて埋設することができる。
尚、空気極・固体電解質層積層管43は、密に集積させることができれば、蛇行していてもよく、この蛇行している場合も直線状に含めるものとする。
空気極・固体電解質層積層管43の外径は2mm以下であり、1mm以下、特に0.7mm以下(通常、0.1mm以上)であることが好ましい。更に、空気極・固体電解質層積層管43の管壁の厚さ、円筒形空気極管431の管壁の厚さ、及び固体電解質層432の厚さは、それぞれ前記[2]、(1)、(B)における空気極・固体電解質層積層管41の場合と同様とすることができる。このような空気極・固体電解質層積層管43であれば、効率が高く、小型のSOFC素子とすることができ、短時間で起動及び停止させることができる。この空気極・固体電解質層積層管43が埋設される本数も特に限定されず、通常、5〜200本、特に50〜200本、更に100〜180本とすることができる。
この固体電解質形燃料電池素子103−21では、図20のように、空気極・固体電解質層積層管43の一端部を除く部分が燃料極体33に埋設されている。即ち、一端部は燃料極体33の一面側に突出し、他端部は燃料極体33の他面側に開口している。この一面側に突出している一端部の長さは特に限定されず、SOFC素子の製造時等における操作性などを考慮して適宜の長さ、例えば、500〜3000μm、特に500〜1500μmとすることができる。このSOFC素子は、燃料極体33の側面に燃料極側集電膜6が積層され、燃料極体33の、空気極・固体電解質層積層管43の一端部が突出している一面側に絶縁膜7積層され、更にこの絶縁膜7の表面に、円筒形空気極管431と支燃性ガス導入用マニホールド兼燃料極側端子821とが導通するように空気極側集電膜5が積層された固体電解質形燃料電池素子103−22とすることができる(図10参照、製造方法は異なるが、構造は同じになるため代用する。)。更に、この一面側の空気極・固体電解質層積層管43の一端部を覆って支燃性ガス導入用マニホールド兼空気極側端子821が配設され、他面側の空気極・固体電解質層積層管43の他端部の開口部を覆って支燃性ガス排出用マニホールド822が配設されて形成された固体電解質形燃料電池素子103−23とすることができる(図11参照、製造方法は異なるが、構造は同じになるため代用する。)。
(2)SOFC素子の製造方法
上記(1)に記載のSOFC素子を製造する方法は特に限定されず、例えば、下記の方法により製造することができる。
空気極体に燃料極・固体電解質層積層管が埋設されたSOFC素子は、円筒形燃料極管231となる未焼成円筒形燃料極管231’を成形し、未焼成円筒形燃料極管231’を屈曲させてU字状且つ平面状に形成する形状付与工程と、U字状且つ平面状の未焼成円筒形燃料極管231’を熱処理する熱処理工程と、熱処理された未焼成円筒形燃料極管の外周面のうちの両端縁部を除く部分に、固体電解質層232となる未焼成固体電解質層を形成し、一体に焼成して燃料極・固体電解質層積層管23を作製する同時焼成工程と、複数の燃料極・固体電解質層積層管23の両端部及び屈曲部233を除く部分を、未焼成空気極体13’が焼成されてなる空気極体13の一部が有する複数の貫通孔、又は空気極体13の一部となる未焼成空気極体13’が有する複数の貫通孔に挿通し、且つ燃料極・固体電解質層積層管23の外周面と貫通孔の周面との間隙、及び空気極体13の一部又は未焼成空気極体13’の、燃料極・固体電解質層積層管23の屈曲部233が突出している側の屈曲部233を含む空間部に、空気極体13の他部となる空気極用材料S3を充填する挿通・充填工程と、空気極用材料S3又は未焼成空気極体13’及び空気極用材料S3を焼成する焼成工程と、燃料極・固体電解質層積層管23の屈曲部233、及び空気極体13のうちの燃料極・固体電解質層積層管23の屈曲部233が埋設されている部分を除去し、燃料極・固体電解質層積層管23を空気極体13の他面側において開口させる開口工程と、を備える製造方法により得ることができる。
また、燃料極体に空気極・固体電解質層積層管が埋設されたSOFC素子は、円筒形空気極管431となる未焼成円筒形空気極管431’を成形し、未焼成円筒形空気極管431’を屈曲させてU字状且つ平面状に形成する形状付与工程と、U字状且つ平面状の未焼成円筒形空気極管431’を熱処理する熱処理工程と、熱処理された未焼成円筒形空気極管の外周面のうちの両端縁部を除く部分に、固体電解質層432となる未焼成固体電解質層を形成し、一体に焼成して空気極・固体電解質層積層管43を作製する同時焼成工程と、複数の空気極・固体電解質層積層管43の両端部及び屈曲部433を除く部分を、未焼成燃料極体33’が焼成されてなる燃料極体33の一部が有する複数の貫通孔、又は燃料極体33の一部となる未焼成燃料極体33’が有する複数の貫通孔に挿通し、且つ空気極・固体電解質層積層管43の外周面と貫通孔の周面との間隙、及び燃料極体33の一部又は未焼成燃料極体33’の、空気極・固体電解質層積層管43の屈曲部433が突出している側の屈曲部433を含む空間部に、燃料極体33の他部となる燃料極用材料S1を充填する挿通・充填工程と、燃料極用材料S1又は未焼成燃料極体33’及び燃料極用材料S1を焼成する焼成工程と、空気極・固体電解質層積層管43の屈曲部433、及び燃料極体33のうちの空気極・固体電解質層積層管43の屈曲部433が埋設されている部分を除去し、空気極・固体電解質層積層管43を燃料極体33の他面側において開口させる開口工程と、を備える製造方法により得ることができる。
(a)形状付与工程
未焼成円筒形燃料極管P1及び未焼成円筒形空気極管P2の形成方法は特に限定されない。この形成方法については前記[2]、(2)、(a)の記載をそのまま適用することができる。これにより、所定のU字状且つ平面状の未焼成円筒形燃料極管P1若しくは未焼成円筒形空気極管P2が形成される。
(b)熱処理工程
この熱処理工程については前記[2]、(2)、(b)の記載をそのまま適用することができる。これにより、所定のU字状且つ平面状の未焼成円筒形燃料極管231’若しくは未焼成円筒形空気極管431’(図12参照)が形成される。
(c)同時焼成工程
熱処理された未焼成円筒形燃料極管231’の外周面のうちの両端縁部を除く部分に未焼成固体電解質層を形成する方法、並びに未焼成円筒形空気極管431’の外周面のうちの両端縁部を除く部分に未焼成固体電解質層を形成する方法は、特に限定されず、前記[2]、(2)、(c)の記載をそのまま適用することができる(図13参照)。また、未焼成固体電解質層と、未焼成円筒形燃料極管231’又は未焼成円筒形空気極管431’との同時焼成については、前記[2]、(2)、(c)の記載をそのまま適用することができる(図14参照)。
(d)挿通・充填工程
燃料極・固体電解質層積層管23を、空気極体13の一部又は未焼成空気極体13’が有する貫通孔に挿通し、且つその外周面と貫通孔の周面との間隙、及び屈曲部が突出している側の空間部に、空気極用材料を充填する方法、及び空気極・固体電解質層積層管43を、燃料極体33の一部及び未焼成燃料極体33’が有する貫通孔に挿通し、且つその外周面と貫通孔の周面との間隙、及び屈曲部が突出している側の空間部に、燃料極用材料を充填するする方法、は特に限定されず、前記[2]、(2)、(d)の記載をそのまま適用することができる(図19参照)。但し、空気極体13の一部又は未焼成空気極体13’及び燃料極体33の一部又は未焼成燃料極体33’のそれぞれの貫通孔の一方の側の開口部から突出している燃料極・固体電解質層積層管23及び空気極・固体電解質層積層管43の各々の屈曲部は、下記の(f)除去工程において除去されるため、この屈曲部には、固体電解質層231、431は形成されていなくてもよい。
(e)焼成工程
焼成については、前記[2]、(2)、(e)の記載をそのまま適用することができる(図20参照)。
(f)開口工程
燃料極・固体電解質層積層管23の屈曲部233、及び空気極体13のうちの屈曲部233が埋設されている部分、並びに空気極・固体電解質層積層管43の屈曲部433、及び燃料極体33のうちの屈曲部433が埋設されている部分を除去する方法は特に限定されない。例えば、これらの部分を平面研削盤等により研削する方法、及び切断機で切断する方法などにより除去することができる。このように所定部分を除去することにより、燃料極・固体電解質層積層管23を空気極体13の他面側において開口させ、空気極・固体電解質層積層管43を燃料極体33の他面側において開口させ、固体電解質形燃料電池素子103−11又は固体電解質形燃料電池素子103−21を製造することができる(図20参照)。
空気極側集電膜5は、空気極体13の側面、及び燃料極体33の一面側に形成された絶縁膜7の表面の所定部分に白金又は銀等のペーストを塗布し、加熱する等の方法により形成することができる。更に、燃料極側集電膜6は、燃料極体33の側面、及び空気極体13の一面側に形成された絶縁膜7の表面の所定部分に白金又は銀等のペーストを塗布し、加熱する等の方法により形成することができる。また、空気極体13の他面側の燃料ガス排出用マニホールド812が接合される部分、又は燃料極体33の他面側の支燃性ガス排出用マニホールド822が接合される部分、に絶縁膜7を形成し、固体電解質形燃料電池素子103−12又は固体電解質形燃料電池素子103−22を製造することができる(図10参照、製造方法は異なるが、構造は同じであるため代用する。)。
また、燃料極側集電膜6と燃料ガス導入用マニホールド兼燃料極側端子811、及び空気極側集電膜5と支燃性ガス導入用マニホールド兼空気極側端子821とは、未加熱燃料極側集電膜と燃料ガス導入用マニホールド兼燃料極側端子811、及び未加熱空気極側集電膜と支燃性ガス導入用マニホールド兼空気極側端子821、とを接触させ、その後、未加熱燃料極側集電膜及び未加熱空気極側集電膜を加熱することで接合することができる。更に、燃料極側集電膜6又は空気極側集電膜5を予め形成しておき、燃料ガス導入用マニホールド兼燃料極側端子811の燃料極側集電膜6と接合させる面に金属ロウ材などを塗布し、及び支燃性ガス導入用マニホールド兼空気極側端子821の空気極側集電膜5と接合させる面に金属ロウ材などを塗布し、この塗布面と、燃料極側集電膜6又は空気極側集電膜5とを接触させ、加熱して、ロウ付けすることで接合することができる。
一方、空気極体13と燃料ガス排出用マニホールド812、及び燃料極体33と支燃性ガス排出用マニホールド822とは、燃料ガス排出用マニホールド812の、空気極体13の他面側に形成された絶縁膜7と接合される面に金属ロウ材などを塗布し、及び支燃性ガス排出用マニホールド822の、燃料極体33の他面側に形成された絶縁膜7と接合される面に金属ロウ材などを塗布し、この塗布面と、絶縁膜7とを接触させ、加熱して、ロウ付けすることで接合することができる。このようにして、固体電解質形燃料電池素子103−13又は固体電解質形燃料電池素子103−23を製造することができる(図11参照、製造方法は異なるが、構造は同じであるため代用する。)。
[5]空気極用材料、固体電解質層用材料及び燃料極用材料
(1)燃料極用材料
燃料極用材料は、SOFC素子の使用条件等により適宜選択することができる。この燃料極用材料としては、例えば、Ni及びFe等の金属と、CeO系セラミック、Sc、Y等により安定化されたZrO系セラミック及び酸化マンガン等のセラミックのうちの少なくとも1種との混合物などが挙げられる。また、Ni及びFe等の金属の酸化物と、上記それぞれのセラミックの少なくとも1種との混合物などが挙げられる。これらの材料のうちでは、Ni及びFe等の金属と、上記セラミックの各々の少なくとも1種との混合物が好ましく、NiとCeO系セラミックとの混合物がより好ましい。このCeO系セラミックとしては、一般式Ce1−xLn2−δ(Lnは、希土類元素、つまりSm、Gd、Sc及びY等からなる群から選ばれる少なくとも一種であり、Sm及びGdが好ましい。xは0.05≦x≦0.3である。)で表されるものが好ましく、Ce0.8Gd0.21.9(以下、「GDC」という。)及びCe0.8Sm0.21.9(以下、「SDC」という。)がより好ましい。
(2)固体電解質用材料
固体電解質層は、燃料電池の作動時に燃料極に導入される燃料ガス又は空気極に導入される支燃性ガスのうちの一方の一部をイオンとして移動させることができるイオン伝導性を有する。どのようなイオンを伝導することができるかは特に限定されないが、このイオンとしては、例えば、酸素イオン及び水素イオン等が挙げられる。固体電解質用材料はSOFC素子の使用条件等により適宜選択することができる。この固体電解質用材料としては、例えば、CeO系セラミック、ZrO系セラミック、LaGaO系セラミック、BaCeO系セラミック、SrCeO系セラミック、SrZrO系セラミック及びCaZrO系セラミック等の固体電解質が挙げられる。これらの材料のうちでは、CeO系セラミックが好ましく、上記GDC及びSDCが特に好ましい。更に、希土類元素により安定化されたZrOも好ましい。この希土類元素は1種でもよく、2種以上でもよい。希土類元素は特に限定されないが、Y、Scがより好ましい。
(3)空気極用材料
空気極用材料は、SOFC素子の使用条件等により適宜選択することができる。この空気極用材料としては、例えば、各種の金属、金属の酸化物、金属の複酸化物等を用いることができる。金属としては、Pt、Au、Ag、Pd、Ir、Ru及びRh等の金属又は2種以上の金属を含有する合金が挙げられる。また、金属の酸化物としては、La、Sr、Ce、Co、Mn及びFe等の酸化物(La、SrO、Ce、Co、MnO及びFeO等)が挙げられる。更に、複酸化物としては、少なくともLa、Pr、Sm、Sr、Ba、Co、Fe及びMn等を含有する複酸化物(La1−xSrCoO系複酸化物、La1−xSrFeO系複酸化物、La1−xSrCo1−yFe系複酸化物、La1−xSrMnO系複酸化物、Pr1−xBaCoO系複酸化物及びSm1−xSrCoO系複酸化物等)が挙げられる。
これらのうちでは複酸化物が好ましく、Ln1−xCoO系複酸化物、Ln1−xFeO系複酸化物及びLn1−xCo1−yFe系複酸化物(Lnは希土類元素であり、MはSr又はBaである。)がより好ましい。これらのCo及び/又はFeを含有する複酸化物、特にCo及びFeを含有する複酸化物からなる空気極13は、SOFCを500〜850℃、更に500〜750℃の温度範囲で低温作動させた場合でも、電極として優れた性能を有する。
上記の複酸化物は、Ln元素及びM元素の他に、更にその他の置換元素を有していてもよい。これらのLn1−xCoO系複酸化物、Ln1−xFeO系複酸化物及びLn1−xCo1−yFe系複酸化物のうちでも、Ln1−xCoO3±δ、Ln1−xFeO3±δ及びLn1−xCo1−yFe3±δで表され、0.2≦x≦0.8、0.5≦y≦0.9、且つ0≦δ<1(δは酸素過剰量又は酸素欠損量である。)である複酸化物が特に好ましく、LnはLa、Pr及びSmのうちの少なくとも1種であることが更に好ましい。このようなLn1−xCoO系複酸化物としては、例えば、La0.6Sr0.4CoO3±δ、Pr0.5Ba0.5CoO3±δ及びSm0.5Sr0.5CoO3±δ等が挙げられる。また、Ln1−xFeO系複酸化物としては、例えば、La0.6Sr0.4FeO3±δ、Pr0.5Ba0.5FeO3±δ及びSm0.5Sr0.5FeO3±δ等が挙げられる。更に、Ln1−xCo1−yFe系複酸化物としては、例えば、La0.6Sr0.4Co0.2Fe0.83±δ、Pr0.5Ba0.5Co0.2Fe0.83±δ及びSm0.5Sr0.5Co0.2Fe0.83±δ等が挙げられる。
[6]燃料ガス及び支燃性ガス
固体電解質形燃料電池を用いて発電させる場合、燃料極側には燃料ガスを導入し、空気極側には支燃性ガスを導入する。燃料ガスとしては、水素、水素源となる炭化水素(改質により水素とする。)、水素と炭化水素との混合ガス、及びこれらのガスを所定温度の水中を通過させ加湿した燃料ガス、これらのガスに水蒸気を混合させた燃料ガス等が挙げられる。炭化水素は特に限定されず、例えば、天然ガス、ナフサ、石炭ガス化ガス等が挙げられる。更に、メタン、エタン、プロパン、ブタン及びペンタン等の炭素数が1〜10、好ましくは1〜7、より好ましくは1〜4の飽和炭化水素、並びにエチレン及びプロピレン等の不飽和炭化水素を主成分とするものが好ましく、飽和炭化水素を主成分とするものが更に好ましい。この燃料ガスとしては水素が好ましい。これらの燃料ガスは1種のみを用いてもよいし、2種以上を併用することもできる。また、50体積%以下の窒素及びアルゴン等の不活性ガスを含有していてもよい。
支燃性ガスとしては、酸素と他の気体との混合ガス等が挙げられる。また、この混合ガスには80体積%以下の窒素及びアルゴン等の不活性ガスが含有されていてもよい。これらの支燃性ガスのうちでは安全であって、且つ安価であるため空気(約80体積%の窒素が含まれている。)が好ましい。
以下、実施例により本発明を具体的に説明する。
(1)空気極体に直線状の燃料極・固体電解質層積層管が埋設された固体電解質形燃料電池素子
実施例1
酸化ニッケル(NiO)粉末と、前記GDC粉末とを混合し、その後、造孔材として人造黒鉛粉末を配合し、更に混合し、次いで、バインダとしてポリウレタン系樹脂を配合し、更に混合して調製した燃料極用ペーストを、先端に環状ダイが取り付けられた押出成形機Eを用いて押出成形し(図4参照)、次いで、乾燥し、未焼成円筒形燃料極管P1を成形した。その後、所定長さに切断して直線状の未焼成円筒形燃料極管を形成した。
次いで、未焼成円筒形燃料極管を、大気雰囲気下、1100℃で1時間加熱し、熱処理した。この熱処理は、所謂、仮焼といわれる工程であり、これによりバインダと人造黒鉛粉末とが除去される。このようにして未焼成円筒形燃料極管211’を形成した(図5参照)。
その後、未焼成円筒形燃料極管211’の他端部の側の先端部に樹脂接着剤を充填し、乾燥して、この先端部から下記の固体電解質ペーストS2が未焼成円筒形燃料極管211’の内部に入り込まないようにした。次いで、未焼成円筒形燃料極管211’を、GDC粉末に、溶媒としてエタノール、バインダとしてアクリル系共重合体(水溶液)を配合して調製した固体電解質ペーストS2が投入された容器に、その外周面のうちの一端部から1000μmの部分を除いて固体電解質用ペーストS2に接触するように浸漬して(図6参照)、未焼成固体電解質層を形成し、次いで、室温で1時間乾燥した。その後、大気雰囲気下、1400℃で1時間保持して、未焼成円筒形燃料極管211’と未焼成固体電解質層とを同時焼成し、燃料極・固体電解質層積層管21を作製した(図7参照)。この燃料極・固体電解質層積層管21の外径は540μmであった。また、円筒形燃料極管211の外径は500μm、管壁の厚さは75μmであった。従って、固体電解質層212の厚さは20μmとなる。尚、上記の樹脂接着剤は、焼成時の際に分解し、揮散して除去される。
一方、La0.8Sr0.2FeO粉末に、有機溶媒としてトルエン、有機バインダとしてポリビニルアルコール、可塑剤としてジブチルフタレート及び造孔剤として人造黒鉛粉を配合して空気極用ペーストを調製した。その後、このペーストを用いてドクターブレード法によりシートを成形し、乾燥させて、空気極体11の一部となる厚さ300μmの未焼成空気極体用シート111’を得た。次いで、この未焼成空気極体用シート111’の平面方向に均等に直径768μmの開口部を144個設け(図1参照)、その後、これらのシート40枚を積層し、加熱、加圧して、144本の貫通孔112’を有する未焼成空気極体11’を形成した(図2参照)。
次いで、それぞれの貫通孔112’に燃料極・固体電解質層積層管21の一端部を除く部分を挿入し、その後、この未焼成空気極体11’を容器に収容し、次いで、La0.8Sr0.2FeO粉末に、溶媒としてブチルカルビトールを配合して調製した空気極用ペーストS3を、各々の燃料極・固体電解質層積層管21の外周面と貫通孔112’の周面との間隙に投入した(図8参照)。この際、燃料極・固体電解質層積層管21が貫通孔112’の径方向の中央部に位置するように、その先端部を位置決め用ガイド板により固定した。その後、容器から取り出し、乾燥し、大気雰囲気下、1000℃で1時間保持して焼成し、空気極体11を形成した。この空気極体11は、一辺が10mmの立方体であり、その一面側に燃料極・固体電解質層積層管21の一端部が突出し、他面側の端面に燃料極・固体電解質層積層管21の他端部が開口している。このようにして固体電解質形燃料電池素子101−11を製造した(図9参照)。
尚、燃料極・固体電解質層積層管21の他端部が十分に開口していない場合は、空気極体11の他面側を僅かに(例えば、10〜500μm)研削、除去してもよい。
また、空気極体11の側面に、白金ペーストを塗布し、この側面と同寸法で厚さが20μmである空気極側集電膜5を形成し、空気極体11の、燃料極・固体電解質層積層管21の一端部が突出している一面側、及び燃料極・固体電解質層積層管21の他端部が開口している他面側に、これら一面側及び他面側と同寸法で厚さが100μmのMgO−MgAl焼結体からなる絶縁膜7を積層した。その後、空気極体11の一面側に形成された絶縁膜7の表面に、銀ペーストを塗布し、円筒形燃料極管211と燃料ガス導入用マニホールド兼燃料極側端子811とが導通するように、且つ空気極側集電膜5と接触しないように、厚さが20μmの燃料極側集電膜6を形成し、固体電解質形燃料電池素子101−12を製造した(図10参照)。
更に、ステンレス鋼からなり、内面側に燃料ガスの導入用流路を有する燃料ガス導入用マニホールド兼燃料極側端子811の、燃料極側集電膜6と接合される面に銀ロウ材を塗布し、各々の燃料極・固体電解質層積層管21の空気極体11の一面側におけるそれぞれの一端部を覆うように配設し、また、ステンレス鋼からなり、内面側に燃料ガスの排出用流路を有する燃料ガス排出用マニホールド812の、空気極体11の他面側に形成された絶縁膜7と接合される面に銀ロウ材を塗布し、各々の燃料極・固体電解質層積層管21の空気極体11の他面側におけるそれぞれの他端部の開口部を覆うように配設し、次いで、加熱して、燃料極側集電膜6と燃料ガス導入用マニホールド兼燃料極側端子811、及び空気極体11の他面側に形成された絶縁膜7と燃料ガス排出用マニホールド812とをロウ付けし、固体電解質形燃料電池素子101−13を製造した(図11参照)。
(2)空気極体にU字状の燃料極・固体電解質層積層管が埋設された固体電解質形燃料電池素子
実施例2
実施例1と同様にして未焼成円筒形燃料極管P1を成形した。その後、所定のU字状の溝部を有する成形型に嵌め込んで屈曲させ、U字状且つ平面状の未焼成円筒形燃料極管を形成した。次いで、未焼成円筒形燃料極管221’を、実施例1と同様にして熱処理した。このようにしてU字状且つ平面状の未焼成円筒形燃料極管221’(図12参照)を形成した。
その後、熱処理された未焼成円筒形燃料極管221’を、実施例1と同様にして調製した固体電解質用ペーストS2が投入された容器に、その外周面のうちの両端部から1000μmの部分を除いて固体電解質用ペーストS2に接触するように浸漬して(図13参照)、未焼成固体電解質層を形成し、次いで、室温で1時間乾燥した。その後、大気雰囲気下、1400℃で1時間保持して、未焼成円筒形燃料極管221’と未焼成固体電解質層とを同時焼成し、燃料極・固体電解質層積層管22を作製した(図14参照)。この燃料極・固体電解質層積層管22の外径は540μmであった。また、円筒形燃料極管221の外径は500μm、管壁の厚さは75μmであった。従って、固体電解質層222の厚さは20μmとなる。
一方、実施例1と同様にして調製した空気極用ペーストを用いて、ドクターブレード法によりシートを成形し、乾燥させて、空気極体12の一部となる厚さ300μmの未焼成空気極体用シート121’を得た。次いで、この未焼成空気極体用シート121’の平面方向に均等に直径768μmの開口部を144個設け(図1参照)、その後、これらのシート40枚を積層し、加熱、加圧して、144本の貫通孔122’を有する未焼成空気極体12’を形成した(図2参照)。次いで、大気雰囲気下、1000℃で1時間保持して焼成し、144本の貫通孔を有する空気極体12の一部を形成した。
その後、それぞれの貫通孔に燃料極・固体電解質層積層管22の両端部及び屈曲部223を除く部分を挿入して挿通させ、次いで、この空気極体12の一部を容器に収容し、その後、実施例1と同様にして調製した空気極用ペーストS3を、各々の燃料極・固体電解質層積層管22の外周面と貫通孔の周面との間隙、及び屈曲部223が突出している空間部に投入した(図15参照)。この際、燃料極・固体電解質層積層管22が貫通孔の径方向の中央部に位置するように、その先端部を位置決め用ガイド板により固定した。また、各々の燃料極・固体電解質層積層管22は、縦方向及び横方向に整列するように配置させた。次いで、容器から取り出し、実施例1と同様にして乾燥し、焼成して、空気極体12を形成した。この空気極体12は、一辺が10mmの立方体であり、その一面側に燃料極・固体電解質層積層管22の両端部が突出している。このようにして固体電解質形燃料電池素子102−11を製造した(図16参照)。
また、空気極体12の側面に、白金ペーストを塗布し、この側面と同寸法で厚さが20μmである空気極側集電膜5を形成し、空気極体12の、燃料極・固体電解質層積層管22の両端部が突出している一面側に、この一面側と同寸法で厚さが100μmのMgO−MgAl焼結体からなる絶縁膜7を積層した。その後、絶縁膜7の表面のうちの各々の燃料極・固体電解質層積層管22のそれぞれ一端部近縁に、円筒形燃料極管221と燃料ガス導入用マニホールド兼燃料極側端子811とが導通するように、及び他端部近縁に、円筒形燃料極管221と下記の燃料ガス排出用マニホールド812とが導通するように、銀ペーストをそれぞれ帯状に塗布した。次いで、ステンレス鋼からなり、内面側に燃料ガスの導入用流路を有する燃料ガス導入用マニホールド兼燃料極側端子811の、燃料極側集電膜6と接合される面に銀ロウ材を塗布し、各々の燃料極・固体電解質層積層管22のそれぞれの一端部を覆うように配設し、また、ステンレス鋼からなり、内面側に燃料ガスの排出用流路を有する燃料ガス排出用マニホールド812の、燃料極側集電膜6と接合される面に銀ロウ材を塗布し、各々の燃料極・固体電解質層積層管22のそれぞれの他端部を覆うように配設し、その後、加熱して、厚さが20μmの燃料極側集電膜6を形成するとともに、燃料極側集電膜6と、燃料ガス導入用マニホールド兼燃料極側端子811及び燃料ガス排出用マニホールド812とを接合させ、固体電解質形燃料電池素子102−12及び固体電解質形燃料電池素子102−13を製造した(図17及び図18参照)。
(3)空気極体に、U字状の屈曲部が除去されてなる直線状の燃料極・固体電解質層積層管が埋設された燃料電池素子
実施例3
実施例2の場合と同様にして、直線部分の長さが、未焼成円筒形燃料極管221’の全長さ、即ち、両端面と屈曲部の頂点との間の長さと同じである他は同様のU字状且つ平面状の未焼成円筒形燃料極管231’を形成した(図12参照)。その後、未焼成円筒形燃料極管231’を、実施例1と同様にして調製した固体電解質ペーストS2が投入された容器に、その外周面のうちの両端部から1000μmの部分を除いて固体電解質用ペーストS2に接触するように浸漬して(図13参照)、未焼成固体電解質層を形成し、次いで、室温で1時間乾燥した。その後、大気雰囲気下、1400℃で1時間保持して、未焼成円筒形燃料極管231’と未焼成固体電解質層とを同時焼成し、燃料極・固体電解質層積層管23を作製した(図14参照)。この燃料極・固体電解質層積層管23の外径は540μmであった。また、円筒形燃料極管221の外径は500μm、管壁の厚さは75μmであった。従って、固体電解質層222の厚さは20μmとなる。
一方、実施例1と同様にして調製した空気極用ペーストを用いて、ドクターブレード法によりシートを成形し、乾燥させて、空気極体13の一部となる厚さ300μmの未焼成空気極体用シート131’を得た。次いで、この未焼成空気極体用シート131’の平面方向に均等に直径768μmの開口部を144個設け(図1参照)、その後、これらのシート40枚を積層し、加熱、加圧して、144本の貫通孔132’を有する未焼成空気極体13’を形成した(図2参照)。次いで、大気雰囲気下、1000℃で1時間保持して焼成し、144本の貫通孔を有する空気極体13の一部を形成した。
その後、それぞれの貫通孔に燃料極・固体電解質層積層管23の両端部及び屈曲部233を除く部分を挿入して挿通させ、次いで、この空気極体13の一部を容器に収容し、その後、実施例1と同様にして調製した空気極用ペーストS3を、各々の燃料極・固体電解質層積層管23の外周面と貫通孔の周面との間隙、及び屈曲部233が突出している空間部に投入した(図19参照)。この際、燃料極・固体電解質層積層管23が貫通孔の径方向の中央部に位置するように、その先端部を位置決め用ガイド板により固定した。また、各々の燃料極・固体電解質層積層管23は、縦方向及び横方向に整列するように配置させた。次いで、容器から取り出し、実施例1と同様にして乾燥し、焼成して、空気極体13を形成した。この空気極体13は、平面方向は一辺が10mmの正方形であり、且つ高さが11mmの直方体であって、その一面側に燃料極・固体電解質層積層管23の両端部が突出している。
その後、燃料極・固体電解質層積層管23の屈曲部233、及び屈曲部233が埋設された側の空気極体13の他面側の表面から1mmの部分を平面研削盤により研削し、燃料極・固体電解質層積層管23を空気極体13の他面側において開口させた。この空気極体13は、一辺が10mmの立方体であり、その一面側に燃料極・固体電解質層積層管23の一端部が突出し、他面側に他端部が開口している。このようにして固体電解質形燃料電池素子103−11を製造した(図20参照)。
また、空気極体13の側面に、白金ペーストを塗布し、この側面と同寸法で厚さが20μmである空気極側集電膜5を形成し、空気極体13の、燃料極・固体電解質層積層管23の一端部が突出している一面側、及び燃料極・固体電解質層積層管23の他端部が開口している他面側に、これら一面側及び他面側と同寸法で厚さが100μmのMgO−MgAl焼結体からなる絶縁膜7を積層した。その後、空気極体13の一面側に形成された絶縁膜7の表面に、銀ペーストを塗布し、円筒形燃料極管231と燃料ガス導入用マニホールド兼燃料極側端子811とが導通するように、且つ空気極側集電膜5と接触しないように、厚さが20μmの燃料極側集電膜6を形成し、固体電解質形燃料電池素子103−12を製造した(図10参照、製造方法は異なるが、構造は同じであるため代用する。)。
更に、ステンレス鋼からなり、内面側に燃料ガスの導入用流路を有する燃料ガス導入用マニホールド兼燃料極側端子811の、燃料極側集電膜6と接合される面に銀ロウ材を塗布し、各々の燃料極・固体電解質層積層管23の空気極体13の一面側におけるそれぞれの一端部を覆うように配設し、また、ステンレス鋼からなり、内面側に燃料ガスの排出用流路を有する燃料ガス排出用マニホールド812の、空気極体13の他面側に形成された絶縁膜7と接合される面に銀ロウ材を塗布し、各々の燃料極・固体電解質層積層管23の空気極体13の他面側におけるそれぞれの他端部の開口部を覆うように配設し、次いで、加熱して、燃料極側集電膜6と燃料ガス導入用マニホールド兼燃料極側端子811、及び空気極体13の他面側に形成された絶縁膜7と燃料ガス排出用マニホールド812とをロウ付けし、固体電解質形燃料電池素子103−13を製造した(図11参照、製造方法は異なるが、構造は同じであるため代用する。)。
尚、本発明では上記の実施例に限られず、目的、用途等によって本発明の範囲内において種々変更した実施例とすることができる。例えば、酸素発生器では、両方の電極をSOFC素子の空気極に相当する材料により形成し、両電極間に直流電流を流すことで、SOFC素子のときの燃料ガス用マニホールド内に酸素が発生する。更に、排ガスリアクターでは、両方の電極をSOFC素子の燃料極に相当する材料により形成し、両電極間に直流電流を流すことで、SOFC素子の場合の燃料ガス用マニホールド内を流通する排ガスに含まれるNOxが還元されて窒素に変化し、無害化される。
未焼成空気極体(又は未焼成燃料極体)を形成するための複数の開口部を有する複数枚の未焼成空気極体用シート(又は未焼成空気極体用シート)を模式的に示す斜視図である。 図1の複数枚の未焼成空気極体用シート(又は未焼成空気極体用シート)が積層されてなる未焼成空気極体(又は未焼成燃料極体)を模式的に示す斜視図である。 押出成形により形成された未焼成空気極体(又は未焼成燃料極体)を模式的に示す斜視図である。 未焼成円筒形燃料極管(又は未焼成円筒形空気極管)を成形している様子を示す模式図である。 直線状の未焼成円筒形燃料極管(又は未焼成円筒形空気極管)を示す模式図である。 固体電解質ペーストが投入された容器に、図5の直線状の未焼成円筒形燃料極管(又は未焼成円筒形空気極管)を浸漬している様子を示す模式図である。 円筒形燃料極管(又は円筒形空気極管)の外周面のうちの両端縁部を除く部分に固体電解質層が形成されてなる燃料極・固体電解質層積層管(又は空気極・固体電解質層積層管)を示す模式図である。 未焼成空気極体(又は未焼成燃料極体)が有する複数の貫通孔に、図7の燃料極・固体電解質層積層管(又は空気極・固体電解質層積層管)が挿通され、積層管の外周面と貫通孔の周面との間隙に空気極用材料(又は燃料極用材料)が投入され、充填されている様子を示す模式図である。 空気極体(又は燃料極体)に、複数の燃料極・固体電解質層積層管(又は空気極・固体電解質層積層管)の一端部を除く部分が埋設されてなる固体電解質形燃料電池素子の外観を示す斜視図である。 更に側面に空気極側集電膜(又は燃料極側集電膜)が付設され、上面に絶縁膜及び燃料極側集電膜(又は空気極側集電膜)が付設された固体電解質形燃料電池素子の外観を示す斜視図である。 更に燃料極側集電膜(空気極側集電膜)の上面に、燃料ガス導入用マニホールド兼燃料極側端子(又は支燃性ガス導入用マニホールド兼空気極側端子)及び燃料ガス排出用マニホールド(又は支燃性ガス排出用マニホールド)が付設された固体電解質形燃料電池素子の外観を示す斜視図である。 U字状且つ平面状に形成された未焼成円筒形燃料極管(又は未焼成円筒形空気極管)を示す模式図である。 固体電解質用材料が投入された容器に、図12のU字状且つ平面状に形成された未焼成円筒形燃料極管(又は未焼成円筒形空気極管)を浸漬している様子を示す模式図である。 円筒形燃料極管(又は円筒形空気極管)の外周面のうちの両端縁部を除く部分に固体電解質層が形成されてなる燃料極・固体電解質層積層管(又は空気極・固体電解質層積層管)を示す模式図である。 空気極体(又は燃料極体)が有する複数の貫通孔に、図14の燃料極・固体電解質層積層管(又は空気極・固体電解質層積層管)が挿通され、積層管の外周面と貫通孔の周面との間隙、及び屈曲部が突出している側の空間部に、空気極用材料(又は燃料極用材料)が投入され、充填されている様子を示す模式図である。 空気極体(又は燃料極体)の同一面側に、複数の燃料極・固体電解質層積層管(又は空気極・固体電解質層積層管)が両端部が突出している固体電解質形燃料電池素子の外観を示す斜視図である。 更に側面に空気極側集電膜(又は燃料極側集電膜)が付設され、上面に絶縁膜及び燃料極側集電膜(空気極側集電膜)が付設された固体電解質形燃料電池素子の外観を示す斜視図である。 更に燃料極側集電膜(又は空気極側集電膜)の上面に、燃料ガス導入用マニホールド兼燃料極側端子(又は支燃性ガス導入用マニホールド兼空気極側端子)が付設され、空気極体(又は燃料極体)の下面に燃料ガス排出用マニホールド(又は支燃性ガス排出用マニホールド)が付設された固体電解質形燃料電池セルの外観を示す斜視図である。 空気極体(又は燃料極体)が有する複数の貫通孔に、燃料極・固体電解質層積層管(又は空気極・固体電解質層積層管)が挿通され、積層管の外周面と貫通孔の周面との間隙、及び屈曲部が突出している側の空間部に空気極用材料(又は燃料極用材料)が投入され、充填されている様子を示す模式図である。 空気極体(又は燃料極体)の一面側及び他面側で、複数の燃料極・固体電解質層積層管(又は空気極・固体電解質層積層管)が開口している固体電解質形燃料電池素子の外観を示す斜視図である。
符号の説明
11、12、13;空気極体、11’、12’、13’;未焼成空気極体、111’、121’、131’;未焼成空気極体用シート、112’、122’、132’;貫通孔、21、22、23;燃料極・固体電解質層積層管、211、221、231;円筒形燃料極管、211’、221’、231’;未焼成円筒形燃料極管、212、222、232;固体電解質層、223、233;屈曲部、31、32、33;燃料極体、31’、32’、33’;未焼成燃料極体、311’、321’、331’;未焼成燃料極体用シート、312’、322’、332’;貫通孔、41、42、43;空気極・固体電解質層積層管、411、421、431;円筒形空気極管、411’、421’、431’;未焼成円筒形空気極管、412、422、432;固体電解質層、423、433;屈曲部、5;空気極側集電膜、6;燃料極側集電膜、7;絶縁膜、811;燃料ガス導入用マニホールド兼燃料極側端子、812;燃料ガス排出用マニホールド、821;支燃性ガス導入用マニホールド兼空気極側端子、822;支燃性ガス排出用マニホールド、P1;未焼成円筒形燃料極管、P2;未焼成円筒形空気極管、E;押出成形機、S1;燃料極用材料、S2;固体電解質用材料、S3;空気極用材料、101−11、101−12、101−13、101−21、101−22、101−23、102−11、102−12、102−13、102−21、102−22、102−23、103−11、103−12、103−13、103−21、103−22、103−23;固体電解質形燃料電池素子。

Claims (20)

  1. 直線状の円筒形燃料極管211と、該円筒形燃料極管211の外周面のうちの一端縁部を除く部分に設けられた固体電解質層212とからなる外径2mm以下の複数の燃料極・固体電解質層積層管21の少なくとも該一端縁部の側の一端部を除く部分が、空気極体11の一部となる未焼成空気極体11’が有する複数の貫通孔に挿通され、且つ該燃料極・固体電解質層積層管21の外周面と該貫通孔の周面との間隙に、該空気極体11の他部となる空気極用材料S3が充填され、該未焼成空気極体11’及び該空気極用材料S3が焼成されてなることを特徴とする電気化学素子。
  2. 直線状の円筒形燃料極管211と、該円筒形燃料極管211の外周面のうちの一端縁部を除く部分に設けられた固体電解質層212とからなる外径2mm以下の複数の燃料極・固体電解質層積層管21の少なくとも該一端縁部の側の一端部を除く部分が、未焼成空気極体11’が焼成されてなる空気極体11の一部が有する複数の貫通孔に挿通され、且つ該燃料極・固体電解質層積層管21の外周面と該貫通孔の周面との間隙に、該空気極体11の他部となる空気極用材料S3が充填され、該空気極用材料S3が焼成されてなることを特徴とする電気化学素子。
  3. U字状且つ平面状の円筒形燃料極管221と、該円筒形燃料極管221の外周面のうちの両端縁部を除く部分に設けられた固体電解質層222とからなる外径2mm以下の複数の燃料極・固体電解質層積層管22の両端部及び屈曲部223を除く部分が、未焼成空気極体12’が焼成されてなる空気極体12の一部が有する複数の貫通孔に挿通され、且つ該燃料極・固体電解質層積層管22の外周面と該貫通孔の周面との間隙、及び該未焼成空気極体12’の、該燃料極・固体電解質層積層管22の該屈曲部223が突出している側の該屈曲部223を含む空間部に、該空気極体12の他部となる空気極用材料S3が充填され、該空気極用材料S3が焼成されてなることを特徴とする電気化学素子。
  4. U字状且つ平面状の円筒形燃料極管221と、該円筒形燃料極管221の外周面のうちの両端縁部を除く部分に設けられた固体電解質層222とからなる外径2mm以下の複数の燃料極・固体電解質層積層管22の両端部及び屈曲部223を除く部分が、空気極体12の一部となる未焼成空気極体12’が有する複数の貫通孔に挿通され、且つ該燃料極・固体電解質層積層管22の外周面と該貫通孔の周面との間隙、及び該未焼成空気極体12’の、該燃料極・固体電解質層積層管22の該屈曲部223が突出している側の該屈曲部223を含む空間部に、該空気極体12の他部となる空気極用材料S3が充填され、該未焼成空気極体12’及び該空気極用材料S3が焼成されてなることを特徴とする電気化学素子。
  5. U字状且つ平面状の円筒形燃料極管231と、該円筒形燃料極管231の外周面のうちの両端縁部を除く部分に設けられた固体電解質層232とからなる外径2mm以下の複数の燃料極・固体電解質層積層管23の両端部及び屈曲部233を除く部分が、未焼成空気極体13’が焼成されてなる空気極体13の一部が有する複数の貫通孔に挿通され、且つ該燃料極・固体電解質層積層管23の外周面と該貫通孔の周面との間隙、及び該未焼成空気極体13’の、該燃料極・固体電解質層積層管23の該屈曲部233が突出している側の該屈曲部233を含む空間部に、該空気極体13の他部となる空気極用材料S3が充填され、該空気極用材料S3が焼成され、その後、該燃料極・固体電解質層積層管23の該屈曲部233、及び該空気極体13の該燃料極・固体電解質層積層管23の該屈曲部233が埋設されている部分が除去され、該燃料極・固体電解質層積層管23が開口されてなることを特徴とする電気化学素子。
  6. U字状且つ平面状の円筒形燃料極管231と、該円筒形燃料極管231の外周面のうちの両端縁部を除く部分に設けられた固体電解質層232とからなる外径2mm以下の複数の燃料極・固体電解質層積層管23の両端部及び屈曲部233を除く部分が、空気極体13の一部となる未焼成空気極体13’が有する複数の貫通孔に挿通され、且つ該燃料極・固体電解質層積層管23の外周面と該貫通孔の周面との間隙、及び該未焼成空気極体13’の、該燃料極・固体電解質層積層管23の該屈曲部233が突出している側の該屈曲部233を含む空間部に、該空気極体13の他部となる空気極用材料S3が充填され、該未焼成空気極体13’及び該空気極用材料S3が焼成され、その後、該燃料極・固体電解質層積層管23の該屈曲部233、及び該空気極体13の該燃料極・固体電解質層積層管23の該屈曲部233が埋設されている部分が除去され、該燃料極・固体電解質層積層管23が開口されてなることを特徴とする電気化学素子。
  7. 上記未焼成空気極体は、複数の開口部を有する未焼成空気極体用シートが複数枚積層されてなり、上記貫通孔は該開口部が連なって形成されている請求項1乃至6のうちのいずれか1項に記載の電気化学素子。
  8. 上記未焼成空気極体用シートのうちの少なくとも1枚の未焼成空気極体用シートが焼成されてなる空気極体部の気孔率が、他の未焼成空気極体用シートが焼成されてなる空気極体部の気孔率より高い請求項7に記載の電気化学素子。
  9. 上記未焼成空気極体は、押出成形により形成された請求項1乃至6のうちのいずれか1項に記載の電気化学素子。
  10. 上記空気極体の上記一部の気孔率が、該空気極体の上記他部の気孔率より高い請求項1乃至9のうちのいずれか1項に記載の電気化学素子。
  11. 直線状の円筒形空気極管411と、該円筒形空気極管411の外周面のうちの一端縁部を除く部分に設けられた固体電解質層412とからなる外径2mm以下の複数の空気極・固体電解質層積層管41の少なくとも該一端縁部の側の一端部を除く部分が、燃料極体31の一部となる未焼成燃料極体31’が有する複数の貫通孔に挿通され、且つ該空気極・固体電解質層積層管41の外周面と該貫通孔の周面との間隙に、該燃料極体31の他部となる燃料極用材料S1が充填され、該未焼成燃料極体31’及び該燃料極用材料S1が焼成されてなることを特徴とする電気化学素子。
  12. 直線状の円筒形空気極管411と、該円筒形空気極管411の外周面のうちの一端縁部を除く部分に設けられた固体電解質層412とからなる外径2mm以下の複数の空気極・固体電解質層積層管41の少なくとも該一端縁部の側の一端部を除く部分が、未焼成燃料極体31’が焼成されてなる燃料極体31の一部が有する複数の貫通孔に挿通され、且つ該空気極・固体電解質層積層管41の外周面と該貫通孔の周面との間隙に、該燃料極体31の他部となる燃料極用材料S1が充填され、該燃料極用材料S1が焼成されてなることを特徴とする電気化学素子。
  13. U字状且つ平面状の円筒形空気極管421と、該円筒形空気極管421の外周面のうちの両端縁部を除く部分に設けられた固体電解質層422とからなる外径2mm以下の複数の空気極・固体電解質層積層管42の両端部及び屈曲部423を除く部分が、未焼成燃料極体32’が焼成されてなる燃料極体32の一部が有する複数の貫通孔に挿通され、且つ該空気極・固体電解質層積層管42の外周面と該貫通孔の周面との間隙、及び該未焼成燃料極体32’の、該空気極・固体電解質層積層管42の該屈曲部423が突出している側の該屈曲部423を含む空間部に、該燃料極体32の他部となる燃料極用材料S1が充填され、該燃料極用材料S1が焼成されてなることを特徴とする電気化学素子。
  14. U字状且つ平面状の円筒形空気極管421と、該円筒形空気極管421の外周面のうちの両端縁部を除く部分に設けられた固体電解質層422とからなる外径2mm以下の複数の空気極・固体電解質層積層管42の両端部及び屈曲部423を除く部分が、燃料極体32の一部となる未焼成燃料極体32’が有する複数の貫通孔に挿通され、且つ該空気極・固体電解質層積層管42の外周面と該貫通孔の周面との間隙、及び該未焼成燃料極体32’の、該空気極・固体電解質層積層管42の該屈曲部423が突出している側の該屈曲部423を含む空間部に、該燃料極体32の他部となる燃料極用材料S1が充填され、該未焼成燃料極体32’及び該燃料極用材料S1が焼成されてなることを特徴とする電気化学素子。
  15. U字状且つ平面状の円筒形空気極管431と、該円筒形空気極管431の外周面のうちの両端縁部を除く部分に設けられた固体電解質層432とからなる外径2mm以下の複数の空気極・固体電解質層積層管43の両端部及び屈曲部433を除く部分が、未焼成燃料極体33’が焼成されてなる燃料極体33の一部が有する複数の貫通孔に挿通され、且つ該空気極・固体電解質層積層管43の外周面と該貫通孔の周面との間隙、及び該未焼成燃料極体33’の、該空気極・固体電解質層積層管43の該屈曲部433が突出している側の該屈曲部433を含む空間部に、該燃料極体33の他部となる燃料極用材料S1が充填され、該燃料極用材料S1が焼成され、その後、該空気極・固体電解質層積層管43の該屈曲部433、及び該燃料極体33の該空気極・固体電解質層積層管43の該屈曲部433が埋設されている部分が除去され、該空気極・固体電解質層積層管43が開口されてなることを特徴とする電気化学素子。
  16. U字状且つ平面状の円筒形空気極管431と、該円筒形空気極管431の外周面のうちの両端縁部を除く部分に設けられた固体電解質層432とからなる外径2mm以下の複数の空気極・固体電解質層積層管43の両端部及び屈曲部433を除く部分が、燃料極体33の一部となる未焼成燃料極体33’が有する複数の貫通孔に挿通され、且つ該空気極・固体電解質層積層管43の外周面と該貫通孔の周面との間隙、及び該未焼成燃料極体33’の、該空気極・固体電解質層積層管43の該屈曲部433が突出している側の該屈曲部433を含む空間部に、該燃料極体33の他部となる燃料極用材料S1が充填され、該未焼成燃料極体33’及び該燃料極用材料S1が焼成され、その後、該空気極・固体電解質層積層管43の該屈曲部433、及び該燃料極体33の該空気極・固体電解質層積層管43の該屈曲部433が埋設されている部分が除去され、該空気極・固体電解質層積層管43が開口されてなることを特徴とする電気化学素子。
  17. 上記未焼成燃料極体は、複数の開口部を有する未焼成燃料極体用シートが複数枚積層されてなり、上記貫通孔は該開口部が連なって形成されている請求項11乃至16のうちのいずれか1項に記載の電気化学素子。
  18. 上記未焼成燃料極体用シートのうちの少なくとも1枚の未焼成燃料極体用シートが焼成されてなる燃料極体部の気孔率が、他の未焼成燃料極体用シートが焼成されてなる燃料極体部の気孔率より高い請求項17に記載の電気化学素子。
  19. 上記未焼成燃料極体は、押出成形により形成された請求項11乃至16のうちのいずれか1項に記載の電気化学素子。
  20. 上記燃料極体の上記一部の気孔率が、該燃料極体の上記他部の気孔率より高い請求項11乃至19のうちのいずれか1項に記載の電気化学素子。
JP2005116306A 2005-04-13 2005-04-13 電気化学素子 Pending JP2006294521A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005116306A JP2006294521A (ja) 2005-04-13 2005-04-13 電気化学素子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005116306A JP2006294521A (ja) 2005-04-13 2005-04-13 電気化学素子

Publications (1)

Publication Number Publication Date
JP2006294521A true JP2006294521A (ja) 2006-10-26

Family

ID=37414844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005116306A Pending JP2006294521A (ja) 2005-04-13 2005-04-13 電気化学素子

Country Status (1)

Country Link
JP (1) JP2006294521A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007194206A (ja) * 2005-12-22 2007-08-02 Nok Corp 燃料電池モジュール
JP2008108659A (ja) * 2006-10-27 2008-05-08 National Institute Of Advanced Industrial & Technology 電気化学リアクター
KR100874110B1 (ko) 2007-07-20 2008-12-15 한국과학기술원 고체산화물 연료전지용 셀의 연료극 제조방법, 이에 따라제조된 연료극 및 고체산화물 연료전지용 셀
WO2016127122A1 (en) * 2015-02-06 2016-08-11 The Board Of Trustees Of The Leland Stanford Junior University Multifunctional energy storage composites

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007194206A (ja) * 2005-12-22 2007-08-02 Nok Corp 燃料電池モジュール
JP2008108659A (ja) * 2006-10-27 2008-05-08 National Institute Of Advanced Industrial & Technology 電気化学リアクター
KR100874110B1 (ko) 2007-07-20 2008-12-15 한국과학기술원 고체산화물 연료전지용 셀의 연료극 제조방법, 이에 따라제조된 연료극 및 고체산화물 연료전지용 셀
WO2016127122A1 (en) * 2015-02-06 2016-08-11 The Board Of Trustees Of The Leland Stanford Junior University Multifunctional energy storage composites
US10784538B2 (en) 2015-02-06 2020-09-22 The Board Of Trustees Of The Leland Stanford Junior University Multifunctional energy storage composites

Similar Documents

Publication Publication Date Title
JP5295262B2 (ja) 燃料電池セル、燃料電池モジュール、燃料電池装置および燃料電池セルの製造方法
JP5882857B2 (ja) 固体酸化物形燃料電池セルおよびセルスタック装置ならびに燃料電池モジュール
JP6298170B2 (ja) セル、セルスタック装置、モジュールおよびモジュール収容装置
JP2015046365A (ja) セル、セルスタック装置、モジュールおよびモジュール収納装置
JP5744348B1 (ja) セル、セルスタック装置、モジュールおよびモジュール収容装置
JP2010231918A (ja) 燃料電池セル、燃料電池セルスタック装置、燃料電池モジュールおよび燃料電池装置
JP5645712B2 (ja) 固体酸化物形燃料電池セルおよび燃料電池モジュール
JP5566405B2 (ja) 燃料電池セル、燃料電池セル装置および燃料電池モジュールならびに燃料電池装置
JP5989941B1 (ja) セル、セルスタック装置、モジュールおよびモジュール収容装置
JP5574891B2 (ja) 固体酸化物形燃料電池セル
JP2006294521A (ja) 電気化学素子
JP6121895B2 (ja) 電解セル、電解セルスタック装置および電解モジュールならびに電解装置
JP5404973B1 (ja) 固体酸化物形燃料電池セルおよび燃料電池モジュールならびに燃料電池装置
JP5642855B1 (ja) 燃料電池
JP5665999B2 (ja) 固体酸化物形燃料電池セル、セルスタック装置、燃料電池モジュールおよび燃料電池装置
JP6560083B2 (ja) セル、セルスタック装置、モジュール、及びモジュール収容装置
JP2011175906A (ja) セルスタック、燃料電池モジュールおよび燃料電池装置
JP5883536B1 (ja) 燃料電池
JP6585774B2 (ja) 固体酸化物形燃料電池セルおよびセルスタック装置ならびに燃料電池モジュール
JP2012178257A (ja) 燃料電池用多孔質導電性支持体および固体酸化物形燃料電池セル
JP6174503B2 (ja) セル、セルスタック装置、モジュールおよびモジュール収容装置
JP5122676B1 (ja) 燃料電池の構造体
JP6356852B2 (ja) 固体酸化物形燃料電池セルおよびセルスタック装置ならびに燃料電池モジュール
JP6110524B2 (ja) 固体酸化物形燃料電池セルおよびセルスタック装置ならびに燃料電池モジュール
JP2006221878A (ja) 電気化学素子及びその製造方法