JP2006284433A - 外観検査装置及び外観検査方法 - Google Patents

外観検査装置及び外観検査方法 Download PDF

Info

Publication number
JP2006284433A
JP2006284433A JP2005106187A JP2005106187A JP2006284433A JP 2006284433 A JP2006284433 A JP 2006284433A JP 2005106187 A JP2005106187 A JP 2005106187A JP 2005106187 A JP2005106187 A JP 2005106187A JP 2006284433 A JP2006284433 A JP 2006284433A
Authority
JP
Japan
Prior art keywords
distribution information
difference
image
distribution
calculation unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005106187A
Other languages
English (en)
Other versions
JP2006284433A5 (ja
Inventor
Akio Ishikawa
明夫 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Seimitsu Co Ltd
Original Assignee
Tokyo Seimitsu Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Seimitsu Co Ltd filed Critical Tokyo Seimitsu Co Ltd
Priority to JP2005106187A priority Critical patent/JP2006284433A/ja
Priority to DE102006014812A priority patent/DE102006014812A1/de
Priority to US11/396,173 priority patent/US20060222232A1/en
Priority to KR1020060030295A priority patent/KR100855100B1/ko
Publication of JP2006284433A publication Critical patent/JP2006284433A/ja
Publication of JP2006284433A5 publication Critical patent/JP2006284433A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/9501Semiconductor wafers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N2021/9513Liquid crystal panels

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Quality & Reliability (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

【課題】 試料の外観検査に使用された画像間の相違を表す情報を欠陥情報の他に報告することにより、従来の外観検査ではユーザが知り得なかった試料間の相違を示すことが可能な外観検査装置及び外観検査方法を提供する。
【解決手段】 外観検査装置を、試料3の表面を撮像する撮像手段4と、この撮像手段により得られた画像から試料3の欠陥を検出する欠陥検出手段5〜8と、さらに、撮像手段により撮像された画像における画素値の分布状態を示す分布情報を算出する分布情報算出手段10と、欠陥検出手段により検出された欠陥情報の出力の他に、分布情報を出力するための分布情報出力手段20と、を備えて構成する。
【選択図】 図6

Description

本発明は、試料の表面を撮像して得た撮像画像から、試料の外観を検査する外観検査装置に関し、特に半導体製造工程で半導体ウエハ上に形成した半導体回路パターンや、液晶表示パネルの欠陥を検出する外観検査装置に関する。
形成したパターンを撮像して画像データを生成し、画像データを解析してパターンの欠陥の有無などを検査することが広く行われている。特に、半導体製造の分野では、フォトマスクを検査するフォトマスク検査装置や半導体ウエハや、液晶表示パネルの上に形成したパターンを検査する外観検査装置が広く使用されている。ここでは、半導体製造工程で半導体ウエハ上に形成した半導体回路パターンの欠陥を検出する外観検査装置(インスペクションマシン)を例として説明を行なうが、本発明はこれに限定されるものではない。
また、一般の外観検査装置は、対象表面を垂直方向から照明してその反射光の像を捕らえる明視野検査装置であるが、照明光を直接捕らえない暗視野検査装置も使用されている。暗視野検査装置の場合、対象表面を斜め方向又は垂直方向から照明して正反射は検出しないようにセンサを配置し、照明光の照射位置を順次走査することにより対象表面の暗視野像を得る。従って、暗視野装置ではイメージセンサを使用しない場合もあるが、これも当然発明の対象である。
このように、試料の表面を撮像して得た撮像画像から、試料の外観を検査する外観検査装置及び方法であれば、どのような装置及び方法にも適用可能である。
半導体製造工程では、半導体ウエハ上に多数のチップ(ダイ)を形成する。各ダイには何層にも渡ってパターンが形成される。完成したダイは、プローバとテスタにより電気的な検査が行われ、不良ダイは組み立て工程から除かれる。半導体製造工程では、歩留まりが非常に重要であり、上記の電気的な検査の結果は製造工程にフィードバックされて各工程の管理に使用される。しかし、半導体製造工程は多数の工程で形成されており、製造を開始してから電気的な検査が行われるまで非常に長時間を要するため、電気的な検査により工程に不具合があることが判明した時には既に多数のウエハは処理の途中であり、検査の結果を歩留まりの向上に十分に生かすことができない。そこで、途中の工程で形成したパターンを検査して欠陥も検出するパターン欠陥検査などの外観検査が行われる。全工程のうちの複数の工程でパターン欠陥検査を行なえば、前の検査の後で発生した欠陥を検出することができ、検査結果を迅速に工程管理に反映することができる。
図1に、本特許出願の出願人が、特願2003−188209(下記特許文献1)にて提案する外観検査装置のブロック図を示す。図示するように、2次元又は3次元方向に自在に移動可能なステージ1の上面に試料台(チャックステージ)2が設けられている。この試料台の上に、検査対象となる半導体ウエハ3を載置して固定する。ステージの上部には1次元又は2次元のCCDカメラなどを用いて構成される撮像装置4が設けられており、撮像装置4は半導体ウエハ3上に形成されたパターンの画像信号を発生させる。
図2に示すように、半導体ウエハ3上には、複数のダイ3Aが、X方向とY方向にそれぞれ繰返し、マトリクス状に配列されている。各ダイには同じパターンが形成されるので、隣接するダイの対応する部分の画像を比較するのが一般的である。両方のダイに欠陥がなければグレイレベル差は閾値より小さいが、一方に欠陥があればグレイレベル差は閾値より大きくなる(シングルディテクション)。これではどちらのダイに欠陥があるか分からないので、更に異なる側に隣接するダイとの比較を行ない、同じ部分のグレイレベル差が閾値より大きくなればそのダイに欠陥があることが分かる(ダブルディテクション)。
撮像装置4は1次元のCCDカメラを備え、カメラが半導体ウエハ3に対してX方向又はY方向に一定速度で相対的に移動(スキャン)するようにステージ1を移動する。画像信号は多値のディジタル信号(グレイレベル信号)に変換された後、差分検出部6に入力されると共に、信号記憶部5に記憶される。スキャンにより隣のダイのグレイレベル信号が生成されると、それに同期して信号記憶部5に記憶された前のダイのグレイレベル信号を読み出し、差分検出部6に入力する。実際には微小な位置合わせ処理などが行われるがここでは詳しい説明は省略する。
差分検出部6には隣接する2個のダイのグレイレベル信号が入力され、2つのグレイレベル信号の差(グレイレベル差)が演算されて検出閾値計算部7と検出部8に出力される。ここでは、差分検出部6は、グレイレベル差の絶対値を算出し、それをグレイレベル差として出力する。検出閾値計算部7は、グレイレベル差から検出閾値を決定し、検出部8に出力する。検出部8は、グレイレベル差を決定された閾値と比較し、欠陥かどうかを判定する。
半導体パターンは、メモリセル部、論理回路部、配線部、アナログ回路部などのパターンの種類に応じてノイズレベルが異なるのが一般的である。半導体パターンの部分と種類の対応関係は設計データにより分かる。そこで、例えば、検出閾値計算部7は部分毎に、その部分のグレイレベル差の分布に応じて検出閾値を自動的に決定し、検出部8は部分毎に決定された閾値で判定を行なう。
図3は、検出閾値計算部7の従来の構成例を示すブロック図である。図示するように、検出閾値計算部7は、差分検出部6が出力するグレイレベル差を入力して、その累積頻度を算出する累積頻度算出部31と、この累積頻度を入力して、グレイレベル差に対してリニアな関係になるように累積頻度を変換し変換累積頻度を算出する変換累積頻度算出部32と、この変換累積頻度全体を直線近似して、近似直線を算出する第1の近似直線算出部33と、この近似直線に基づいて、所定の累積頻度の値から所定の算出方法に従って閾値を決定する閾値決定部34とを備える。
このように構成された検出閾値計算部7及び上記各構成要素の動作を、図4〜図5を参照して説明する。ここに、図4は、図3に示す検出閾値計算部7の検出閾値計算処理を示す全体フローチャートであり、図5は検出閾値決定処理において生成されるグラフを示す図である。
ステップS1では、図1の差分検出部6で算出された各画素(ピクセル)のグレイレベル差が図5の累積頻度算出部31に入力される。ステップS2では、累積頻度算出部31は図5の(A)のようなグレイレベル差のヒストグラムを作成する。なお、対象となる画素数が多い場合には、ヒストグラムはすべての画素のグレイレベル差を使用して作成する必要はなく、サンプリングした一部の画素のグレイレベル差を使用して作成される。
ステップS3では、累積頻度算出部31が、ヒストグラムからグレイレベル差に対する累積頻度を算出する。
ステップS4では、変換累積頻度算出部32が、グレイレベル差がある所定の分布に従うと仮定して、仮定した分布であった場合に累積頻度がグレイレベル差に対して直線関係となるように変換する。このとき、変換累積頻度算出部32は、グレイレベル差が正規分布、ポアソン分布、又はχ二乗分布などのある分布に従うと仮定して、累積頻度を変換する。この変換累積頻度を図5(B)に示す。
ステップS5では、近似直線導出部33は、変換累積頻度からグレイレベル差と変換累積頻度との関係を示す近似直線(y=ax+b)を導出する(図5(C)参照)。
ステップS6では、閾値決定部34が、近似直線のパラメータa、b及び感度設定パラメータ(固定値)から閾値を決定する。ここでは、グレイレベル差と変換累積頻度の近似直線において、固定の感度設定パラメータとしてVOPとHOを設定しておき、累積確率(p)に相当する累積頻度P1(pにサンプル数を乗じて求める。)になる直線上の点を求め、その点から縦軸方向にVOP、横軸方向にHO移動したグレイレベル差を閾値とする。従って、閾値Tは、所定の計算式、
T=(P1−b+VOP)/a+HO …(1)
により算出される。このようにして、被検査画像のグレイレベル差のヒストグラムに応じて閾値を適切に自動設定することができる。
特開2004−177397号公報
従来の外観検査装置や外観検査方法では、上述の通り検出した欠陥に関する情報(欠陥の数、大きさ、位置又は種類など)のみをユーザに出力及び報告していた。しかしながら、欠陥の検出は、上記のように各試料(ウエハ)毎やダイ毎に自動設定される検出閾値に基づいて行われるため、ユーザは、報告された欠陥情報に基づいて、各試料が果たして同一品質を有しているか否かをユーザが確認することができなかった。
すなわち、検出閾値の設定値の変化が大きい場合には、たとえ対比される試料同士の欠陥数が同じであったとしても、これら試料に存在する欠陥を検出する際に使用された閾値が大きく異なれば、これら試料は全く異なる品質である可能性があるからである。
上記問題点に鑑み、本発明は、試料の外観検査に使用された画像間の相違を表す情報を上記欠陥情報の他に報告することにより、従来の外観検査ではユーザが知り得なかった試料間の相違を示すことが可能な外観検査装置及び外観検査方法を提供することを目的とする。
上記目的を達成するために、本発明では、上記の欠陥情報の他に、撮像された前記画像における画素値の分布状態を示す分布情報を算出して出力する。
すなわち、本発明の第1形態に係る外観検査装置は、試料の表面を撮像する撮像手段と、この撮像手段により得られた画像から試料の欠陥を検出する欠陥検出手段と、を有し、さらに、撮像手段により撮像された画像における画素値の分布状態を示す分布情報を算出する分布情報算出手段と、欠陥検出手段により検出された欠陥情報の出力の他に、分布情報を出力するための分布情報出力手段と、を備えて構成される。
また、本発明の第2形態に係る外観検査方法は、試料の表面を撮像して得られた画像から前記試料の欠陥を検出する際に、検出された欠陥の情報の他に、撮像された画像における画素値の分布状態を示す分布情報を算出して出力する。
出力される分布情報は、例えば、撮像された画像における画素値の統計量や、画像のノイズレベルや、画像のノイズレベルの分布情報としてよい。また、画像中の対応する2画素の画素値同士の差分を算出して、画像中における前記差分やその統計量の分布情報を、分布情報として出力してもよい。
本発明に係る外観検査装置及び外観検査方法は、表面に複数のダイが形成される半導体ウエハの外観検査に使用するものであってよい。このとき、上記撮像手段により撮像された画像における画素のグレイレベル値の分布状態を示す分布情報を算出及び出力する。さらに、画像中の異なるダイを撮像した部分同士の対応する2画素のグレイレベル差を算出して、画像中におけるグレイレベル差の分布情報を算出及び出力することとしてもよい。
また、ダイの上にメモリセルなどの繰り返しパターンが形成されている場合には、画像中の異なるセルを撮像した部分同士の対応する2画素のグレイレベル差を算出して、画像中におけるグレイレベル差の分布情報を算出及び出力することとしてもよい。
本発明により、試料の外観検査に使用された画像間の相違を表す情報をユーザに提供することが可能となる。これによって、従来の外観検査ではユーザが知り得なかった試料間の相違を示すことができ、外観検査をより高感度に行うことを可能とする。
以下、添付する図面を参照して本発明の実施例を説明する。図6は、本発明の実施例の半導体パターン用外観検査装置の概略構成を示すブロック図である。図6に示す半導体パターン用外観検査装置は、図1を参照して説明した半導体パターン用外観検査装置と同様の構成を有しており、同一又は類似する構成要素については同一の参照番号を付し、また、同じ構成要素については詳しい説明を省略する。
図示するように、2次元又は3次元方向に移動可能なステージ1の上面には試料台2が設けられ、この試料台2の上に検査対象となる半導体ウエハ3を載置して固定する。ステージの上部にはCCDカメラなどを用いて構成される撮像装置4が設けられており、撮像装置4は半導体ウエハ3上に形成されたパターンの画像信号を発生させる。
撮像装置4は、例えばTDI等の1次元のCCDカメラを備え、カメラが半導体ウエハ3に対してX方向又はY方向に一定速度で相対的に移動(スキャン)するようにステージ1を移動する。画像信号は多値のディジタル信号(グレイレベル信号)に変換された後、信号記憶部5に順次記憶される。
差分検出部6は、検査対象であるウエハ3上に形成されたダイについて既知の繰り返しピッチに基づいて、信号記憶部5に記憶された撮像画像における隣接する2個のダイ部分の画像について、対応する位置の各画素のグレイレベル信号を入力する。入力されると共に、スキャンにより隣のダイのグレイレベル信号が生成されると、実際には微小な位置合わせ処理などが行われるがここでは詳しい説明は省略する。
差分検出部6には隣接する2個のダイのグレイレベル信号が入力され、2つのグレイレベル信号の差(グレイレベル差)が演算されて検出閾値計算部7と検出部8に出力される。検出閾値計算部7は、グレイレベル差の分布から検出閾値を決定し、検出部8に出力する。検出部8は、グレイレベル差を決定された閾値と比較して欠陥かどうかを判定し、欠陥である場合には、欠陥情報として当該欠陥のあるダイ番号、ダイ内の位置情報、欠陥サイズ及び欠陥種類などを、後述の検査結果出力部20へ出力する。したがって、上記信号記憶部5、差分検出部6、検出閾値計算部7及び検出部8は、本発明に係る欠陥検出手段を成す。
本半導体パターン用外観検査装置は、さらに、撮像装置4により撮像されて信号記憶部5に記憶された画像を読み出し、撮像画像におけるグレイレベル信号(画素値)の分布状態を示す分布情報を算出する分布情報算出部10と、検出部8により検出された欠陥情報及び分布情報算出部10により算出された分布情報を出力するための検査結果出力部20と、を備える。
検査結果出力部20は、半導体パターン用外観検査装置からデータを出力するための既存のいかなるデータ出力手段を用いて構成してもよい。例えばこのような検査結果出力部20は、例えば、図6に示すようなプリンタ装置21、CRT22のような表示装置、ハードディスクドライブ、リムーバブル記憶装置、CD−ROMドライブ装置、DVDドライブ装置のようなドライブ装置23、又は単に他のコンピュータへデータを出力するためのネットワークインタフェース24のようなインタフェース手段により構成されてよい。半導体パターン用外観検査装置は、このような検査結果出力部20を介して、検出部8により検出された欠陥情報の出力と、その他に分布情報算出部10により算出された分布情報をユーザや他のコンピュータ装置へ出力する。したがって、検査結果出力部20は本発明に係る分布情報出力手段を成す。
図7は、図6に示す分布情報算出部10が実現する機能モジュールの構成図である。分布情報算出部10は、撮像装置4により撮像され信号記憶部5に記憶された撮像画像の各画素の画素値であるグレイレベル信号値や、検出部8により検出された欠陥の各種統計量を分布情報として算出する統計量算出部11を実現する。
また、分布情報算出部10は、信号記憶部5に記憶された撮像画像のノイズレベルやその分布状態を示す情報を分布情報として算出するノイズレベル算出部12と、撮像画像中の対応する2画素の画素値同士の画素値の差分であるグレイレベル差を算出する差分算出部13と、この差分の分布状態を示す情報を分布情報として算出する差分分布算出部14と、差分分布算出部14が算出した分布情報のさらに各種統計量を分布情報として算出する統計量算出部17と、からなる機能モジュールを実現する。
なお、差分算出部13と図6に示す差分検出部6とは、同一回路によって実現することとしてもよい。
さらに、分布情報算出部10は、複数のウエハについて統計量算出部11及びノイズレベル算出部12により算出された分布情報を記憶する分布情報記憶部15を備え、これら複数のウエハについて算出された上記分布情報を分析するウエハ間分布情報分析部16を実現する。
これら各モジュール11〜14、16、17は、単一のデータ処理手段を有するハードウエアウエア上で実行されるプログラムモジュールとして実現することとしてよく、また、それぞれ個別のハードウエア回路で構成することとしてもよい。
以下、上記各モジュール11〜14及び17とこれらが算出する分布情報について説明する。
統計量算出部11は、信号記憶部5に記憶された撮像画像に含まれる画素の画素値であるグレイレベル信号値の各種統計量を分布情報として算出する。このような統計量として、統計量算出部11は、例えば撮像画像に含まれる画素のグレイレベル値の平均値、分散(標準偏差)、最大値、最小値を算出する。
統計量算出部11が統計量を算出する撮像画像の範囲は、上記欠陥検出のために撮像装置4が撮像した範囲全てであってもよく、またはケアエリアと呼ばれる外観検査の検査範囲のみや、特定のダイ3Aの範囲内のみというように、ウエハ3上で予め定めた所定の範囲内のみについて統計量を算出してもよい。
また、統計量算出部11は、各ダイ3Aの範囲のような、ウエハ3上で予め区画された複数の範囲についてそれぞれ統計量を算出して、これらの統計量について、さらに平均値、分散(標準偏差)、最大値、最小値といった統計量を算出することとしてもよい。
また、統計量算出部11は、検出部8が出力した欠陥の座標情報等を取得して、欠陥の発生密度や欠陥の程度を算出する。
例えば、統計量算出部11は、ウエハ3上で予め区画された複数の範囲について、それぞれの範囲内に発生した欠陥のピクセル数を算出して欠陥の発生密度の分布や、その平均値、分散(標準偏差)、最大値、最小値等の統計量といった分布情報を算出することとしてよい。
また、検出された欠陥が外観上どの程度明瞭な欠陥であったかの程度は、欠陥ピクセル位置のグレイレベル差が検出閾値からどれだけ離れていたかによって数量化できるので、例えば、統計量算出部11は、検出部8が検出した欠陥の座標のグレイレベル差を差分検出部6から入力し、また検出部8が当該欠陥を検出した際に欠陥検出に使用した検出閾値を検出閾値計算部7から入力して、検出された欠陥毎に(グレイレベル差−検出閾値)を算出してその値をウエハ3上で予め区画された複数の範囲のそれぞれにおいて積分してもよい。そしてこのようにして求められた積分値の分布や、その平均値、分散(標準偏差)、最大値、最小値等の統計量といった分布情報を算出することとしてよい。
ノイズレベル算出部12は、信号記憶部5に記憶された撮像画像のノイズレベルやその分布状態を示す情報を分布情報として算出する。
例えば、ノイズレベル算出部12は、撮像画像中にパターンが含まれない場合、撮像画像に含まれる画素のグレイレベルの分散(標準偏差)をノイズレベルとして算出する。または、ノイズレベル算出部12は、撮像画像中に繰り返しパターンが含まれている場合には、信号記憶部5に記憶された撮像画像中の、同様の画素値を有することが予定される繰り返しパターン対応する2画素の画素値同士の差分の絶対値を算出する。これらの差分の絶対値を撮像画像中の複数の画素について算出してその平均値又は分散値をノイズレベルとして算出してもよい。
例えば、信号記憶部5に記憶された撮像画像が複数ダイ3Aが形成されたウエハ3を撮像したときのように繰り返しパターンを含む場合には、繰り返しパターンの繰り返しピッチの整数倍だけ離れた2画素についてその画素値の差分(グレイレベル差)の絶対値を算出する。すなわち、繰り返しピッチの整数倍だけ離れた2つのダイの対応する位置の画素同士の画素値の差分(グレイレベル差)の絶対値を算出する。
そして、このような差分の絶対値を1対又は複数対のダイ3Aに亘って(すなわちダイ3Aの形成領域に含まれる各画素それぞれについて)算出して、その平均値をノイズレベルとして算出してもよい。
ノイズレベル算出部12がノイズレベルを算出する撮像画像の範囲もまた、上記欠陥検出のために撮像装置4が撮像した範囲全てであってもよく、またはケアエリアと呼ばれる外観検査の検査範囲のみや、特定のダイ3Aの範囲内のみというように、ウエハ3上で予め定めた所定の範囲内のみについてノイズレベルを算出してもよい。
また、ノイズレベル算出部は、各ダイ3Aの範囲のような、ウエハ3上で予め区画された複数の範囲についてそれぞれノイズレベルを算出して、これらのノイズレベルについて、さらに平均値、分散(標準偏差)、最大値、最小値などの統計量といった分布情報を算出することとしてもよい。
差分算出部13は、信号記憶部5に記憶された撮像画像中の、同様の画素値を有することが予定される対応する2画素の画素値同士の差分の絶対値を算出する。
例えば、信号記憶部5に記憶された撮像画像が複数ダイ3Aが形成されたウエハ3を撮像したときのように繰り返しパターンを含む場合には、繰り返しパターンの繰り返しピッチの整数倍だけ離れた2画素についてその画素値の差分の絶対値を算出する。すなわち、繰り返しピッチの整数倍だけ離れた2つのダイの対応する位置の画素同士の画素値の差分の絶対値を算出する。
差分算出部13が上記の画素値同士の差分の絶対値を算出する範囲もまた、上記欠陥検出のために撮像装置4が撮像した範囲全てであってもよく、またはケアエリアと呼ばれる外観検査の検査範囲のような、ウエハ3上で予め定めた所定の範囲内のみとしてよい。
また、撮像画像が複数ダイ3Aが形成されたウエハ3を撮像した画像を含む場合には、差分算出部13は、1対のダイ3A(例えば隣接ダイ)の形成領域に亘って(すなわちこの形成領域に含まれる各画素のそれぞれについて)、これら1対のダイ3A内のそれぞれ対応する位置の画素同士の画素値の差分の絶対値を算出することとしてもよい。
又は、差分算出部13は、複数対のダイ3Aの形成領域に亘って、対応するダイ3Aの内のそれぞれ対応する位置の画素同士の画素値の差分の絶対値を算出することとしてもよい。例えば、差分算出部13は、ウエハ3上に形成された全てのダイ3Aのそれぞれについて、隣接して形成された1対のダイ内のそれぞれ対応する位置の画素同士の画素値の差分の絶対値を算出することとしてもよい。または、ウエハ3上で予め定めた所定の範囲内に存在する隣接ダイのみについて算出することとしてもよい。
差分分布算出部14は、差分算出部13が算出した、上記の画素値同士の差分(グレイレベル差)の絶対値の分布を示す情報を算出する。このような情報として、例えば、差分分布算出部14は、上記絶対値の平均値、分散(標準偏差)、最大値、最小値などの統計量を算出する。
また、差分分布算出部14は、各ダイ3Aの範囲のような、ウエハ3上で予め区画された複数の範囲毎の上記絶対値の統計量をそれぞれ算出して、さらに統計量算出部17がこれらの統計量について、さらに平均値、分散(標準偏差)、最大値、最小値といった統計量といった分布情報を算出して出力することとしてもよい。
さらに、差分算出部13により、上記の画素値同士の符号付き差分値(グレイレベル差)を算出し、差分分布算出部14が上記符号付き差分値の平均値、分散(標準偏差)、最大値、最小値などの統計量を算出することとしてもよい。特に符号付き差分値の平均値は、当該ウエハ3の撮像画像の明度の偏り(色ムラ)を示す分布情報となる。
さらに、ダイ3A上にメモリセルのような繰り返しパターン(図示せず)が形成されている場合には、複数対のセルの形成領域に亘って、対応するセル内のそれぞれ対応する一の画素同士の画素値の差分の絶対値を算出することとしてもよい。例えば差分算出部13は、ウエハ3の各ダイ3A上に形成された全てのセルのそれぞれについて、隣接して形成された1対のセル内のそれぞれ対応する位置の画素同士の画素値の差分の絶対値を算出することとしてもよい。または、ダイ3A上で予め定めた所定の範囲内に存在する隣接ダイのみについて算出することとしてもよい。さらにまたウエハ3上に形成された全てのダイについて算出してもよく、ウエハ3上に形成された特定のダイ3Aについて算出してもよい。
そして、差分分布算出部14は、差分算出部13が算出した、上記の対応するセル内の対応する画素値同士の差分(グレイレベル差)の絶対値の分布を示す情報を算出する。このような情報の例は、例えばセル比較グレイレベル差の絶対値の、ダイ3A毎の平均値、分散(標準偏差)、最大値、最小値などである。
さらに統計量算出部17は、これらの統計量について、複数のダイ3Aに亘って統計量(平均値、分散(標準偏差)、最大値、最小値など)を算出して分布情報としてもよい。
統計量算出部11、ノイズレベル算出部12、又は差分算出部13、差分分布算出部14及び統計量算出部17により算出された分布情報は検査結果出力部20に送信される。検査結果出力部20これらの分布情報を、検出部8により検出された欠陥情報に加えて、又はこれに代えて出力する。
分布情報記憶部15は、複数の試料(例えばウエハ3)について統計量算出部11及びノイズレベル算出部12により算出された分布情報を記憶する。ウエハ間分布情報分析部16は、これら複数のウエハ3に対して算出された分布情報に基づいて、これらウエハ3についての評価情報を算出する。または、分布情報記憶部15は、例えば複数のウエハ3に対して算出された平均値等の統計量について、さらに統計データを算出することとしてもよい。
例えば、分布情報記憶部15は、ウエハ3の品質を評価する尺度として、各ウエハ3に対して算出されたノイズレベルの平均値を利用して、ウエハ3の優劣に関する評価情報を算出することとしてよい。
なお、上記の実施例では撮像装置4が取得する撮像画像がグレイスケール画像である場合の例に沿って説明したが、撮像装置4による撮像画像がカラー画像である場合には、分布情報算出手段は、上記グレイスケール画像における画素値であるグレイレベル及び/又はグレイレベル差に代えて、撮像画像の各画素の明度、彩度、色相、輝度及び/又は色差情報などの画素値や、これらの画素値の差分値の分布状態を示す分布情報を算出することとしてもよい。
本発明は、試料の表面を撮像して得た撮像画像から、試料の外観を検査する外観検査装置に利用可能であり、特に半導体製造工程で半導体ウエハ上に形成した半導体回路パターンや、液晶表示パネルの欠陥を検出する外観検査装置に好適に利用することができる。
従来の外観検査装置の概略構成を示すブロック図である。 半導体ウエハ上のダイの配列を示す図である。 図1の外観検査装置の検出閾値計算部の構成例を示すブロック図である。 図3の検出閾値計算部の検出閾値計算処理を示すフローチャートである。 検出閾値を決定する処理を説明する図である。 本発明の実施例の半導体パターン用外観検査装置の全体斜視図である。 図6に示す分布情報算出部が実現する機能モジュールの構成図である。
符号の説明
1 ステージ
2 試料台
3 半導体ウエハ
3A ダイ
4 撮像装置
5 信号記憶部
6 差分検出部
7 検出閾値計算部
8 検出部
10 分布情報算出部
20 検査結果出力部

Claims (12)

  1. 試料の表面を撮像する撮像手段と、この撮像手段により得られた画像から前記試料の欠陥を検出する欠陥検出手段と、を有する外観検査装置において、
    前記撮像手段により撮像された画像における画素値の分布状態を示す分布情報を算出する分布情報算出手段と、
    前記欠陥検出手段により検出された欠陥情報の出力の他に、前記分布情報を出力するための分布情報出力手段と、
    を備えることを特徴とする外観検査装置。
  2. 前記分布情報算出手段は、前記分布情報として前記画素値の統計量を算出する統計量算出手段を備えることを特徴とする請求項1に記載の外観検査装置。
  3. 前記分布情報算出手段は、前記分布情報として前記画像のノイズレベルを算出するノイズレベル算出手段を備えることを特徴とする請求項1に記載の外観検査装置。
  4. 前記分布情報算出手段は、前記分布情報として前記画像のノイズレベルの分布情報を算出するノイズレベル算出手段を備えることを特徴とする請求項1に記載の外観検査装置。
  5. 前記分布情報算出手段は、
    前記画像中の対応する2画素の画素値同士の差分を算出する差分算出手段と、
    前記分布情報として、前記画像中における前記差分の分布情報を算出する差分分布算出手段と、
    を備えることを特徴とする請求項1に記載の外観検査装置。
  6. 前記試料は半導体ウエハであって、前記画素値は、前記撮像手段により撮像された画像における画素のグレイレベルであることを特徴とする請求項1〜5のいずれか一項に記載の外観検査装置。
  7. 前記試料は、表面に複数のダイが形成される半導体ウエハであって、
    前記差分算出手段は、前記画像中の異なる前記ダイを撮像した部分同士の対応する2画素のグレイレベル差を算出し、
    前記差分分布算出手段は、前記分布情報として、前記画像中における前記グレイレベル差の分布情報を算出する、
    ことを特徴とする請求項5に記載の外観検査装置。
  8. 前記試料は、表面に複数のダイが形成される半導体ウエハであって、
    前記ダイには、複数のセルの繰り返しパターンが形成され、
    前記差分算出手段は、前記画像中の異なる前記セルを撮像した部分同士の対応する2画素のグレイレベル差を算出し、
    前記差分分布算出手段は、前記分布情報として、前記画像中における前記グレイレベル差の分布情報を算出する、
    ことを特徴とする請求項5に記載の外観検査装置。
  9. 試料の表面を撮像して得られた画像から前記試料の欠陥を検出する外観検査方法において、検出された前記欠陥の情報の他に、撮像された前記画像における画素値の分布状態を示す分布情報を算出して出力することを特徴とする外観検査方法。
  10. 前記分布情報として、前記画素値の統計量を算出して出力することを特徴とする請求項9に記載の外観検査方法。
  11. 前記分布情報として、前記画像のノイズレベルを算出して出力することを特徴とする請求項9に記載の外観検査方法。
  12. 前記試料は半導体ウエハであって、前記画素値は、撮像された前記画像におけるグレイレベルであることを特徴とする請求項9〜11に記載の外観検査方法。
JP2005106187A 2005-04-01 2005-04-01 外観検査装置及び外観検査方法 Pending JP2006284433A (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2005106187A JP2006284433A (ja) 2005-04-01 2005-04-01 外観検査装置及び外観検査方法
DE102006014812A DE102006014812A1 (de) 2005-04-01 2006-03-29 Sichtprüfeinrichtung und Sichtprüfverfahren
US11/396,173 US20060222232A1 (en) 2005-04-01 2006-03-30 Appearance inspection apparatus and appearance inspection method
KR1020060030295A KR100855100B1 (ko) 2005-04-01 2006-04-03 외관 검사 장치 및 외관 검사 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005106187A JP2006284433A (ja) 2005-04-01 2005-04-01 外観検査装置及び外観検査方法

Publications (2)

Publication Number Publication Date
JP2006284433A true JP2006284433A (ja) 2006-10-19
JP2006284433A5 JP2006284433A5 (ja) 2008-04-24

Family

ID=37070543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005106187A Pending JP2006284433A (ja) 2005-04-01 2005-04-01 外観検査装置及び外観検査方法

Country Status (4)

Country Link
US (1) US20060222232A1 (ja)
JP (1) JP2006284433A (ja)
KR (1) KR100855100B1 (ja)
DE (1) DE102006014812A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009014409A (ja) * 2007-07-02 2009-01-22 Tokyo Electron Ltd 基板の欠陥検査方法及び欠陥検査プログラム
KR20190029484A (ko) * 2017-09-11 2019-03-20 어플라이드 머티리얼즈 이스라엘 리미티드 검사 레시피를 생성하는 방법 및 그 시스템
CN111220620A (zh) * 2020-03-09 2020-06-02 广东荣旭智能技术有限公司 一种机器视觉外观瑕疵检测装置及其瑕疵检测方法
JP2021072332A (ja) * 2019-10-30 2021-05-06 Alitecs株式会社 検査装置、方法、及び、プログラム

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008002934A (ja) * 2006-06-22 2008-01-10 Tokyo Seimitsu Co Ltd 外観検査装置及び外観検査方法
JP5414215B2 (ja) * 2008-07-30 2014-02-12 株式会社日立ハイテクノロジーズ 回路パターン検査装置、および回路パターンの検査方法
SG175097A1 (en) * 2009-04-23 2011-12-29 Rudolph Technologies Inc Optical inspection optimization
US8908170B2 (en) * 2012-12-27 2014-12-09 Shenzhen China Star Optoelectronics Technology Co., Ltd. Method for detecting defect of display panel and related detecting device
KR101828536B1 (ko) * 2013-04-11 2018-02-12 한화테크윈 주식회사 패널 검사 방법 및 장치
JP6513982B2 (ja) * 2015-03-16 2019-05-15 株式会社東芝 欠陥検査装置並びに欠陥検査装置の管理方法及び管理装置
US10354375B2 (en) * 2016-06-29 2019-07-16 Ngr Inc. Method of utilizing information on shape of frequency distribution of inspection result in a pattern inspection apparatus
US11749569B2 (en) * 2020-05-06 2023-09-05 Taiwan Semiconductor Manufacturing Company, Ltd. Method for non-destructive inspection of cell etch redeposition
DE102020125929A1 (de) * 2020-05-06 2021-11-11 Taiwan Semiconductor Manufacturing Co., Ltd. Verfahren zur nicht destruktiven überprüfung parasitärer ätzabscheidungen auf zellen

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01143938A (ja) * 1987-11-30 1989-06-06 Toshiba Corp 規則パターンの欠陥検出方法
JPH02253109A (ja) * 1989-03-28 1990-10-11 Toshiba Corp 欠陥判別装置
JPH06213821A (ja) * 1993-01-21 1994-08-05 Hitachi Ltd 半導体ウェハの異物検査装置
JP2000105203A (ja) * 1998-07-28 2000-04-11 Hitachi Ltd 欠陥検査装置およびその方法
JP2000171404A (ja) * 1998-12-02 2000-06-23 Tokyo Seimitsu Co Ltd 半導体集積装置のパターン検査装置及びパターン検査方法
JP2004144685A (ja) * 2002-10-28 2004-05-20 Hitachi Ltd 半導体デバイス製造ラインにおける外観検査装置の機差調整方法及びそのシステム
JP2004177397A (ja) * 2002-10-01 2004-06-24 Tokyo Seimitsu Co Ltd 画像欠陥検査方法、画像欠陥検査装置及び外観検査装置
JP2005072048A (ja) * 2003-08-27 2005-03-17 Nikon Corp データ管理装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10123064A (ja) 1996-10-24 1998-05-15 Hitachi Metals Ltd 外観検査方法
JPH1145919A (ja) 1997-07-24 1999-02-16 Hitachi Ltd 半導体基板の製造方法
JP3836988B2 (ja) 1999-01-06 2006-10-25 大日本スクリーン製造株式会社 パターン検査方法およびパターン検査装置
US6539106B1 (en) * 1999-01-08 2003-03-25 Applied Materials, Inc. Feature-based defect detection
JP2001304842A (ja) * 2000-04-25 2001-10-31 Hitachi Ltd パターン検査方法及びその装置並びに基板の処理方法
JP4017148B2 (ja) * 2002-09-05 2007-12-05 大日本スクリーン製造株式会社 パターン検査装置、歩留管理システム、パターン検査方法、基板製造方法およびプログラム
JP4033084B2 (ja) * 2003-09-01 2008-01-16 山崎製パン株式会社 物体表面に形成された凹部の認知方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01143938A (ja) * 1987-11-30 1989-06-06 Toshiba Corp 規則パターンの欠陥検出方法
JPH02253109A (ja) * 1989-03-28 1990-10-11 Toshiba Corp 欠陥判別装置
JPH06213821A (ja) * 1993-01-21 1994-08-05 Hitachi Ltd 半導体ウェハの異物検査装置
JP2000105203A (ja) * 1998-07-28 2000-04-11 Hitachi Ltd 欠陥検査装置およびその方法
JP2000171404A (ja) * 1998-12-02 2000-06-23 Tokyo Seimitsu Co Ltd 半導体集積装置のパターン検査装置及びパターン検査方法
JP2004177397A (ja) * 2002-10-01 2004-06-24 Tokyo Seimitsu Co Ltd 画像欠陥検査方法、画像欠陥検査装置及び外観検査装置
JP2004144685A (ja) * 2002-10-28 2004-05-20 Hitachi Ltd 半導体デバイス製造ラインにおける外観検査装置の機差調整方法及びそのシステム
JP2005072048A (ja) * 2003-08-27 2005-03-17 Nikon Corp データ管理装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009014409A (ja) * 2007-07-02 2009-01-22 Tokyo Electron Ltd 基板の欠陥検査方法及び欠陥検査プログラム
KR20190029484A (ko) * 2017-09-11 2019-03-20 어플라이드 머티리얼즈 이스라엘 리미티드 검사 레시피를 생성하는 방법 및 그 시스템
KR102079022B1 (ko) * 2017-09-11 2020-02-19 어플라이드 머티리얼즈 이스라엘 리미티드 검사 레시피를 생성하는 방법 및 그 시스템
JP2021072332A (ja) * 2019-10-30 2021-05-06 Alitecs株式会社 検査装置、方法、及び、プログラム
WO2021084933A1 (ja) * 2019-10-30 2021-05-06 Alitecs株式会社 検査装置、方法、及び、プログラム
JP7087221B2 (ja) 2019-10-30 2022-06-21 Alitecs株式会社 検査装置、方法、及び、プログラム
CN111220620A (zh) * 2020-03-09 2020-06-02 广东荣旭智能技术有限公司 一种机器视觉外观瑕疵检测装置及其瑕疵检测方法

Also Published As

Publication number Publication date
KR100855100B1 (ko) 2008-08-29
KR20060106780A (ko) 2006-10-12
DE102006014812A1 (de) 2006-12-07
US20060222232A1 (en) 2006-10-05

Similar Documents

Publication Publication Date Title
JP2006284433A (ja) 外観検査装置及び外観検査方法
JP4776308B2 (ja) 画像欠陥検査装置、画像欠陥検査システム、欠陥分類装置及び画像欠陥検査方法
JP4233397B2 (ja) 画像欠陥検査方法、画像欠陥検査装置及び外観検査装置
JP2007149837A (ja) 画像欠陥検査装置、画像欠陥検査システム及び画像欠陥検査方法
JP4766897B2 (ja) 画像欠陥検査方法、画像欠陥検査装置及び外観検査装置
JP2006200972A (ja) 画像欠陥検査方法、画像欠陥検査装置及び外観検査装置
JP2006308376A (ja) 外観検査装置及び外観検査方法
US7415362B2 (en) Image defect inspection apparatus
JP4703327B2 (ja) 画像欠陥検査装置及び画像欠陥検査方法
KR20210064365A (ko) 결함 검사 장치, 결함 검사 방법
KR101146081B1 (ko) 마이크로-검사 입력을 이용한 매크로 결함 검출 방법 및시스템
JP2010164487A (ja) 欠陥検査装置及び欠陥検査方法
JP2010043941A (ja) 画像検査装置及び画像検査方法
JP2007003459A (ja) 画像欠陥検査装置、外観検査装置及び画像欠陥検査方法
JP2012169571A (ja) 欠陥抽出走査電子顕微鏡検査装置及びその抽出方法
JP2006308372A (ja) 外観検査装置及び外観検査方法
JP2006138708A (ja) 画像欠陥検査方法、画像欠陥検査装置及び外観検査装置
JP2006113073A (ja) パターン欠陥検査装置及びパターン欠陥検査方法
JP6315419B2 (ja) 半導体検査方法、半導体検査装置及び半導体製造方法
JP3752849B2 (ja) パターン欠陥検査装置及びパターン欠陥検査方法
JP2009097959A (ja) 欠陥検出装置及び欠陥検出方法
JP2006242681A (ja) 外観検査装置
JP2009188175A (ja) 外観検査装置及び外観検査方法
JP4827896B2 (ja) 画像欠陥検査方法、画像欠陥検査装置及び外観検査装置
JP2007047122A (ja) 画像欠陥検査装置、欠陥分類装置及び画像欠陥検査方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080312

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100921

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111101