JP2006281582A - Copper-clad laminate - Google Patents

Copper-clad laminate Download PDF

Info

Publication number
JP2006281582A
JP2006281582A JP2005104159A JP2005104159A JP2006281582A JP 2006281582 A JP2006281582 A JP 2006281582A JP 2005104159 A JP2005104159 A JP 2005104159A JP 2005104159 A JP2005104159 A JP 2005104159A JP 2006281582 A JP2006281582 A JP 2006281582A
Authority
JP
Japan
Prior art keywords
copper
layer
copper foil
clad laminate
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005104159A
Other languages
Japanese (ja)
Other versions
JP4541212B2 (en
Inventor
Nobuyuki Hayashi
信行 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical Co Ltd filed Critical Nippon Steel Chemical Co Ltd
Priority to JP2005104159A priority Critical patent/JP4541212B2/en
Publication of JP2006281582A publication Critical patent/JP2006281582A/en
Application granted granted Critical
Publication of JP4541212B2 publication Critical patent/JP4541212B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a copper-clad laminate with a copper foil layer having enough mechanical strength to be used in applications requiring mechanical strength such as a connector. <P>SOLUTION: The laminate comprises at least a conductor layer and an insulating resin layer. In the copper-clad laminate, copper foil or copper alloy foil to be the conductor layer has a modulus of elasticity of 100-150 GPa, a strength of 600-1,000 MPa, and a thickness of 20-100 μm. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明はコネクター、バンプなどに用いられる積層板に関するものであり、導体層となる銅箔又は銅合金箔の弾性率が100Gpa〜150Gpaの範囲にあり、また強度が600〜1000Mpa、かつ厚さが20μm〜100μmの範囲にあることを特徴とする銅張り積層板である。   The present invention relates to a laminate used for connectors, bumps, etc., the copper foil or copper alloy foil serving as the conductor layer has an elastic modulus in the range of 100 Gpa to 150 Gpa, a strength of 600 to 1000 Mpa, and a thickness of A copper-clad laminate characterized by being in the range of 20 μm to 100 μm.

銅張り積層板は電気回路として各種電気製品で使用されている。電気製品の小型化、薄型化の要求にこたえるため、部品の小型化や薄型化が求められている。コネクターでは従来接続端子部分が棒状のピンが並んだ形状をしているが、銅合金をエッチング工法で渦巻き形状の微細な接続端子をつくる方法などが開発されている(特許文献1)。このような用途では銅箔に機械的強度が求められる。   Copper-clad laminates are used in various electrical products as electrical circuits. In order to meet the demand for smaller and thinner electrical products, there is a demand for smaller and thinner parts. Conventionally, in the connector, the connecting terminal portion has a shape in which rod-shaped pins are arranged. However, a method of making a spiral connecting terminal with a copper alloy by an etching method has been developed (Patent Document 1). In such applications, mechanical strength is required for the copper foil.

銅箔に機械的強度を付与しようとした場合、銅箔を厚くして対応する方法が容易に考えられる。しかしながら、銅箔の厚さは電気容量、回路の加工性によって決められており、また、回路の微細化によって薄い銅箔が用いられるようになっており、薄い銅箔における機械強度を高める要求が生じてきたが、これまでコネクターなどの用途における微細な回路に対応した薄い銅箔の機械的強度の改善に関する手法はこれまで紹介されていなかった。
特開2004−327182号公報
When it is going to give mechanical strength to copper foil, the method of respond | corresponding by thickening copper foil can be considered easily. However, the thickness of the copper foil is determined by the electric capacity and the processability of the circuit, and a thin copper foil is used due to the miniaturization of the circuit. Although it has occurred, no method has been introduced so far for improving the mechanical strength of a thin copper foil corresponding to a fine circuit in a connector or the like.
JP 2004-327182 A

従って、本発明の目的はコネクターなどの機械的強度を要求される用途に、十分な機械的強度を持った銅箔層を有する銅張り積層板を提供することにある。   Accordingly, an object of the present invention is to provide a copper-clad laminate having a copper foil layer having sufficient mechanical strength for applications requiring mechanical strength such as connectors.

本発明者等は特に積層される銅箔の機械的強度特に弾性率、強度、厚さについて検討し、適した範囲を規定することによって発明の完成に至った。   The present inventors have studied the mechanical strength, particularly the elastic modulus, strength, and thickness of the laminated copper foils, and have completed the invention by defining suitable ranges.

すなわち本発明は、少なくとも導体層及び絶縁性樹脂層からなる積層板であって、導体層となる銅箔又は合金銅箔の弾性率が100Gpa〜150Gpaの範囲にあり、強度が600〜1000Mpaであり、かつ厚さが20μm〜100μmの範囲にあることを特徴とする銅張り積層板である。   That is, the present invention is a laminate comprising at least a conductor layer and an insulating resin layer, the copper foil or alloy copper foil serving as the conductor layer has an elastic modulus in the range of 100 Gpa to 150 Gpa, and the strength is 600 to 1000 Mpa. The copper-clad laminate is characterized by having a thickness in the range of 20 μm to 100 μm.

本発明の積層板よれば、コネクターなどの機械的強度を要求される用途に、十分な機械的強度を持った銅箔層を有する銅張り積層板を提供することができる。   According to the laminate of the present invention, it is possible to provide a copper-clad laminate having a copper foil layer having sufficient mechanical strength for uses such as connectors that require mechanical strength.

本発明を実施するための最良の形態について、以下説明する。本発明の銅張り積層板は、支持体層(無くても可能)/絶縁性樹脂層/導体層からなる。本発明における支持体層は、特に制約はなく、用いなくても可能であるが、用いるならば導体層、及び絶縁性樹脂層と熱膨張係数が近く、400℃の耐熱性があることが必要であり、300℃以上の温度でアニール処理されたSUS304が好ましい。また、このようなステンレスの厚さは10〜50μmの範囲にあることがよく、18〜30μmの範囲にあることが特に好ましい。   The best mode for carrying out the present invention will be described below. The copper-clad laminate of the present invention comprises a support layer (can be omitted) / insulating resin layer / conductor layer. The support layer in the present invention is not particularly limited and can be used without being used, but if used, it should have a thermal expansion coefficient close to that of the conductor layer and the insulating resin layer and should have heat resistance of 400 ° C. SUS304 annealed at a temperature of 300 ° C. or higher is preferable. Further, the thickness of such stainless steel is preferably in the range of 10 to 50 μm, and particularly preferably in the range of 18 to 30 μm.

絶縁性樹脂層を構成する樹脂は、ポリイミド、ポリアミドイミド、ポリエーテルイミド、エポキシ、液晶樹脂等の電気絶縁性が高く、支持層及び導体層と接着性が良いものであればよい。また、絶縁性樹脂層がポリイミドからなる場合、この絶縁性樹脂層の厚さは10〜20μmであるのが好ましい。   The resin constituting the insulating resin layer is not particularly limited as long as it has high electrical insulating properties such as polyimide, polyamideimide, polyetherimide, epoxy, and liquid crystal resin, and has good adhesion to the support layer and the conductor layer. When the insulating resin layer is made of polyimide, the thickness of the insulating resin layer is preferably 10 to 20 μm.

本発明における導体層は、銅箔又は合金銅箔から形成される。ここで、合金銅箔とは、銅を必須として含有し、クロム、ジルコニウム、ニッケル、シリコン、亜鉛、ベリリウム等の銅以外の少なくとも1種以上の異種の元素を含有する合金銅箔を指し、銅含有率90重量%以上のものを言う。   The conductor layer in the present invention is formed from a copper foil or an alloy copper foil. Here, the alloy copper foil refers to an alloy copper foil containing copper as an essential component and containing at least one different element other than copper, such as chromium, zirconium, nickel, silicon, zinc, and beryllium. The content is 90% by weight or more.

本発明の導体層に用いられる銅箔又は合金銅箔は弾性率が100〜150GPaの範囲であることが必要となる。弾性率は導体層の曲げ応力に対する耐性を確保するための用件であって、100Gpaより小さいと半導体装置などの部品を実装する際にかかる応力を吸収できずに回路の破断などの不良発生の原因となる。また150Gpaより大きいと逆に抵抗が大きくなり部品実装後の接続信頼性が低下するなどの問題がある。
また、本発明の導体層に用いられる銅箔又は合金銅箔は強度が600〜1000Mpaの範囲であることが必要となる。強度は金属箔に対する衝撃などに対する耐性を確保するために必要となり、この範囲より小さいと回路加工時や部品実装時、更に回路部品として使用時に外部からかかる衝撃などにより回路が破断することがあるので好ましくない。また、この範囲より大きくても実用上はオーバースペックとなるのであまり意味がない。
The copper foil or alloy copper foil used for the conductor layer of the present invention is required to have an elastic modulus in the range of 100 to 150 GPa. The elastic modulus is a requirement to ensure the resistance to bending stress of the conductor layer, and if it is less than 100Gpa, it will not absorb the stress applied when mounting components such as semiconductor devices, and defects such as circuit breakage may occur. Cause. On the other hand, if it is larger than 150 Gpa, there is a problem in that the resistance increases and the connection reliability after component mounting decreases.
Moreover, the copper foil or alloy copper foil used for the conductor layer of the present invention is required to have a strength in the range of 600 to 1000 MPa. The strength is necessary to ensure resistance against impacts on the metal foil. If the strength is smaller than this range, the circuit may break due to external impacts during circuit processing, component mounting, and even when used as a circuit component. It is not preferable. Moreover, even if it is larger than this range, it is not meaningful because it becomes over-spec in practice.

次に、本発明の銅張り積層板の製造方法について説明する。銅張り積層板を製造するにあたっては、まず、片面を構成する支持層または導体層のロール巻シート状基板上に樹脂溶液を塗布した後、引き続き連続的に乾燥工程と硬化工程で熱処理し、次いで片面基板のフレキシブル基板をロール巻で得ることが好ましい。   Next, the manufacturing method of the copper clad laminated board of this invention is demonstrated. In producing a copper-clad laminate, first, after applying a resin solution on a roll-wound sheet-like substrate of a support layer or a conductor layer constituting one side, continuously heat treatment in a drying step and a curing step, It is preferable to obtain a single-sided flexible substrate by roll winding.

このようにして、シート状基板の片面に樹脂層を形成したら、この樹脂層上に他面を形成する銅箔又は合金銅箔(弾性率が100Gpa〜150Gpaの範囲にあり、また強度が600MPa〜1000Mpa、かつ厚さが20μm〜100μmの範囲でかつ厚みが20〜50μm)を重ね合わせ、加熱圧着して支持体層/樹脂層/導体層から構成される積層板とすることができる。加熱圧着条件は連続式に加圧ロールで一体化してもよいし、バッチ方式で所定の寸法に切断して複数層を積層し加圧してもよい。かかる加熱圧着条件は、用いる樹脂層に合わせて変更することが必要である。   Thus, after forming the resin layer on one side of the sheet-like substrate, the copper foil or alloy copper foil (the elastic modulus is in the range of 100 Gpa to 150 Gpa, and the strength is 600 MPa to form the other side on this resin layer. 1000Mpa and a thickness in the range of 20 μm to 100 μm and a thickness of 20 to 50 μm) are superposed and thermocompression bonded to form a laminate comprising a support layer / resin layer / conductor layer. The thermocompression bonding conditions may be integrated continuously with a pressure roll, or may be cut into a predetermined size by a batch method, and a plurality of layers may be laminated and pressed. Such thermocompression bonding conditions need to be changed according to the resin layer to be used.

以下、本発明を実施例により更に詳細に説明する。なお、合成例に用いられる略号は以下の通りである。
PMDA:無水ピロメリット酸
BTDA:ベンゾフェノン‐3,4,3',4'‐テトラカルボン酸ニ無水物
DSDA:ジフェニルスルホン‐3,4,3',4'-テトラカルボン酸ニ無水物
DA-NPG:1,3-ビス(4-アミノフェノキシ)-2,2-ジメチルプロパン
MABA:4-アミノ-N-(4-アミノ-2-メトキシフェニル)-ベンゾアミド
DAPE:4,4'-ジアミノジフェニルエーテル
p-PDA:p-フェニレンジアミン
DMAc:N,N-ジメチルアセトアミド
Hereinafter, the present invention will be described in more detail with reference to examples. The abbreviations used in the synthesis examples are as follows.
PMDA: pyromellitic anhydride
BTDA: Benzophenone-3,4,3 ', 4'-tetracarboxylic dianhydride
DSDA: Diphenylsulfone-3,4,3 ', 4'-tetracarboxylic dianhydride
DA-NPG: 1,3-bis (4-aminophenoxy) -2,2-dimethylpropane
MABA: 4-amino-N- (4-amino-2-methoxyphenyl) -benzamide
DAPE: 4,4'-diaminodiphenyl ether
p-PDA: p-phenylenediamine
DMAc: N, N-dimethylacetamide

[合成例1]
5.5モルのDA-NPGと3.5モルの3,4'-DAPEを秤量し、40Lのプラネタリーミキサーの中で攪拌しながら溶媒DMAc25.5kgに溶解させた。次いで、2.5モルのPMDAと5.0モルのBTDAとを加え、室温にて3時間攪拌を続けて重合反応を行い、粘稠なポリイミド前駆体Aの溶液を得た。
[Synthesis Example 1]
5.5 mol of DA-NPG and 3.5 mol of 3,4′-DAPE were weighed and dissolved in 25.5 kg of solvent DMAc with stirring in a 40 L planetary mixer. Next, 2.5 mol of PMDA and 5.0 mol of BTDA were added, and the polymerization reaction was continued for 3 hours at room temperature to obtain a viscous polyimide precursor A solution.

[合成例2]
8.5モルのMABAと2.0モルのDAPEを秤量し、40Lのプラネタリーミキサーの中で攪拌しながら溶媒DMAc25.5kgに溶解させた。次いで、8.6モルのPMDAを加え、室温にて3時間攪拌を続けて重合反応を行い、粘稠なポリイミド前駆体Bの溶液を得た。
[Synthesis Example 2]
8.5 mol of MABA and 2.0 mol of DAPE were weighed and dissolved in 25.5 kg of solvent DMAc with stirring in a 40 L planetary mixer. Next, 8.6 mol of PMDA was added, and the polymerization reaction was continued by stirring at room temperature for 3 hours to obtain a viscous polyimide precursor B solution.

[合成例3]
5.5モルのAPBと3.9モルのp-PDAを秤量し、40Lのプラネタリーミキサーの中で攪拌しながら溶媒DMAc25.5kgに溶解させた。次いで、5.4モルのDSDAと2.3モルのPMDAとを加え、室温にて3時間攪拌を続けて重合反応を行い、粘稠なポリイミド前駆体Cの溶液を得た。
[Synthesis Example 3]
5.5 mol of APB and 3.9 mol of p-PDA were weighed and dissolved in 25.5 kg of solvent DMAc with stirring in a 40 L planetary mixer. Next, 5.4 mol of DSDA and 2.3 mol of PMDA were added, and stirring was continued at room temperature for 3 hours to conduct a polymerization reaction, whereby a solution of a viscous polyimide precursor C was obtained.

支持層としてステンレス箔(新日本製鐵株式会社製、SUS304、テンションアニール処理品、厚み20μm)を用いこの上に、下層にポリイミド前駆体樹脂溶液A、中間層にポリイミド前駆体樹脂溶液B、最外層にポリイミド前駆体樹脂溶液Aを硬化後のポリイミド層厚みが18μmになるように三層を塗布して110℃で3分乾燥した後、更に130〜360℃の範囲で数段階、各3分間段階的な熱処理によりイミド化を完了させ、ステンレス上にポリイミド樹脂層を有する積層体を得た。   A stainless steel foil (manufactured by Nippon Steel Co., Ltd., SUS304, tension annealed product, thickness 20 μm) was used as a support layer, and a polyimide precursor resin solution A as a lower layer, a polyimide precursor resin solution B as an intermediate layer, and a top layer. Three layers were applied to the outer layer so that the polyimide layer thickness after curing the polyimide precursor resin solution A would be 18 μm, dried at 110 ° C. for 3 minutes, and then several steps in the range of 130 to 360 ° C. for 3 minutes each. The imidization was completed by stepwise heat treatment to obtain a laminate having a polyimide resin layer on stainless steel.

次に、バッチ処理としてジャパンエナジー社製圧延銅合箔1(C7025、銅箔厚み44μm)を重ね合わせ、真空プレス機を用いて、面圧15Mpa、温度320℃、プレス時間20分の条件で加熱圧着して目的の銅張り積層板を得た。
この銅張り積層板を前記特許文献1に記載されているような0.3mm系のスパイラルコネクタ部を100個有する試験基板に加工し、各コネクタ部の接続不良発生率を評価した。評価した結果を表1に示す。
Next, rolled copper alloy foil 1 (C7025, copper foil thickness 44 μm) manufactured by Japan Energy Co., Ltd. is overlaid as a batch treatment, and heated using a vacuum press machine under conditions of a surface pressure of 15 Mpa, a temperature of 320 ° C., and a press time of 20 minutes. The target copper-clad laminate was obtained by pressure bonding.
This copper-clad laminate was processed into a test board having 100 0.3 mm spiral connector portions as described in Patent Document 1, and the connection failure occurrence rate of each connector portion was evaluated. The evaluation results are shown in Table 1.

導体層としてジャパンエナジー社製圧延銅合箔2(C7025、銅箔厚み20μm)を用いこの上に、下層にポリイミド前駆体樹脂溶液A、中間層にポリイミド前駆体樹脂溶液B、最外層にポリイミド前駆体樹脂溶液Cで硬化後のポリイミド層厚みが18μmになるように三層を塗布して110℃で3分乾燥した後、更に130〜360℃の範囲で数段階、各3分間段階的な熱処理によりイミド化を完了させ、導体層上にポリイミド樹脂層を有する銅張り積層板を得た。実施例1と同様に評価した結果を表1に示す。   Rolled copper alloy foil 2 (C7025, copper foil thickness 20 μm) manufactured by Japan Energy Co. is used as the conductor layer, and the polyimide precursor resin solution A is used as the lower layer, the polyimide precursor resin solution B as the intermediate layer, and the polyimide precursor as the outermost layer. Three layers were applied so that the polyimide layer thickness after curing with body resin solution C would be 18 μm, dried at 110 ° C. for 3 minutes, and then in several steps at 130 to 360 ° C., stepwise heat treatment for 3 minutes each. Thus, imidization was completed to obtain a copper-clad laminate having a polyimide resin layer on the conductor layer. The results evaluated in the same manner as in Example 1 are shown in Table 1.

[比較例1]
導体層として古河電工社製電解銅箔3(F2-WS、銅箔厚み12μm)を用いこの上に、下層にポリイミド前駆体樹脂溶液A、中間層にポリイミド前駆体樹脂溶液B、最外層にポリイミド前駆体樹脂溶液Cで硬化後のポリイミド層厚みが18μmになるように三層を塗布して110℃で3分乾燥した後、更に130〜360℃の範囲で数段階、各3分間段階的な熱処理によりイミド化を完了させ、導体層上にポリイミド樹脂層を有する銅張り積層板を得た。実施例1と同様に評価した結果を表1に示す。
[Comparative Example 1]
As the conductor layer, Furukawa Electric Co., Ltd. electrolytic copper foil 3 (F2-WS, copper foil thickness 12 μm) was used. On top of this, polyimide precursor resin solution A was used as the lower layer, polyimide precursor resin solution B as the intermediate layer, and polyimide as the outermost layer. Three layers were applied so that the thickness of the polyimide layer after curing with the precursor resin solution C was 18 μm, dried at 110 ° C. for 3 minutes, and then several steps in the range of 130 to 360 ° C., each step for 3 minutes. Imidization was completed by heat treatment to obtain a copper-clad laminate having a polyimide resin layer on the conductor layer. The results evaluated in the same manner as in Example 1 are shown in Table 1.

Figure 2006281582
Figure 2006281582

Claims (3)

少なくとも導体層及び絶縁性樹脂層からなる積層板であって、導体層となる銅箔又は合金銅箔の弾性率が100Gpa〜150Gpaの範囲にあり、強度が600〜1000Mpaであり、かつ厚さが20μm〜100μmの範囲にあることを特徴とする銅張り積層板。   A laminate comprising at least a conductor layer and an insulating resin layer, wherein the copper foil or alloy copper foil serving as the conductor layer has an elastic modulus in the range of 100 Gpa to 150 Gpa, a strength of 600 to 1000 Mpa, and a thickness of A copper-clad laminate characterized by being in the range of 20 μm to 100 μm. 絶縁性樹脂層がポリイミドであることを特徴とする請求項1記載の銅張り積層板。   The copper-clad laminate according to claim 1, wherein the insulating resin layer is polyimide. ポリイミドからなる絶縁性樹脂層の厚さが10〜20μmであることを特徴とする請求項2記載の銅張り積層板。   The copper-clad laminate according to claim 2, wherein the insulating resin layer made of polyimide has a thickness of 10 to 20 µm.
JP2005104159A 2005-03-31 2005-03-31 Copper-clad laminate Expired - Fee Related JP4541212B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005104159A JP4541212B2 (en) 2005-03-31 2005-03-31 Copper-clad laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005104159A JP4541212B2 (en) 2005-03-31 2005-03-31 Copper-clad laminate

Publications (2)

Publication Number Publication Date
JP2006281582A true JP2006281582A (en) 2006-10-19
JP4541212B2 JP4541212B2 (en) 2010-09-08

Family

ID=37403992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005104159A Expired - Fee Related JP4541212B2 (en) 2005-03-31 2005-03-31 Copper-clad laminate

Country Status (1)

Country Link
JP (1) JP4541212B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013236108A (en) * 2009-08-11 2013-11-21 Murata Mfg Co Ltd Multilayer substrate
WO2019146193A1 (en) * 2018-01-25 2019-08-01 宇部エクシモ株式会社 Metal laminate, female connector, male connector, and connector structure

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002352540A (en) * 2001-05-22 2002-12-06 Mitsui Chemicals Inc Flexible metallic laminate
JP2004351774A (en) * 2003-05-29 2004-12-16 Tomoegawa Paper Co Ltd Flexible metal laminate and manufacturing method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002352540A (en) * 2001-05-22 2002-12-06 Mitsui Chemicals Inc Flexible metallic laminate
JP2004351774A (en) * 2003-05-29 2004-12-16 Tomoegawa Paper Co Ltd Flexible metal laminate and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013236108A (en) * 2009-08-11 2013-11-21 Murata Mfg Co Ltd Multilayer substrate
WO2019146193A1 (en) * 2018-01-25 2019-08-01 宇部エクシモ株式会社 Metal laminate, female connector, male connector, and connector structure

Also Published As

Publication number Publication date
JP4541212B2 (en) 2010-09-08

Similar Documents

Publication Publication Date Title
JP6534471B2 (en) Flexible circuit board
JP5524475B2 (en) Two-layer double-sided flexible metal laminate and its manufacturing method
KR20070091577A (en) Metallic laminate and method for preparing the same
JP2010157571A (en) Laminated body for flexible wiring board
KR101009128B1 (en) Flexible copper-clad laminate and method for making the same
JP4756194B2 (en) Method for producing copper clad laminate
JP2015507563A (en) Flexible metal-clad laminate and manufacturing method thereof
JP2014141083A5 (en)
KR20180004710A (en) Material for printed circuit board, metal laminate, method for manufacturing same, and method for manufacturing printed circuit board
JP5095142B2 (en) Flexible printed wiring board substrate and manufacturing method thereof
JP2012233198A (en) Polyamic acid and non-thermoplastic polyimide resin
JP2006286912A (en) Flexible copper-clad laminated plate showing higher bending property
JP4541212B2 (en) Copper-clad laminate
TWI633006B (en) Flexible copper clad laminated plate and flexible circuit substrate
JP2004237596A (en) Flexible copper-clad laminated plate and its production method
JP4936729B2 (en) Flexible printed wiring board substrate and manufacturing method thereof
KR101546393B1 (en) Flexible metal-clad laminate and method of producing the same
JP2006261444A (en) Double-sided flexible wiring substrate and foldable cellular phone employing it
WO2004049336A1 (en) Laminate for hdd suspension using thin copper foil and its manufacturing method
KR101099397B1 (en) A laminate for ultrasonic bonding and ultrasonic bonding method using thereof
JP2007265543A (en) Method for manufacturing layered body for hdd suspension
JP2005329641A (en) Substrate for flexible printed circuit board and its production method
JP4785340B2 (en) Polyimide metal laminate
JP2005288811A (en) Flexible laminated sheet and method for manufacturing flexible laminate
JP2007261174A (en) Manufacturing process of copper cladding laminate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100622

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100623

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160702

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees