JP2006272228A - 汚泥の脱水方法および脱水装置 - Google Patents

汚泥の脱水方法および脱水装置 Download PDF

Info

Publication number
JP2006272228A
JP2006272228A JP2005097762A JP2005097762A JP2006272228A JP 2006272228 A JP2006272228 A JP 2006272228A JP 2005097762 A JP2005097762 A JP 2005097762A JP 2005097762 A JP2005097762 A JP 2005097762A JP 2006272228 A JP2006272228 A JP 2006272228A
Authority
JP
Japan
Prior art keywords
sludge
turbidity
flocculant
dewatering
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005097762A
Other languages
English (en)
Inventor
Shigeru Sato
茂 佐藤
Hitoki Katsura
仁樹 桂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2005097762A priority Critical patent/JP2006272228A/ja
Publication of JP2006272228A publication Critical patent/JP2006272228A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Treatment Of Sludge (AREA)

Abstract

【課題】 汚泥の発生量、流量、汚泥性状等が変化した場合でも、脱水ケーキの低含水率を維持することおよび凝集不良による処理率低下の防止並びに汚泥脱水処理の安定化と共に凝集槽を有しない汚泥脱水機への適用が可能な汚泥の脱水方法および脱水装置を提供する。
【解決手段】 汚泥脱水機から分離される脱水ろ液の濁度を測定し、濁度の経時的変化分に基づいて注入する凝集剤の量を制御するようにした。
【選択図】 図1

Description

本発明は、汚泥の脱水方法および脱水装置に係り、特に安定した汚泥の凝集・脱水処理のために凝集剤の注入量を適正に制御するに好適な汚泥の脱水方法および脱水装置に関する。
近時、排水処理施設等で発生する汚泥を処理する汚泥処理システムが知られている(例えば、特許文献1を参照)。この特許文献1に開示される汚泥処理システムに適用される凝集センサは、凝集剤が注入されて凝集処理された水または汚泥フロックの凝集状態を、反応槽の内部または流路においてフロック間の空隙の濁度を測定することによって検出するものである。そしてこの汚泥処理システムは、反応槽に注入すべき凝集剤の注入量を速やかに最適化して懸濁物質をフロックの分離や汚泥脱水に適した状態にフロック化している。
ところで上述した汚泥処理システムは、例えば下水処理、し尿処理および化学・製薬工業、食品工業、電子・機械工場、紙パルプ工場に適用されている。これらの排水処理施設で発生する汚泥には、初沈汚泥、余剰汚泥、消化汚泥、浄化槽汚泥、凝集沈殿汚泥等がある。近時、下水道整備が進んだことや排水規制の強化により、上述した汚泥処理システムにて発生する汚泥量は年々増加傾向にある。通常、この種の汚泥は機械的な脱水処理、例えば汚泥脱水機によって脱水ケーキにされる。この脱水ケーキは、最終処分地不足等の問題から乾燥・焼却等によって減容化処理されるのが我が国では一般的になっている。
脱水ケーキを乾燥・焼却処分する場合には、省エネルギーの観点から、脱水ケーキ量を低減すること、つまり汚泥濃度や性状変動に影響されずに安定した脱水処理を行い、低含水率の脱水ケーキを得ることが究めて重要な技術課題である。
この種の目的で使用される汚泥脱水機には、ベルトプレス脱水機、遠心脱水機、スクリュープレス脱水機、真空脱水機、フィルタープレス脱水機や多重円盤形脱水機等がある。また、汚泥の脱水を効率的に行うためカチオン性、アニオン性、両性等の有機系高分子凝集剤を汚泥に注入する場合がほとんどであるが硫酸バンド、ポリ塩化アルミニウム、ポリ鉄、塩化第二鉄などの無機系凝集剤が併用されることもある。
上述した汚泥脱水機や凝集剤は、処理対象汚泥の性状や処理量に応じて適宜選定され、汚泥の脱水処理が行われている。
特開2003−154206号公報
しかしながら、上述した工場での製造品目や生産量の変動、汚泥濃縮時間、活性汚泥の状態、余剰汚泥の引抜量、凝集・沈殿の状態、気温等の変化によって汚泥の発生量や汚泥性状は常に変化する。その結果、高分子凝集剤を一定量注入しているだけでは、安定した凝集状態が維持できず、脱水ケーキ含水率も安定しないという問題がある。そこで汚泥の発生量、流量や懸濁物質濃度、pH、電気伝導率、有機物濃度、繊維分等の汚泥性状が変化した場合、担当者が常時管理しながら高分子凝集剤の注入量を変化させて対応しているのが現状である。このため、多大な手間や労力が必要なだけでなく凝集精度や処理の安定性の点で満足できるものではなく、改善が求められている。
また上述した特許文献1の汚泥処理システムにおいて、汚泥の濁度を検出するべく設けた濁度センサは、汚泥のSS濃度やフロックの大きさの影響を完全に排除することは難しい。特にフロック粒子の単位体積(計測領域)あたりの量(粒子密度)が粒子径により決定される場合がある密度(常時、計測領域内にフロック粒子が存在する状態)を超えた場合に計測が困難になるという問題があった。
また、上述した汚泥処理システムは、凝集槽を有しない遠心脱水機や真空脱水機またはフィルタープレス脱水機への適用が困難であるという問題もある。
本発明は、このような従来の事情を考慮してなされたもので、その目的は、汚泥の発生量、流量、汚泥性状等が変化した場合でも、脱水ケーキの低含水率を維持することおよび凝集不良による処理率低下の防止並びに汚泥脱水処理の安定化と共に、凝集槽を有しない汚泥脱水機への適用が可能な汚泥の脱水方法および脱水装置を提供することにある。
上述した目的を達成すべく本発明に係る汚泥の脱水方法および脱水装置は、汚泥脱水機から分離される脱水ろ液の濁度を測定し(濁度測定手段)、濁度の経時的変化分に基づいて注入する凝集剤の量を制御する(注入薬量制御手段)ことを特徴としている。好ましくは前記脱水ろ液の濁度は、レーザ散乱光方式により計測することが望ましい。
上述の汚泥の脱水方法および脱水装置は、汚泥脱水機によって脱水されて得られる脱水ろ液の濃度を例えばレーザ散乱光を用いたセンサを用いて検出する。そして検出された濁度の経時的変化分に基づいて凝集剤の量を制御する。
上述した本発明の汚泥の脱水方法および脱水装置によれば、汚泥脱水機から分離される脱水ろ液の濁度を測定し、濁度の経時的変化分に基づいて注入する凝集剤の量を制御している。このためSS濃度の影響やフロックの影響を受けることなく汚泥の脱水処理を安定に行うことができる。また本発明の汚泥の脱水方法および脱水装置は、汚泥脱水機から分離される脱水ろ液の濁度をレーザ散乱光による凝集センサによって測定しているので、SS濃度の影響やフロックの影響を受けることがない。
更に本発明は、汚泥脱水機から分離された脱水ろ液の濁度を凝集センサによって検出しているので、凝集槽がない遠心脱水機や真空脱水機またはフィルタープレス脱水機を用いた汚泥の脱水装置に適用することができる等の実用上多大なる効果を奏する。
以下、本発明の一実施形態に係る汚泥の脱水方法および脱水装置について添付図面を参照しながら説明する。図1は、本発明の汚泥の脱水方法が適用される汚泥の脱水装置(下水処理施設)の一例を示す概略構成図である。尚、図1は、本発明の形態の一部を示すものであって、この図によって本発明の範囲が制限されるものではない。
この下水処理施設で処理される下水は、図示しない下水配管等により、下水処理施設の原水ビット1に流入する。この原水ビット1は、下水処理施設に流入した下水に含まれる固形物や汚泥を沈殿させるものである。そして、原水ビット1に流入した下水に含まれている汚泥を沈殿させた上澄水は、微生物を利用して分解する曝気槽2へ送り込まれる。この曝気槽2は、その底部から図示しないエアポンプによりエアブローされて、微生物に酸素、もしくは空気を送り込むと共に、被処理水(下水)Dと微生物とが槽内で撹拌されながら被処理水(下水)Dに含まれる有機物が分解される。そうして、微生物と有機物が分解された被処理水Dは、この処理水に含まれる汚泥を沈殿させる沈殿槽3へと送られる。
沈殿槽3で沈殿した汚泥は、微生物が含まれた活性汚泥スラリである。この活性汚泥スラリは、曝気槽2に返送されて汚泥に含まれている微生物が再利用される(返送汚泥)。
一方、沈殿槽3で汚泥が取り除かれた被処理水Dは、この被処理水D中の雑菌類を死滅させる図示しない塩素混和槽に送り込まれる。この塩素混和槽は、塩素の殺菌作用を利用して被処理水Dに含まれる雑菌を死滅させる役割を担うものである。
また、上述した下水処理施設の沈殿槽3で沈殿した活性汚泥スラリの一部を引き抜いた余剰汚泥は、汚泥脱水機4によって汚泥に含まれる水分を低減した低含水率の脱水ケーキとされる。このとき汚泥脱水機4によって除去された水分は、排水路10に設けられた凝集センサ5(詳細は後述)によってその濁度が検出された後、排水として図示しない排水処理装置へと送られる。
またこの下水処理施設は、凝集センサ5を用いて排水中に含まれるフロック間の空隙における濁度を測定する測定部6と、この測定部6の結果を受けて汚泥を凝集させる凝集剤を注入路8を介して汚泥脱水機4に注入する注入薬量制御部9を備える。ちなみに注入薬量制御部9は、測定部6の濁度検出結果を受けて、凝集剤の注入指令を出力する制御部7によって制御される。
概略的には、上述したように構成された下水処理施設において、本発明の汚泥の脱水方法が特徴とするところは、汚泥脱水機4によって脱水処理によって分離された脱水ろ液の濁度を測定する凝集センサ5を設けた点、この凝集センサ5が検出した脱水ろ液の濁度によって凝集剤量の注入量を制御する点にある。
ちなみに上述の凝集剤は、汚泥脱水機4に注入して凝集反応を生じさせて余剰汚泥に含まれる懸濁物質をフロック化させるものである。この種の有機性高分子凝集剤としては、カチオン性、アニオン性または両性のものがある。
具体的にカチオン性を有する有機系高分子凝集剤としては、例えばジメチルアミノエチル(メタ)アクリレートのハロゲン化アルキル四級化物または酸による三級塩、ジメチルアミノプロピル(メタ)アクリルアミドのハロゲン化アルキル四級化物または酸による三級塩、ジメチルジアリルアンモニウムのハロゲン化物等のカチオン性モノマーの単独重合体、またはそれらカチオン性モノマーと(メタ)アクリルアミド等のノニオン性モノマーとの共重合体、ビニルアミンやアリルアミンを構成単位とする重合体、エチレンイミン単位を構成単位とする重合体、ポリアミジン等をあげることができる。
次にアニオン性を有する有機系高分子凝集剤としては、例えば(メタ)アクリル酸、マレイン酸、イタコン酸、ビニルスルホン酸、(メタ)アリルスルホン酸等のカルボキシル基やスルホン酸基を有するビニルモノマーまたはそのアルカリ金属塩の単独重合体、もしくはそれらアニオン性モノマーと(メタ)アクリルアミド等のノニオン性モノマーとの共重合体があげられる。
或いは凝集剤としては、上述したアニオン性、カチオン性、ノニオン性モノマーを必要な比率で組み合わせて重合した両性の高分子凝集剤であってもよい。
一方、無機系凝集剤としては、例えば硫酸バンド、ポリ塩化アルミニウム、ポリ塩化第二鉄、塩化第二鉄などがあげられる。
さて上述した特徴を備えた本発明に係る汚泥の脱水方法に関し、より詳細に図面を参照しながら説明する。この発明に適用される凝集センサ5は、例えば図2に示すように、汚泥脱水機4から排出される排水Dの中にレーザ光を放射し、このレーザ光が上記排水Dの中の懸濁物質やフロックによって生じる散乱光を検出することで、排水Dの中に含まれるフロックの凝集状態を測定するようにフロック凝集状態検出プローブ(以下「プローブ」)51および管状セル52(図4参照)にて構成される。この凝集センサ5に用いられるプローブ51は、概略的には、図2に示すように所定の周波数の信号で振幅変調されたレーザ光を排水Dの中に放射するための第一の光ファイバ51aと、上記排水Dの中の懸濁物質やフロックによって生じる散乱光を受光するための第二の光ファイバ51bとを、それら各ファイバの端面を近接させて所定の台座(支持部材)51cに固定した構造を有する。
上記台座51cで支持される上記各光ファイバ51a、51bには、そのコア径が0.1mm程度のものが用いられ、各光ファイバ端面の中心軸が90度の角度をもって交差するように台座51cに固定される。こうして構成されるプローブ51の大きさは、例えば1〜2mm3程度である。
そして、第一の光ファイバ51aから放射されたレーザ光によって、各光ファイバ51a、51bの端面の中心軸が交差する部位の微小領域(直径0.2〜0.4mm程度の三次元領域)Sに生じる散乱光が、第二の光ファイバ51bで受光されるようになっている。また、台座51cはプローブ51の上方から入射する外光(自然光)を遮光する。
上記構造のプローブ51を用いた凝集センサ5によってフロック凝集状態を測定する測定部6が有する発光部61は、例えば波長が630nmのレーザ光Lを放射するレーザダイオード等からなるレーザ発振器61aと、上記レーザダイオード等が放射するレーザ光を70〜150kHz(例えば95kHz)の交流信号で振幅変調する振幅変調器61bとを備えている。
また、前記微小領域Sからの散乱光を検出する測定部6が有する検出部62は、散乱光の強度に応じて、散乱光を光電変換するフォトトランジスタ等の光電変換器62aと、光電変換器62aの光電変換出力から前記振幅変調周波数成分の信号Fを抽出するバンドパスフィルタ(以下、「BPF」と称する)62bと、このBPF62bが出力する信号Fを増幅器62cによって増幅した後、その包絡線成分Eを抽出する(AM;振幅変調)検波器62dと、包絡線成分Eの最低値を検出する最低値検出回路62e、および最低値検出回路62eが検出する包絡線成分Eの最低値を読み出すデータサンプリング部62fを備えている。
なお、レーザ光の散乱光と共に、外光もプローブ51によって受光されるが、レーザ光は振幅変調されているので、変調周波数成分の信号だけを通過させるBPF62bによって、レーザ光の散乱光に基づく信号Fだけが抽出される。
ところで、微小領域Sで生じるレーザ光の散乱光は、懸濁物質による散乱光とフロックによる散乱光とからなる。ここで、懸濁物質(微小コロイド粒子)数は、懸濁物質の凝集が進むにつれて減少する。これに対して、フロックは懸濁物質(微小コロイド粒子)が凝集したものであるから、凝集が進むにつれて増加したフロックの数は、懸濁物質(微小コロイド粒子)の数に比較して遥かに少ない。このため、凝集が進んでも、フロックが前述の微小領域Sに存在する可能性は非常に少なく、希に微小領域Sに入り込むフロックが存在するに過ぎない。但し、凝集がさらに進行すると、フロックの数が増加するので、微小領域Sに入り込むフロックは増加する。
したがって、プローブ51を用いて微小領域Sにおける散乱光の強度を測定すると、図3(a)〜(c)にその概念を示すように、懸濁物質の凝集が進んで微小コロイド粒子数が減少し、フロックの数が徐々に増加しても、フロックの数は懸濁物質(微小コロイド)の減少に比べ遥かに少ないので、プローブ51で検出される微小領域Sの散乱光の平均強度は低下する。このため、プローブ51で検出されるフロックの凝集状態は、希に微小領域Sに入り込むフロックで上記散乱光の強度が一時的に強くなったときを除いて、平均的な散乱光の強度は未凝集の懸濁物質(微小コロイド)の粒子数、すなわち濁度を示しているとみなし得る。なお、図3(a)〜(c)の横軸は時間軸であり、tは時間を示す。
前述した最低値検出回路62eは、上記観点に立脚し、散乱光の強度に応じた光電変換器62aの出力から得られる前記振幅変調周波数成分の信号Fの包絡線成分Eから最低値を検出することで、排水Dに含まれる未凝集の微小コロイドの粒子数(濁度)を検知することを可能とする。
前述した構造のプローブ51を用いた凝集センサ5は、図4にその縦断面と横断面とを示すように、流入方向に垂直な断面積が小さい流体導入部52aと、この流体導入部52aに連接された流路断面積の大なる流体緩流部52bとを備えた管状セル52とを備え、上記流体緩流部52bの内部にプローブ51を設けている。
管状セル52は、小径の管内径D1を有する円筒管状の流体導入部52aと、この流体導入部52aと同軸に設けられ、該流体導入部52aを徐々に拡径してその管内径D2を大きくした円筒管状の流体緩流部52bとを備えた異径構造の円管体からなる。そして、流体導入部52aから導入される流速V1の排水Dを流体緩流部52bに導くことで、排水Dの流速をV2まで緩やかにして、プローブ51によるフロックの凝集状態(濁度)の測定に供するように作用する。
ちなみに、流体緩流部52bに導かれる排水Dの流速V2は、流体導入部52aの内径D1と流体緩流部52bの内径D2との比の二乗に依存し、
V2=(D1/D2)2・V1
となる。具体的には、流体導入部52aの内径D1を10mm、流体緩流部52bの内径D2を30mmとすると、流体緩流部52bにおける排水Dの流速V2は流体導入部52aに導かれる排水Dの流速V1の1/9にまで減速される。しかも、流体導入部52aに導かれる排水Dの流速V1が10%程度の変化を伴うものであっても、流速減速効果によって、流体緩流部52bにおける排水Dの流速V2の変化は抑制され、[10/9≒1]%程度に抑えられる。
上記のような形状寸法を有する管状セル52の流体緩流部52bにプローブ51を組込んだ凝集センサ5は、汚泥脱水機4の排水路10に設けられて、汚泥脱水機4から排出される排水Dの濁度を、緩流されて安定した流れの下でプローブ51を用いてリアルタイムに検出することを可能にする。
ここで、濁度を測定する測定部6は、図2に示すように、前記最低値検出回路62eが検出する包絡線成分Eの最低値を読み出すデータサンプリング部62fによって、濁度の測定データを出力する。こうして、出力される濁度の測定データは、図1に示すように、制御部7に入力される。制御部7は、測定部6からの濁度測定データを受けて注入薬量制御部9を駆動制御して凝集剤の注入量を制御する。
具体的に制御部7は、濁度測定データの経時的変化分が増加(濁度が増加した、すなわち、懸濁物質(微小コロイド粒子)が増加)したときには、濁度の増加を抑制するべく、凝集剤の注入量を増加させる。他方、濁度測定データの経時的変化分がゼロまたは減少(懸濁物質(微小コロイド粒子)が変化しないあるいは減少)であるとき制御部7は、凝集剤の注入量を減少させる。
以上のようにして制御部7は、汚泥脱水機4から排出される排水Dの濁度を測定部6からリアルタイムで受け取る(経時的変化)。そして制御部7は、上述した凝集センサ5が検出した前記排水D中のフロック間の空隙における濁度を測定し、この測定された上記濁度の経時的変化分に基づいて注入薬量制御部9を駆動制御して汚泥脱水機4に注入する凝集剤の注入量を制御する。
このように本発明は、汚泥脱水機4から分離される脱水ろ液(排水D)の濁度を測定して、濁度の経時的変化分に基づいて注入する凝集剤の量を制御している。このため本発明は、SS濃度の影響やフロックの影響を受けることなく安定した汚泥の脱水処理を行うことができる。
このような特徴を有する本発明に係る汚泥の脱水方法のアルゴリズムについて、図5のフローチャートを用いながらより詳細に説明する。
まず制御部7は、制御を開始して最初の凝集剤注入を行う[ステップS1]。このステップS1における凝集剤の注入量は、汚泥脱水機4から排出される排水Dの懸濁固形物の濃度の如何にかかわらず、一定の初期注入量である。
次いで制御部7は、所定期間の経過(インターバル)を待ち[ステップS2]、測定部6から出力される濁度測定データを読込む[ステップS3]。そして制御部7は、制御開始(ステップS1)以後、最初に測定部6から読込んだ濁度データか否かを判断し[ステップS4]、最初の濁度データであったときには、この最初の濁度データを初期濁度データM(0)とする[ステップS5]。そして制御部7は、ステップS2に戻り、再び所定期間の経過を待つ。次に制御部7は、ステップS3において測定部6から濁度測定データを読込む。このとき読込んだ濁度データM(1)は、既に初期濁度データM(0)が読込まれているので、ステップS4で制御部7が制御開始後の最初の濁度データと判断することはなく、制御部7が濁度の変化分dMを算出する[ステップS6]。この算出は、
dM=M(1)−M(0)
として行われる。
こうして制御部7は、ステップS6で制御部7に入力される濁度測定データから変化分(濁度測定値の増減)dMを算出する。すなわち濁度測定データは、経過時間で微分されることになる。
次に制御部7は、ステップ75で算出された濁度測定データの変化分dMが増加(すなわち、dM>0)か否か(すなわち、dM=0またはdM<0)を判断する[ステップS7]。
制御部7は、ステップS7で濁度測定データの変化分dMが(dM=0またはdM<0)であると判断すると、凝集剤の注入路8に設けられた注入薬量制御部9を制御して汚泥脱水機4に対する凝集剤の注入量を減少させる[ステップS8]。そして制御部7は、再びステップS2に戻り、期間の経過を待ちステップS3で濁度データM(2)を読込む。以降、制御部7は、濁度データの変化分算出とそれに基づく凝集剤の注入量制御を繰り返す。
ここで、濁度データの変化分は、
dM=M(2)−M(1)
であり、例えば、時間の経過に伴い、濁度の変化分は、
dM=M(n+1)−M(n)
と繰り返し算出される。
一方、制御部7は、ステップS7で濁度測定データの変化分dMが(dM>0)であると判断すると、濁度測定データの変化分dMが所定の増加量(m)を超えたか(dM>m)否か(dM=mまたはdM<m)を判断する[ステップS9]。
このとき制御部7は、濁度測定データの変化分dMが所定の増加量(m)を超えた(dM>m)と判定したとき、濁度の増加が著しいと判断し、注入薬量制御部9を制御して凝集剤の注入量を増加させて(例えば、増加量dC1)、汚泥脱水機4から排出される排水Dの濁度を速やかに低下させる[ステップS10]。つまり制御部7は、汚泥脱水機4における脱水ケーキの生成を促進させるべく凝集剤の注入量を増加させる。そして制御部7は、再びステップS2に戻り、所定期間の経過を待ち、濁度データの変化分算出、注入量制御を繰り返す。
他方、ステップS9で制御部7は、濁度測定データの変化分dMが所定の増加量(m)を超えないとき(dM=mまたはdM<m)と判定したとき、濁度の増加は著しいものではないと判断し、注入薬量制御部9を制御して汚泥脱水機4に対する凝集剤の注入量を増加させる(例えば、増加量dC2)[ステップS11]。なお、ステップS11で為される凝集剤の増加量dC2は増加量dC1よりも少ない値であり、それ故、汚泥脱水機4から排出される排水Dの濁度は緩やかに低下する。そしてステップS2に戻り、再び制御部7は、所定期間の経過を待って濁度データの変化分を算出し、凝集剤注入量の制御を繰り返す。
このようにして制御部7は、濁度測定値の変化分を算出しながら汚泥脱水機4に対する凝集剤の注入量を制御することを繰り返すことによって、汚泥脱水機4内における凝集反応が制御され、排水Dの濁度が所定の濁度に維持される。
尚、制御部7は、ステップS7で濁度測定データの変化分dMが(dM>0)と判断されると、その増加量dMの大小を判断せずに、ステップS10に進み、凝集剤の注入量を増加させ(例えば、増加量dC1)ることで排水Dの濁度を速やかに低下させてもよい。
このような、制御部7による凝集剤の注入は、測定部6からの濁度測定データからその経時的変化分を求めて、すなわち経過時間で微分して進相要素として作用するので、反応槽1内における凝集反応の時間遅れの影響を補償することになる。
したがって、本発明に係る汚泥の脱水方法は、汚泥脱水機4に流入する余剰汚泥の質(pH値等)や流量等に変化が生じ、汚泥脱水機4におけるフロックの凝集状態が変化しても、凝集センサ5が排水路10を流れる排水Dの濁度をリアルタイムに測定できることとあいまって、凝集剤の注入量を最適化することができ、汚泥脱水機4内の汚泥の凝集状態を速やかに所定の状態に制御することができる。
尚、上記の下水処理施設においては、汚泥脱水機4に注入する凝集剤として無機系凝集剤と有機系凝集剤とをそれぞれ単独または併用してもよい。
ところで発明者らは、上述した本発明に係る汚泥の脱水方法の効果を検証すべく評価試験を行った。この評価試験は、本発明に係る汚泥の脱水方法を適用した場合と、適用しなかった場合とでそれぞれ評価試験を行い、脱水処理状況を比較したものである。
具体的に評価試験は、化学工場における排水処理施設にて生成される加圧浮上汚泥を採集し、この汚泥に工業用水を添加して4種類のSS濃度の異なる汚泥(評価汚泥)を用意し、これらの評価汚泥に凝集剤を注入して凝集させる。そして、レーザ光散乱方式の濁度センサによって検出されたそれぞれ評価汚泥の濁度データを得て、比較・検討を行った。ちなみにこの評価実験に用いた汚泥(原泥)の汚泥種は、化学工場総合排水の加圧浮上スカムであり、その性状は、phが5.1、電気伝導率が221mS/m、浮遊物質濃度(SS)が5.42%、浮遊物質中に占める有機性物質の割合(VSS/SS)が67.0%、漂遊物質中に占める繊維分の割合(繊維分/SS)が1.2%であった。
また評価試験の対象は、上述した原泥から図6に示すように原泥と工業用水との体積比が、それぞれ100:0の汚泥A(SS濃度;5.42%)、80:20の汚泥B(SS濃度;4.34%)、60:40の汚泥C(SS濃度;3.25%)、40:60の汚泥B(SS濃度;2.17%)の評価汚泥とした。そして以下に示す条件でそれぞれの評価汚泥に凝集剤を添加する。
(1)まず4種類の評価汚泥をそれぞれ1Lビーカに500mL注入してSS比で1.0%または1.2%の凝集剤を添加する。そしてこの評価汚泥をスパーテルの回転速度180min-1として45秒間撹拌する。
(2)次に凝集剤の注入により凝集した汚泥のフロック径を確認する。
(3)この凝集した汚泥にレーザ光散乱方式の濁度測定装置を投入して濁度を計測する(比較例)。
(4)次いで60メッシュのナイロンろ布を敷いた直径80mmのブフナロートに凝集汚泥を注入してろ過し、ろ液を得る。
(5)そうして得られたろ液にレーザ光散乱方式の濁度測定装置を投入して濁度を計測する(実施例)。
ちなみにこの評価試験で用いた凝集剤は、ジメチルアミノエチルメタクリレートの塩化メチル四級化物であるアクリルアミドをモル比で60:40、1N−NaCl溶媒での固有粘度7.5dl/g、溶解濃度0.2%とした。
上述した4種類の汚泥(評価汚泥)に対し、この条件により評価試験を行ったところ図7に示す結果が得られた。
まず汚泥Aの場合、凝集剤薬注率が1.0%/SSおよび1.2%/SSのとき、それぞれの平均フロック径は8mmおよび9mmであり、NTU(ネフェロメトリック法の濁度単位)に換算した凝集汚泥の濁度は、いずれも数値が300〜600の間で不安定に変動した(比較例)。一方、この凝集汚泥をそれぞれろ過したろ液の濁度は、NTU換算で[38]および[26]であった(実施例)。ちなみにレーザ光散乱方式の濁度測定装置が出力する電圧値は、ボルト(V)出力であるが、図7は、濁度標準液で測定した測定した電圧値(V)をNTUに換算して表記したものである。
同様に汚泥Bの場合、凝集剤薬注率が1.0%/SSおよび1.2%/SSのとき、それぞれの平均フロック径は8mmおよび9mmであり、NTUに換算した凝集汚泥の濁度は、それぞれ50〜150の間で変動、または[25](レーザ光散乱方式の濁度測定装置を浅く投入した場合)であった(比較例)。一方、この凝集汚泥をそれぞれろ過したろ液の濁度は、NTU換算で[35]および[25]であった(実施例)。
次に汚泥Cの場合、凝集剤薬注率が1.0%/SSおよび1.2%/SSのとき、いずれも平均フロック径は8mmであり、NTUに換算した凝集汚泥の濁度は、[32]および[24]であった(比較例)。一方、この凝集汚泥をそれぞれろ過したろ液の濁度は、NTU換算で[33]および[25]であった(実施例)。
次いで汚泥Dの場合、凝集剤薬注率が1.0%/SSおよび1.2%/SSのとき、それぞれの平均フロック径は9mmおよび7mmであり、NTUに換算した凝集汚泥の濁度は、それぞれ[30]または[22](レーザ光散乱方式の濁度測定装置を浅く投入した場合)であった(比較例)。一方、この凝集汚泥をそれぞれろ過したろ液の濁度は、NTU換算で[31]および[21]であった(実施例)。
この評価試験から明らかなように凝集汚泥にレーザ光散乱式濁度測定装置を投入して測定すると、数値不安定で変動している(比較例)。これはSS濃度が高い汚泥の場合、センサの投光部が発したレーザ光をセンサの受光部で検出することができず測定が不正確となったものである。しかしながら、このようなSS濃度が高い水溶液にあっては、レーザ散乱光濁度測定装置で計測する前にろ過すればSS濃度の影響をほとんど受けることなく計測することが可能であることが確かめられた(実施例)。
かくして上述した汚泥の脱水方法および脱水装置によれば、汚泥脱水機から分離される脱水ろ液(排水D)の濁度を測定し、この脱水ろ液(排水D)の濁度の経時的変化分に基づいて注入する凝集剤の量を制御している。このためSS濃度の影響やフロックの影響を受けることなく安定した汚泥の脱水処理を行うことが可能である。また本発明の汚泥の脱水方法および脱水装置は、汚泥脱水機から分離される脱水ろ液(排水D)の濁度をレーザ散乱光による凝集センサによって脱水ろ液の濁度を測定しているので、SS濃度の影響やフロックの影響を受けることがない。したがって、凝集槽がない下水処理施設に適用される遠心脱水機や真空脱水機またはフィルタープレス脱水機を用いた汚泥の脱水装置に本発明の汚泥の脱水方法および脱水装置を適用することができる等の実用上多大なる効果を奏する。
尚、上述した実施例は、凝集槽(反応槽)を備えていない下水処理施設を例示して説明したが、凝集槽を備えた処理プラントであっても同様に適用することができることは言うまでもない。
また本発明は、上述した下水処理施設で発生する汚泥以外の汚泥、具体的には、し尿処理、化学・製薬工業、食品工業、電子・機械工業、紙パルプ工場等の一般産業用の排水処理施設等から排出される汚泥(初沈汚泥、余剰汚泥、消化汚泥、浄化槽汚泥、凝集沈殿汚泥等)の何れの汚泥であっても適用することが可能である。
ちなみに汚泥脱水機は、上述した汚泥脱水機以外の脱水機、例えば、ベルトプレス脱水機、スクリュープレス脱水機、多重円盤型脱水機、ロータリスクリーン等の何れであっても本発明を適用することが可能である。
尚、上述した凝集センサは、凝集したろ液が得られる部位であれば、特に限定されるものではない。例えば凝集センサは、汚泥脱水機全体のろ液が集まる図示しない集水口やビット等で測定するものであってもかまわない。或いは、特に図示しないが凝集センサを取り付けることが困難である場合は、濁度測定用にバイパスラインを設置して測定してもよい。
その他、本発明の汚泥の脱水方法および脱水装置は、上述した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々変形して実施することができる。
本発明の一実施形態に係る汚泥の脱水方法が適用される下水処理装置の一例を示す要部概略構成図である。 フロック凝集状態検出プローブによる処理水等におけるフロックの状態検出の処理概念を示す図である。 懸濁物質の凝集に伴う微小領域Sでの散乱光の強度変化の様子を模式的に示す図である。 凝集センサを組み込んだ管状セルの要部概略構成図である。 汚泥脱水機から排出される排水の濁度測定データの変化分に基づく凝集剤の注入量制御のアルゴリズムを示すフローチャートである。 本発明の汚泥の脱水方法の効果を検証すべく用意した汚泥の評価サンプルを示す表である。 本発明の汚泥の脱水方法を適用した評価試験の結果を示す表である。
符号の説明
1 原水ビット
2 曝気槽
3 沈殿槽
4 汚泥脱水機
5 凝集センサ
6 測定部
7 制御部
8 注入路
9 注入薬量制御部
10 排水路

Claims (4)

  1. 汚泥脱水機から分離される脱水ろ液の濁度を測定し、濁度の経時的変化分に基づいて注入する凝集剤の量を制御することを特徴とする汚泥の脱水方法。
  2. 前記脱水ろ液の濁度は、レーザ散乱光方式により計測するものである請求項1に記載の汚泥の脱水方法。
  3. 凝集剤が注入された汚泥を脱水して脱水ケーキと脱水ろ液とに分離する汚泥脱水機と、
    上記分離された脱水ろ液の濁度を測定する濁度測定手段と、
    この濁度測定手段が測定した上記脱水ろ液の濁度の経時的変化分に基づいて前記凝集剤の注入量を調整する注入薬量制御手段と
    を備えることを特徴とする汚泥の脱水装置。
  4. 前記脱水ろ液の濁度は、レーザ散乱光方式により計測するものである請求項3に記載の汚泥の脱水装置。
JP2005097762A 2005-03-30 2005-03-30 汚泥の脱水方法および脱水装置 Pending JP2006272228A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005097762A JP2006272228A (ja) 2005-03-30 2005-03-30 汚泥の脱水方法および脱水装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005097762A JP2006272228A (ja) 2005-03-30 2005-03-30 汚泥の脱水方法および脱水装置

Publications (1)

Publication Number Publication Date
JP2006272228A true JP2006272228A (ja) 2006-10-12

Family

ID=37207479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005097762A Pending JP2006272228A (ja) 2005-03-30 2005-03-30 汚泥の脱水方法および脱水装置

Country Status (1)

Country Link
JP (1) JP2006272228A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010022985A (ja) * 2008-07-23 2010-02-04 Takasago Thermal Eng Co Ltd 活性汚泥による有機性排水の処理方法及び処理装置
CN104829038A (zh) * 2015-03-31 2015-08-12 浙江海洋学院 污水构筑物结构
KR20220037487A (ko) * 2019-11-12 2022-03-24 쿠리타 고교 가부시키가이샤 현탁물질의 퇴적억제방법, 피치장해의 억제방법 및 현탁물질의 퇴적검출방법
CN116947180A (zh) * 2023-06-26 2023-10-27 上海矾花科技有限公司 一种化学沉淀水处理系统及化学沉淀剂投加量的控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60197300A (ja) * 1984-03-21 1985-10-05 Nippon Kokan Kk <Nkk> 汚泥の脱水方法及び脱水装置
JPH04366750A (ja) * 1991-06-13 1992-12-18 Norihito Tanpo 微粒子計測方法
JPH11347599A (ja) * 1998-06-04 1999-12-21 Fuji Electric Co Ltd 凝集剤注入量決定装置
JP2002253905A (ja) * 2001-03-05 2002-09-10 Kurita Water Ind Ltd 凝集モニタリングシステム
JP2003154206A (ja) * 2001-11-22 2003-05-27 Kurita Water Ind Ltd 水または汚泥の処理システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60197300A (ja) * 1984-03-21 1985-10-05 Nippon Kokan Kk <Nkk> 汚泥の脱水方法及び脱水装置
JPH04366750A (ja) * 1991-06-13 1992-12-18 Norihito Tanpo 微粒子計測方法
JPH11347599A (ja) * 1998-06-04 1999-12-21 Fuji Electric Co Ltd 凝集剤注入量決定装置
JP2002253905A (ja) * 2001-03-05 2002-09-10 Kurita Water Ind Ltd 凝集モニタリングシステム
JP2003154206A (ja) * 2001-11-22 2003-05-27 Kurita Water Ind Ltd 水または汚泥の処理システム

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010022985A (ja) * 2008-07-23 2010-02-04 Takasago Thermal Eng Co Ltd 活性汚泥による有機性排水の処理方法及び処理装置
CN104829038A (zh) * 2015-03-31 2015-08-12 浙江海洋学院 污水构筑物结构
KR20220037487A (ko) * 2019-11-12 2022-03-24 쿠리타 고교 가부시키가이샤 현탁물질의 퇴적억제방법, 피치장해의 억제방법 및 현탁물질의 퇴적검출방법
KR102652925B1 (ko) * 2019-11-12 2024-03-28 쿠리타 고교 가부시키가이샤 현탁물질의 퇴적억제방법, 피치장해의 억제방법 및 현탁물질의 퇴적검출방법
CN116947180A (zh) * 2023-06-26 2023-10-27 上海矾花科技有限公司 一种化学沉淀水处理系统及化学沉淀剂投加量的控制方法

Similar Documents

Publication Publication Date Title
JP6674260B2 (ja) 凝集剤の注入率決定方法および凝集剤の注入率決定装置
JP5176625B2 (ja) スクリュープレスにおける含水率一定制御方法並びに含水率一定制御装置
JP3925621B2 (ja) 水または汚泥の処理システム
JP2006272311A (ja) 凝集装置及び凝集方法
JP2006272228A (ja) 汚泥の脱水方法および脱水装置
JP5256261B2 (ja) 有機性汚泥の脱水方法及び装置
CA3119243A1 (en) Measuring and controlling organic matter in waste water stream
JP6139349B2 (ja) 水処理システム
US20160082367A1 (en) Concentration of suspensions
CA2960053C (en) Measurement and treatment of fluid streams
WO2016006419A1 (ja) 凝集方法および凝集装置
JP3731454B2 (ja) 凝結剤の薬注量決定方法及び薬注制御装置
JP2006263506A (ja) 汚泥の脱水方法および脱水装置
JP4605327B2 (ja) 凝集モニタリング装置
JP7294415B2 (ja) 凝集処理装置用のサンプリング装置、凝集処理装置及び水処理方法
JP5210948B2 (ja) 浄水場の薬品注入制御方法
JPH09290273A (ja) 凝集剤添加量調整方法及び装置
JPH07204699A (ja) スラリー状汚泥の濃縮方法
JPH04371300A (ja) 汚泥処理装置
JP4400720B2 (ja) 水処理システム
Ammary et al. Effect of addition sequence on dual‐coagulant performance
JPH0483600A (ja) 汚泥の脱水方法
JP2006272310A (ja) 凝集装置及び凝集方法
JP5723916B2 (ja) 有機性汚泥の脱水方法及び装置
KR20000052923A (ko) 슬러지 탈수 제어 시스템

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100609

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110214

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110713