JP2006261602A - 被膜密着性に優れた超低鉄損方向性電磁鋼板 - Google Patents

被膜密着性に優れた超低鉄損方向性電磁鋼板 Download PDF

Info

Publication number
JP2006261602A
JP2006261602A JP2005080518A JP2005080518A JP2006261602A JP 2006261602 A JP2006261602 A JP 2006261602A JP 2005080518 A JP2005080518 A JP 2005080518A JP 2005080518 A JP2005080518 A JP 2005080518A JP 2006261602 A JP2006261602 A JP 2006261602A
Authority
JP
Japan
Prior art keywords
coating
steel sheet
film
iron loss
adhesion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005080518A
Other languages
English (en)
Other versions
JP5063862B2 (ja
Inventor
Hiroshi Yamaguchi
広 山口
Tatsuhiko Hiratani
多津彦 平谷
Mineo Muraki
峰男 村木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2005080518A priority Critical patent/JP5063862B2/ja
Publication of JP2006261602A publication Critical patent/JP2006261602A/ja
Application granted granted Critical
Publication of JP5063862B2 publication Critical patent/JP5063862B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

【課題】 CVD法やPVD法によるセラミックス膜被成後に施される張力付与型コーティングの焼き付けや歪取焼鈍等の熱処理に対する窒化物や炭化物被膜と鋼板との密着性および絶縁コーティングとの密着性を高め、きわめて低い鉄損値を有する方向性電磁鋼板を提案する。
【解決手段】 無機鉱物質被膜のない鋼板表面にドライコーティング法により形成された結晶質の窒化物および/または炭化物被膜を有する方向性電磁鋼板において、該被膜の金属Mと窒素Nおよび/または炭素Cとのモル比がM/(N+C)<1.2を満たし、かつ被膜厚さ方向の被膜を構成する元素の濃度変動割合がそれぞれ30%未満であることを特徴とする。
【選択図】図1

Description

木発明は、超低鉄損の鏡面方向性電磁鋼板に関するものであり、特にその表面にきわめて張力付与効果の人きなセラミックス膜を形成し、鉄損特性の向上を図ろうとするものである。
電磁鋼板は無方向性電磁鋼板と方向性電磁鋼板の2つに大別され、無方向性電磁鋼板は主として回転機等の鉄心材料に、方向性電磁鋼板は主として変圧器その他の電気機器の鉄心材料として使用され、いずれもエネルギーロスを少なくするため、低鉄損の材料が求められている。その表面には絶縁性の被膜が必要であるため、絶縁コーティングが施されている。
方向性電磁鋼板の鉄損低減には板厚を低減する、Si含有量を増す、結晶方位の配向性を高める等の方法があるが、それに加えて鋼板に張力を付加することが有効である。
鋼板への張力の付与方法として、鋼板より熱膨張係数の小さい材質からなる被膜を設けることが現在行われている。すなわち,最終的に結晶方位を揃える2次再結晶と鋼板の純化を兼ねる仕上焼鈍工程で、鋼板表面の酸化物と鋼板表面に塗布した焼鈍分離剤とが反応してフォルステライトを主成分とする被膜が形成されるが、この被膜は鋼板に与える張力が大きく、鉄損低減に効果がある。
さらに張力効果を増すために、フォルステライト質被膜の上に、上塗りの低熱膨張性のコーティングを施して製品とすることが一般的である。
ところが近年、鋼板表面を磁気的に平滑化する手法が開発された。そのひとつの方法は、仕上焼鈍工程で意図的にフォルステライト被膜の形成を抑制したり、形成されたフォルステライト被膜を除去した後、その表面を平滑に仕上げる方法であり、著しい鉄損の減少が認められることが明らかとなってきている。
例えば、特許文献1には仕上焼鈍後、酸洗により表面生成物を除去し、次いで化学研磨または電解研磨により鏡面状態に仕上げる方法が開示されている。
特公昭52−24499号公報
また、特許文献2には、フォルステライト被膜を除去後、1000〜1200℃のH中でサーマルエッチングする方法が開示されている。このような表面処理によって鉄損が減少するのは、磁化過程において鋼板の表面近傍の磁壁移動の妨げとなるピニングサイトが減少するためである。
特開平5−43943号公報
なお、ヒステリシス損失を減少させる磁気的に平滑な表面とは、一般にRa(中心線平均粗さ)で表現される、いわゆる表面粗度だけで示されるものでなく、特許文献3に示される表面生成物を除去した後、ハロゲン化水溶液中で電解する結晶方位強調処理も知られている。
特公平4−7292O号公報
現在、フォルステライト被膜を有する方向性電磁鋼板に適用される張力付加型の絶縁コーティングは、Alやアルカリ土類金属のリン酸塩とコロイダルシリカ、無水クロム酸またはクロム酸塩を主成分とした処理液を塗布し、焼付けすることによって形成されているものが多い。
張力付加型の絶縁コーティングは、鋼板より熱膨張係数の小さいコロイダルシリカに代表される無機質被膜を高温で形成することより、地鉄と絶縁コーティングとの熱膨張差を利用して常温において張力を鋼板に付与している。この方法で形成される絶縁被膜は鋼板に対して張力付与効果が大きく、鉄損低減に有効である。
例えば、特許文献4あるいは特許文献5などにその形成法が示されている。しかしながら、この方法の欠点として鋼板に対する張力付加の大きい被膜ほど下地との密着力が強くなければ被膜は剥落してしまうので、上記張力付与型コーティングは、フォルステライト系の仕上焼鈍被膜が鋼板表面に存在する場合には問題ないが、鏡面化等の表面平滑化処理を行うようなフォルステライト系の仕上焼鈍被膜のない場合には、被膜を付着させることができなかった。
特公昭53−28375号公報 特公昭56−52117号公報
このため、表面を磁気的に平滑化し鉄損を低減する技術と張力付与型コーティングによる鉄損低減技術とを並立させることはできなかった。
フォルステライト系被膜のない表面、さらには表面粗度等が調整された平滑な表面に張力付加型コーティングを被成する方法として、従来いくつかの方法が提案されてきた。
例えば、特許文献6〜8には、研磨により平滑に仕上げた鋼板表面に各種酸化物、ホウ化物、珪化物、リン化物、硫化物と地鉄との混合極薄層とその上に絶縁性塗布焼付層を具備される方法が開示されているが、鋼板と絶縁層との密着性は優れるものの、鋼板の鏡面平滑効果が地鉄と被着した酸化物との混合極薄層の存在によって消去され、また、焼鈍を行うと混合極薄層中の酸素やホウ素等が鋼板中に拡散して磁気特性が劣化するという問題がある。
特開昭62−103374号公報 特開平6-248465号公報 特開平6−287764号公報
一方、特許文献9には、ゾルーゲル法によってセラミックス被膜を形成する方法が、特許文献10には平滑化した地鉄表面に金属めっきを施した後、低圧プラズマ溶射法によって珪化物を形成する方法が開示されているが、これらの被膜と鋼板との密着性が劣り十分な張力効果が得られていない。
特公平2-243770号公報 特開平3-294468公報
特許文献11には、無機質被膜のない仕上焼鈍済の方向性電磁鋼板の表面に形成させる下地シリカ層の量を100mg/m2以下にすることで張力被膜の密着性だけでなく、良好な鉄損値をも実現しようとしているが、張力付与型絶縁被膜の密着性は不十分で必ずしも完全ではなかった。
特開平9−78252公報
特許文献12には、珪酸塩系被膜を設けた後、クロム酸やリン酸を主体とする絶縁被膜を形成する手法が開示されている。密着性は改善されるが、珪酸塩被膜、クロム酸−リン酸被膜ともに鋼板に対する張力付与効果がなく、本発明の主目的である被膜張力による鉄損低減効果は全く得られない。
特開昭63-57781号公報
特許文献13等において、平滑化した方向性電磁鋼板上にCVD法やイオンプレーティング、イオンインプランテーション等のPVD法により窒化物や炭化物のうちから選んだ1種または2種以上の張力被膜を被成することで超低鉄損が得られることが開示されている。特に硬質で熱膨張係数の小さな窒化物や炭化物が熱残留応力を利用した張力付与に有効であるのはいうまでもない。
特公昭63-54767号公報
ただし、強い被膜張力は鋼板と張力被膜との界面に強い剪断応力が作用するため、その界面の密着性確保が特に重要である。従来、これらセラミックス膜を被成後、その上に張力付与型の絶縁コーティングを施したり、剪断歪みを除去する目的で歪取焼鈍を実施した時に、セラミックス膜が変色などの変質を起こしたり、鉄損値が劣化する場合があった。
本発明の目的は、CVD法やPVD法によるセラミックス膜被成後に施される張力付与型コーティングの焼き付けや歪取焼鈍等の熱処理に対する窒化物や炭化物被膜と鋼板との密着性および絶縁コーティングとの密着性を高め、きわめて低い鉄損値を有する方向性電磁鋼板を提案することにある。
従来、被膜の密着性に関しては、張力被膜と鋼板表面との界面の密着性に着目されることが多かったが、発明者らはCVD法やPVD法の、いわゆるドライコーティングで被膜形成を行った場合、被膜自身の発生応力が大きくなったことに加え、従来の塗布型コーティングと比較して被膜の厚み方向の組成変化が起こりやすくなり、その組成変動に起因した不均一応力の発生が、被膜自身の内部破壊を促進することを新たに発見し、本発明を完成させた。本発明の要旨構成は、以下の通りである。
(1)無機鉱物質被膜のない鋼板表面にドライコーティング法により形成された結晶質の窒化物および/または炭化物被膜を有する方向性電磁鋼板において、
該被膜の金属Mと窒素Nおよび/または炭素Cとのモル比が
M/(N+C)<1.2
を満たし、かつ被膜厚さ方向の被膜を構成する元素の濃度変動割合がそれぞれ30%未満であることを特徴とする被膜密着性に優れた超低鉄損方向性電磁鋼板。
本発明により、フォルステライト被膜のない平滑な方向性電磁鋼板表面に張力付与効果の大きなセラミックス膜を蒸着し、被膜密着性に優れる極めて鉄損値の低い方向性電磁鋼板を得ることが可能となる。
以下、本発明について詳細に鋭明する。
3質量%Siを含有する最終板厚0.23mmに圧延された冷延板を脱炭、一次再結晶焼鈍した後、MgOを主体とし塩化アンチモンを添加した焼鈍分離剤を塗布し、二次再結晶過程と純化過程を含む最終焼鈍を施し、フォルステライト膜のない鏡面方向性電磁鋼板を得た。
その後、950℃から1150℃の間でTiC14ガス、H2ガス、N2ガスを主体とする雰囲気中で、原料ガスの供給位置と試料との相対位置を成膜中に変化することが可能な反応炉内で化学気相蒸着を行い、種々の膜組成を持つTiN膜を形成した。ついでリン酸塩とコロイダルシリカを主成分とするコーティング液を塗布し、850℃で被成した。
その後、窒素ガス中で800℃、3時間の歪取焼鈍を行い、外観と曲げ密者性の評価を行った。曲げ密着性は10mmφの丸棒に試料を巻き付け、被膜が剥落するかを判断した。
化学気相蒸着で得られたTiNの膜厚方向の組成分析をグロー放電法により行った。TiNの組成は成膜中に試料を移動させない場合にはTiとNのモル比は一定であったが、成膜中に移動させた場合には、TiNの厚み方向に変化することがわかった。反応ガスの供給位置に近い上流側では、原料組成に近いガス成分になっているのに対し、供給位置から遠い下流側では反応による原料の消費や反応副生成物の影響などを受けるために、TiNの組成比が変動すると推定される。
実験室レベルの小片試料の場合にはあまり問題とならないが、鋼帯を用いた製造ラインのように長大な反応炉を用いる場合に上記のようなガス組成の変化を考慮した成膜が肝要になってくる。
歪取焼鈍後のコーティング密着性とTiとNのモル比および被膜構成元素のうち、Nの濃度の変動幅との関係を図1に示した。図中の「○」は密着性が極めて良好で丸棒試験で剥落しなかった条件、「×」は密着性が悪く被膜が剥落した条件を表している。
図1から明らかなように、TiとNのモル比Ti/Nが1.2より小さく、かつ各元素の濃度変動の割合が30%未満の場合にのみ、良好な被膜密着性が確保できている。
Ti等の金属元素が過剰の場合には、酸素などと結合して化合物を作り、異物の析出という形で界面あるいは被膜内部に応力が発現し、密着性劣化の原因になっていると考えられる。モル比の変動も同様に被膜自身の内部に、組成に起因した不均一応力を内在させることになり、歪取焼鈍中のように熱膨張係数の大きな鋼板の伸長による応力が加わった際に被膜が破壊し、剥落を招くと考えられる。
化学気相蒸着と比較して成膜温度の低い物理蒸著法(PVD法)でも同様の現象が確認できた。
化学気相蒸着法と同様の方法でフォルステライト膜のない鏡面方向性電磁鋼板を作製し、ホローカソード法により、TiN膜を形成させた。Tiが蒸発するターゲットは固定されているため、300mm長さのエプスタイン試料の全面にTiN膜を形成させるために、試料は成膜中に長手方向へ移動できるような構造となっている。
N源であるNに関しても、イオンガンを用いて供給した場合、ラジカルなNがTiN成膜に寄与する有効範囲が空間的に限定されるため、試料の移動に伴って堆積するTiNの組成は連続的に変化した。
TiとNのモル組成比の被膜厚み方向の変化は極めて複雑であるが、被膜全体のTiとNのモル比Ti/Nとその膜厚方向の各元素の濃度変動と被膜密着性との関係は、化学蒸着法の場合と同一の結果となり、モル比Ti/N<1.2かつ構成元素の濃度の変動割合が30%未満の条件で良好な被膜密着性が得られた。
図2はその典型例を示しており、適合例ではTiとNのモル比Ti/Nは1.2未満となっており、TiおよびNの被膜厚み方向の濃度変動割合が30%未満であるのに対し、比較例ではTiとNのモル比Ti/Nは1.2以上で、Nの厚み方向の濃度変動割合も30%を超えている。適合例で極めて良好な被膜密着性が得られるのに対し、比較例の場合、歪取焼鈍後の密着性は劣った。
形成された被膜のモル比は化学分析等を用いて求めることでできる。被膜厚み方向のモル比の変動については、グロー放電法や二次イオン質量分析装置、蛍光X線分析法、EDX分析法、EPMA法など様々な方法で定量化が可能である。
窒素物や炭化物、炭窒化物の成膜方法としては、化学気相蒸着法と物理蒸着法が代表的であるが、その他いずれの方法でも構わない。化学気相蒸着法としては、よく知られているようにTiC14等の金属塩化物ガスと、もう一方の原料ガスとして、窒化物ならばN2、NH3、(CH33N、(CH32NHガスなど、炭化物ならばCH4、CO、C2H4、C2H6、C3H6、C3H8、i−C5H12などを混合した雰囲気中で鋼板を加熱することによりセラミックス膜を得る。もちろん、両者を混合して炭窒化物としても何ら問題はない。その他、バランスガスとしてArガスなどが使用される。金属源として、有機金属ガスを用いるいわゆるMO−CVD法やプラズマやレーザー、光誘起などを併用し、より低温化を指向したCVD手法も近年盛んになりつつあるが、試料あるいは化学蒸着槽全体を加熱する熱CVD法がより適していると思われる。また、被膜厚さ方向の被膜を構成する元素の濃度変動割合をそれぞれ30%未満とするための手段は、CVD法の場合にはガス供給口、PVD法の場合には蒸発源を多数配列し、そのピッチをガス種等に応じて適宜変更する方法が挙げられる。ただし、蒸着速度向上等を目的として、上記手法を併用するのは本発明請求範囲以内であれば、何ら差し支えない。
物理蒸着法としては、ホローカソード法やマグネトロンスパッタリング法、マルチアーク放電法等が挙げられる。金属源は蒸発用のターゲットより供給され、窒素や炭素は化学気相蒸着法と同様のガスを利用することが可能である。蒸着により基板温度が上昇するが、結晶質の窒化物および/または炭化物の膜を得る場合には、基板自身の加熱が有効である。
得られるセラミックス膜物質としては、Ti、Zr、V、Nb、Ta、Cr、Mo、W、Mn、Co、Ni、Al、B、Siの窒化物および/または炭化物で2種以上を積層しても構わない。2層以上積層する場合には、積層被膜全体の金属元素に対する窒素および/または炭素のモル比を考慮すればよい。
セラミックス膜の膜厚については、0.01μm以上5μm以下の範囲で適合し、0.01μmに満たない場合、十分な張力付与効果や被膜密着性が得られにくく、5μmを超えると膜自身の密着性や占積率において不利となる。
本発明を適用する仕上げ焼鈍後の金属表面としては、単にフォルステライト等の無機質被膜を除去しただけの地鉄面でも有効ではあるが、さらに表面に平滑化処埋を施した方が鉄損値の低下にはより効果的である。例えば、サーマルエッチングや化学研磨等により表面の粗度を極力小さくし、鏡面状態に仕上げた表面やハロゲン化物水溶液中での電解による結晶方位強調処理で得られるグレイニング様面等が挙げられる。
また、打ち抜き性等の加工性を重視し、仕上げ焼鈍に使用する焼純分離剤の主成分を替えたり、添加物を加えることにより仕上げ焼鈍による被膜の形成を抑止した方向性電磁鋼板にも好適である。
化学気相蒸着した窒化物や炭化物セラミックス膜上に被成する絶縁コートとしては、方向性電磁鋼板に使用される無機質コートが利用可能である。特に張力付与効果を有するコーティングは、超低鉄損化を達成するために表面を平滑化した方向性電磁鋼板との組合せで極めて有効である。
張力付与型コーティングの種類としては、熱膨張係数を低下させるシリカを含むコーティングが有効で従来からフォルステライト被膜を有する方向性電磁鋼板に用いられているリン酸塩−コロイダルシリカ−クロム酸系のコーティング等が、その効果およびコスト、均一処理性などの点から好適である。コーティングの厚みとしては、張力付与効果や占積率、被膜密着性等の点から0.3μm以上10μm以下の程度の範囲が好ましい。
また、張力コーティングとして、これ以外にも特開平6−65754号公報、特開平6−65755号公報、特開平6−299366号公報などで提案されているホウ酸−アルミナ等の酸化物系被膜を適用することも可能である。
以下、この発明の電磁鋼板について、望ましい成分組成について説明する。
この発明で使用される鋼板の成分としては、Siを1.5〜7.0質量%含有させることが望ましい。すなわち、Siは製品の電気抵抗を高め、鉄損を低減するのに有効な成分であるが、Siは7.0質量%を超えると硬度が高くなり製造や加工が困難になりがちであり、1.5質量%未満であると最終仕上げ焼鈍中に変態を生じて安定した2次再結晶組織が得られない。
また、インヒビター元素として、Alを初期鋼中に0.006質量%以上含有することにより結晶配向性をより一層向上することができる。上限は0.06質量%程度でこれを超えると再び結晶配向の劣化が生じる。
Nも同様の効果があり、上限はふくれ欠陥の発生から100質量ppm程度、下限は特に規定しないが20質量ppm以下に工業的に低下させるのは経済的に困難である。また、1次再結晶焼鈍後に増窒素処理を行う工程も適合する。増窒素処理を行わない場合には、初期鋼中にSe+Sで0.01質量%以上0.06質量%以下を含有することが必須であり、加えて、Mn化合物として析出させるために0.02〜0.2質量%程度のMnを含有させることが必要である。それぞれ少なすぎると、2次再結晶を生じるための析出物が過小となり、また多すぎると、熱間圧延前の固溶が困難となる。増窒素処理を行わない場合には、Mnは必ずしも必要ではないが、鋼の延性改善などの目的で適宜添加可能である。
鋼中には、上記の元素の他に公知の方向性電磁鋼板の製造に適するインヒビター成分としてB、Bi、Sb、Mo、Te、Sn、P、Ge、As、Nb、Cr、Ti、Cu、Pb、ZnおよびInなどが知られていて、これらの元素を単独または複合で含有させることができる。
また、C、S.Nなどの不純物はいずれも、磁気特性上有害な作用があり、特に鉄損を劣化させるので、それぞれC:0.003質量%以下、S:0.002質量%以下、N:0.002質量%以下にとすることが好ましい。
次に、本発明の電磁鋼板の製造方法について、その必須条件と理由について述べる。所定の成分に調整された鋼は、通常スラブ加熱に供された後、熱間圧延により熱延コイルとされるが、このスラブの加熱温度については1300℃以上の高温度とする場合と1250℃以下の低温度とする場合のいずれでも良い。また近年、スラブ加熱を行わず連続鋳造後、直接熱間圧延を行う方法が開発されているが、この方法で熱間圧延される場合にも適用できる。
熱間圧延後の鋼板は、必要に応じて熱延板焼鈍を施し、1回の冷間圧延もしくは中間焼鈍を挟む複数回の圧延によって最終冷間圧延板とされる。これらの圧延については、動的時効を狙ったいわゆる温間圧延や静的時効を狙ったパス間時効を施したものであっても良い。
最終冷間圧延後の鋼板は、脱炭焼鈍を兼ねる1次再結晶焼鈍を施され、最終仕上げ焼鈍により2次再結晶処理がなされ、結晶の方向性を得る。最終仕上げ焼鈍を行う場合には、通常1次再結晶焼鈍後に焼鈍分離剤を塗布し、これにより酸化物被膜を形成させるが、この焼鈍分離剤の組成を調整して、鋼板表面上の酸化物被膜の生成を抑制させることもできる。
このようにして得られた鋼板に、更なる鉄損低減を目的としてレーザーあるいはプラズマ炎等を照射して、磁区の細分化を行っても絶縁コーティングの密着性にはなんら問題ない。また、本発明の方向性電磁鋼板の製造工程の任意の段階で磁区細分化のため、表面にエッチングや歯形ロールで一定間隔の溝を形成することも、一層の鉄損低減を図る手段として有効である。
[実施例(l)]
3質量%Siを含有する最終板厚0.23mmに冷間圧延された鋼板を、磁区細分化処理のため、5mm間隔のエッチング溝を形成、脱炭、一次再結晶焼鈍した後、MgOを主成分とし塩化鉛を含む焼鈍分離剤を塗布し、フォルステライト膜のない平滑な表面を有する最終仕上げ焼鈍板を得た。得られた鋼板に対し、TiC14、H2、CH4の混合ガスからなる雰囲気中でTiCを両面形成した。H2ガスおよびCH4ガスは種々の混合比とし、TiC14濃度はH2ガスをキャリアガスとしTiC14液中をバブリングさせることで調整した。生膜中にガス組成を変化させ、TiC膜の堆積方向に対し濃度変化を持たせるようにCVD処理を行った。
その後、第一リン酸マグネシウム100重量部に対し、重クロム酸カリウムを15重量部加えた水溶液に30%コロイタルシリカを30重量部混合後、ロールコ一夕ーで塗布し、800℃で1分間焼き付け、絶縁被膜を形成させた。さらに歪取焼鈍として850℃で3時間の焼鈍を行った。
表1に、得られたTiC膜中のTiとCの平均モル比およびTiおよびCそれぞれの濃度変動割合の測定結果と、歪取焼鈍後の鉄損値W17/50および曲げ密着性の評価結果を示す。
Figure 2006261602
表1から明らかなように、試料No.5および6は、本発明に適合する化学蒸着によるTiC膜の形成条件であり、いずれも被膜中のTiとCのモル比Ti/Cが1.2未満であり、TiとCそれぞれの変動割合が適合範囲内であり、優れた外観と被膜密着性および低鉄損値を示した。これらに対し、被膜中のTi/Cモル比が1.2以上となってTi過剰の試料No,3および4は、TiC膜中を通して鋼板との界面に酸化が起こり、被膜は黒色化し、密着性は著しく劣った。また、Cの濃度変動の大きかった試料No.1およびTiの濃度変動の大きかった試料No.2は、一部TiC膜が残留したことから、被膜自身の破壊が原因で剥落したと考えられる。その結果、比較例の試料No.1〜4はいずれも鉄損値は向上しなかった。
[実施例(2)]
3質量%Siを含有する最終板厚0.23mmに冷間圧延された鋼板を脱炭、一次再結晶焼鈍した後、酸洗によりSiO2被膜を除去した後、焼鈍分離剤としてアルミナを用いることにより、フォルステライト膜のない平滑な表面を有する最終仕上げ焼鈍板を得た。得られた鋼板に対し、ホローカソード法により、種々の窒化物を成膜した。種々の窒化物の成膜は、蒸発源と試料の位置関係を刻々と変化させ、そのずれ量と時間変化を種々に調整することにより行った。
その後、硼酸とベーマイトを主成分とする絶縁コーティング液(酸化物換算モル比B203/A1203=0.5)をロールコーターにて塗布し、80O℃で120秒間焼き付けた。さらに800℃で3時間の歪取焼鈍を行った。
表2に、蒸着した窒化物の種類と金属元素Mと窒素Nのモル比、および金属元素Mと窒素Nそれぞれの濃度変動割合を測定した結果と、歪取焼鈍後の鉄損値W17/50および曲げ密着性の評価結果を示す。
Figure 2006261602
表2から明らかなように、試料No.5および6は、本発明に適合する化学蒸着による窒化物膜の形成条件であり、優れた外観と被膜密着性および低鉄損値を示している。これらに対し、被膜中のM/Nモル比が1.2以上となった試料No.1および3は、窒化物膜と鋼板との外面で被膜剥離を起こし、密着性は著しく劣った。その結果、密着界面を介した被膜の張力付与効果も小さくなり、試料の低鉄損値は実現できなかった。また、被膜構成元素の濃度変動の大きかった試料No.2および4についても被膜密着性が劣り、10mmφの丸棒曲げ試験において被膜の剥落が見られた。被膜自身の張力付与効果自身も小さく、鉄損値も高い。
本発明により、フォルステライト被膜のない平滑な方向性電磁鋼板表面に張力付与効果の大きなセラミックス膜を蒸着し、被膜密着性に優れる極めて鉄損値の低い方向性電磁鋼板を得ることが可能となる。
窒化物被膜中のTiとNのモル比を横軸にとり、窒化物被膜中のNの濃度変動割合を縦軸として、歪取焼鈍後のコーティング密着性の評価結果をプロットした図である。 (a)は、TiN被膜組成が本発明に従う電磁鋼板(適合例)のグロー放電法による表面からの深さ方向解析結果、(b)は、TiN被膜組成が本発明外である電磁鋼板(比較例)のグロー放電法による深さ方向解析結果を示したものである。

Claims (1)

  1. 無機鉱物質被膜のない鋼板表面にドライコーティング法により形成された結晶質の窒化物および/または炭化物被膜を有する方向性電磁鋼板において、
    該被膜の金属Mと窒素Nおよび/または炭素Cとのモル比が
    M/(N+C)<1.2
    を満たし、かつ被膜厚さ方向の被膜を構成する元素の濃度変動割合がそれぞれ30%未満であることを特徴とする被膜密着性に優れた超低鉄損方向性電磁鋼板。
JP2005080518A 2005-03-18 2005-03-18 被膜密着性に優れた超低鉄損方向性電磁鋼板 Expired - Fee Related JP5063862B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005080518A JP5063862B2 (ja) 2005-03-18 2005-03-18 被膜密着性に優れた超低鉄損方向性電磁鋼板

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005080518A JP5063862B2 (ja) 2005-03-18 2005-03-18 被膜密着性に優れた超低鉄損方向性電磁鋼板

Publications (2)

Publication Number Publication Date
JP2006261602A true JP2006261602A (ja) 2006-09-28
JP5063862B2 JP5063862B2 (ja) 2012-10-31

Family

ID=37100459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005080518A Expired - Fee Related JP5063862B2 (ja) 2005-03-18 2005-03-18 被膜密着性に優れた超低鉄損方向性電磁鋼板

Country Status (1)

Country Link
JP (1) JP5063862B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101294944B1 (ko) 2010-12-28 2013-08-08 주식회사 포스코 초고장력 코팅막을 갖는 방향성 전기 강판 및 그 제조 방법
WO2018074462A1 (ja) * 2016-10-18 2018-04-26 Jfeスチール株式会社 方向性電磁鋼板および方向性電磁鋼板の製造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62182222A (ja) * 1986-02-06 1987-08-10 Kawasaki Steel Corp 一方向性けい素鋼板の製造方法
JPH0317251A (ja) * 1989-06-14 1991-01-25 Kobe Steel Ltd 耐摩耗性皮膜

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62182222A (ja) * 1986-02-06 1987-08-10 Kawasaki Steel Corp 一方向性けい素鋼板の製造方法
JPH0317251A (ja) * 1989-06-14 1991-01-25 Kobe Steel Ltd 耐摩耗性皮膜

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101294944B1 (ko) 2010-12-28 2013-08-08 주식회사 포스코 초고장력 코팅막을 갖는 방향성 전기 강판 및 그 제조 방법
WO2018074462A1 (ja) * 2016-10-18 2018-04-26 Jfeスチール株式会社 方向性電磁鋼板および方向性電磁鋼板の製造方法
JP6350773B1 (ja) * 2016-10-18 2018-07-04 Jfeスチール株式会社 方向性電磁鋼板および方向性電磁鋼板の製造方法
CN109844179A (zh) * 2016-10-18 2019-06-04 杰富意钢铁株式会社 方向性电磁钢板及方向性电磁钢板的制造方法
RU2706941C1 (ru) * 2016-10-18 2019-11-21 ДжФЕ СТИЛ КОРПОРЕЙШН Текстурированная электромагнитная листовая сталь и способ изготовления текстурированной электромагнитной листовой стали
US11091842B2 (en) 2016-10-18 2021-08-17 Jfe Steel Corporation Oriented electromagnetic steel sheet and method for manufacturing oriented electromagnetic steel sheet

Also Published As

Publication number Publication date
JP5063862B2 (ja) 2012-10-31

Similar Documents

Publication Publication Date Title
RU2532539C2 (ru) Способ изготовления листа текстурированной электротехнической стали
US4713123A (en) Method of producing extra-low iron loss grain oriented silicon steel sheets
EP3396022B1 (en) Grain-oriented electrical steel sheet and method for manufacturing grain-oriented electrical steel sheet
JP2009018573A (ja) 電気的絶縁被覆を含む方向性電磁鋼板
KR20000075590A (ko) 초저철손 일방향성 규소강판 및 그의 제조방법
WO2020149351A1 (ja) 方向性電磁鋼板の製造方法
JP2007262540A (ja) 化学蒸着処理の原料ガス供給用ノズルと被膜形成方法および方向性電磁鋼板
JPH08222423A (ja) 鉄損の低い方向性けい素鋼板およびその製造方法
WO2020149337A1 (ja) 方向性電磁鋼板の製造方法
JP5063862B2 (ja) 被膜密着性に優れた超低鉄損方向性電磁鋼板
US7435304B2 (en) Coating composition, and method for manufacturing high silicon electrical steel sheet using thereof
JP2018154881A (ja) 方向性電磁鋼板の製造方法
JP5047466B2 (ja) 被膜密着性に優れた超低鉄損方向性電磁鋼板
JP3979004B2 (ja) 方向性電磁鋼板の絶縁被膜形成方法
JP2006253555A6 (ja) 被膜密着性に優れた超低鉄損方向性電磁鋼板
JP4232407B2 (ja) 方向性電磁鋼板の製造方法
JP4192818B2 (ja) 方向性電磁鋼板
JP4259061B2 (ja) 方向性電磁鋼板の製造方法
CN114106593B (zh) 一种用于取向硅钢表面涂层的涂料、取向硅钢板及其制造方法
JP4232408B2 (ja) 方向性電磁鋼板の製造方法
WO2020149327A1 (ja) 方向性電磁鋼板の製造方法
JP4725711B2 (ja) 低鉄損方向性電磁鋼板の製造方法
JP4016756B2 (ja) 方向性電磁鋼板の製造方法
JP2008144231A (ja) 方向性電磁鋼板の製造方法
JP2003034880A (ja) 方向性電磁鋼板の表面上に密着性に優れた絶縁被膜を形成する方法および方向性電磁鋼板の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100208

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100208

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100609

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100616

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20100709

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120424

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120808

R150 Certificate of patent or registration of utility model

Ref document number: 5063862

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees