JP2006251747A - 光学系 - Google Patents

光学系 Download PDF

Info

Publication number
JP2006251747A
JP2006251747A JP2005145261A JP2005145261A JP2006251747A JP 2006251747 A JP2006251747 A JP 2006251747A JP 2005145261 A JP2005145261 A JP 2005145261A JP 2005145261 A JP2005145261 A JP 2005145261A JP 2006251747 A JP2006251747 A JP 2006251747A
Authority
JP
Japan
Prior art keywords
central axis
optical system
image
front group
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005145261A
Other languages
English (en)
Other versions
JP4671758B2 (ja
Inventor
Kokichi Kenno
孝吉 研野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2005145261A priority Critical patent/JP4671758B2/ja
Priority to US11/205,212 priority patent/US7403343B2/en
Publication of JP2006251747A publication Critical patent/JP2006251747A/ja
Application granted granted Critical
Publication of JP4671758B2 publication Critical patent/JP4671758B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Stereoscopic And Panoramic Photography (AREA)
  • Lenses (AREA)

Abstract

【課題】 360°全周の画角を有する画像を撮影したり、360°全周画角に画像を投影するための小型で、フレアー光が少なく、垂直方向の画角が広く、解像力の良い光学系。
【解決手段】 中心軸1の周りで回転対称な1面の反射面11を含む前群10と、中心軸1の周りで回転対称で正パワーを有する後群20と、中心軸に同軸に配置された開口5とを備えており、遠方から前群10に入射した光束2は、前群10と後群20を順に経て像面30の中心軸1から外れた位置に結像し、かつ、中心軸1を含む断面内と、その断面に対して直交しその光束の中心光線を含む平面内での中間結像回数が異なるように構成されている光学系。
【選択図】 図1

Description

本発明は、光学系に関し、特に、小型で解像力が良く、360°全方位の画角を有する画像を像面に結像させるか、像面に配置された画像を360°全方位の画角に投影する全天カメラ、全天プロジェクター等に適した光学系に関するものであ。
従来、反射光学系を用いた360°全方位(全周)の画像を得る光学系としては、1面の反射面を持つ中心軸の周りで回転対称な前群と、中心軸の周りで回転対称で正パワーを有する後群とからなる特許文献1〜3に開示されたような反射光学系が知られている。
特開昭60−42728号公報 特許第2925573号公報 特許第3580542号公報
しかし、上記従来例何れのものも、全周囲の画像から中心軸に向かってくる光束を受けて任意の位置の円環状の空中像に変換する働きをする前群がその中心軸の周りで回転対称な1面の反射面のみからなるため、中心軸方向の画角を広くとることができず、また、中心軸方向とそれに直交する方向の非点隔差が大きく、必ずしも高解像力のものではなかった。
本発明は従来技術のこのような問題点に鑑みてなされたものであり、その目的は、360°全方位(全周)の画角を有する画像を撮影したり、360°全方位(全周)画角に画像を投影するための小型で、フレアー光が少なく、垂直方向の画角が広く、解像力の良い光学系を提供することである。
上記目的を達成する本発明の光学系は、360°全方位の画角を有する画像を像面に結像させるか、像面に配置された画像を360°全方位の画角に投影する光学系であって、
中心軸の周りで回転対称な1面の反射面を含む前群と、中心軸の周りで回転対称で正パワーを有する後群と、中心軸に同軸に配置された開口とを備えており、
結像系の場合は光線の進む順に、投影系の場合は光線の進む順とは反対に、遠方から前記前群に入射した光束は、前記前群と前記後群を順に経て像面の中心軸から外れた位置に結像し、かつ、中心軸を含む断面内と、その断面に対して直交しその光束の中心光線を含む平面内での中間結像回数が異なるように構成されていることを特徴とするものである。
この場合、前群は、中心軸方向に90°以上の画角を有し、中心軸の周りで回転対称な透明媒体を有し、その透明媒体は1面の内面反射面と2面の屈折面を持ち、結像系の場合は光線の進む順に、投影系の場合は光線の進む順とは反対に、遠方から前群に入射した光束は、入射面の屈折面を経て透明媒体内に入り、内面反射面で反射されて射出面の屈折面を経て透明媒体から外に出て、後群を経て像面の中心軸から外れた位置に結像するように構成することができる。
また、遠方の1つの方向から入射する光束は、前群内で中心軸に対して片側のみで反射屈折し、中心軸を含む断面内で1回中間結像し、中心軸を含む断面に対して対して直交し、その光束の中心光線を含む平面内では中間結像せず、かつ、開口は、中心軸を含む断面内では前群の入射面又はそれより物体側に共役な入射瞳を形成するように構成することができる。
また、後群は、回転対称の同軸屈折光学系からなることが望ましい。
また、前群の中心軸を含む断面内の焦点距離をFy、その断面に対して直交し遠方から入射する光束の中心光線を含む平面内の焦点距離をFxとするとき、
−100<Fx/Fy<−0.01 ・・・(4)
の条件を満たすことが望ましい。
また、中心軸を含む断面において、入射瞳位置から開口位置までの光路長をC、入射瞳位置から前群の第1面までの光路長を光線方向を正とした値をDとすると、
5<|C/D| ・・・(3)
の条件を満たすことが望ましい。
また、後群のペッバール和をp、焦点距離をFbとするとき、
−0.5<p×Fb<−0.01 ・・・(1)
の条件を満たすことが望ましい。
また、中心軸を含む断面内において、入射瞳位置から反射面までの光路長をA、反射面から開口までの光路長をBとすると、
0.05<A/B<2 ・・・(2)
の条件を満たすことが望ましい。
また、前群の中心軸を含む断面内の焦点距離をFy、その断面に対して直交し遠方から入射する光束の中心光線を含む平面内の焦点距離をFx、後群の焦点距離をFbとするとき、
0.05<Fx/Fb<10 ・・・(5)
−10<Fy/Fb<−0.05 ・・・(6)
の少なくとも何れか一方の条件を満足することが望ましい。
また、反射面は対称面を持たない任意形状の線分を中心軸の周りで回転させて形成される回転対称な形状を有することことが望ましい。
また、反射面は奇数次項を含む任意形状の線分を中心軸の周りで回転させて形成される回転対称な形状を有することが望ましい。
また、中心軸を含む断面内で開口と共役な入射瞳近傍にその断面内でのみ開口を制限する一方向性のフレア絞りを配置することが望ましい。
また、少なくとも反射面が中心軸を含む断面で切断されて中心軸の周りの画角が360°より狭く構成されていてもよい。
以上の本発明によると、小型で、フレアー光が少なく、垂直方向の画角が広く、解像力の良い、360°全方位(全周)の画角を有する画像を得たり、360°全方位の画角に画像を投影するための光学系を得ることができる。
以下、実施例の基づいて本発明の光学系について説明する。
図1、図6は、後記するそれぞれ実施例1、2の光学系の中心軸(回転対称軸)1に沿ってとった断面図であり、図2、図7はそれぞれそれらの光学系内の光路を示す平面図であるこれらの図1、図2、図6、図7を用いて本発明の光学系を説明する。なお、以下の説明は、結像光学系として説明するが、光路を逆にとって360°全方位(全周)に画像を投影する投影光学系として用いることもできる。
本発明の光学系は、中心軸1の周りで回転対称な前群10と中心軸1の周りで回転対称な後群20と中心軸1と同軸に配置された開口(絞り)5とからなり、遠方の物体から入射する光束2は、前群10と後群20を順に経て中心軸1に垂直な像面30の中心軸1から外れた位置に結像するものである。
前群10は、中心軸1の周りで回転対称な1面の反射面11を含むものである。図1の実施例1では前群10は反射面11のみからなり、図6の実施例2では、前群10は中心軸1の周りで回転対称な屈折率が1より大きい樹脂等の透明媒体からなり、1面の内面反射面11と2面の透過面(入射面、射出面)12、13を持つものである。また、後群20は、中心軸1の周りで回転対称で正パワーを有するでレンズ系等の同軸屈折光学系からなるものである。
このような構成において、中心軸1をY軸とし、中心軸1を含む断面(図1、図6)をY−Z面とするとき、前群10においては、中心軸(回転対称軸)1の片側のみを光路が通るような構成となっているので、面の有効径の干渉を避けることが容易になり、中心軸1方向の観察画角を大きくとことが可能となる。このように中心軸1の片側だけで前群10の光路を構成すると、X−Y平面(図2、図7)内では、前群10の面は全てY軸(回転対称軸1)に対して略同心となり、X−Y平面内では反射面11に正のパワーを持たせられないため、前群10によって結像させることは不可能である。そこで、面形状が任意に設定できるY−Z面内の形状を設定することにより、Y−Z面内でのみ物体像(実像)を1回結像すると共に、前群10より像面30側に位置する中心軸1と同軸の開口(絞り)5を物体側に投影して入射瞳6Yを形成するようにしたものである。
入射瞳6YをY−Z面内でのみ物体側にリレーすることにより、前群10を入射面12、反射面11、射出面13で構成する場合に(図6)その第1面12近傍に配置させ、前群10を反射面11のみで構成する場合に(図1)その反射面11より物体側に配置させることが可能となり、前群10の有効径自体を小さくすることが可能となる。
また、Y−Z面内でのみ絞り5の像を物体側にリレーする配置にすることにより、前群10の第1面12近傍あるいは反射面11より物体側に入射瞳6Yをリレーすることが可能となり、前群10に入射する不要光を少なくすることが可能となり、フレアーの少ない映像を観察することが可能となる。つまり、光学系入射面12近傍あるいは反射面11より物体側にY方向の入射瞳6Yを投影すると、この光学系の入射面12のY方向に関しては原理的に画角を広くとっても有効径を小さくすることが可能となる。
X方向(図2、図7)の入射瞳6Xは円周状に広がるが、Y方向にスリット状のフレア絞りを配置することが可能となり、不要光をこのフレア絞りでカットすることが可能となる。
また、本発明の光学系では、前群10で発生する収差と後群20で発生する収差をお互いに補償するように補正することにより、全体として良好な収差状態にすることが可能である。
また、前群10の役割は、上記のように、全周囲の画像から回転対称軸1に向かってくる光束を受けて任意の位置の円環状の空中像に変換する働きをするものである。そして、後群20の役割は、その円環状の空中像を像面30の平面上に投影する働きをするものである。ここで、後群20は正のパワーを持った投影光学系となり、さらに、後群20の小型化のためには、焦点距離の短い画角の広い投影光学系であることが要求される。しかし、一般的に焦点距離が短く広画角の投影光学系はペッツバール和が負になる場合が多い。これを補正するためいは、トリプレットやガウスタイプと言った負のパワーのレンズを有した構成にする必要があり、構成枚数が多くなってしまう。
そこで、本発明では、前群10に後群20で発生する負のペッツバール和を補正する作用を有するようにすることが望ましい。
さらに好ましくは、前群10で発生する非点隔差を相補うために、後群20でわざと大きな非点隔差を発生させることにより、全系での収差を相補うように構成することで、トータルでの収差を良好に補正する。
以上のような構成により、全体として少ない構成枚数で広画角のパノラマ光学系を構成することが可能となった。
後記の実施例1〜3の後群20のペッバール和と後群20の焦点距離は次のようになる。
実施例1 実施例2 実施例3
ペッツバール和p 0.011 -0.062 -0.044
焦点距離Fb 4.743 4.254 5.086
p×Fb 0.052 -0.264 -0.224
上記のp×Fbは、どの程度後群20はペッツバール和の補正を行うかを示しており、補正すればする程後群20の像面湾曲を小さくすることが可能となるが、補正するための光学系が複雑になる。
−0.5<p×Fb<−0.01 ・・・(1)
上記条件式(1)の下限の−0.5を越えると、後群20のペッツバール和の発生が大きくなりすぎ、前群10と相補うことが不可能になる。上限の−0.01を越えると、後群のペッツバール和の補正が過剰になり、後群20の構成が複雑になり、高価で大きな光学系になってしまう。
また、本発明の光学系は、中心軸1を含む断面内において入射瞳6Y位置から反射面11までの光路長をA、反射面11から絞り5位置までの光路長をB、及び、それらの比をA/Bとする。A/Bは、入射瞳6Yと絞り5の共役関係を定めるもので、A/Bが1に近いと絞り5の入射瞳6Yへの逆投影倍率が等倍となり、瞳収差の発生が少なくなり、フレア絞りが有効に作用する。
後記の実施例1〜3のA、B、A/Bは次のようになる。
実施例1 実施例2 実施例3
A 59.962 12.681 25.674
B 65.212 59.350 45.070
A/B 0.919 0.213 0.569
本発明では、中心軸1を含む断面内においてのみ入射瞳6Yが物体側に投影されていることが特徴であり、絞り5と共役位置に当たる入射瞳6Yの瞳収差がある程度補正されていることが望ましい。これにより、入射瞳6Y近傍にフレア絞りを配置した場合に、有害光を確実にカットすることが可能となる。次の条件はこの瞳収差を最良に補正するための条件である。
0.05<A/B<2 ・・・(2)
上記条件式(2)の下限の0.05を越えると、絞り5に対して入射瞳6Yが反射面11に近づきすぎて、瞳収差の発生が大きくなってしまう。また、上限の2を越えると、今度は絞り5に対して入射瞳6Yが遠方になりすぎ、装置が大型になると同時に入射瞳6Yの大きさが大きくなりすぎ、不要光のカットがし難くなる。
前群10が1面の内面反射面11と2面の透過面(入射面、射出面)12、13を持つ場合に、中心軸1を含む断面内において、入射瞳6Y位置から絞り5位置までの光路長をC、入射瞳6Y位置から前群10の第1面(透過面)12までの光路長を光線方向を正とした値D、及び、それらの比を|C/D|とすると、|C/D|は前群10の入射面12近傍に入射瞳6Yが配置されている度合いを表す。
後記の実施例1〜3のC、D、|C/D|は次のようになる。
実施例1 実施例2 実施例3
C - 72.031 70.744
D - 0.060 -3.503
|C/D| - 1200.516 20.195
本発明では、中心軸1を含む断面内においてのみ入射瞳6Yが物体側に投影されており、より入射面12近傍に入射瞳6Yを配置することにより、ゴースト等を防ぐフレアー絞りを効果的に配置することが可能となる。これにより、光学系の入射面12をY−Z断面において小さくすることが可能となり、前群10に入射する不要光を効果的に防ぐことが可能となり、根本的なフレアー対策に効果を発揮する。また、Y−Z断面の入射瞳6Yを前群10の入射面11近傍に配置することにより、前群10の入射面12の有効面をY−Z方向に関しては小さくすることが可能となり、反射面11との干渉がなくなり、Y−Z断面での広画角化が可能となる。さらに、有効面が小さいことにより、光学系を小型に構成することが可能である。そのめには、
5<|C/D| ・・・(3)
を満たすことが望ましい。この条件式(3)の下限の5を越えると、入射瞳6Yが光学系第1面12から離れてしまい。第1面12の有効径が大きくなり、画角がとれなくなったり、有害なフレアー光が増える。この値が大きい程フレアー防止用のフレアー絞りを有効に働かせることが可能となる。
さらに好ましくは、
10<|C/D| ・・・(3−1)
なる条件を満足することが好ましい。
さらに、本発明の特徴である前群10の画角中心の主光線(中心光線)20 と平行に微小距離(0.1mm)離れた従属光線を追跡し、後群20から射出したときの従属光線と主光線のなす角度から光学系全体の焦点距離Fx、Fyを求めると、後記の実施例1〜3に関し、
実施例1 実施例2 実施例3
Fx 2.105 2.114 1.997
Fy -3.445 -1.073 -1.936
Fx/Fy -0.611 -1.969 -1.031
Fb 4.743 4.254 5.086
Fx/Fb 0.444 0.497 0.393
Fy/Fb -0.726 -0.252 -0.381
となる。ただし、Fbは後群20のみの焦点距離である。ここで、Fyは中心軸1を含む断面内の焦点距離、Fxはその断面に対して直交し遠方から入射する光束2の中心光線20 を含む平面内での焦点距離である。
本発明においては、全群の断面方向により物体の中間像(実像)を結像する断面と結像しない断面があるため、光学系全体のFxとFyは符号が異なることも特徴である。なぜなら、中間像を1回結像する光学系の焦点距離は定義上負であるからである。さらに、それぞれの焦点距離の比Fx/Fyは、各断面での収差補正上、
−100<Fx/Fy<−0.01 ・・・(4)
なる条件を満足することが好ましい。
この条件式(4)の下限の−100を越えると、Y方向の焦点距離がX方向の焦点距離に比較して短くなりすぎ、Y方向の収差、特に像面湾曲や非点収差の発生が大きくなると同時に、円環状の映像の内径と外径の差が小さくなり、特に撮像素子の解像力が限られている場合には、総合的な解像力がとれなくなってしまう。
また、その上限の−0.01を越えると、X方向の焦点距離がY方向の焦点距離に比較して短くなりすぎ、上下方向の画角を大きくとることができなくなる。
さらに好ましくは、
−10<Fx/Fy<−0.1 ・・・(4−1)
を満足することが好ましい。
また、後群20の焦点距離Fbに対して、
0.05<Fx/Fb<10 ・・・(5)
−10<Fy/Fb<−0.05 ・・・(6)
なる条件を満足することが好ましい。
これらの条件式は後群20の焦点距離に対して全群にどの程度影響を与えているかを表したものであり、1又は−1の場合は、後群20の焦点距離がそのまま全系の焦点距離になっていることを表す。
条件式(5)の下限の0.05、条件式(6)の上限の−0.05は、全系をある一定の焦点距離にしようとした場合に、全系の焦点距離に比較して後群20の焦点距離が長くなることを意味する。すると、後群20の画角はそれほど広く要求されなくなるが、瞳径が大きくなり、特に色収差の補正が難しくなると同時に、装置全体(高さ)が大きくなってしまう。また、後群20で像面湾曲、非点収差と像歪を大きく発生させることが難しくなり、前群10でのこれらの完璧な補正が要求される。
条件式(5)の上限10、条件式(6)の下限の−10を越えると、全系の焦点距離に比較して後群20の焦点距離が短くなることを意味する。すると、後群20に広い画角が要求されると同時に焦点距離が短くなりすぎるために、後群20の周辺映像の解像力が像面湾曲や非点収差、倍率の色収差等で低下してしまう。その結果、光学系全系としては円環状映像の外周部の解像が悪くなる。
さらに好ましくは、上記条件式(5)、(6)を同時に満足することが望ましい。
さらに好ましくは、
0.1<Fx/Fb<2 ・・・(5−1)
−2<Fy/Fb<−0.1 ・・・(6−1)
なる条件を満足することが好ましい。
以下に、本発明の光学系の実施例1〜3を説明する。これら光学系の構成パラメータは後記する。これら実施例の構成パラメータは、例えば図1に示すように、物体面から前群10と後群20を経て像面30に至る順光線追跡の結果に基づくものである。
座標系は、順光線追跡において、例えば図1に示すように、入射瞳6Yを回転対称軸(中心軸)1に投影した位置を偏心光学系の偏心光学面の原点とし、回転対称軸(中心軸)1の像面30から離れる方向をY軸正方向とし、図1の紙面内をY−Z平面とする。そして、図1の紙面内のいま考えている入射瞳6Yの側と反対側の方向をZ軸正方向とし、Y軸、Z軸と右手直交座標系を構成する軸をX軸正方向とする。
偏心面については、その面が定義される座標系の上記光学系の原点の中心からの偏心量(X軸方向、Y軸方向、Z軸方向をそれぞれX,Y,Z)と、光学系の原点に定義される座標系のX軸、Y軸、Z軸それぞれを中心とする各面を定義する座標系の傾き角(それぞれα,β,γ(°))とが与えられている。その場合、αとβの正はそれぞれの軸の正方向に対して反時計回りを、γの正はZ軸の正方向に対して時計回りを意味する。なお、面の中心軸のα,β,γの回転のさせ方は、各面を定義する座標系を光学系の原点に定義される座標系のまずX軸の回りで反時計回りにα回転させ、次に、その回転した新たな座標系のY軸の回りで反時計回りにβ回転させ、次いで、その回転した別の新たな座標系のZ軸の回りで時計回りにγ回転させるものである。
また、各実施例の光学系を構成する光学作用面の中、特定の面とそれに続く面が共軸光学系を構成する場合には面間隔が与えられており、その他、面の曲率半径、媒質の屈折率、アッベ数が慣用法に従って与えられている。
なお、後記の構成パラメータ中にデータの記載されていない非球面に関する項は0である。屈折率、アッベ数については、d線(波長587.56nm)に対するものを表記してある。長さの単位はmmである。各面の偏心は、上記のように、入射瞳6Yを回転対称軸(中心軸)1に投影した位置からの偏心量で表わす。
なお、拡張回転自由曲面は、以下の定義で与えられる回転対称面である。
まず、Y−Z座標面上で原点を通る下記の曲線(b)が定められる。
Z=(Y2 /RY)/[1+{1−(C1 +1)Y2 /RY2 1 /2
2 Y+C3 2 +C4 3 +C5 4 +C6 5 +C7 6
+・・・・+C2120+・・・・+Cn+1 n +・・・・
・・・(b)
次いで、この曲線(b)をX軸正方向を向いて左回りを正として角度θ(°)回転した曲線F(Y)が定められる。この曲線F(Y)もY−Z座標面上で原点を通る。
その曲線F(Y)をZ正方向に距離R(負のときはZ負方向)だけ平行移動し、その後にY軸の周りでその平行移動した曲線を回転させてできる回転対称面を拡張回転自由曲面とする。
その結果、拡張回転自由曲面はY−Z面内で自由曲面(自由曲線)になり、X−Z面内で半径|R|の円になる。
この定義からY軸が拡張回転自由曲面の軸(回転対称軸)となる。
ここで、RYはY−Z断面での球面項の曲率半径、C1 は円錐定数、C2 、C3 、C4 、C5 …はそれぞれ1次、2次、3次、4次…の非球面係数である。
そして、本発明の光学系においては、前群10の少なくとも反射面11は、このような拡張回転自由曲面であって、Y−Z断面で多項式で表現した場合に、少なくとも奇数次項を持ち対称面を持たない任意形状の線分を中心軸1の周りで回転させて形成される回転対称な形状を有するものとすることが望ましい。少なくとも反射面11にこのような面形状を持たせることにより、反射光学系においては避けられない偏心収差を補正して解像力の良い光学系を提供することができると共に、その光学系の小型化が可能になる。
実施例1の光学系の中心軸(回転対称軸)1に沿ってとった断面図を図1に、その光学系内の光路を示す平面図を図2に示す。また、後群20の逆追跡による光線図を図3に示す。
この実施例の光学系は、中心軸1の周りで回転対称な前群10と、中心軸1の周りで回転対称な後群20と、中心軸1に同軸に配置された開口5とからなり、遠方の物体から入射する光束2は、前群10と後群20を順に経て中心軸1に垂直な像面30の中心軸1から外れた位置に結像するものであり、中心軸1を垂直(上下方向)に設定した場合、例えば360°全方位(全周)の画角を有する画像であって、天頂方向が画像の中心方向に向き、地平線が外側の円になるような円環状の画像を像面30に結像させるものである。
前群10は、中心軸1の周りで回転対称な1面の反射面11からなるものである。また、後群20は、5枚のレンズL1〜L5を含み3群からなるレンズ系からなる。
そして、前群10は遠方の物体から光束2が入射する反射面11からなり、拡張回転自由曲面からなる。ただし、円錐定数は0である。後群20を構成するレンズ系は、前群10側から順に、前群10側に凹面を向けた負メニスカスレンズL1と、両凸正レンズL2と前群10側に凹面を向けた負メニスカスレンズL3の接合レンズと、両凸正レンズL4と両凹負レンズL5の接合レンズとからなる。
中心軸1が垂直方向に向き、光学系が天頂に向いている場合、水平方向の遠方から入射する中心光束2は前群10の反射面11の中心軸1に対して片側に入射して下方へ反射されて、開口5を介して後群20に入射し、像面30の中心軸1から外れた半径方向の所定位置に結像する。
この実施例の光学系では、前群10と後群20の間に位置する開口(絞り)5が反射面11で物体側に投影されて中心軸1を含む断面方向の入射瞳6Yを反射面11の前方に形成している。
そして、この実施例の光学系では、入射瞳6Yを経て遠方から入射する光束2、3U、3L(光束3Uは遠方の空側から入射する光束、3Lは遠方の地側から入射する光束)を、中心軸1を含む断面(図1)内では、反射面11と絞り5の間の位置4Yに結像し、また、中心軸1を含む面に直交しその光束2の中心光線20 を含む平面(図2)内では実像を結像しない。なお、図2中の破線は前群10で形成されるサジタル像面を示す。このサジタル像面は、反射面11が凸反射面として作用するために、前群10射出後虚像として反射面11より物体側に形成される。
この実施例1の仕様は、
水平画角 360°
垂直画角 20°
入射瞳径 0.8mm
像の大きさ φ5.08〜φ2.36mm
である。
図3は、後群20の逆光線追跡による光線図であり、破線は後群20の像面30からの逆光線追跡でのタンジエンシャル像面である。
この実施例では、前後群負担を軽減するために、前後群で発生する像面湾曲を相互に補う構成になっている。
図4に、この実施例の光学系全体の横収差を示す。この横収差図において、中央に示された角度は、垂直方向の画角を示し、その画角におけるY方向(メリジオナル方向)とX方向(サジタル方向)の横収差を示す。以下、同じ。
図5に、この実施例の垂直方向のディストーションを示す図であり、■で結んだ曲線は、実施例1の光学系の垂直方向入射画角に対する像面30での像高(中心軸1から半径方向の像高)をプロットしたグラフである。太い実線は、入射画角に対して像高が比例する場合(IH∝f・θの場合。ここで、IH:像高、f:焦点距離、θ:画角)を表している。
実施例2の光学系の中心軸(回転対称軸)1に沿ってとった断面図を図6に、その光学系内の光路を示す平面図を図7に示す。また、後群20の逆追跡による光線図を図8に示す。
この実施例の光学系は、中心軸1の周りで回転対称な前群10と、中心軸1の周りで回転対称な後群20と、中心軸1に同軸に配置された開口5とからなり、遠方の物体から入射する光束2は、前群10と後群20を順に経て中心軸1に垂直な像面30の中心軸1から外れた位置に結像するものであり、中心軸1を垂直(上下方向)に設定した場合、例えば360°全方位(全周)の画角を有する画像であって、天頂方向が画像の中心方向に向き、地平線が外側の円になるような円環状の画像を像面30に結像させるものである。
前群10は、中心軸1の周りで回転対称な屈折率が1より大きい樹脂等の透明媒体からなり、1面の内面反射面11と2面の透過面12、13を持つものである。内面反射面11と透過面12、13も中心軸1の周りで回転対称な形状をしている。また、後群20は、6枚のレンズL1〜L6を含み3群からなるレンズ系からなる。
そして、前群10の透明媒体は、遠方からの光束2が入射する第1透過面12と、中心軸1に対して第1透過面12と同じ側に位置し、第1透過面12から入射した光束が入射する反射面12と、同じく中心軸1に対して第1透過面12と同じ側に位置し、後群20に面していて、反射面11で反射された光束が入射する第2透過面13とからなり、何れも拡張回転自由曲面からなる。ただし、円錐定数は0である。
後群20を構成するレンズ系は、前群10側から順に、両凹負レンズL1と両凸正レンズL2の接合レンズと、両凸正レンズL3と前群10側に凹面を向けた負メニスカスレンズL4の接合レンズと、両凸正レンズL5と前群10側に凹面を向けた負メニスカスレンズL6の接合レンズとからなる。
そして、中心軸1が垂直方向に向く場合、水平方向の遠方から入射する中心光束2は入射面の第1透過面12で屈折して前群10の透明媒体内に入り、反射面11に入射して後群20側へ反射された光束は第2透過面13で屈折して前群10の透明媒体から外に出て、開口5を介して後群20に入射し、像面30の中心軸1から外れた半径方向の所定位置に結像する。
この実施例の光学系では、前群10と後群20の間に位置する開口(絞り)5が物体側に投影されて中心軸1を含む断面方向の入射瞳6Yを第1透過面12近傍に形成している。
そして、この実施例の光学系では、入射瞳6Yを経て遠方から入射する光束2、3U、3L(光束3Uは遠方の空側から入射する光束、3Lは遠方の地側から入射する光束)を、中心軸1を含む断面(図6)内では、反射面11と第2透過面13の間の反射面11寄りの位置4Yに1回結像し、また、中心軸1を含む面に直交しその光束の中心光線20 を含む平面(図7)内では中間の実像を結像しない。なお、図7中の破線は前群10で形成されるサジタル像面を示す。このサジタル像面は、反射面11が凸反射面として作用するために、反射面11と第2透過面13の間に虚像として形成される。
この実施例2の仕様は、
水平画角 360°
垂直画角 100°
入射瞳径 0.4mm
像の大きさ φ5.71〜φ1.98mm
である。
図8は、後群20の逆光線追跡による光線図であり、破線は後群20の像面30からの逆光線追跡でのタンジエンシャル像面である。図9にこの実施例の光学系全体の横収差を示す。図10に、この実施例の垂直方向のディストーションを示す図であり、■で結んだ曲線と、太い実線の意味は図5と同じである。
図8に示すように、本実施例の後群20は逆光線追跡において、像面湾曲を光線の進む方向に対して凸面に大きく発生させて前群10と収差を打ち消しあっており、上下方向100°の画角を有しながら、点像(スポット)のRMSは13μmと良好な収差性能を有している。
実施例3の光学系の中心軸(回転対称軸)1に沿ってとった断面図を図11に、その光学系内の光路を示す平面図を図12に示す。また、後群20の逆追跡による光線図を図13に示す。
この実施例の光学系は、中心軸1の周りで回転対称な前群10と、中心軸1の周りで回転対称な後群20と、中心軸1に同軸に配置された開口5とからなり、遠方の物体から入射する光束2は、前群10と後群20を順に経て中心軸1に垂直な像面30の中心軸1から外れた位置に結像するものであり、中心軸1を垂直(上下方向)に設定した場合、例えば360°全方位(全周)の画角を有する画像であって、天頂方向が画像の中心方向に向き、地平線が外側の円になるような円環状の画像を像面30に結像させるものである。
前群10は、中心軸1の周りで回転対称な屈折率が1より大きい樹脂等の透明媒体からなり、1面の内面反射面11と2面の透過面12、13を持つものである。内面反射面11と透過面12、13も中心軸1の周りで回転対称な形状をしている。また、後群20は、6枚のレンズL1〜L5を含み3群からなるレンズ系からなる。
そして、前群10の透明媒体は、遠方からの光束2が入射する第1透過面12と、中心軸1に対して第1透過面12と同じ側に位置し、第1透過面12から入射した光束が入射する反射面12と、同じく中心軸1に対して第1透過面12と同じ側に位置し、後群20に面していて、反射面11で反射された光束が入射する第2透過面13とからなり、何れも拡張回転自由曲面からなる。ただし、円錐定数は0である。
後群20を構成するレンズ系は、前群10側から順に、前群10側に凹面を向けた負メニスカスレンズL1と、両凸正レンズL2と前群10側に凹面を向けた負メニスカスレンズL3の接合レンズと、両凸正レンズL5と前群10側に凹面を向けた負メニスカスレンズL6の接合レンズとからなる。
そして、中心軸1が垂直方向に向く場合、水平方向の遠方から入射する中心光束2は入射面の第1透過面12で屈折して前群10の透明媒体内に入り、反射面11に入射して後群20側へ反射された光束は第2透過面13で屈折して前群10の透明媒体から外に出て、開口5を介して後群20に入射し、像面30の中心軸1から外れた半径方向の所定位置に結像する。
この実施例の光学系では、前群10と後群20の間に位置する開口(絞り)5が物体側に投影されて中心軸1を含む断面方向の入射瞳6Yを第1透過面12と反射面11の間の透明媒体内に形成している。
そして、この実施例の光学系では、入射瞳6Yに向かって遠方から入射する光束2、3U、3L(光束3Uは遠方の空側から入射する光束、3Lは遠方の地側から入射する光束)を、中心軸1を含む断面(図11)内では、反射面11近傍の位置4Yに1回結像し、また、中心軸1を含む面に直交しその光束2の中心光線20 を含む平面(図12)内では中間の実像を結像しない。なお、図12中の破線は前群10で形成されるサジタル像面を示す。このサジタル像面は、反射面11が凸反射面として作用するために、反射面11と第2透過面13の間に虚像として形成される。
この実施例3の仕様は、
水平画角 360°
垂直画角 57.32°
入射瞳径 0.8mm
像の大きさ φ5.91〜φ2.08mm
である。
図13は、後群20の逆光線追跡による光線図であり、破線は後群20の像面30からの逆光線追跡でのタンジエンシャル像面である。また、図14にこの実施例の光学系全体の横収差を示す。
図15に、この実施例の垂直方向のディストーションを示す図であり、■で結んだ曲線と、太い実線の意味は図5と同じである。この実施例では、垂直画角が狭く(40°)、反射面11、透過面13に奇数次項(C4 )を用いているため、垂直方向のディストーションは極めて良くなっている。
本実施例では、水平方向の円周画角はφ4mmの円周上の像点となる。すると、円周は4×πとなり、水平画角1°当たりの円周方向の像高は(0.035mm/1°)となる。一方、上下方向の画角は映像の内径2mmφ、外形6mmφから、像高は2mmであり、約57.1°の上下方向画角にすると、上下方向の像高は(0.035mm/1°)となり、水平方向と縦横方向の解像力が一致した映像を撮像することが可能となる。
以下に、上記実施例1〜3の構成パラメータを示す。なお、以下の表中の“ERFS”は拡張回転自由曲面を示す。また、“IDL”は理想レンズ、“RE”は反射面をそれぞれ示す。

実施例1
面番号 曲率半径 面間隔 偏心 屈折率 アッベ数
物体面 ∞ ∞
1 ∞(入射瞳面) 偏心(1)
2 ERFS[1] (RE) 偏心(2)
3 ∞(絞り) 偏心(3)
4 1.86 偏心(4) 1.7440 44.8
5 2.90 偏心(5)
6 -60.97 偏心(6) 1.6204 60.3
7 3.30 偏心(7) 1.7552 27.6
8 7.01 偏心(8)
9 -6.21 偏心(9) 1.7440 44.8
10 7.31 偏心(10) 1.7355 28.4
11 -8.16 偏心(11)
像 面 ∞ 偏心(12)
ERFS[1]
RY ∞
θ 55.39
R -24.09
3 -4.1501 ×10-3
4 2.9641 ×10-6
5 -2.9541 ×10-7
偏心(1)
X 0.00 Y 0.00 Z -89.61
α 0.00 β 0.00 γ 0.00
偏心(2)
X 0.00 Y -3.61 Z 0.00
α 0.00 β 0.00 γ 0.00
偏心(3)
X 0.00 Y -58.07 Z 0.00
α 90.00 β 0.00 γ 0.00
偏心(4)
X 0.00 Y -59.23 Z 0.00
α 90.00 β 0.00 γ 0.00
偏心(5)
X 0.00 Y -61.23 Z 0.00
α 90.00 β 0.00 γ 0.00
偏心(6)
X 0.00 Y -61.33 Z 0.00
α 90.00 β 0.00 γ 0.00
偏心(7)
X 0.00 Y -64.83 Z 0.00
α 90.00 β 0.00 γ 0.00
偏心(8)
X 0.00 Y -65.83 Z 0.00
α 90.00 β 0.00 γ 0.00
偏心(9)
X 0.00 Y -65.93 Z 0.00
α 90.00 β 0.00 γ 0.00
偏心(10)
X 0.00 Y -69.93 Z 0.00
α 90.00 β 0.00 γ 0.00
偏心(11)
X 0.00 Y -70.93 Z 0.00
α 90.00 β 0.00 γ 0.00
偏心(12)
X 0.00 Y -74.69 Z 0.00
α 90.00 β 0.00 γ 0.00 。

実施例2
面番号 曲率半径 面間隔 偏心 屈折率 アッベ数
物体面 ∞ ∞
1 ∞(入射瞳面) 偏心(1)
2 ERFS[1] 偏心(2) 1.8830 40.7
3 ERFS[2] (RE) 偏心(3) 1.8830 40.7
4 ERFS[3] 偏心(4)
5 ∞(絞り) 偏心(5)
6 2.50 偏心(6) 1.7217 38.1
7 -8.49 偏心(7) 1.7440 44.8
8 3.54 偏心(8)
9 -11.38 偏心(9) 1.6234 59.7
10 3.51 偏心(10) 1.7552 27.6
11 17.02 偏心(11)
12 -6.56 偏心(12) 1.6204 60.3
13 9.26 偏心(13) 1.6463 33.9
14 73.38 偏心(14)
像 面 ∞ 偏心(15)
ERFS[1]
RY ∞
θ 17.42
R -28.35
3 4.0230 ×10-2
ERFS[2]
RY ∞
θ 67.71
R -21.73
3 -1.6438 ×10-2
4 -1.2092 ×10-3
5 -3.2942 ×10-5
ERFS[3]
RY ∞
θ 134.49
R -7.61
3 4.8925 ×10-2
4 1.2565 ×10-3
5 7.8262 ×10-5
偏心(1)
X 0.00 Y 0.00 Z -28.41
α 0.00 β 0.00 γ 0.00
偏心(2)
X 0.00 Y 0.00 Z 0.00
α 0.00 β 0.00 γ 0.00
偏心(3)
X 0.00 Y 0.96 Z 0.00
α 0.00 β 0.00 γ 0.00
偏心(4)
X 0.00 Y -17.69 Z 0.00
α 0.00 β 0.00 γ 0.00
偏心(5)
X 0.00 Y -30.77 Z 0.00
α 90.00 β 0.00 γ 0.00
偏心(6)
X 0.00 Y -30.88 Z 0.00
α 90.00 β 0.00 γ 0.00
偏心(7)
X 0.00 Y -31.88 Z 0.00
α 90.00 β 0.00 γ 0.00
偏心(8)
X 0.00 Y -33.88 Z 0.00
α 90.00 β 0.00 γ 0.00
偏心(9)
X 0.00 Y -33.98 Z 0.00
α 90.00 β 0.00 γ 0.00
偏心(10)
X 0.00 Y -37.48 Z 0.00
α 90.00 β 0.00 γ 0.00
偏心(11)
X 0.00 Y -38.48 Z 0.00
α 90.00 β 0.00 γ 0.00
偏心(12)
X 0.00 Y -38.58 Z 0.00
α 90.00 β 0.00 γ 0.00
偏心(13)
X 0.00 Y -41.58 Z 0.00
α 90.00 β 0.00 γ 0.00
偏心(14)
X 0.00 Y -42.58 Z 0.00
α 90.00 β 0.00 γ 0.00
偏心(15)
X 0.00 Y -46.09 Z 0.00
α 90.00 β 0.00 γ 0.00 。

実施例3
面番号 曲率半径 面間隔 偏心 屈折率 アッベ数
物体面 ∞ ∞
1 ∞(入射瞳面) 偏心(1)
2 ERFS[1] 偏心(2) 1.7552 27.6
3 ERFS[2] (RE) 偏心(3) 1.7552 27.6
4 ERFS[3] 偏心(4)
5 ∞(絞り) 偏心(5)
6 2.46 偏心(6) 1.7440 44.8
7 3.52 偏心(7)
8 -82.62 偏心(8) 1.6204 60.3
9 3.61 偏心(9) 1.7552 27.6
10 7.69 偏心(10)
11 -8.65 偏心(11) 1.7352 45.5
12 7.92 偏心(12) 1.7552 27.6
13 277.65 偏心(13)
像 面 ∞ 偏心(14)
ERFS[1]
RY ∞
θ 48.48
R -32.16
3 4.8053 ×10-2
ERFS[2]
RY ∞
θ 76.65
R -16.96
3 -1.1588 ×10-2
4 -3.0113 ×10-4
5 -1.4551 ×10-6
ERFS[3]
RY ∞
θ 149.74
R -7.40
3 3.5918 ×10-2
4 2.3957 ×10-3
5 1.2774 ×10-4
偏心(1)
X 0.00 Y 0.00 Z -28.66
α 0.00 β 0.00 γ 0.00
偏心(2)
X 0.00 Y 0.00 Z 0.00
α 0.00 β 0.00 γ 0.00
偏心(3)
X 0.00 Y 6.56 Z 0.00
α 0.00 β 0.00 γ 0.00
偏心(4)
X 0.00 Y -4.85 Z 0.00
α 0.00 β 0.00 γ 0.00
偏心(5)
X 0.00 Y -22.18 Z 0.00
α 90.00 β 0.00 γ 0.00
偏心(6)
X 0.00 Y -22.93 Z 0.00
α 90.00 β 0.00 γ 0.00
偏心(7)
X 0.00 Y -24.93 Z 0.00
α 90.00 β 0.00 γ 0.00
偏心(8)
X 0.00 Y -25.03 Z 0.00
α 90.00 β 0.00 γ 0.00
偏心(9)
X 0.00 Y -28.53 Z 0.00
α 90.00 β 0.00 γ 0.00
偏心(10)
X 0.00 Y -29.53 Z 0.00
α 90.00 β 0.00 γ 0.00
偏心(11)
X 0.00 Y -29.63 Z 0.00
α 90.00 β 0.00 γ 0.00
偏心(12)
X 0.00 Y -33.63 Z 0.00
α 90.00 β 0.00 γ 0.00
偏心(13)
X 0.00 Y -34.63 Z 0.00
α 90.00 β 0.00 γ 0.00
偏心(14)
X 0.00 Y -39.76 Z 0.00
α 90.00 β 0.00 γ 0.00 。
ところで、実施例1、2では、前群10と後群20の間に中心軸1と同軸に開口5を配置し、中心軸1を含む面内でこの開口5を物体側に逆に投影することにより、反射面11の前方(実施例1)あるいは入射面12近傍に中心軸1を含む面内での入射瞳6Yを形成するようにしているが、この開口5の代わりに、図16、図17にそれぞれ実施例1、2の変形例の中心軸1を含む片側のみの断面図に示すように、中心軸1と同軸に円筒状のスリットあるいは輪帯状のスリット15を入射瞳6Yの位置に配置するようにしてもよい。その場合は、スリット15自体がフロント絞りの作用をして入射瞳6Yを形成する。
さらに、特に実施例2、3のように、前群10として内面反射面11と透過面12、13を備えた透明媒体を用いる場合に、図18、図19にそれぞれ実施例2、3の中心軸1を含む断面図に示すように、入射瞳6Yを形成する開口5とは別に、入射面12近傍に、中心軸1の周りで回転対称な円筒状のスリットあるいは輪帯状のスリットからなるフレアー絞り16を配置することが望ましい。なお、このようなフレアー絞り16と入射瞳6Yを形成するスリット15とを兼用させるようにしてもよい(実施例2)。
さらに、以上の実施例の光学系では、前群10のさらに物体側にYトーリックレンズを付加し、このYトーリックレンズもY軸(中心軸1)に対して回転対称な面で構成されたレンズにし、このトーリックレンズはX方向にはパワーを持たせないで、一方、Y方向(図1の断面内等)には負のパワーを持たせることにより、回転対称軸1を含む断面方向の画角を大きくとることが可能となる。さらに好ましくは、このトーリックレンズはY−Z断面内では物体側に凸面を向け負のメニスカスレンズ形状に構成することにより、像歪の発生を最小にすることが可能となり、良好な収差補正が可能となる。
さらに、前群10の物体側には、断面が負メニスカスレンズ形状の1つのYトーリックレンズに限らず、2枚又は3枚のメニスカス形状のレンズで構成することにより、より像歪の発生を小さくすることが可能である。また、レンズに限らず、中心軸1に対して回転対称な反射面やプリズムにより光線を反射屈折させて任意の方向を撮像あるいは観察させることも容易である。
また、以上の実施例では、垂直方向のディストーションをf・θ特性(IH∝f・θ)に近付けようとするものであったが(特に実施例3)、これをf・tanθ特性(IH∝f・tanθ)に近付いたものとするためには、特に反射面11に高次の奇数次項を用いて補正するようにすればよい。
また、以上の実施例では、前群10の反射面、屈折面をそれぞれ任意形状の線分を回転対称軸1の周りで回転することにより形成され回転対称軸1上に面頂を有さない拡張回転自由曲面で構成しているが、それぞれ任意の曲面に置き換えることは容易である。
また、本発明の光学系は、回転対称面を形成する任意形状の線分を定義する式に奇数次項を含むものを用いることにより、偏心により発生する像面の傾きや、絞りの逆投影時の瞳収差を補正している。
以上、本発明の光学系を中心軸(回転対称軸)1を垂直方向に向けて天頂を含む360°全方位(全周)の画角の画像を得る撮像あるいは観察光学系として説明してきたが、本発明は撮影光学系、観察光学系に限定されず、光路を逆にとって天頂を含む360°全方位(全周)の画角に画像を投影する投影光学系として用いることもできる。また、内視鏡は管内観察装置の全周観察光学系として用いることもできる。
以下に、本発明の光学系の適用例として、パノラマ撮影光学系31又はパノラマ投影光学系32の使用例を説明する。図20は、内視鏡先端の撮影光学系として本発明によるパノラマ撮影光学系31を用いた例を示すための図であり、図20(a)は、硬性内視鏡41の先端に本発明によるパノラマ撮影光学系31を取り付けて360°全方位の画像を撮像観察する例である。また、図20(b)は、軟性電子内視鏡42の先端に本発明によるパノラマ撮影光学系31を取り付けて、表示装置43に撮影された画像を画像処理を施して歪みを補正して表示するようにした例である。
図21は、自動車48の各コーナや頂部に撮影光学系として本発明によるパノラマ撮影光学系31を複数取り付けて、車内の表示装置に各パノラマ撮影光学系31を経て撮影された画像を画像処理を施して歪みを補正して同時に表示するようにした例である。
図22は、投影装置44の投影光学系として本発明によるパノラマ投影光学系32を用い、その像面に配置した表示素子にパノラマ画像を表示し、パノラマ投影光学系32を通して360°全方位に配置したスクリーン45に360°全方位画像を投影表示する例である。
図23は、建物47の外部に本発明によるパノラマ撮影光学系31を用いた撮影装置49を取り付け、屋内に本発明によるパノラマ投影光学系32を用いた投影装置44を配置し、撮影装置49で撮像された映像を電線46を介して投影装置44に送るように接続している。このような配置において、屋外の360°全方位の被写体Oをパノラマ撮影光学系31を経て撮影装置49で撮影し、その映像信号を電線46を介して投影装置44に送り、像面に配置した表示素子にその映像を表示して、パノラマ投影光学系32を通して屋内の壁面等に被写体Oの映像O’を投影表示するようにしている例である。
本発明の実施例1の光学系の中心軸に沿ってとった断面図である。 本発明の実施例1の光学系内の光路を示す平面図である。 実施例1の後群の逆光線追跡による光線図である。 実施例1の光学系全体の横収差図である。 実施例1の垂直方向のディストーションを示す図である。 本発明の実施例2の光学系の中心軸に沿ってとった断面図である。 本発明の実施例2の光学系内の光路を示す平面図である。 実施例2の後群の逆光線追跡による光線図である。 実施例2の光学系全体の横収差図である。 実施例2の垂直方向のディストーションを示す図である。 本発明の実施例3の光学系の中心軸に沿ってとった断面図である。 本発明の実施例3の光学系内の光路を示す平面図である。 実施例3の後群の逆光線追跡による光線図である。 実施例3の光学系全体の横収差図である。 実施例3の垂直方向のディストーションを示す図である。 実施例1の変形例の中心軸を含む片側のみの断面図である。 実施例2の変形例の中心軸を含む片側のみの断面図である。 フレアー絞りを配置した実施例2の光学系の中心軸に沿ってとった断面図である。 フレアー絞りを配置した実施例3の光学系の中心軸に沿ってとった断面図である。 内視鏡先端の撮影光学系として本発明によるパノラマ撮影光学系を用いた例を示すための図である。 自動車の各コーナや頂部に撮影光学系として本発明によるパノラマ撮影光学系を用いた例を示すための図である。 投影装置の投影光学系として本発明によるパノラマ投影光学系を用いた例を示すための図である。 屋外の被写体を本発明によるパノラマ撮影光学系を経て撮影し、屋内に本発明によるパノラマ投影光学系を通して投影表示する例を示すための図である。
符号の説明
1…中心軸(回転対称軸)
2…遠方から入射する中心光束
0 …中心光束の中心光線(主光線)
3U…遠方の空側から入射する光束
3L…遠方の地側から入射する光束
4Y…中間像結像位置
5…開口(絞り)
6Y、6X…入射瞳
10…前群
11…反射面
12、13…透過面(入射面、射出面)
15…円筒状のスリット又は輪帯状のスリット
16…フレアー絞り
20…後群
30…像面
31…パノラマ撮影光学系
32…パノラマ投影光学系
41…硬性内視鏡
42…軟性電子内視鏡
43…表示装置
44…投影装置
45…スクリーン
46…電線
47…建物
48…自動車
49…撮影装置
L1〜L6…レンズ
O…被写体
O’…映像

Claims (13)

  1. 360°全方位の画角を有する画像を像面に結像させるか、像面に配置された画像を360°全方位の画角に投影する光学系であって、
    中心軸の周りで回転対称な1面の反射面を含む前群と、中心軸の周りで回転対称で正パワーを有する後群と、中心軸に同軸に配置された開口とを備えており、
    結像系の場合は光線の進む順に、投影系の場合は光線の進む順とは反対に、遠方から前記前群に入射した光束は、前記前群と前記後群を順に経て像面の中心軸から外れた位置に結像し、かつ、中心軸を含む断面内と、その断面に対して直交しその光束の中心光線を含む平面内での中間結像回数が異なるように構成されていることを特徴とする光学系。
  2. 前記前群は、中心軸方向に90°以上の画角を有し、中心軸の周りで回転対称な透明媒体を有し、前記透明媒体は1面の内面反射面と2面の屈折面を持ち、結像系の場合は光線の進む順に、投影系の場合は光線の進む順とは反対に、遠方から前記前群に入射した光束は、入射面の屈折面を経て透明媒体内に入り、内面反射面で反射されて射出面の屈折面を経て透明媒体から外に出て、前記後群を経て像面の中心軸から外れた位置に結像することを特徴とする請求項1記載の光学系。
  3. 遠方の1つの方向から入射する光束は、前記前群内で中心軸に対して片側のみで反射屈折し、中心軸を含む断面内で1回中間結像し、中心軸を含む断面に対して対して直交し、その光束の中心光線を含む平面内では中間結像せず、かつ、前記開口は、中心軸を含む断面内では前記前群の入射面又はそれより物体側に共役な入射瞳を形成することを特徴とする請求項1又は2記載の光学系。
  4. 前記後群は、回転対称の同軸屈折光学系からなることを特徴とする請求項1から3の何れか1項記載の光学系。
  5. 前記前群の中心軸を含む断面内の焦点距離をFy、その断面に対して直交し遠方から入射する光束の中心光線を含む平面内の焦点距離をFxとするとき、
    −100<Fx/Fy<−0.01 ・・・(4)
    の条件を満たすことを特徴とする請求項1から4の何れか1項記載の光学系。
  6. 中心軸を含む断面において、入射瞳位置から前記開口位置までの光路長をC、入射瞳位置から前記前群の第1面までの光路長を光線方向を正とした値をDとすると、
    5<|C/D| ・・・(3)
    の条件を満たすことを特徴とする請求項2から5の何れか1項記載の光学系。
  7. 前記後群のペッバール和をp、焦点距離をFbとするとき、
    −0.5<p×Fb<−0.01 ・・・(1)
    の条件を満たすことを特徴とする請求項1から6の何れか1項記載の光学系。
  8. 中心軸を含む断面内において、入射瞳位置から前記反射面までの光路長をA、前記反射面から前記開口までの光路長をBとすると、
    0.05<A/B<2 ・・・(2)
    の条件を満たすことを特徴とする請求項1から7の何れか1項記載の光学系。
  9. 前記前群の中心軸を含む断面内の焦点距離をFy、その断面に対して直交し遠方から入射する光束の中心光線を含む平面内の焦点距離をFx、前記後群の焦点距離をFbとするとき、
    0.05<Fx/Fb<10 ・・・(5)
    −10<Fy/Fb<−0.05 ・・・(6)
    の少なくとも何れか一方の条件を満足することを特徴とする請求項1から8の何れか1項記載の光学系。
  10. 前記反射面は対称面を持たない任意形状の線分を中心軸の周りで回転させて形成される回転対称な形状を有することを特徴とする請求項1から9の何れか1項記載の光学系。
  11. 前記反射面は奇数次項を含む任意形状の線分を中心軸の周りで回転させて形成される回転対称な形状を有することを特徴とする請求項1から10の何れか1項記載の光学系。
  12. 中心軸を含む断面内で前記開口と共役な入射瞳近傍に前記断面内でのみ開口を制限する一方向性のフレア絞りを配置したことを特徴とする請求項1から8の何れか1項記載の光学系。
  13. 少なくとも前記反射面が中心軸を含む断面で切断されて中心軸の周りの画角が360°より狭く構成されていることを特徴とする請求項1から12の何れか1項記載の光学系。
JP2005145261A 2004-08-18 2005-05-18 光学系 Expired - Fee Related JP4671758B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005145261A JP4671758B2 (ja) 2005-02-09 2005-05-18 光学系
US11/205,212 US7403343B2 (en) 2004-08-18 2005-08-17 Panoramic attachment optical system, and panoramic optical system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005032585 2005-02-09
JP2005145261A JP4671758B2 (ja) 2005-02-09 2005-05-18 光学系

Publications (2)

Publication Number Publication Date
JP2006251747A true JP2006251747A (ja) 2006-09-21
JP4671758B2 JP4671758B2 (ja) 2011-04-20

Family

ID=37092263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005145261A Expired - Fee Related JP4671758B2 (ja) 2004-08-18 2005-05-18 光学系

Country Status (1)

Country Link
JP (1) JP4671758B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008007498A1 (en) * 2006-07-10 2008-01-17 Olympus Corporation Transmissive optical element and optical system using the same
JP2009034503A (ja) * 2007-08-02 2009-02-19 General Electric Co <Ge> トモシンセシス画像を表示するための方法及びシステム
JP2011150029A (ja) * 2010-01-19 2011-08-04 Fujifilm Corp 投写光学系およびこれを用いた投写型表示装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008007498A1 (en) * 2006-07-10 2008-01-17 Olympus Corporation Transmissive optical element and optical system using the same
JP2008040468A (ja) * 2006-07-10 2008-02-21 Olympus Corp 透過光学素子及びそれを用いた光学系
JP2009034503A (ja) * 2007-08-02 2009-02-19 General Electric Co <Ge> トモシンセシス画像を表示するための方法及びシステム
JP2011150029A (ja) * 2010-01-19 2011-08-04 Fujifilm Corp 投写光学系およびこれを用いた投写型表示装置

Also Published As

Publication number Publication date
JP4671758B2 (ja) 2011-04-20

Similar Documents

Publication Publication Date Title
JP4780713B2 (ja) 光学系
JP4884085B2 (ja) 光学系
JP4728034B2 (ja) 回転非対称光学系
JP5025354B2 (ja) 光学素子、それを備えた光学系及びそれを用いた内視鏡
JP5030675B2 (ja) 光学系及びそれを用いた内視鏡
JP4611115B2 (ja) 光学系
WO2009008530A1 (ja) 光学素子、それを備えた光学系及びそれを用いた内視鏡
JP4648758B2 (ja) 光学系
JP2008152073A (ja) 光学系
JP5508694B2 (ja) 光学系及びそれを用いた内視鏡
JP2006259659A (ja) 光学系
JP2008309860A (ja) 光学系及びそれを用いた内視鏡
JP2011257630A (ja) アタッチメント光学系
JP4671758B2 (ja) 光学系
JP5025355B2 (ja) 光学素子、それを備えた光学系及びそれを用いた内視鏡
JP4839013B2 (ja) 光学系
JP4849591B2 (ja) 光学系
JP4611110B2 (ja) 光学系
JP2009080410A (ja) 光学系及びそれを用いた内視鏡
JP4585352B2 (ja) 光学系
JP4493466B2 (ja) 光学系
WO2009041332A1 (ja) 光学系及びそれを用いた内視鏡
JP4648757B2 (ja) 光学系
JP2011186480A (ja) 光学系
JP4908853B2 (ja) 光学系

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110118

R151 Written notification of patent or utility model registration

Ref document number: 4671758

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees