WO2009041332A1 - 光学系及びそれを用いた内視鏡 - Google Patents

光学系及びそれを用いた内視鏡 Download PDF

Info

Publication number
WO2009041332A1
WO2009041332A1 PCT/JP2008/066794 JP2008066794W WO2009041332A1 WO 2009041332 A1 WO2009041332 A1 WO 2009041332A1 JP 2008066794 W JP2008066794 W JP 2008066794W WO 2009041332 A1 WO2009041332 A1 WO 2009041332A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical system
image
group
central axis
transparent medium
Prior art date
Application number
PCT/JP2008/066794
Other languages
English (en)
French (fr)
Inventor
Takayoshi Togino
Original Assignee
Olympus Corp.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp. filed Critical Olympus Corp.
Publication of WO2009041332A1 publication Critical patent/WO2009041332A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/041Capsule endoscopes for imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00064Constructional details of the endoscope body
    • A61B1/00071Insertion part of the endoscope body
    • A61B1/0008Insertion part of the endoscope body characterised by distal tip features
    • A61B1/00096Optical elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00174Optical arrangements characterised by the viewing angles
    • A61B1/00177Optical arrangements characterised by the viewing angles for 90 degrees side-viewing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00174Optical arrangements characterised by the viewing angles
    • A61B1/00179Optical arrangements characterised by the viewing angles for off-axis viewing
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/06Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/08Catadioptric systems
    • G02B17/0804Catadioptric systems using two curved mirrors
    • G02B17/0808Catadioptric systems using two curved mirrors on-axis systems with at least one of the mirrors having a central aperture
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/08Catadioptric systems
    • G02B17/0856Catadioptric systems comprising a refractive element with a reflective surface, the reflection taking place inside the element, e.g. Mangin mirrors
    • G02B17/086Catadioptric systems comprising a refractive element with a reflective surface, the reflection taking place inside the element, e.g. Mangin mirrors wherein the system is made of a single block of optical material, e.g. solid catadioptric systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2407Optical details
    • G02B23/2423Optical details of the distal end
    • G02B23/243Objectives for endoscopes

Definitions

  • the present invention relates to an optical system and an endoscope using the same, and more particularly to an imaging optical system or a projection optical system having a function of forming an image around a central axis as an annular image on an image sensor. .
  • the present invention has been made in view of such a situation of the prior art, and the purpose thereof is to enable a wide observation angle of view to be imaged on an image sensor with a simple configuration, and to achieve a compact and inexpensive optical.
  • a system and an endoscope using the system are provided.
  • the optical system of the present invention that achieves the above object is an optical system that is rotationally symmetric about the central axis in a cross section including the central axis, wherein the optical system is an aperture disposed on the object side on the central axis.
  • a transparent medium having a refractive index greater than 1 disposed on the image plane side of the opening the transparent medium including the first transmission surface disposed on the central axis in the vicinity of the opening,
  • the first reflecting surface is disposed on the image plane side from the first transmission surface and has a concave surface facing the image surface side.
  • the first reflecting surface is disposed on the opposite side of the image surface from the first reflecting surface, and the concave surface is directed to the image surface side.
  • the light beam incident on the transparent medium passes through the opening in the order of forward ray tracing,
  • the first reflection surface enters the transparent medium, the first reflection surface reflects to the opposite side of the image surface, the second reflection surface reflects to the image surface side, and the second transmission surface passes through the second transmission surface.
  • a substantially Z-shaped first optical path that exits from the transparent medium to the image plane side is configured, and at least a distance between the first reflective surface and the second reflective surface of the first optical path is relative to the central axis. It is composed of only one side, and an intermediate image is not formed in the first optical path, but is formed in an annular shape on the image plane.
  • At least one of the reflecting surfaces is formed of an extended rotation free-form surface formed by rotating an arbitrary-shaped line segment having no symmetry plane around the central axis.
  • At least one of the first reflecting surface and the second reflecting surface is composed of an extended rotation free-form surface that is formed by rotating an arbitrary-shaped line segment including an odd-order term around a central axis. It is characterized by being.
  • the first reflecting surface is configured to reflect by a total reflection action and a reflection coating, and the reflection coating is formed on the first reflection surface. It is provided only in the vicinity of the central axis.
  • first transmission surface and the second reflection surface are arranged on the object side of the transparent medium.
  • the first reflection surface and the second transmission surface may be arranged on the image surface side of the transparent medium.
  • first reflecting surface and the second transmitting surface have the same shape at the same position.
  • a refracting body is arranged on the object side and / or the image plane side of the transparent medium.
  • the present invention for achieving the above object is an endoscope using the optical system.
  • FIG. 2 is a cross-sectional view taken along the central axis of the optical system according to Example 1 of the present invention.
  • FIG. 2 is a transverse aberration diagram for the whole optical system of Example 1.
  • FIG. 3 is a diagram illustrating an image with respect to the angle of view of the entire optical system of Example 1.
  • FIG. 6 is a transverse aberration diagram for the whole optical system of Example 2.
  • FIG. 6 is a diagram showing an image with respect to the angle of view of the entire optical system of Example 2.
  • FIG. 6 is a transverse aberration diagram for the whole optical system of Example 3.
  • FIG. 6 is a diagram illustrating an image height with respect to an angle of view of the entire optical system of Example 3.
  • FIG. 6 is a diagram illustrating an image height with respect to an angle of view of the entire optical system of Example 3.
  • FIG. 6 is a transverse aberration diagram for the whole optical system of Example 4.
  • FIG. 6 is a diagram illustrating an image height with respect to an angle of view of the entire optical system according to Example 4.
  • FIG. 3 is a diagram showing an example in which the optical system of the present invention is used as a photographing optical system at the tip of an endoscope.
  • FIG. 3 is a diagram showing an example in which the optical system of the present invention is used as a photographing optical system for a capsule endoscope.
  • FIG. 3 is a diagram showing an example in which the optical system of the present invention is used as an imaging optical system for an automobile.
  • FIG. 5 is a diagram showing an example in which the optical system of the present invention is used as a projection optical system of a projection apparatus.
  • FIG. 3 is a diagram showing an example in which the optical system of the present invention is used as a photographing optical system for photographing an outdoor subject.
  • optical system of the present invention will be described below based on examples.
  • FIG. 3 is a cross-sectional view taken along the central axis (rotation symmetry axis) 2 of the optical system 1 of Example 1 described later.
  • FIG. 3 will be described as an imaging optical system, it can also be used as a projection optical system with the optical path reversed.
  • An optical system 1 according to the present invention is rotationally symmetric with respect to a central axis 2 and includes an aperture S and a transparent medium L.
  • the optical system 1 forms or projects an image without forming an intermediate image in the optical path. It is.
  • the parallel plate near the image plane 5 is the cover glass C b 2 of the image sensor.
  • the optical system 1 of Example 1 is configured so as to be rotationally symmetric around the central axis 2 in a cross section including the central axis 2, and is disposed on the object side on the central axis 2, and the image plane of the aperture S
  • a transparent medium L having a refractive index greater than 1 and the transparent medium L is a rear first group of first transmitting surfaces as a first transmitting surface disposed on the central axis 2 near the opening S.
  • the light beam incident on the transparent medium L passes through the aperture S in the order of forward ray tracing, enters the transparent medium L through the rear first group first transparent surface 2 1, and then the rear first group first reflective surface 2 2 Is reflected to the opposite side of the image plane 5, and then reflected back to the image plane 5 side by the first group 2 second reflecting surface 2 3 and then passed from the transparent medium L to the image plane 5 side via the rear group 1 second transmitting surface 24.
  • Abbreviated Z-shape The first optical path A of the first optical path A and at least the rear first group first reflective surface 2 2 and the rear first group second reflective surface 23 of the first optical path A are configured only on one side with respect to the central axis 2. An intermediate image is not formed in the first optical path A, but is formed in an annular shape on the image plane 5.
  • At least one of the rear first group first reflective surface 2 2 and the rear first group second reflective surface 2 3 is formed by rotating an arbitrary line segment having no symmetry plane around the central axis. It may be composed of an extended rotation free-form surface.
  • the aperture S is in the vicinity of the first transmission surface 21 in the first group on the rear side of the object side. If the aperture S is arranged on the image side of the transparent medium L of the present invention, astigmatism is greatly generated and a flat image is generated. Cannot be formed. In addition, the tilt angle of the main light beam is increased, resulting in poor telecentricity. Furthermore, interference between the effective diameters of the rear first group first transmission surface 21 and the rear first group second reflection surface 23 occurs, and it becomes impossible to increase the angle of view.
  • the rear first group first reflecting surface 2 2 and the rear first group second reflecting surface 23 have a concave surface facing the image side.
  • a negative and positive power arrangement is made in order of the optical path from the object side, so that a so-called retrofocus configuration can be achieved, and a wide angle of view can be achieved.
  • this arrangement makes it possible to place the principal point of the optical system on the object side and take F-back. [0 0 2 7]
  • the optical path between the rear first group first reflecting surface 2 2 and the rear first group second reflecting surface 23 is formed on one side without straddling the central axis 2.
  • the crossing of the center axis 2 and the optical path means that an intermediate image is formed on the sagittal section, which increases the optical path length and leads to an increase in the size of the optical system.
  • the light path is Z-shaped.
  • the reflection angle on each surface can be reduced, and the occurrence of decentration aberrations can be reduced.
  • the optical system 1 can be formed by forming an intermediate image. As a result, it becomes impossible to make the optical system 1 compact.
  • the object point around the central axis 2 intersects the central axis 2 once and forms an image on the opposite side.
  • the light beam from the object passes through the aperture S on the central axis 2 and at the same time intersects the central axis 2 once and enters the opposite side of the object. Therefore, it is reflected and imaged by each reflecting surface, but if it is configured to form an image on the same side of the object and the central axis 2, it needs to cross the central axis once more before imaging.
  • the bundle crossing the central axis 2 again means that an image of the aperture S is created.
  • the exit pupil will be near the image, improving telecentricity. It will disappear.
  • it is necessary to provide extra power for this purpose in the optical path leading to an increase in the size of the optical system.
  • the image plane is an annular plane image plane.
  • an annular plane by forming an image of an annular plane, it is possible to capture or project an image with a single plane imaging element or display element.
  • At least one of the rear group 1 first reflecting surface 2 2 and the rear group 1 second reflecting surface 2 3 rotates a line segment having no symmetry plane around the central axis 2. It is important to make up a rotationally symmetric extended rotation free-form surface formed in this way.
  • decentration aberrations always occur. The occurrence of this decentration aberration can be reduced or corrected to be small.
  • it is a line segment having an arbitrary shape including an odd-order term.
  • This odd-order term makes it possible to correct the distortion of the peripheral part of the screen in the peripheral optical path A and the inclination of the image plane.
  • the reflecting surface is configured by an internal reflecting surface, and it is possible to reduce the occurrence of aberrations such as field curvature.
  • the inclination of the light beam that strikes the rear first group first reflecting surface 22 is smaller than that in the air, a good result is also obtained for a wide angle of view.
  • the rear first group first reflecting surface 2 2 is configured so that light rays having a wide angle of view are reflected by total reflection, and the incident angle at which the rear first group first reflecting surface 2 2 is not totally reflected near the center of the angle of view. It is preferable to apply a reflective coating 4a to the center of the rear first group first reflecting surface 22 so as to reflect the light beam. As a result, it is possible to capture an image of the center of the angle of view. Further back 1st group 1st reflecting surface 2 It is desirable to perform anti-reflective coating for the part of the circumference of 22 laps so that the total reflection is reflected. Good. . As a result, the light beam of the central part of the central part prevents the light beam from being emitted from the photo-optics system. Become. .
  • the rear 11th group 11th transparent surface 22 11 and the rear 11th group 22nd antireflective surface 22 33 are those of the transparent medium LL. It is good to leave it close to and close to the object side. . This reduces the interference of light rays on the planes of each other, and ensures a wide and wide angle of view. Becomes possible. .
  • the rear 11th group 11th anti-reflection surface 22 22 and the rear 11th group 22nd transmission surface 22 44 are images of the transparent medium LL. You can leave it close to and close to the image surface 55 side. . As a result, it is possible to make the transparent medium LL and the image plane 55 short and short. . It is possible to shorten the overall length of the optical optics system. .
  • the 22nd anti-reflective surface 22 33 performs anti-reflective reflection coating 44 bb on the peripheral edge.
  • the center part of the central part is the rear 11th group 11th transparent surface 22 11 or from the relationship of the arrangement of the opening SS SS, It is desirable that you do not do anti-reflective shooting. .
  • the 11th group 11th retroreflective surface 22 22 and the 11th group 22th transparent surface 22 44 after the rear group are the same.
  • the first position which is composed of the same shape and shape, can be kept as good as possible. .
  • bent body RR ff, RR bb is arranged on the object side of the transparent transparent medium LL and on the ZZ or image surface side. Depending on what you are doing, you will be able to create a large angle of view angle. .
  • conditional expression (1) when the lower limit is exceeded, the telecentricity deteriorates, and in particular, when using an image sensor such as C CD, the amount of peripheral light is insufficient. If the upper limit is exceeded, the outer diameter of the optical system becomes too large and the optical system becomes large.
  • Conditional expression (2) defines the total length of the optical system with respect to the image height. If the lower limit is exceeded, the telecentricity also deteriorates and the peripheral light quantity is insufficient. If the upper limit is exceeded, the total length becomes too long, and a compact optical system cannot be constructed.
  • Conditional expression (3) defines the ratio of the ratio of the two reflecting surfaces. If the lower limit is exceeded, the radius of curvature of the rear first group first reflecting surface 2 2 will be reduced, and the rear first group Compared to the positive power of the second reflecting surface 2 3, the negative power of the rear first group first reflecting surface 2 2 becomes larger, and the total length of the optical system cannot be shortened. When the upper limit is exceeded, the curvature of the rear first group second reflecting surface 23 becomes smaller, the positive power of the rear first group second reflecting surface 23 becomes too large, and a large curvature of field on the object side occurs.
  • the parallel plane on the object side is for protecting the optical system. You don't have to.
  • the parallel plane on the image side is for protecting the image sensor and may be omitted.
  • the coordinate system uses the point where the diaphragm surface intersects the central axis 2 as the origin O of the decentered optical surface, and the direction perpendicular to the central axis 2 as the Y-axis direction.
  • the plane of 1 is the Y-Z plane.
  • the direction on the image plane 5 side in FIG. 1 is the Z-axis positive direction, and the Y-axis, the Z-axis, and the axis constituting the right-handed orthogonal coordinate system are the X-axis positive direction.
  • the amount of eccentricity from the origin O of the optical system 1 in the coordinate system where the surface is defined are X, ⁇ , ⁇ , respectively
  • optical system 1 The tilt angle of the coordinate system that defines each surface around the X-axis, ⁇ -axis, and ⁇ -axis of the coordinate system defined at the origin ⁇ (
  • the positive Q! And ⁇ means counterclockwise rotation with respect to the positive direction of each axis
  • the positive of ⁇ means clockwise rotation with respect to the positive direction of the Z axis.
  • the rotation of ⁇ , ⁇ , and a on the center axis of the surface is counterclockwise around the X axis of the coordinate system defined at the origin of the optical system. Then rotate it 6 turns counterclockwise around the ⁇ axis of the rotated new coordinate system, and then clockwise around the z axis of another rotated new coordinate system r Rotate.
  • An aspherical surface is a rotationally symmetric aspherical surface given by the following definition.
  • Z is the axis and Y is in the direction perpendicular to the axis.
  • R is the paraxial radius of curvature
  • k is the conic constant
  • a, b, c, d, ... are the 4th, 6th, 8th, and 10th order aspherical coefficients, respectively.
  • the Z axis of this definition is the axis of the rotationally symmetric aspheric surface.
  • An extended rotational free-form surface is a rotationally symmetric surface given by the following definition. '
  • the curve F (Y) is moved in parallel in the positive direction by the distance R (Y negative direction if negative), and then a rotationally symmetric surface that can rotate the translated curve around the vertical axis.
  • An extended rotation free-form surface is provided.
  • the extended rotation free-form surface becomes a free-form surface (free-form curve) in the ⁇ - ⁇ plane, and becomes a circle with a radius of 1 in the plane.
  • the axis is the axis (center axis) of the extended rotation free-form surface.
  • R ⁇ is the radius of curvature of the spherical term in the ⁇ - ⁇ cross section, is the conic constant, C 2 , C 3 , C 4 , C 5 ... are the primary, secondary, tertiary, quaternary... Spherical coefficient.
  • FIG. 4 shows a lateral aberration diagram of the entire optical system of this example
  • FIG. 5 shows a diagram showing the image height with respect to the angle of view.
  • the angle shown at the center indicates (horizontal field angle, vertical field angle), and the Y direction ( The transverse aberration is shown in the meridional direction) and in the X direction (sagittal direction).
  • a negative field angle means a clockwise angle when facing the Y-axis positive direction for the horizontal field angle, and a clockwise angle when facing the X-axis positive direction for the vertical field angle. same as below.
  • the transparent and transparent surfaces of the transparent medium having a refractive index larger than 1 that is concentric with the central axis 2 of the optical system 1 are composed of different surfaces without using them in common in the optical path. This is an example.
  • the optical system 1 includes a front group G f, a rear group G b, and an aperture S arranged coaxially with the central axis 2 between the front group G ⁇ and the rear group G b.
  • the rear group G b It consists of rear 1 group G b 1 and rear 2 group G b 2.
  • the front group G ⁇ consists of a front group cover glass C f having a refractive index rotationally symmetric around the central axis 2 greater than 1.
  • the front group glass C f is composed of parallel flat plates, and the front group first transmission surface 1 1 and the front group second transmission surface 1 2 formed on the image side with respect to the front group first transmission surface 1 1. And have.
  • the rear group 1 G b 1 consists of a transparent medium L having a refractive index that is rotationally symmetric about the central axis 2 and greater than 1.
  • the transparent medium L is composed of a spherical surface on the central axis 2 and the rear first group first transmission surface 2 1 and the transparent medium L is applied with a reflective coating 4 a, and the rear first group first transmission surface 21 is on the image side.
  • It is formed of an extended rotation free-form surface, has negative power, and rear 1st group 1st reflecting surface 2 2 and transparent medium L are applied with reflective coating 4b, and rear 1st group 1st reflecting surface 2 2 is imaged Arranged on the opposite side of surface 5 and made of an extended rotation free-form surface, with positive power, rear 1st group 2nd reflecting surface 2 3 and rear 1st group 2nd reflecting surface 2 3 It consists of an extended rotation free-form surface, and has a rear group 1 and a second transmission surface 24 having positive power.
  • the rear 2 group G b 2 is composed of the rear 2 group cover glass C b 2 whose refractive index rotationally symmetric around the central axis 2 is greater than 1.
  • the rear 2nd group cover glass Cb2 is formed of a flat plate, and is formed on the image side with respect to the rear 2nd group first transmitting surface 3 1 and the rear 2nd group first transmitting surface 3 1. 2 transmissive surface 3 2.
  • the optical system 1 forms the optical path A.
  • the light beam incident from the object surface 3 of the optical system 1 is divided into the front group first transmission surface 1 ⁇ 1 and the front group second transmission surface 1 2 of the front group cover glass C f and the front group cover glass. It enters into the transparent medium L through the opening S arranged coaxially with the central axis 2 between C f and the transparent medium L. In the transparent medium L, it enters through the first group 1 first transmission surface 2 1 and is reflected to the opposite side of the image surface 5 by the reflection coating on the rear group 1 first reflection surface 2 2, and then the rear group 1 second reflection surface.
  • the rear group 2 cover glass Cb 2 passes through the rear group 2 first transmitting surface 3 1 and the rear group 2 second transmitting surface 3 2, and then circles at a predetermined radial position away from the central axis 2 of the image surface 5.
  • An image is formed in a ring.
  • FIG. 7 shows a lateral aberration diagram of the entire optical system of this example
  • FIG. 8 shows a diagram showing an image height with respect to an angle of view.
  • the refractive index which is rotationally symmetric with respect to the central axis 2 of the optical system 1 is 1.
  • a transmission surface and a reflection surface of a large transparent medium are partly shared in the optical path.
  • the optical system 1 includes an aperture S arranged coaxially with the central axis 2, a rear first group G b 1, and a rear second group G b 2.
  • the rear group 1 G b 1 consists of a transparent medium L having a refractive index that is rotationally symmetric about the central axis 2 and greater than 1.
  • the transparent medium L is composed of a spherical rear surface on the central axis 2 and the first transmission surface 21 of the first group, and a reflection coating 4 a near the central axis of the transparent medium L, and the rear first group first transmission surface '2 1'.
  • the rear 2 group G b 2 is composed of the rear 2 group cover glass C b 2 having a rotationally symmetric refractive index greater than 1 around the central axis 2.
  • the rear 2nd group cover glass Cb2 is formed of a parallel plate, and is formed on the image side with respect to the 2nd group 1st transmission surface 3 1 and the rear 2nd group 1st transmission surface 3 1. 2 transmissive surface 3 2.
  • the optical system 1 forms the optical path A.
  • the light beam incident from the object surface 3 of the optical system 1 enters the transmissive medium L through the aperture S arranged coaxially with the central axis 2.
  • the transparent medium L it enters after the first group 1 first transmission surface 2 1, part of the rear group 1 first reflection surface 2 2 is reflective coating 4 a, and the other part is totally opposite to the image surface 5 due to total reflection.
  • Reflected, back 1st group 2nd reflective surface 2 3 Reflective coating It has a substantially Z-shaped optical path that is reflected to the image plane 5 side by the ring and then exits from the transparent medium L via the first group second transmission surface 24.
  • the rear 2nd group cover glass Cb 2 passes through the rear 2nd group 1st transmission surface 3 1 and the rear 2nd group 2nd transmission surface 3 2 to a predetermined radial position away from the central axis 2 of the image plane 5.
  • An image is formed in a ring shape.
  • FIG. 10 shows a lateral aberration diagram of the entire optical system of this example
  • FIG. 11 shows a diagram showing an image height with respect to an angle of view.
  • the transmission surface and the reflection surface of a transparent medium having a refractive index larger than 1 that is concentric with the central axis 2 of the optical system 1 are partially shared in the optical path. .
  • the optical system 1 includes a front group G f, a rear group G b, and an aperture S arranged coaxially with the central axis 2 between the front group G f and the rear group G b.
  • the rear group G b It consists of rear 1 group G b 1 and rear 2 group G b 2.
  • the front group G f consists of a front group refractor R f with a refractive index rotationally symmetric around the central axis 2 greater than 1.
  • the refractor R has a front group first transmission surface 11 1 made of a toric surface and a second transmission surface 12 made of a toric surface formed on the image side with respect to the first transmission surface 11.
  • the rear group 1 G b 1 consists of a transparent medium L having a refractive index that is rotationally symmetric about the central axis 2 and greater than 1.
  • the transparent medium L has a first group of first transmitting surfaces 2 1 formed of a spherical surface on the central axis 2 and a reflective coating 4 a near the central axis of the transparent medium L, and the rear group 1 with respect to the first transmitting surface 2 1
  • the first reflecting surface 2 2 of the rear 1 group which consists of an extended rotation free-form surface and has negative power, and the reflective coating 4 b of the transparent medium L, and the rear 1 group 1st reflecting surface 2 It is located on the opposite side of image plane 5 with respect to 2, and consists of an extended rotation free-form surface, which has positive power, rear 1st group 2nd reflecting surface 2 3 and rear 1st group 2nd reflecting surface 2 3 Arranged on the 5th side, it consists of an extended rotation free-form surface, and has a rear first group second transmission surface 24 having
  • the rear 2 group G b 2 is composed of the rear 2 group cover glass C b 2 having a rotationally symmetric refractive index greater than 1 around the central axis 2.
  • the rear 2nd group cover glass Cb2 consists of parallel flat plates and is formed on the image side with respect to the rear 2nd group 1st transmission surface 3 1 and the rear 2nd group 1st transmission surface 31. And a second transmission surface 3 2.
  • the optical system 1 forms the optical path A.
  • the light beam incident from the object surface 3 of the optical system 1 is the front group first transmission surface 1 1 and front group second transmission surface 1 2 of the front group refractor R f, and the front group refractor R f and
  • the transparent medium L enters the transparent medium L through the opening S arranged coaxially with the central axis 2 between the transparent media L.
  • the transparent medium L it enters through the rear group 1 first transmitting surface 2 1, and the rear group 1 first reflecting surface 2 2 is partially reflective coating 4 a, and the other part is totally opposite to the image surface 5 due to total reflection.
  • the rear 2nd group cover glass Cb 2 passes through the rear 2nd group 1st transmission surface 3 1 and the rear 2nd group 2nd transmission surface 3 2 to a predetermined radial position away from the central axis 2 of the image plane 5. It forms an image in an annular shape. [0 0 8 5]
  • FIG. 13 shows the lateral aberration diagram of the entire optical system of this example
  • Fig. 14 shows the image height with respect to the angle of view.
  • This embodiment is an example in which a transmission surface and a reflection surface of a transparent medium having a refractive index larger than 1 concentric with the central axis 2 of the optical system 1 are partially used in the optical path. .
  • the optical system 1 includes a front group G f, a rear group G b, and an aperture S arranged coaxially with the central axis 2 between the front group G f and the rear group G b.
  • the rear group G b It consists of rear 1 group G b 1 and rear 2 group G b 2.
  • the front group G f consists of a front group refractor R f with a refractive index rotationally symmetric around the central axis 2 greater than 1.
  • the refractor R has a front group first transmission surface 11 1 made of a toric surface and a second transmission surface 12 made of a toric surface formed on the image side with respect to the first transmission surface 11.
  • the rear group 1 G b 1 consists of a transparent medium L having a refractive index that is rotationally symmetric about the central axis 2 and greater than 1.
  • the transparent medium L has a first group of first transmitting surfaces 2 1 formed of a spherical surface on the central axis 2 and a reflective coating 4 a near the central axis of the transparent medium L, and the rear group 1 with respect to the first transmitting surface 2 1 Formed on the image side,
  • the rear group 1 first reflective surface 2 2 having negative power and the reflective coating 4 b of the transparent medium L are arranged on the side opposite to the image plane 5 with respect to the rear group 1 first reflective surface 2 2.
  • the rear first group first reflecting surface 22 and the rear first group second transmitting surface 24 have the same shape at the same position.
  • the rear 2 group G b 2 is composed of the rear 2 group cover glass C b 2 having a rotationally symmetric refractive index greater than 1 around the central axis 2.
  • the rear 2nd group cover glass Cb2 is made of a flat plate, and is formed on the image side with respect to the rear 2nd group first transmission surface 3 1 and the rear 2nd group first transmission surface 31. 2 transmissive surface 3 2.
  • the optical system 1 forms the optical path A.
  • the light beam incident from the object surface 3 of the optical system 1 is transmitted through the front group first transmission surface 1 1 and front group second transmission surface 1 2 of the front group refractor R f, and the front group refractor R f and
  • the transparent medium L enters the transparent medium L through the opening S arranged coaxially with the central axis 2 between the transparent media L.
  • the transparent medium L it enters after the first group 1 first transmission surface 2 1, part of the rear group 1 first reflection surface 2 2 is a reflection coating 4 a, and the other part is opposite to the image surface 5 due to total reflection.
  • Entrance pupil diameter ⁇ 0.07mm Image size ( ⁇ > 0.78 to ⁇ 1.99
  • the maximum image height is I max (mra)
  • the minimum image height is I min (mm)
  • the maximum field angle is ⁇ max (degrees)
  • the minimum field angle is ⁇ min (degrees)
  • the outer diameter of the entire optical system is D (mm)
  • the total length of the optical system excluding the parallel protective glass is Lo (mm)
  • the curvature of the first reflecting surface Is R l and the curvature of the second reflecting surface is R 2,
  • Example 1 Example 2 Example 3 Example 4
  • Examples 1 to 4 The configuration parameters of Examples 1 to 4 are shown below.
  • ASS indicates an aspherical surface
  • ERFS indicates an extended rotation free-form surface
  • RE indicates a reflecting surface.
  • the term for the aspherical surface for which no data is shown is zero.
  • Refractive index and Abbe number are shown for d-line (wavelength 5 8 7. 56 nm).
  • the unit of length is mm.
  • the eccentricity of each surface is represented by the amount of eccentricity from the image surface.
  • the transmission surface and the reflection surface of the transparent medium having a refractive index larger than 1 which is concentric with the central axis 2 of the optical system 1 are designed as extended rotation free-form surfaces. If the rotational free-form surface is orthogonal to the rotationally symmetric surface and does not use higher-order terms, the configuration is equivalent to a spherical surface.
  • the reflecting and refracting surfaces of the front group G f are designed with an extended rotation free-form surface that is formed by rotating a segment of arbitrary shape around the central axis 2 and does not have a top on the central axis 2. But replace each with an arbitrary curved surface. Also good.
  • the optical system of the present invention uses an equation that includes an odd-order term in an expression that defines a line segment of an arbitrary shape that forms a rotationally symmetric surface, so that the inclination of the image plane 5 caused by decentering, The pupil aberration during back projection is corrected.
  • the transparent medium L that is rotationally symmetric around the central axis 2 constituting the front group G f of the present invention as it is, 3 60.
  • the angle of view around the central axis 2 is 1800 °, 1200 °, 2400. Such images may be taken or projected.
  • the optical system of the present invention can also be used as an imaging or observation optical system that obtains an image with an angle of view of 360 ° omnidirectional (entire circumference) including the zenith with the central axis (rotation symmetry axis) 2 in the vertical direction.
  • the present invention is not limited to the photographing optical system and the observation optical system, but is used as a projection optical system that projects an image at an angle of view of 360 ° omnidirectional (all circumferences) including the zenith by reversing the optical path.
  • the endoscope can also be used as an all-round observation optical system for an in-tube observation apparatus.
  • FIG. 15 shows an arrangement example of the image and the image sensor of this embodiment.
  • Figure 15 (a) is an example using an image sensor with a screen ratio of 16: 9.
  • Fig. 15 (b) shows the case where an image sensor 50 with a screen ratio of 4: 3 is used and the image in the vertical direction is not used, as in Fig. 15 (a).
  • FIG. 15 (c) is an example in which an image sensor 50 having a screen ratio of 4: 3 is used, and the size of the image sensor 50 is matched with the image A 1 in the optical path A.
  • FIG. 15 (c) is an example in which an image sensor 50 having a screen ratio of 4: 3 is used, and the size of the image sensor 50 is matched with the image A 1 in the optical path A.
  • FIG. 16 is a diagram for illustrating an example in which the photographing optical system 10 1 according to the present invention is used as a photographing optical system at the distal end of the endoscope.
  • FIG. 16 (a) shows a rigid endoscope 110. This is an example in which a photographing optical system according to the present invention is attached to the tip 110a of the camera and an image of 360 ° omnidirectional image is taken and observed.
  • Figure 16 (b) shows the schematic configuration of the tip.
  • FIG. 16 (c) shows an image captured on the display device 1 1 4 by attaching the panoramic imaging optical system 1 0 1 according to the present invention to the tip of the flexible electronic endoscope 1 1 3 in the same manner. In this example, the image is processed and corrected for distortion.
  • FIG. 17 shows a capsule endoscope 1 2 0 with a photographing optical system 1 0 1 according to the present invention 3 60.
  • the flare stop 1 is formed in a casing or the like having an opening 10 6 extending in the circumferential direction around the first transmission surface 11 of the front group G f in the optical path A 1.
  • 0 7 is formed, preventing flare light from entering.
  • the photographing optical system 10 1 for the endoscope by using the photographing optical system 10 1 for the endoscope, it is possible to image and observe an image around the photographing optical system 100 1 from a different angle from the conventional angle. Various parts can be imaged and observed.
  • FIG. 18 (a) shows an image taken through each photographing optical system 1 0 1 on a display device in a car with a photographing optical system 1 0 1 according to the present invention attached as a photographing optical system in front of a car 1 3 0.
  • the image is subjected to image processing to correct distortion and displayed simultaneously.
  • FIG. 1 8 (b) shows an example of the photographic optical system according to the present invention as a photographic optical system at the corner of each corner of the automobile 1 30 and the top of the pole of the head.
  • FIG. 6 is a diagram showing an example in which a plurality of images are attached and an image photographed through each photographing optical system 100 1 on a display device in a vehicle is subjected to image processing to correct distortion and display simultaneously.
  • FIG. 19 shows a projection optical system 1 that uses a projection optical system 1 0 2 according to the present invention as a projection optical system of a projection apparatus 1 4 0, displays a panoramic image on a display element arranged on the image plane 5, and 0 2 through 3 6 0. Screens placed in all directions 1 4 1 to 3 6 0. This is an example in which an omnidirectional image is projected and displayed.
  • FIG. 20 shows a projection apparatus using the photographing optical system 1 0 1 according to the present invention indoors, with the photographing apparatus 15 1 using the photographing optical system 1 0 1 according to the present invention attached to the outside of the building 1 5 1 5 1 is arranged and connected so that the image captured by the imaging device 1 51 is sent to the projection device 1 4 0 via the electric wire 15 2.
  • an outdoor 360 ° omnidirectional subject P is photographed by the photographing device 1 5 1 through the photographing optical system 1 0 1, and the video signal is projected through the electric wire 1 5 2.
  • the image P ′ of the subject P is projected and displayed on an indoor wall surface etc. through the projection optical system 1 0 2 by displaying the image on a display element arranged on the image plane, and sending it to the 1400. .
  • optical system of the present invention it is possible to obtain a compact optical system with good resolving power with good aberration correction, capable of observing different directions or projecting images in different directions with a simple configuration. .

Abstract

光学系及びそれを用いた内視鏡に関し、第1反射面22と第2反射面23のうち少なくとも1面は、対称面を持たない任意形状の線分を中心軸2の周りで回転させて形成される拡張回転自由曲面で構成されており、透明媒体Lに入射する光束は、順光線追跡の順に、開口Sを通り、第1透過面21を経て透明媒体L内に入り、第1反射面22で像面5と反対側に反射され、第2反射面23で像面5側に反射され、第2透過面24を経て透明媒体Lから像面5側に外へ出る略Z字状の第1光路Aを構成し、第1光路Aの少なくとも第1反射面22と第2反射面23の間は、中心軸2に対して片側のみで構成され、第1光路A中に中間像が結像されることなく、像面5に円環状に結像される。

Description

明細書
光学系及びそれを用いた内視鏡. 技術分野
[ 0 0 0 1 ]
本発明は光学系及びそれを用いた内視鏡に関し、 特に、 中心軸周り の映像を撮像素子に円環状の映像として結像する機能を有する結像光 学系又は投影光学系に関するものである。
背景技術
[ 0 0 0 2 ]
従来、 2面の球面又は放物面鏡を組み合わせた光学系があった。
〔特許文献 1〕 ·
特許第 3 3 8 2 6 8 3号公報
〔特許文献 2〕 .
特許第 3 2 1 2 7 8 4号公報
〔特許文献 3〕
特公昭 6 2— 5 2 8 4 2号公報 発明の開示
[ 0 0 0 3 ]
しかしながら、 どの特許文献に記載された光学系も、 小型な構成で、 且つ、 高画角の映像を得ることはできなかった。
[ 0 0 0 4 ]
本発明は、 従来技術のこのような状況に鑑みてなされたものであり、 その目的は、 簡単な構成で広い観察画角を撮像素子上に撮像することが 可能であり、 小型で安価な光学系及びそれを用いた内視鏡を提供するこ とである。
[ 0 0 0 5 ] 上記目的を達成する本発明の光学系は、 中心軸を含む断面内で、 前記 中心軸の周りで回転対称な光学系において、 前記光学系は、 前記中心軸 上の物体側に配置された開口と、 前記開口の像面側に配置され、 屈折率 が 1より大きい透明媒体とを有し、 前記透明媒体は、 前記開口近傍の前 記中心軸上に配置された第 1透過面と、 前記第 1透過面より像面側に配 置され、 像面側に凹面を向けた第 1反射面と、 前記第 1反射面より像面 と反対側に配置され、 像面側に凹面を向けた第 2反射面と、 前記第 2反 射面より像面側に配置された第 2透過面と、 を有し、 前記第 1反射面と 前記第 2反射面のうち少なく とも 1面は、 中心軸上で不連続な曲面で構 成されており、 前記透明媒体に入射する光束は、 順光線追跡の順に、 前 記開口を通り、 前記第 1透過面を経て前記透明媒体内に入り、 前記第 1 反射面で像面と反対側に反射され、 前記第 2反射面で像面側に反射され 、 前記第 2透過面を経て前記透明媒体から像面側に外へ出る略 Z字状の 第 1光路を構成し、 前記第 1光路の少なく とも前記第 1反射面と前記第 2反射面の間は、 前記中心軸に対して片側のみで構成され、 前記第 1光 路中に中間像が結像されることなく、 像面に円環状に結像されることを 特徴とする。
[ 0 0 0 6 ]
前記反射面のうち少なく とも 1面は、 対称面を持たない任意形状の 線分を中心軸の周りで回転させて形成される拡張回転自由曲面で構成 されていることを特徴とする。
[ 0 0 0 7 ]
また、 前記第 1反射面と前記第 2反射面のうち少なく とも 1面は、 奇数次項を含む任意形状の線分を中心軸の周りで回転させて形状され る拡張回転自由曲面で構成されていることを特徴とする。
[ 0 0 0 8 ]
また、 前記第 1反射面は、 全反射作用と、 反射コ一ティ ングにより 反射するように構成され、 前記反射コーティ ングは前記第 1反射面の 中心軸近傍のみに施されていることを特徴とする。
[ 0 0 0 9 ]
また、 前記第 1透過面と前記第 2反射面は、 前記透明媒体の物体側 に配置されていることを特徴とする。
[0 0 1 0]
また、 前記第 1反射面と前記第 2透過面は、 前記透明媒体の像面側 に配置されていることを特徴とする。
[0 0 1 1 ]
また、 前記第 1反射面と前記第 2透過面は、 同一位置同一形状からな ることを特徴とする。
[0 0 1 2]
また、 前記透明媒体の物体側及び/又は像面側に屈折体を配置した ことを特徴とする。
[0 0 1 3]
また、 最大像高を I max、 前記透明媒体の外径を Dとするとき、
0. 5 <D/ (2 X 1 max) く 1 0 · · · ( 1 ) なる条件を満足することを特徴とする。
[0 0 1 4]
また、 最大像高を I max、 前記開口から前記像面までの距離を L oと するとき、
0 · 5 < L o / ( 2 X 1 max) < 1 0 · · ·
( 2 )
なる条件を満足することを特徴とする。
[0 0 1 5]
また、 第 1反射面の曲率を R l、 第 2反射面の曲率を R 2とすると き、
0. 2<R 1/R 2< 5 · · · ( 3 ) なる条件を満足することを特徴とする。 [ 0 0 1 6 ]
さらに、 上記目的を達成する本発明は、 前記光学系を用いた内視鏡 であることを特徴とする。
[0 0 1 7 ]
以上の本発明の光学系においては、 簡単な構成で異なる方向を観察又 は異なる方向に映像を投影することが可能な小型で収差が良好に補正 された解像力の良い光学系を得ることができる。 図面の簡単な説明
[ 0 0 1 8 ]
〔図 1〕
本発明の光学系の座標系を説明するための図である。
〔図 2〕
拡張回転自由曲面の原理を示す図である。
〔図 3〕
本発明の実施例 1の光学系の中心軸に沿ってとつた断面図である。
〔図 4〕
実施例 1の光学系全体の横収差図を示す図である。
〔図 5〕
実施例 1の光学系全体の画角に対する像髙を示す図である。
〔図 6〕
本発明の実施例 2の光学系の中心軸に沿ってとつた断面図である。
〔図 7〕
実施例 2の光学系全体の横収差図を示す図である。
〔図 8〕
実施例 2の光学系全体の画角に対する像髙を示す図である。
〔図 9〕
本発明の実施例 3の光学系の中心軸に沿ってとつた断面図である。 „
〔図 1 0〕
実施例 3の光学系全体の横収差図を示す図である。
〔図 1 1〕
実施例 3の光学系全体の画角に対する像高を示す図である。
〔図 1 2〕
本発明の実施例 4の光学系の中心軸に沿つてとつた断面図である。
〔図 1 3〕
実施例 4の光学系全体の横収差図を示す図である。
〔図 1 4〕
実施例 4の光学系全体の画角に対する像高を示す図である。
〔図 1 5〕
本発明の光学系の画像と撮像素子の配置例を示す図である。
〔図 1 6〕
本発明の光学系を内視鏡先端の撮影光学系として用いた例を示す図 である。
〔図 1 7〕
本発明の光学系をカプセル内視鏡の撮影光学系として用いた例を示 す図である。
〔図 1 8〕
本発明の光学系を自動車の撮影光学系として用いた例を示す図であ る。
〔図 1 9〕
本発明の光学系を投影装置の投影光学系-として用いた例を示す図で ある
〔図 2 0〕
本発明の光学系を屋外の被写体を撮影する撮影光学系として用いた 例を示す図である。 発明を実施するための最良の形態
[ 0 0 1 9 ]
以下、 実施例に基づいて本発明の光学系について説明する。
[ 0 0 2 0 ]
図 3は、 後述する実施例 1の光学系 1の中心軸 (回転対称軸) 2に沿 つてとつた断面図である。 なお、 以下の説明は、 結像光学系として説明 するが、 光路を逆にとつて投影光学系として用いることもできる。
[ 0 0 2 1 ]
本発明に係る光学系 1は、 中心軸 2に対して回転対称で、 開口 S と、 透明媒体 Lとからなり、 中間像を光路中に形成することなく像を形成又 は投影する光学系 1である。 像面 5近傍の平行平板は撮像素子のカバ一 ガラス C b 2等である。
[ 0 0 2 2 ]
実施例 1の光学系 1は、 中心軸 2を含む断面内で、 中心軸 2の周りで 回転対称に構成され、 中心軸 2上の物体側に配置された開口 Sと、 開口 Sの像面側に配置され、 屈折率が 1より大きい透明媒体 Lとを有し、 透 明媒体 Lは、 開口 S近傍の中心軸 2上に配置された第 1透過面としての 後 1群第 1透過面 2 1 と、 後 1群第 1透過面 2 1より像面側に配置され 、 像面側に凹面を向けた第 1反射面としての後 1群第 1反射面 2 2と、 後 1群第 1反射面 2 2より像面と反対側に配置され、 像面側に凹面を向 けた第 2反射面としての後 1群第 2反射面 2 3 と、 後 1群第 2反射面 2 3より像面側に配置された第 2透過面としての後 1群第 2透過面 2 4 と、 を有し、 後 1群第 1反射面 2 2 と後 1群第 2反射面 2 3のうち少な く とも 1面は、 中心軸 2上で不連続な曲面で構成されており、 透明媒体 Lに入射する光束は、 順光線追跡の順に、 開口 Sを通り、 後 1群第 1透 過面 2 1 を経て透明媒体 L内に入り、 後 1群第 1反射面 2 2で像面 5 と 反対側に反射され、 後 1群第 2反射面 2 3で像面 5側に反射され、 後 1 群第 2透過面 2 4を経て透明媒体 Lから像面 5側に外へ出る略 Z字状 の第 1光路 Aを構成し、 第 1光路 Aの少なく とも後 1群第 1反射面 2 2 と後 1群第 2反射面 2 3の間は、 中心軸 2に対して片側のみで構成され 、 第 1光路 A中に中間像が結像されることなく、 像面 5に円環状に結像 される。
[ 0 0 2 3 ] '
なお、 後 1群第 1反射面 2 2 と後 1群第 2反射面 2 3のうち少なく とも 1面は、 対称面を持たない任意形状の線分を中心軸の周りで回転 させて形成される拡張回転自由曲面で構成されてもよい。
[ 0 0 2 4 ]
中心軸 2上の物体側から光路順で、 開口 S及びその近傍に配置され た後 1群第 1透過面 2 1、 後 1群第 1反射面 2 2、 後 1群第 2反射面 2 3、 後 1群第 2透過面 2 4の順に配置され、 後 1群第 1反射面 2 2 と後 1群第 2反射面 2 3は共に像側に凹面を向け配置されていること が重要である。
[ 0 0 2 5 ]
開口 Sは物体側の後 1群第 1透過面 2 1近傍にあることが重要で、 開口 Sを本発明の透明媒体 Lの像側に配置すると、 非点収差が大きく 発生しフラッ トな像を形成することが出来なくなる。 また、 射出主光 線傾角が大きくなつてしまい、 テレセン性が悪くなる。 さらに、 後 1 群第 1透過面 2 1 と後 1群第 2反射面 2 3の有効径の干渉が起き、 画 角を大きく取ることが出来なくなってしまう。
[ 0 0 2 6 ]
次に、 後 1群第 1反射面 2 2 と後 1群第 2反射面 2 3は像側に凹面 を向けていることが重要である。 この配置により物体側から光路順に 負、 正のパワー配置になり、 所謂レトロフォーカス構成にすることが 可能となり、 広画角化が可能となる。 また、 この配置により光学系の 主点を物体側に配置することが可能となり、 Fバックを取ることが可 能となる。 [ 0 0 2 7 ]
また、 後 1群第 1反射面 2 2 と後 1群第 2反射面 2 3の間の光路は 中心軸 2を跨ぐことなく片側で構成されていることが重要である。 中 心軸 2と光路とが交差することは、 サジタル断面で中間像を結像する ことを意味し、 光路長が長くなり、 光学系の大型化を招いてしまう。
[ 0 0 2 8 ]
また、 Z字光路になっていることが重要である。 Z字光路をとるこ とにより、 各面での反射角を小さくすることが可能となり、 偏心収差 の発生を少なくすることが可能となる。 又、 開口 Sから入射する光束 が比較的低い (中心軸 2に近い) うちに後 1群第 1反射面 2 2に当て る事が可能となり、 後 1群第 1反射面 2 2の強い負のパワーを持たせ ても、 収差の発生を少なくすることが可能となる。
[ 0 0 2 9 ]
次に、 光路途中で結像することが無いように構成することが重要で ある。 光路途中で結像させると、 光束径を小さくすることが可能であ るが、 本発明のように光学系の全長を短く出来ることが特徴の光学系 においては、 中間像を形成すると光学系 1の全長が長くなってしまレ 光学系 1 を小型にすることが不可能になってしまう。
[ 0 0 3 0 ]
次に、 中心軸 2周りの物点を中心軸 2 と 1回交差し反対側に結像す るように構成することが重要である。 物体からの光束は中心軸 2上の 開口 Sを通過すると同時に中心軸 2 と 1回交差して、 物体とは反対側 に入射する。 そこで、 各反射面で反射され結像されるが、 物体と中心 軸 2を挟んで同一側に結像する構成をとると、 結像されるまでにもう 一度中心軸と交差する必要がある。 サジタル断面では中心軸 2上の開 口を通過した光,.,束が再び中心軸 2 と交差することは、 開口 Sの像を作 ることを意味し、 短い光学系全長のなかで、 開口 2の像を再結像する と射出瞳が像近傍に出来てしまい、 テレセン性をよくすることが出来 なくなってしまう。 又、 そのための余分なパワーを光路中に設ける必 要が生じ、 光学系の大型化を招く こととなってしまう。
[ 0 0 3 1 ]
次に、 像面は円環状の平面の像面であることが重要である。 又円環 状の平面の像にすることにより、 一つの平面の撮像素子又は表示素子 により撮像又は投影することが可能となる。
[ 0 0 3 2 ]
さらに好ましくは、 後 1群第 1反射面 2 2 と後 1群第 2反射面 2 3 のうち少なく とも 1面は、 対称面を持たない任意形状の線分を中心軸 2の周りで回転させて形成される回転対称な拡張回転自由曲面で構成 することが重要である。 偏心光学系で光学系を構成すると、 必ず偏心 収差が発生する。 この偏心収差の発生を少なく したり、 小さく補正す ることが可能となる。
[ 0 0 3 3 ]
さらに好ましくは、 奇数次項を含む任意形状の線分であることが望 ましい。 この奇数次項により周辺光路 Aの画面周辺部分の歪の補正や 像面の傾きを補正することが可能となる。
[ 0 0 3 4 ]
さらに、 透過面の間に反射面を配置することにより、 反射面を内部 反射面で構成することになり、 像面湾曲などの収差の発生を少なくす ることが可能となる。 また、 後 1群第 1反射面 2 2に当る光線の傾き が空気中より小さくなるので、 広画角にも良い結果をもたらす。
[ 0 0 3 5 ]
さらに、 後 1群第 1反射面 2 2は画角の広い光線は全反射により反 射するように構成し、 画角中心付近の後 1群第 1反射面 2 2で全反射 しない入射角の光線を反射させるように、 後 1群第 1反射面 2 2の中 心部に反射コーティ ング 4 aすることが好ましい。 これにより画角中 心部の映像も撮像することが可能となる。 さらに後 1群第 1反射面 2 22周周辺辺部部はは全全反反射射すするるたためめにに、、 ここのの部部分分はは反反射射ココーーテティィ ンンググをを行行わわなな いいここととがが望望ままししいい。。 ここれれにによよりり中中心心部部分分のの光光線線がが光光学学系系かからら射射出出すするる ののをを妨妨げげるるここととががななくくななるる。。
[[ 00 00 33 66 ]]
ささららにに、、 後後 11群群第第 11透透過過面面 22 11 とと後後 11群群第第 22反反射射面面 22 33はは透透明明媒媒体体 LLのの物物体体側側にに近近接接ししてて配配置置すするるここととがが好好ままししいい。。 ここれれにによよりり相相互互のの面面 ででのの光光線線のの干干渉渉がが減減りり、、 広広いい画画角角をを確確保保すするるここととがが可可能能ととななるる。。
[[ 00 00 33 77 ]]
ささららにに、、 後後 11群群第第 11反反射射面面 22 22 とと後後 11群群第第 22透透過過面面 22 44はは透透明明媒媒体体 LLのの像像面面 55側側にに近近接接ししてて配配置置すするるここととがが好好ままししいい。。 ここれれにによよりり透透明明媒媒 体体 LLとと像像面面 55をを短短くくすするるここととがが可可能能ととななりり。。 光光学学系系全全長長をを短短くくすするるここ ととがが可可能能ととななるる。。
[[ 00 00 33 88 ]]..
ささららにに、、 後後 11群群第第 22反反射射面面 22 33はは周周辺辺部部にに反反射射ココーーテティィ ンンググ 44 bbをを 行行うう ここととがが望望ままししくく、、 中中心心部部分分はは後後 11群群第第 11透透過過面面 22 11又又はは開開口口 SSをを 配配置置すするる関関係係かからら、、 反反射射ココーーテティィンンググししなないいここととがが望望ままししいい。。
[[ 00 00 33 99 ]]
ささららにに好好ままししくくはは、、 後後 11群群第第 11反反射射面面 22 22 とと後後 11群群第第 22透透過過面面 22 44 をを同同一一位位置置、、 同同一一形形状状でで構構成成すするるここととがが好好ままししいい。。 ここのの構構成成にによよりり、、 後後 11群群第第 11反反射射面面 22 22にに部部分分的的にに全全反反射射をを使使ううここととがが可可能能ととななりり光光学学 系系のの画画角角をを広広くく取取れれるる。。
[[ 00 00 44 00 ]]
ままたた、、 透透明明媒媒体体 LLのの物物体体側側及及びび ZZ又又はは像像面面側側にに屈屈折折体体 RR ff ,, RR bbをを 配配置置すするるここととにによよりり、、 画画角角をを大大ききくくすするるここととががででききるる。。
[[ 00 00 44 11 ]]
ままたた、、 最最大大像像高高をを II mmaaxx、、 透透明明媒媒体体のの外外径径をを DDととすするるとときき、、
Figure imgf000012_0001
ななるる条条件件をを満満足足すするるここととがが望望ままししいい。。 [ 0 0 4 2 ]
条件式 ( 1 ) は、 下限を超えるとテレセン性が悪くなり特に C C D 等の撮像素子を利用して撮像する場合に周辺光量不足を起こす。 上限 を超えると光学系の外径が大きくなりすぎ光学系が大型になってしま う。
[ 0 0 4 3 ]
また、最大像高を I max、 開口から像面までの距離を L oとするとき、 0. 5 < L o / ( 2 X I max) く 1 0 · ■ · ( 2 ) なる条件を満足することが望ましい。
[ 0 0 4 4 ]
条件式 ( 2 ) は、 像高に対する光学系全長を規定するものであり、 下限を超えるとやはりテレセン性が悪くなり周辺光量不足を起こす。 上限を超えると全長が長くなりすぎ、 小型の光学系を構成することは できない。
[ 0 0 4 5 ]
また、 後 1群第 1反射面 2 2の曲率を R 1、 後 1群第 2反射面 2 3 の曲率を R 2 とするとき、
0. 2 <R 1 /R 2 < 5 · · · ( 3 ) なる条件を満足することが望ましい。
[ 0 0 4 6 ]
条件式 ( 3 ) は、 二つの反射面のパヮ一の比を規定しているもので あり、 下限を超えると、 後 1群第 1反射面 2 2の曲率半径が小さくな り、 後 1群第 2反射面 2 3の正のパワーに比べて、 後 1群第 1反射面 2 2の負のパワーが大きくなり光学系の全長を短くすることが出来な い。 上限を超えると、 後 1群第 2反射面 2 3の曲率が小さくなり後 1 群第 2反射面 2 3の正のパワーが大きくなりすぎ、 物体側に凸の像面 湾曲が大きく発生する。
[ 0 0 4 7 ] なお、 物体側の平行平面は、 光学系保護用のものであり。 無ぐても よい。像側の平行平面は撮像素子保護用のものであり、無くてもよい。
[ 0 0 4 8 ]
以下に、 本発明の光学系の実施例 1〜 4を説明する。 これら光学系の 構成パラメータは後記する。
[ 0 0 4 9 ]
座標系は、 順光線追跡において、 例えば図 1 に示すように、 絞り面が 中心軸 2と交差する点を偏心光学面の原点 Oとし、 中心軸 2に直交する 方向を Y軸方向とし、 図 1の紙面内を Y— Z平面とする。 そして、 図 1 の像面 5側の方向を Z軸正方向とし、 Y軸、 Z軸と右手直交座標系を構 成する軸を X軸正方向とする。
[ 0 0 5 0 ]
偏心面については、 その面が定義される座標系の上記光学系 1の原点 Oからの偏心量 (X軸方向、 Y軸方向、 Z軸方向をそれぞれ X, Υ, Ζ ) と、 光学系 1の原点 Οに定義される座標系の X軸、 Υ軸、 Ζ軸それぞ れを中心とする各面を定義する座標系の傾き角 (それぞれひ, β , r (
° ) ) とが与えられている。 その場合、 Q!と ^の正はそれぞれの軸の正 方向に対して反時計回りを、 ァの正は Z軸の正方向に対して時計回りを 意味する。 なお、 面の中心軸の α , β , ァの回転のさせ方は、 各面を定 義する座標系を光学系の原点に定義される座標系のまず X軸の回りで 反時計回.りに a回転させ、 次に、 その回転した新たな座標系の Υ軸の回 りで反時計回りに j6回転させ、 次いで、 その回転した別の新たな座標系 の z軸の回りで時計回りに r回転させるものである。
[ 0 0 5 1〕
また、 各実施例の光学系を構成する光学作用面の中、 特定の面とそれ に続く面が共軸光学系を構成する場合には面間隔が与えられており、 そ の他、 面の曲率半径、 媒質の屈折率、 アッベ数が慣用法に従って与えら れている。 [ 0 0 5 2 ]
また、 後記の構成パラメ一夕中にデ一夕の記載されていない非球面に 関する項は 0である。 屈折率、 アッベ数については、 d線 (波長 5 8 7 . 5 6 n m) に対するものを表記してある。 長さの単位は mmである。 各面の偏心は、 上記のように、 基準面からの偏心量で表わす。
[ 0 0 5 3 ]
なお、 非球面は、 以下の定義式で与えられる回転対称非球面である。
Z = (Y2 /R) / [ 1 + { 1 — ( 1 + k ) Y2 /R2 } 1 /2]
+ a Y4 + b Y6 + c Ys + d Y10+ - · ·
• · · ( a )
ただし、 Zを軸とし、 Yを軸と垂直な方向にとる。 ここで、 Rは近軸曲 率半径、 kは円錐定数、 a、 b、 c、 d、 …はそれぞれ 4次、 6次、 8 次、 1 0次の非球面係数である。 この定義式の Z軸が回転対称非球面の 軸となる。
[ 0 0 5 4 ]
また、 拡張回転自由曲面は、 以下の定義で与えられる回転対称面であ る。 '
[ 0 0 5 5 ]
まず、 図 2に示すように、 Y— Z座標面上で原点を通る下記の曲線 ( b ) が定められる。
[ 0 0 5 6 ]
Z = (Y2 /R Y) / [ 1 + { 1 一 (C , + 1 ) Y 2 / R Y 2 } 1 /2〕 + C 2 Y + C 3 Υ2 + C 4 Υ3 + C 5 Υ4 + C6 Υ5 + C7 Υ6 + · · · · + C 21Υ20+ · · · · + Cn+] Υη + · · · ·
• · · (b ) 次いで、 この曲線 ( b ) を X軸正方向を向いて左回りを正として角度 Θ ) 回転した曲線 F ( Y) が定められる。 この曲線 F ( Y) も Y— Z座標面上で原点を通る。 [ 0 0 5 7 ]
その曲線 F (Y) を Υ正方向に距離 R (負のときは Y負方向) だけ平 行移動し、 その後に Ζ軸の周りでその平行移動した曲線を回転させてで きる回転対称面を拡張回転自由曲面とする。
[ 0 0 5 8 ]
その結果、 拡張回転自由曲面は Υ— Ζ面内で自由曲面 (自由曲線) に なり、 ー¥面内で半径 1尺 | の円になる。
[ 0 0 5 9 ]
この定義から Ζ軸が拡張回転自由曲面の軸 (中心軸) となる。
[ 0 0 6 0 ]
ここで、 R Υは Υ— Ζ断面での球面項の曲率半径、 は円錐定数、 C2 、 C3 、 C4 、 C 5 …はそれぞれ 1次、 2次、 3次、 4次…の非球面 係数である。
[ 0 0 6 1 ]
なお、 Z軸を中心軸に持つ円錐面は拡張回転自由曲面の 1つとして与 えられ、 R Y =∞, C! , C 2 , C 3 , C 4 , C 5 , ··· = () とし、 = (円 錐面の傾き角) 、 R = (X— Z面内での底面の半径) として与えられる
[ 0 0 6 2 ]
また、 後記の構成パラメ一夕中にデータの記載されていない非球面に 関する項は 0である。 屈折率、 アッベ数については、 d線 (波長 5 8 7 . 5 6 n m) に対するものを表記してある。 長さの単位は mmである。 各面の偏心は、 上記のように、 基準面からの偏心量で表わす。
[ 0 0 6 3 ]
実施例 1の光学系 1の中心軸 2に沿ってとつた断面図を図 3に示す。 また、 この実施例の光学系全体の横収差図を図 4、 画角に対する像高を 表す図を図 5に示す。 この横収差図において、 中央に示された角度は、 (水平方向画角、 垂直方向の画角) を示し、 その画角における Y方向 ( メリジォナル方向) と X方向 (サジタル方向) の横収差を示す。 なお、 マイナスの画角は、 水平方向画角については、 Y軸正方向を向いて右回 りの角度、 垂直方向画角については、 X軸正方向を向いて右回りの角度 を意味する。 以下、 同じ。
[ 0 0 6 4 ]
本実施例は、 光学系 1の中心軸 2に同心に回転対称な屈折率が 1より 大きい透明媒体の透過面及び反射面を、 光路内で共通に使用することな くすベて異なる面で構成した例である。
[ 0 0 6 5 ]
光学系 1は、 前群 G f と、 後群 G bと、 前群 G ί と後群 G bの間で中 心軸 2に同軸に配置された開口 Sとからなり、 後群 G bは、 後 1群 G b 1 と後 2群 G b 2からなる。
[ 0 0 6 6 ]
前群 G ίは、 中心軸 2の周りで回転対称な屈折率が 1より大きい前群 カバーガラス C f からなる。 前群カパ一ガラス C f は、 平行平板からな り、 前群第 1透過面 1 1 と、 前群第 1透過面 1 1 に対して像側に形成さ れる前群第 2透過面 1 2 とを有する。
[ 0 0 6 7 ]
後 1群 G b 1は、 中心軸 2の周りで回転対称な屈折率が 1より大きい 透明媒体 Lからなる。 透明媒体 Lは、 中心軸 2上で球面からなる後 1群 第 1透過面 2 1 と、 透明媒体 Lを反射コーティ ング 4 aし、 後 1群第 1 透過面 2 1 に対して像側に形成され、 拡張回転自由曲面からなり、 負の パワーをもつ後 1群第 1反射面 2 2と、 透明媒体 Lを反射コーティ ング 4 bし、 後 1群第 1反射面 2 2に対して像面 5 と反対側に配置され、 拡 張回転自由曲面からなり、 正のパワーをもつ後 1群第 2反射面 2 3 と、 後 1群第 2反射面 2 3より像面 5側に配置され、 拡張回転自由曲面から なり、 正のパワーをもつ後 1群第 2透過面 2 4とを有する。
[ 0 0 6 8 ] 後 2群 G b 2は、 中心軸 2の周りで回転対称な屈折率が 1より大きい 後 2群カバーガラス C b 2からなる。 後 2群カバーガラス C b 2は、 平 行平板からなり、 後 2群第 1透過面 3 1 と、 後 2群第 1透過面 3 1 に対 して像側に形成される後 2群第 2透過面 3 2 とを有する。
[ 0 0 6 9 ]
光学系 1は、 光路 Aを形成する。 光路 Aにおいて、 光学系 1の物体面 3から入射する光束は、 前群カバ一ガラス C f の前群第 1透過面 1· 1 と 前群第 2透過面 1 2 と、 前群カバ一ガラス C f と透明媒体 Lの間で中心 軸 2に同軸に配置された開口 Sとを経て、 透明媒体 L内に入る。 透明媒 体 Lでは、 後 1群第 1透過面 2 1 を経て入り、 後 1群第 1反射面 2 2で 反射コーティ ングにより像面 5 と反対側に反射され、 後 1群第 2反射面 2 3で反射コーティングにより像面 5側に反射され、 後 1群第 2透過面 2 4を経て透明媒体 Lから外に出る略 Z字状の光路を有する。 その後、 後 2群カバーガラス C b 2の後 2群第 1透過面 3 1 と後 2群第 2透過 面 3 2を経て、 像面 5の中心軸 2から外れた半径方向の所定位置に円環 状に結像する。
[ 0 0 7 0 ]
この実施例 1の仕様は、
画角 10. 00〜60. 0 °
入射瞳径 φ 0. 20M
像の大きさ 0. 1 1〜 2. 18
である。
[ 0 0 7 1 ]
実施例 2の光学系 1の中心軸 2に沿ってとつた断面図を図 6に示す。 また、 この実施例の光学系全体の横収差図を図 7、 画角に対する像高を 表す図を図 8に示す。
[ 0 0 7 2 ]
本実施例は、 光学系 1の中心軸 2に同心に回転対称な屈折率が 1より 大きい透明媒体の透過面及び反射面を、 光路内で一部共通に使用するよ うに構成した例である。
[ 0 0 7 3 ]
光学系 1は、 中心軸 2に同軸に配置された開口 Sと、 後 1群 G b 1 と 後 2群 G b 2からなる。
[ 0 0 7 4 ]
後 1群 G b 1は、 中心軸 2の周りで回転対称な屈折率が 1より大きい 透明媒体 Lからなる。 透明媒体 Lは、 中心軸 2上で球面からなる後 1群 第 1透過面 2 1 と、 透明媒体 Lの中心軸付近を反射コーティ ング 4 aし 、 後 1群第 1透過面' 2 1に対して像側に形成され、 拡張回転自由曲面か らなり、 負のパワーをもつ後 1群第 1反射面 2 2 と、 透明媒体 Lを反射 コーティ ング 4 bし、 後 1群第 1反射面 2 2に対して像面 5 と反対側に 配置され、 拡張回転自由曲面からなり、 正のパワーをもつ後 1群第 2反 射面 2 3 と、 後 1群第 2反射面 2 3より像面 5側に配置され、 拡張回転 自由曲面からなり、 正のパワーをもつ後 1群第 2透過面 2 4とを有する 。 後 1群第 1反射面 2 2 と後 1群第 2透過面 2 4は、 同一位置同一形状 からなる。
[ 0 0 7 5 ]
後 2群 G b 2は、 中心軸 2の周りで回転対称な屈折率が 1より大きい 後 2群カバ一ガラス C b 2からなる。 後 2群カバーガラス C b 2は、 平 行平板からなり、 第 2群第 1透過面 3 1 と、 後 2群第 1透過面 3 1 に対 して像側に形成される後 2群第 2透過面 3 2 とを有する。
[ 0 0 7 6 ]
光学系 1 は、 光路 Aを形成する。 光路 Aにおいて、 光学系 1の物体面 3から入射する光束は、 中心軸 2に同軸に配置された開口 Sを経て、 透 明媒体 L内に入る。 透明媒体 Lでは、 後 1群第 1透過面 2 1 を経て入り 、 後 1群第 1反射面 2 2で一部が反射コーティ ング 4 a、 他部が全反射 により像面 5 と反対側に反射され、 後 1群第 2反射面 2 3で反射コーテ ィ ングにより像面 5側に反射され、 後 1群第 2透過面 2 4を経て透明媒 体 Lから外に出る略 Z字状の光路を有する。 その後、 後 2群カバーガラ ス C b 2の後 2群第 1透過面 3 1 と後 2群第 2透過面 3 2を経て、 像面 5の中心軸 2から外れた半径方向の所定位置に円環状に結像する。
[ 0 0 7 7 ]
この実施例 2の仕様は、
画角 20. 00〜70. 0 °
入射瞳径 Φ 0. 10mm
像の大きさ ψ 0. 6 1〜 Φ 2. 00
でめる。
[ 0 0 7 8 ]
実施例 3の光学系 1の中心軸 2に沿ってとつた断面図を図 9に示す。 また、 この実施例の光学系全体の横収差図を図 1 0、 画角に対する像高 を表す図を図 1 1 に示す。
[ 0 0 7 9 ]
本実施例は、 光学系 1 の中心軸 2に同心に回転対称な屈折率が 1より 大きい透明媒体の透過面及び反射面を、 光路内で一部共通に使用するよ うに構成した例である。
[ 0 0 8 0 ]
光学系 1は、 前群 G f と、 後群 G bと、 前群 G f と後群 G bの間で中 心軸 2に同軸に配置された開口 Sとからなり、 後群 G bは、 後 1群 G b 1 と後 2群 G b 2からなる。
[ 0 0 8 1 ]
前群 G f は、 中心軸 2の周りで回転対称な屈折率が 1より大きい前群 屈折体 R f からなる。 屈折体 Rは、 トーリ ック面からなる前群第 1透過 面 1 1 と、 第 1透過面 1 1 に対して像側に形成される トーリック面から なる第 2透過面 1 2とを有する。
[ 0 0 8 2 ] 後 1群 G b 1は、 中心軸 2の周りで回転対称な屈折率が 1より大きい 透明媒体 Lからなる。 透明媒体 Lは、 中心軸 2上で球面からなる後 1群 第 1透過面 2 1 と、 透明媒体 Lの中心軸付近を反射コーティ ング 4 aし 、 後 1群第 1透過面 2 1 に対して像側に形成され、 拡張回転自由曲面か らなり、 負のパワーをもつ後 1群第 1反射面 2 2 と、 透明媒体 Lを反射 コーティ ング 4 bし、 後 1群第 1反射面 2 2に対して像面 5 と反対側に 配置され、 拡張回転自由曲面からなり、 正のパワーをもつ後 1群第 2反 射面 2 3 と、 後 1群第 2反射面 2 3より像面 5側に配置され、 拡張回転 自由曲面からなり、 正のパワーをもつ後 1群第 2透過面 2 4とを有する 。 後 1群第 1反射面 2 2 と後 1·群第 2透過面 2 4は、 同一位置同一形状 からなる。
[ 0 0 8 3 ]
後 2群 G b 2は、 中心軸 2の周りで回転対称な屈折率が 1より大きい 後 2群カバ一ガラス C b 2からなる。 後 2群カバーガラス C b 2は、 平 行平板からなり、 後 2群第 1透過面 3 1 と、 後 2群第 1透過面 3 1 に対 して像側に形成.される後 2群第 2透過面 3 2 とを有する。
[ 0 0 8 4 ]
光学系 1は、 光路 Aを形成する。 光路 Aにおいて、 光学系 1の物体面 3から入射する光束は、 前群屈折体 R f の前群第 1透過面 1 1 と前群第 2透過面 1 2 と、 前群屈折体 R f と透明媒体 Lの間で中心軸 2に同軸に 配置された開口 Sとを経て、 透明媒体 L内に入る。 透明媒体 Lでは、 後 1群第 1透過面 2 1 を経て入り、 後 1群第 1反射面 2 2で一部が反射コ 一ティング 4 a、 他部が全反射により像面 5 と反対側に反射され、 後 1 群第 2反射面 2 3で反射コーティングにより像面 5側に反射され、 後 1 群第 2透過面 2 4を経て透明媒体 Lから外に出る略 Z字状の光路を有 する。 その後、 後 2群カバーガラス C b 2の後 2群第 1透過面 3 1 と後 2群第 2透過面 3 2を経て、 像面 5の中心軸 2から外れた半径方向の所 定位置に円環状に結像する。 [ 0 0 8 5 ]
この実施例 3の仕様は、
画角 0. 00〜70. 0 °
入射瞳径 0. 40mm
像の大きさ Φ 0. 60〜 Φ 1. 99
である。
[ 0 0 8 6 ]
実施例 4の光学系 1の中心軸 2に沿ってとつた断面図を図 1 2に示 す。 また、 この実施例の光学系全体の横収差図を図 1 3、 画角に対する 像高を表す図を図 1 4に示す。
[ 0 0 8 7 ]
本実施例は、 光学系 1の中心軸 2に同心に回転対称な屈折率が 1より 大きい透明媒体の透過面及び反射面を、 光路内で一部共通に使用するよ うに構成した例である。
[ 0 0 8 8 ]
光学系 1は、 前群 G f と、 後群 G bと、 前群 G f と後群 G bの間で中 心軸 2に同軸に配置された開口 Sとからなり、 後群 G bは、 後 1群 G b 1 と後 2群 G b 2からなる。
[ 0 0 8 9 ]
前群 G f は、 中心軸 2の周りで回転対称な屈折率が 1より大きい前群 屈折体 R f からなる。 屈折体 Rは、 トーリ ック面からなる前群第 1透過 面 1 1 と、 第 1透過面 1 1 に対して像側に形成される トーリック面から なる第 2透過面 1 2 とを有する。
[ 0 0 9 0 ]
後 1群 G b 1は、 中心軸 2の周りで回転対称な屈折率が 1より大きい 透明媒体 Lからなる。 透明媒体 Lは、 中心軸 2上で球面からなる後 1群 第 1透過面 2 1 と、 透明媒体 Lの中心軸付近を反射コーティ ング 4 aし 、 後 1群第 1透過面 2 1 に対して像側に形成され、 拡張回転自由曲面か らなり、 負のパワーをもつ後 1群第 1反射面 2 2 と、 透明媒体 Lを反射 コーティ ング 4 bし、 後 1群第 1反射面 2 2に対して像面 5 と反対側に 配置され、 拡張回転自由曲面からなり、 正のパヮ一をもつ後 1群第 2反 射面 2 3と、 後 1群第 2反射面 2 3より像面 5側に配置され、 拡張回転 自由曲面からなり、 正のパワーをもつ後 1群第 ·2透過面 2 4とを有する 。 後 1群第 1反射面 2 2と後 1群第 2透過面 2 4は、 同一位置同一形状 からなる。
[ 0 0 9 1 ]
後 2群 G b 2は、 中心軸 2の周りで回転対称な屈折率が 1より大きい 後 2群カバ一ガラス C b 2からなる。 後 2群カバーガラス C b 2は、 平 行平板からなり、 後 2群第 1透過面 3 1 と、 後 2群第 1透過面 3 1に対 して像側に形成される後 2群第 2透過面 3 2とを有する。
[ 0 0 9 2 ]
光学系 1は、 光路 Aを形成する。 光路 Aにおいて、 光学系 1 の物体面 3から入射する光束は、 前群屈折体 R f の前群第 1透過面 1 1 と前群第 2透過面 1 2 と、 前群屈折体 R f と透明媒体 Lの間で中心軸 2に同軸に 配置された開口 Sとを経て、 透明媒体 L内に入る。 透明媒体 Lでは、 後 1群第 1透過面 2 1 を経て入り、 後 1群第 1反射面 2 2で一部が反射コ —ティ ング 4 a、 他部が全反射により像面 5と反対側に反射され、 後 1 群第 2反射面 2 3で反射コーティングにより像面 5側に反射され、 後 1 群第 2透過面 2 4を経て透明媒体 Lから外に出る略 Z字状の光路を有 する。 その後、 後 2群カバ一ガラス C b 2の後 2群第 1透過面 3 1 と後 2群第 2透過面 3 2を経て、 像面 5の中心軸 2から外れた半径方向の所 定位置に円環状に結像する。
[ 0 0 9 3 ]
この実施例 4の仕様は、
画角 60. 00〜120. 0 °
入射瞳径 Φ 0. 07mm 像の大きさ (ί> 0.78〜 Φ 1.99
である。
[ 0 0 9 4 ]
また、 最大像高を I max (mra)、 最小像高を I min (mm)、 最大画角を ø max (度)、 最小画角を Θ min (度)、 焦点距離 F = ( I max- I min) / ( 0 max— 0 min)とし、 光学系全体の外径を D (mm)、 平行平面の保 護ガラスを除いた光学系全長を L o (mm)、 第 1反射面の曲率を R l 、 第 2反射面の曲率を R 2 とするとき、
実施例 1 実施例 2 実施例 3 実施例 4
I max 1.09 1. 00 1.00 1.00
Θ max 60.00 70. 00 30.00 70.00
I min 0.06 0. 30 0.39 0.30
6> min 10.00 0. 10 -30.00 20.00
F 0.021 0. 010 0.010 0.014
D 6.400 3. 000 2.700 5.00
L 4.650 4. 250 3.500 2.30
D ( 2 x Imax) 2.932 1. 502 1.354 2.500
L o ( 2 X Imax) 2. 130 2. 128 1.755 1. 150
R 1 3. 16 2. 16 1. 17 2.24
R 2 3.88 2. 26 1.58 2.77
R 1 / R 2 0.81 0. 96 0.74 0.81 である。
[ 0 0 9 5 ]
以下に、 上記実施例 1 〜 4の構成パラメータを示す。 なお、 以下の 表中の " A S S " は非球面、 " E R F S " は拡張回転自由曲面、 "R E " は反射面を示す。 なお、 データの記載されていない非球面に関す る項は 0である。 屈折率、 アッベ数については、 d線 (波長 5 8 7. 5 6 n m ) に対するものを表記してある。 長さの単位は mmである。 各面の偏心は像面からの偏心量で表わす。
[ 0 0 9 6 ]
実施例 1
面番号 曲率半径 面間隔 偏 、 屈折率 アッベ数 物体面 oo 10. 00
1 oo 0. 50 64. 1
2 oo 0. 10
3 ∞ (絞り) 0. 00
Figure imgf000025_0001
5 E R F S [1] 0. 00 偏心(1) 42.7
6 E R F S [2] 0. 00 偏心 (2) 1. 8348 42.7
7 E R F S [3] 0. 00 偏心 (3)
8 oo 4. 16
9 O0 0. 40 64. 1
10 oo 0. 10
像 面 oo
E R F S [1]
R Y 3. 16
Θ -37. 17
R 0. 41
C 4 -5. 0544E-02
E R F S [2]
R Y 3. 88
Θ -65. 60
R 2. 86
C 4 5. 5888E-03 C 5 5. 8997E-04
E R F S [3]
Y 1. 87 一 44. 02
1.97
1.1369E-01
偏心 [1]
X 0. 00 Y 0. 00 Ζ 1.23
0. 00 β 0. 00 r 0.00
偏心 [2]
X 0. 00 Υ 0. 00 Z 1.34
a 0. 00 β 0. 00 r 0.00
偏心 [3]
X 0. 00 Υ 0. 00 z 2.45
0. 00 β 0. 00 r 0.00
[0 0 9 7 ]
実施例 2
面番号 曲率半径 面間隔 偏心 屈折率 アッベ数 物体面 οο 10. 00
1 ∞ (絞り) 0. 00
2 -7.33 0. 00 1.8348 42.7
3 E R F S [1] 0. 00 偏心(1) 1.8348 42.7
4 E R F S [2] 0. 00 偏心(2〉 1.8348 42.7
5 E R F S [1] 0. 00 偏心(1)
6 οο 2. 87
7 οο 0. 40 1.5163 64.1
8 οο 0. 10
像 面 οο
E R F S [1]
RY 2.24
Θ -15.03 0. 34
-3. 9400E-02 C 5 1. 0547E-01
E R F S [2]
2. 77
-33. 37
R 1. 30
C 4 9 . 6776E-03 C 5 7. 2508E-03
偏心 [ 1]
X 0. 00 Y 0. 00 Z 1. 05
0. 00 β 0. 00 r 0. 00
偏心 [2]
X 0. 00 Υ 1. 30 Z 0. 20
a 0. 00 β 0. 00 r 0. 00
[ 0 0 9 8 ] .
実施例 3
面番号 曲率半径 面間隔 偏心 屈折率 ァッベ数 物体面 CO 10. 00
1 E R F S [ 1] 0. 00 偏心(1) 1. 8348 42. 7
2 E R F S [2] 0. 00 偏心 (2)
3 ∞ (絞り) 0. 00
4 3. 59 0. 00 1. 8348 42. 7
5 E R F S [3] 0. 00 偏心 (3) 1. 8348 42. 7
6 E R F S [4] 0. 00 偏心(4) 42. 7
7 E R F S [3] 0. 00 偏心 (3)
8 O0 2. 12
9 oo 0. 40 64. 1
10 oo 0. 10
像 面 O0 E R F S [1]
R Y -0.76
Θ 28.49
R -0.98
E R F S [2]
R Y -1.28
Θ 23.48
R -0.50
E R F S [3]
R Y 2.16
Θ -14.43
R 0.31
C4 -6.8178E-02 C 5 1.4695E- •01
E F S [4]
R Y 2.26
Θ -33.01
R 1.06
C4 3.9712E-03 C 5 9.6041E- ■03 偏心 [1]
X 0.00 Y 0. 00 Z -1.38 a 0.00 β 0. 00 r 0.00
偏心 [2]
X 0.00 Y 0. 00 z -0.61 a 0.00 β 0. 00 r 0.00
偏心 [3]
X 0.00 Υ 0. 00 z 0.85 a 0.00 β 0. 00 r 0.00
偏心 [4] X 0.00 Y 0.00 Ζ 0.20
0.00 β 0.00 r 0.00
[ 0 0 9 9 ]
実施例 4
面番号 曲率半径 面間隔 偏心 屈折率 アッベ数 物体面 ∞
1 E R F S [1] 0. 00 偏心(1) 1. 8348 42. 7
2 E R F S [2] 0. 00 偏心 (2)
3 ∞ (絞り) 0. 00
4 2.51 0. 00 1. 8348 42. 7
5 E R F S [3] 0. 00 偏心 (3) 1. 8348 42. 7
6 E R F S [4] 0. 00 偏心(4) 1. 8348 42. 7
7 E R F S [3] 0. 00 偏心 (3)
8 O0 2. 28
9 ∞ 0. 00 1. 5163 64. 1
10 oo 0. 00
像 面 ∞
E R F S [1]
R Y 0.98
Θ 29.80
R -0.65
E R F S [2]
R Y 0.40
Θ 72.98
R -0.46
E R F S [3]
R Y 1.17
Θ -24.14 R 0. 30
C 4 4. 7714E-02
E R F S [4]
R Y 1. 58
Θ -49. 05
R 1. 03
C 4 1. 6401E-03
偏心 [ 1]
X 0. 00 Y 0. 00 ζ - 0. 60
0. 00 β 0. 00 r 0. 00
偏心 [2]
X 0. 00 Y 0. 00 ζ - 0. 48
0. 00 β 0. 00 r 0. 00
偏心 [3]
X 0. 00 Υ 0. 00 ζ 0. 73
a 0. 00 β 0. 00 r 0. 00
偏心 [4]
X 0. 00 Υ 0. 00 ζ 0. 47
0. 00 β 0. 00 r 0. 00
[ 0 1 0 0 ]
以上の実施例では、 光学系 1の中心軸 2に同心に回転対称な屈折率が 1より大きい透明媒体の透過面及び反射面を、 拡張回転自由曲面で設計 されている例であるが、 拡張回転自由曲面が回転対称面と直交し、 高次 項を使用していない,場合、 球面と等価な構成となる。
[ 0 1 0 1 ]
また、 前群 G f の反射面、 屈折面をそれぞれ任意形状の線分を中心軸 2の周りで回転することにより形成され中心軸 2上に面頂を有さない 拡張回転自由曲面で設計しているが、 それぞれ任意の曲面に置き換えて もよい。
[ 0 1 0 2 ]
また、 本発明の光学系は、 回転対称面を形成する任意形状の線分を定 義する式に奇数次項を含むものを用いることにより、 偏心により発生す る像面 5の傾きや、 絞りの逆投影時の瞳収差を補正している。
[ 0 1 0 3 ]
また、 本発明の前群 G f を構成する中心軸 2の周りで回転対称な透明 媒体 Lはそのまま用いることにより、 3 6 0。全方位の画角を有する画 像を撮影したり投影できるが、 その透明媒体を中心軸 2を含む断面で切 断して 2分の 1、 3分の 1、 3分の 2等にすることにより、 中心軸 2の 周りの画角が 1 8 0 °、 1 2 0 °、 2 4 0。等の画像を撮影したり投影する ようにしてもよい。
[ 0 1 0 4 ]
また、 本発明の光学系は、 中心軸 (回転対称軸) 2を垂直方向に向け て天頂を含む 3 6 0 °全方位 (全周) の画角の画像を得る撮像あるいは 観察光学系としてもよい。 さらに、 本発明は、 撮影光学系、 観察光学系 に限定されず、 光路を逆にとつて天頂を含む 3 6 0 °全方位 (全周) の 画角に画像を投影する投影光学系として用いることもできる。 また、 内 視鏡は管内観察装置の全周観察光学系として用いることもできる。
[ 0 1 0 5 ]
図 1 5は、 本実施例の画像と撮像素子の配置例を示す。 図 1 5 ( a) は、 画面比が 1 6 : 9の撮像素子を使用した例である。 上下方向の画像 は使用しない場合、 光路 Aの画像 A 1の左右の位置に撮像素子 5 0の大 きさを合致させると好ましい。 図 1 5 (b) は、 画面比が 4 : 3の撮像 素子 5 0を使用し、 図 1 5 ( a) と同様に上下方向の映像は使用しない 場合を示す。 図 1 5 ( c ) は、 画面比が 4 : 3の撮像素子 5 0 を使用し 、 光路 Aでの画像 A 1 に撮像素子 5 0の大きさを合致させた例である。 このように、 配置をすると、 光路 Aの画像 A 1 をすベて撮像することが できる。
[0 1 0 6 ]
以下に、 本発明の光学系 1の適用例として、 撮影光学系 1 0 1又は投 影光学系 1 0 2の使用例を説明する。 図 1 6は、 内視鏡先端の撮影光学 系として本発明による撮影光学系 1 0 1 を用いた例を示すための図で あり、 図 1 6 ( a ) は、 硬性内視鏡 1 1 0の先端 1 1 0 aに本発明によ る撮影光学系を取り付けて 3 6 0 °全方位の画像を撮像観察する例であ る。 図 1 6 (b ) にその先端の概略の構成を示す。 本発明によるパノラ マ撮影光学系 1 0 1の前群 G iの入射面 1 1の周囲には円周方向に伸 びる開口 1 0 6 を有するケーシング等からなるフレア絞り 1 0 7が配 置され、 フレア光が入射するのを防止している。 また、 図 1 6 ( c ) は 、 軟性電子内視鏡 1 1 3の先端に本発明によるパノラマ撮影光学系 1 0 1 を同様に取り付けて、 表示装置 1 1 4に撮影された画像を、 画像処理 を施して歪みを補正して表示するようにした例である。
[ 0 1 0 7 ]
図 1 7は、 カプセル内視鏡 1 2 0に本発明による撮影光学系 1 0 1を 取り付けて 3 6 0。全方位の画像を撮像観察する例である。 本発明によ る撮影光学系 1 0 1 の光路 Aにおける前群 G f の第 1透過面 1 1 の周 囲には円周方向に伸びる開口 1 0 6を有するケーシング等に、 フレア絞 り 1 0 7が形成され、 フレア光が入射するのを防止している。
[ 0 1 0 8 ]
図 1 6及び図 1 7に示すように、 内視鏡に撮影光学系 1 0 1 を用いる ことにより、 撮影光学系 1 0 1の周囲の画像を撮像観察することができ 、 従来と異なる角度から様々な部位を撮像観察することができる。
[0 1 0 9 ]
図 1 8 ( a ) は、 自動車 1 3 0の前方に撮影光学系として本発明によ る撮影光学系 1 0 1 を取り付けて、 車内の表示装置に各撮影光学系 1 0 1 を経て撮影された画像を、 画像処理を施して歪みを補正して同時に表 1
示するようにした例を示す図であり、 図 1 8 ( b ) は、 自動車 1 3 0の 各コーナやへッ ド部のポールの頂部に撮影光学系として本発明による 撮影光学系 1 0 1 を複数取り付けて、 車内の表示装置に各撮影光学系 1 0 1を経て撮影された画像を、 画像処理を施して歪みを補正して同時に 表示するようにした例を示す図である。 この場合、 図 1 8 ( a ) に示し たように、 光路 Aの画像 A 1の左右の位置に撮像素子 5 0の大きさを合 致させると、 左右の画像が広く撮像でき、 好ましい。
[ 0 1 1 0 ] ,
また、 図 1 9は、 投影装置 1 4 0の投影光学系として本発明による投 影光学系 1 0 2を用い、 その像面 5に配置した表示素子にパノラマ画像 を表示し、 投影光学系 1 0 2 を通して 3 6 0。全方位に配置したスクリ ーン 1 4 1 に 3 6 0。全方位画像を投影表示する例である。
[ 0 1 1 1 ]
さらに、 図 2 0は、 建物 1 5 0の外部に本発明による撮影光学系 1 0 1 を用いた撮影装置 1 5 1 を取り付け、 屋内に本発明による撮影光学系 1 0 1 を用いた投影装置 1 5 1 を配置し、 撮影装置 1 5 1で撮像された 映像を電線 1 5 2を介して投影装置 1 4 0に送るように接続している。 このような配置において、 屋外の 3 6 0 °全方位の被写体 Pを、 撮影光 学系 1 0 1 を経て撮影装置 1 5 1で撮影し、 その映像信号を電線 1 5 2 を介して投影装置 1 4 0に送り、 像面に配置した表示素子にその映像を 表示して、 投影光学系 1 0 2 を通して屋内の壁面等に被写体 Pの映像 P 'を投影表示するようにしている例である。 産業上の利用分野
[ 0 1 1 2 ]
以上の本発明の光学系においては、 簡単な構成で異なる方向を観察又 は異なる方向に映像を投影することが可能な小型で収差が良好に補正 された解像力の良い光学系を得ることができる。

Claims

請求の範囲
[ 1 ]
中心軸を含む断面内で、 前記中心軸の周りで回転対称な光学系におい て、 前記光学系は、 前記中心軸上の物体側に配置された開口と、 前記開 口の像面側に配置され、 屈折率が 1より大きい透明媒体とを有し、 前記 透明媒体は、 前記開口近傍の前記中心軸上に配置された第 1透過面と、 前記第 1透過面より像面側に配置され、 像面側に凹面を向けた第 1反射 面と、 前記第 1反射面より像面と反対側に配置され、 像面側に凹面を向 けた第 2反射面と、 前記第 2反射面より像面側に配置された第 2透過面 と、 を有し、 前記第 1反射面と前記第 2反射面のうち少なくとも 1面は 、 中心軸上で不連続な曲面で構成されており、 前記透明媒体に入射する 光束は、 順光線追跡の順に、 前記開口を通り、 前記第 1透過面を経て前 記透明媒体内に入り、 前記第 1反射面で像面と反対側に反射され、 前記 第 2反射面で像面側に反射され、 前記第 2透過面を経て前記透明媒体か ら像面側に外へ出る略 Z字状の第 1光路を構成し、 前記第 1光路の少な く とも前記第 1反射面と前記第 2反射面の間は、 前記中心軸に対して片 側のみで構成され、 前記第 1光路中に中間像が結像されることなく、 像 面に円環状に結像されることを特徴とする光学系。
[ 2 ]
前記反射面のうち少なく とも 1面は、 対称面を持たない任意形状の 線分を中心軸の周りで回転させて形成される拡張回転自由曲面で構成 されていることを特徴とする請求項 1 に記載の光学系。
[ 3 ]
前記第 1反射面と前記第 2反射面のうち少なくとも 1面は、 奇数次 項を含む任意形状の線分を中心軸の周りで回転させて形状される拡張 回転自由曲面で構成されていることを特徴とする請求項 1に記載の光 学系。
[4]
前記第 1反射面は、 全反射作用と、 反射コーティ ングにより反射す るように構成され、 前記反射コーティ ングは前記第 1反射面の中心軸 近傍のみに施されていることを特徴とする請求項 1に記載の光学系。
[5]
前記第 1透過面と前記第 2反射面は、 前記透明媒体の物体側に配置 されていることを特徴とする請求項 1に記載の光学系。
[6]
前記第 1反射面と前記第 2透過面は、 前記透明媒体の像面側に配置 されていることを特徴とする請求項 1に記載の光学系。
[ 7 ]
前記第 1反射面と前記第 2透過面は、 同一位置同一形状からなるこ とを特徴とする請求項 1に記載の光学系。
[ 8 ]
前記透明媒体の物体側及び 又は像面側に屈折体を配置したことを 特徴とする請求項 1に記載の光学系。
[ 9]
最大像高を I max、 前記透明媒体の外径を Dとするとき、
0. 5 <D / ( 2 X 1 max) く 1 0 · · · ( 1 ) なる条件を満足することを特徴とする請求項 1に記載の光学系。
[ 1 0]
最大像高を I max、 前記開口から前記像面までの距離を L oとすると さ、
0. 5 < L o / (2 X 1 max) く 1 0 · · ·
( 2)
なる条件を満足することを特徴とする請求項 1に記載の光学系。 [ 1 1 ]
第 1反射面の曲率を R l、 第 2反射面の曲率を R 2 とするとき、 0. 2 <R 1 /R 2 < 5 · · · ( 3 ) なる条件を満足することを特徴とする請求項 1に記載の光学系。
[ 1.2 ]
請求項 1 に記載の光学系を用いた内視鏡。
PCT/JP2008/066794 2007-09-27 2008-09-08 光学系及びそれを用いた内視鏡 WO2009041332A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007251102A JP2009080412A (ja) 2007-09-27 2007-09-27 光学系及びそれを用いた内視鏡
JP2007-251102 2007-09-27

Publications (1)

Publication Number Publication Date
WO2009041332A1 true WO2009041332A1 (ja) 2009-04-02

Family

ID=40511219

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/066794 WO2009041332A1 (ja) 2007-09-27 2008-09-08 光学系及びそれを用いた内視鏡

Country Status (2)

Country Link
JP (1) JP2009080412A (ja)
WO (1) WO2009041332A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2759293A1 (en) 2013-01-25 2014-07-30 Laboratorios Lesvi, S.L. Pharmaceutical compositions of (+)-(s)-2-(3-benzoylphenyl)propionic acid tromethamine salt

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5362419B2 (ja) * 2009-04-17 2013-12-11 富士フイルム株式会社 カプセル型内視鏡
DE102015201647B4 (de) * 2015-01-30 2017-09-28 Asphericon Gmbh Optisches Element zur Fokussierung kollimierter Strahlen sowie Verwendung dieses Elements
CN112859304A (zh) * 2021-02-08 2021-05-28 中国科学院光电技术研究所 基于自由曲面微纳结构透镜的宽带大视场成像系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004312593A (ja) * 2003-04-10 2004-11-04 Mitsubishi Electric Corp 広視野撮像装置
JP2004361777A (ja) * 2003-06-06 2004-12-24 Nikon Corp ソリッド型カタディオプトリック光学系

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004312593A (ja) * 2003-04-10 2004-11-04 Mitsubishi Electric Corp 広視野撮像装置
JP2004361777A (ja) * 2003-06-06 2004-12-24 Nikon Corp ソリッド型カタディオプトリック光学系

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2759293A1 (en) 2013-01-25 2014-07-30 Laboratorios Lesvi, S.L. Pharmaceutical compositions of (+)-(s)-2-(3-benzoylphenyl)propionic acid tromethamine salt

Also Published As

Publication number Publication date
JP2009080412A (ja) 2009-04-16

Similar Documents

Publication Publication Date Title
JP4780713B2 (ja) 光学系
JP4884085B2 (ja) 光学系
JP4728034B2 (ja) 回転非対称光学系
JP5025354B2 (ja) 光学素子、それを備えた光学系及びそれを用いた内視鏡
JP5074114B2 (ja) 光学素子、それを備えた光学系及びそれを用いた内視鏡
WO2008153114A1 (ja) 光学素子、光学系及びそれを用いた内視鏡
JP4611115B2 (ja) 光学系
JP5030675B2 (ja) 光学系及びそれを用いた内視鏡
WO2009008536A1 (ja) 光学素子、それを備えた光学系及びそれを用いた内視鏡
JP2008152073A (ja) 光学系
JP4648758B2 (ja) 光学系
JP5508694B2 (ja) 光学系及びそれを用いた内視鏡
JP5025355B2 (ja) 光学素子、それを備えた光学系及びそれを用いた内視鏡
JP2008309860A (ja) 光学系及びそれを用いた内視鏡
JP5031631B2 (ja) 光学系及びそれを用いた内視鏡
WO2009041332A1 (ja) 光学系及びそれを用いた内視鏡
JP4508775B2 (ja) パノラマアタッチメント光学系
JP2011257630A (ja) アタッチメント光学系
JP4873927B2 (ja) 光学系
WO2009041288A1 (ja) 光学系及びそれを用いた内視鏡
JP4849591B2 (ja) 光学系
JP4493466B2 (ja) 光学系
JP2009080410A (ja) 光学系及びそれを用いた内視鏡
JP4585352B2 (ja) 光学系
JP4839013B2 (ja) 光学系

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08832794

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08832794

Country of ref document: EP

Kind code of ref document: A1