JP2006248895A - Bonding method, device produced by this method, and bonding device - Google Patents

Bonding method, device produced by this method, and bonding device Download PDF

Info

Publication number
JP2006248895A
JP2006248895A JP2006129069A JP2006129069A JP2006248895A JP 2006248895 A JP2006248895 A JP 2006248895A JP 2006129069 A JP2006129069 A JP 2006129069A JP 2006129069 A JP2006129069 A JP 2006129069A JP 2006248895 A JP2006248895 A JP 2006248895A
Authority
JP
Japan
Prior art keywords
bonding
bonded
plasma
joining
objects
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006129069A
Other languages
Japanese (ja)
Other versions
JP2006248895A5 (en
JP4695014B2 (en
Inventor
Masuaki Okada
益明 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bondtech Inc
Original Assignee
Bondtech Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bondtech Inc filed Critical Bondtech Inc
Priority to JP2006129069A priority Critical patent/JP4695014B2/en
Publication of JP2006248895A publication Critical patent/JP2006248895A/en
Publication of JP2006248895A5 publication Critical patent/JP2006248895A5/ja
Application granted granted Critical
Publication of JP4695014B2 publication Critical patent/JP4695014B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a bonding method which comprises sticking OH groups on the bonding surfaces of both objects to be bonded by atomically coupling the OH groups by utilizing plasma and then subjecting the both objects to be bonded to anode bonding; and a bonding device. <P>SOLUTION: After sticking OH groups on the bonding surfaces of an upper wafer 7 comprising glass and a lower wafer 8 comprising Si by atomically coupling the OH groups by utilizing plasma, anode bonding is performed. Thereby, the bonding strength can be enhanced at a lower temperature. After temporary bonding by hydrophilizing treatment, the final anode bonding is performed. Thus, the production efficiency is enhanced and objects to be bonded are mutually bonded in a three-layer structure without causing warp. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ウエハーなどの複数の被接合物を陽極接合により張り合わせる技術に関する。   The present invention relates to a technique for bonding a plurality of objects such as wafers by anodic bonding.

従来、Siとガラスのウエハー接合において、両ウエハーを接触させた状態でガラス側をカソードとして電圧を印加し、かつ400℃〜500℃程度の高温に加熱することで陽極接合させる方法が知られている。従来方式ではウエハーの洗浄後、大気中を搬送して陽極接合するため、接合表面への有機物の付着などは避けられない。強度は図5に示すように200℃では3MPaと弱く、そのため400℃程度の高温加熱により9MPa程度に強度をアップさせている。すなわち従来の陽極接合では高温の加熱を併用しなければならない。   Conventionally, in wafer bonding of Si and glass, a method of applying anodic bonding by applying a voltage with the glass side as a cathode in a state where both wafers are in contact and heating to a high temperature of about 400 ° C. to 500 ° C. is known. Yes. In the conventional method, after cleaning the wafer, it is transported in the air to perform anodic bonding, and thus organic substances are unavoidably adhered to the bonding surface. As shown in FIG. 5, the strength is as weak as 3 MPa at 200 ° C. Therefore, the strength is increased to about 9 MPa by high temperature heating at about 400 ° C. That is, in conventional anodic bonding, high-temperature heating must be used in combination.

また、特許文献1に示す常温接合方法では金属同士をArイオンビームによりエッチングし、接合面を表面活性化させた状態で常温で接合する例が示されている。しかし、この方法では、接合表面の有機物や酸化膜を除去することで、金属のダングリングボンドで電気的に活性化された接合面を作りだし原子間力により接合するため、半導体であるSiや特に酸化物であるガラスやSiOは強固に接合できない。 Further, in the room temperature bonding method shown in Patent Document 1, an example is shown in which metals are etched with an Ar ion beam and bonded at room temperature in a state where the bonding surface is surface-activated. However, this method removes organic matter and oxide film on the bonding surface, thereby creating a bonding surface electrically activated by metal dangling bonds and bonding it by atomic force. Glass or SiO 2 that is an oxide cannot be firmly bonded.

また、特許文献2に示すように被接合物を対向配置してプラズマ処理した場合には、必ずどちらかの被接合物側がプラズマ電極となり、反応ガスのイオン粒子が加速されてプラズマ電極側の被接合物に衝突する。そのため、接合面の有機物層を取り除く物理的なエッチングには適するが、接合面にOH基を付着させるなどの化学処理にはイオン衝突力が強すぎて向かない。   In addition, as shown in Patent Document 2, when plasma processing is performed with objects to be bonded facing each other, one of the objects to be bonded always becomes a plasma electrode, and the ion particles of the reaction gas are accelerated so that the object on the plasma electrode side is accelerated. Collide with joints. Therefore, it is suitable for physical etching to remove the organic layer on the bonding surface, but is not suitable for chemical treatment such as attaching OH groups to the bonding surface because the ion collision force is too strong.

また、陽極接合が良く使われるアプリケーションとして、図8に示すように高周波デバイスやMEMSデバイスを片側や両側から封止する方法がよく用いられる。   As an application in which anodic bonding is often used, a method of sealing a high-frequency device or a MEMS device from one side or both sides as shown in FIG. 8 is often used.

特開昭54−124853号公報JP 54-124853 A 特開2003−318217号公報JP 2003-318217 A

従来の陽極接合方法では、接合表面には少なくとも幾らかは有機物が再付着しており、陽極接合時には接合界面に少なくとも幾らかの有機物層が挟まれている。本来、ガラスが軟化する200℃程度まで加熱すれば電圧印加による陽極接合で強固に接合できるはずであるが、有機物層が付着しているため400℃〜500℃程度の高温加熱で有機物を分解することにより始めて接合強度が上がっていることが分かる。また、真空中での接合では無いのでエアボイドの噛み込みの問題もあった。また、従来の方法では陽極接合に数時間を要するため、生産効率が悪かった。また、接着剤など使って被接合物同士を仮接合するとSiとガラス間に異物を噛むことになるので陽極接合できなくなる。特に高精度に位置を合わせて接合するMEMSデバイスなどでは効率が悪いまま生産するしかなかった。   In the conventional anodic bonding method, at least some organic substances are redeposited on the bonding surfaces, and at the time of anodic bonding, at least some organic substance layers are sandwiched at the bonding interface. Originally, if the glass is heated to about 200 ° C. where it is softened, it should be able to be strongly bonded by anodic bonding by voltage application. However, since the organic layer is attached, the organic matter is decomposed by heating at a high temperature of about 400 ° C. to 500 ° C. From this, it can be seen that the bonding strength is increased for the first time. In addition, since there was no joining in a vacuum, there was a problem of air void biting. In addition, the conventional method requires several hours for anodic bonding, so that the production efficiency is poor. In addition, if the objects to be joined are temporarily joined using an adhesive or the like, foreign matter is bitten between Si and glass, so that anodic bonding cannot be performed. In particular, MEMS devices that are aligned and bonded with high accuracy have to be produced with low efficiency.

また、特許文献1に示す常温接合方法では、接合表面の有機物や酸化膜を除去することで金属や半導体に電気的活性化された接合面を作りだし原子間力により接合するため、金属以外のSi半導体や特に酸化物であるガラスやSiOは強固に接合できない。また、常温であるが故に、軟化していないので、微小なパーティクルからなるゴミや接合表面の平坦度のうねりにより接合できない隙間や残留応力を残すために接合強度不足の部分をつくってしまうことになる。そのため、低温でも数時間のアニーリングを加えて残留応力を除去してやる必要がある。また、これらの隙間を埋めて接合するために高圧で被接合物同士を押し付け、接合界面のうねりや隙間を密着させる必要があり、300MPa以上のかなりの高圧を併用する必要がある。 In addition, in the room temperature bonding method shown in Patent Document 1, since an organic substance and an oxide film on the bonding surface are removed to create a bonding surface that is electrically activated to a metal or semiconductor and bonding is performed by atomic force, Si other than metal is used. Semiconductors, especially oxide glass and SiO 2 cannot be bonded firmly. Also, because it is at room temperature, it is not softened, so it creates a part with insufficient joint strength to leave gaps and residual stress that can not be joined due to dust consisting of fine particles and waviness of the flatness of the joining surface. Become. Therefore, it is necessary to remove the residual stress by annealing for several hours even at a low temperature. Further, in order to fill and bond these gaps, it is necessary to press the objects to be joined together at a high pressure to bring the undulations and gaps of the bonding interface into close contact, and it is necessary to use a considerable high pressure of 300 MPa or more.

また、特許文献2に示すように被接合物を対向配置し、プラズマ処理した場合には、必ずどちらかの被接合物側がプラズマ電極となり、反応ガスのイオン粒子が加速されて被接合物に衝突するため、有機物層を取り除く物理的エッチングには適するが、接合面にOH基を付着させるなどの化学処理による表面活性化にはイオン衝突力が強すぎて向かない。以上のように洗浄と吸着の双方を満足する方法は無い。   Further, as shown in Patent Document 2, when the object to be bonded is arranged oppositely and plasma treatment is performed, one of the objects to be bonded always becomes a plasma electrode, and the ion particles of the reaction gas are accelerated and collide with the object to be bonded. Therefore, it is suitable for physical etching to remove the organic material layer, but is not suitable for surface activation by chemical treatment such as attaching OH groups to the bonding surface because the ion collision force is too strong. As described above, there is no method that satisfies both cleaning and adsorption.

また、図8に示すように高周波デバイスやMEMSデバイスを片側や両側から封止する方法において、一般的に良く使われる材料で例をあげると、Siの片側または両側にガラスを陽極接合して封止する構造となる。しかし、3枚構造でも、デバイスの片側から順番にガラスを陽極接合していくことになるので、Siとガラスの線膨張係数の差から図9(a)に示すように陽極接合時の加熱によりそりが発生してしまい、最悪割れることになる。   In addition, as shown in FIG. 8, in the method of sealing a high-frequency device or a MEMS device from one side or both sides, an example of a material that is commonly used is glass anodic bonding on one side or both sides of Si. It becomes a structure to stop. However, even in the three-piece structure, since the glass is anodically bonded in order from one side of the device, the difference in the linear expansion coefficient between Si and glass causes the heating during anodic bonding as shown in FIG. The warp will occur and the worst will occur.

そこで本発明の課題は、被接合物同士の接合面にプラズマを利用してOH基を原子的に結合させて付着させた後、前記両被接合物を陽極接合する接合方法及び接合装置を提供することにある。また、被接合物同士の接合面にプラズマを利用してOH基を原子的に結合させて付着させ前記両被接合物を仮接合した後、前記両被接合物を陽極接合して本接合する接合方法及び接合装置を提供することにある。   Accordingly, an object of the present invention is to provide a bonding method and a bonding apparatus for anodic bonding of the two objects to be bonded after bonding OH groups atomically to the bonding surfaces of the objects to be bonded by using plasma. There is to do. Further, OH groups are atomically bonded to the bonding surfaces of the objects to be bonded by atomic bonding to temporarily bond the both objects to be bonded, and then anodic bonding the objects to be bonded and perform the main bonding. A bonding method and a bonding apparatus are provided.

上記課題を解決するための本発明に係る接合方法及び接合装置双方の手段を一括して以下に説明する。   The means of both the joining method and the joining apparatus according to the present invention for solving the above-mentioned problems will be described collectively below.

上記課題を解決するために本発明は、Si、SiO、ガラスのいずれかである被接合物同士の接合面にプラズマを利用してOH基を原子的に結合させて付着させた後、前記両被接合物を陽極接合する接合方法からなる(請求項1)。 In order to solve the above-mentioned problems, the present invention, after bonding OH groups atomically using plasma on the bonding surfaces of the objects to be bonded, which are either Si, SiO 2 or glass, It consists of the joining method which anodic-joins both to-be-joined objects (Claim 1).

また本発明は、Si、SiO、ガラスのいずれかである被接合物同士の接合面にプラズマを利用してOH基を原子的に結合させて付着させるプラズマ処理手段と、前記プラズマ処理手段により前記接合面にOH基が付着した前記両被接合物を陽極接合する陽極接合手段とを備えた接合装置からなる(請求項12)。 In addition, the present invention provides a plasma processing unit that attaches OH groups by atomically bonding to a bonding surface between objects to be bonded that are any one of Si, SiO 2 , and glass by using plasma, and the plasma processing unit And an anodic bonding means for anodic bonding the objects to be bonded with OH groups attached to the bonding surface.

また本発明は、Si、SiO、ガラスのいずれかである被接合物同士の接合面にプラズマを利用してOH基を原子的に結合させて付着させ前記両被接合物を仮接合した後、前記両被接合物を陽極接合して本接合する接合方法からなる(請求項2)。 In the present invention, after joining both the objects to be bonded, the plasma is used to attach and bond the OH groups to the bonding surfaces of the objects to be bonded which are any one of Si, SiO 2 and glass. And a joining method in which the two objects to be joined are subjected to anodic bonding to perform main bonding (Claim 2).

また本発明は、Si、SiO、ガラスのいずれかである被接合物同士の接合面にプラズマを利用してOH基を原子的に結合させて付着させるプラズマ処理手段と、前記プラズマ処理手段により前記接合面にOH基が付着した前記両被接合物を接触させて仮接合する仮接合手段と、前記仮接合された前記両被接合物を電圧印加し加熱することで本接合する本接合手段とを有する陽極接合手段とを備えた接合装置からなる(請求項13)。 In addition, the present invention provides a plasma processing unit that attaches OH groups by atomically bonding to a bonding surface between objects to be bonded that are any one of Si, SiO 2 , and glass by using plasma, and the plasma processing unit Temporary bonding means for temporarily bonding the two bonded objects having OH groups attached to the bonding surface, and main bonding means for performing main bonding by applying a voltage to the temporary bonded both bonded objects and heating them. And an anodic bonding means having the above structure (claim 13).

陽極接合とは、接触させた両被接合物間に電圧を印加し、電圧印加により可動可能なイオンに分解する元素を混入した材料間の静電気力により接合界面を密着させ、加熱することにより少なくとも一方の材料を軟化密着させ、共有結合させる方法である。プラズマによる親水化処理とは、プラズマを利用して接合界面にOH基を原子的に結合させて付着させ活性化状態にして接合しやすくする処理を示す。   An anodic bonding is a method in which a voltage is applied between both objects to be contacted, the bonding interface is brought into close contact by an electrostatic force between materials mixed with an element that decomposes into movable ions by the voltage application, and heated at least. This is a method in which one material is softened and adhered and covalently bonded. The hydrophilization treatment by plasma refers to a treatment that facilitates bonding by making an activated state by bonding OH groups atomically to the bonding interface by using plasma.

プラズマによる表面活性化による接合原理には次の2つの考え方がある。1つめは、金属のような物質においては表面の有機物や酸化膜など付着物をエッチング除去して、活性な金属原子のダングリングボンドを表面に生成することで、他方のダングリングボンド同士で接合させる。また、2つめは、Siまたはガラス、SiO、セラミック系を含む酸化物である場合は、酸素や窒素プラズマによる親水化処理により、接合表面をOH基で活性化し、他方のOH基同士で接合させる。プラズマの場合は減圧プラズマ以外にも大気圧下で処理できる大気圧プラズマもあり容易に扱える。本発明の特徴は2つめの親水化処理による接合原理に従い、プラズマを利用して接合面にOH基を原子的に結合させて付着させ親水化処理した後、陽極接合することにより、より低温で、かつ、接合強度をアップすることであり、また、親水化処理による仮接合後に工程または装置を分離した陽極接合で本接合することにより、生産効率をアップし、そりの発生しない3層構造の接合を可能とするところにある。 There are the following two concepts in the bonding principle by surface activation by plasma. First, in materials such as metals, surface organics and oxides are removed by etching to generate dangling bonds of active metal atoms on the surface, and the other dangling bonds are joined together. Let Second , in the case of an oxide containing Si, glass, SiO 2 , or ceramic, the bonding surface is activated with OH groups and bonded with the other OH groups by hydrophilization treatment with oxygen or nitrogen plasma. Let In the case of plasma, there is atmospheric pressure plasma that can be processed under atmospheric pressure in addition to low-pressure plasma and can be easily handled. The feature of the present invention is that, in accordance with the bonding principle by the second hydrophilization treatment, OH groups are atomically bonded and attached to the joint surface using plasma, and after hydrophilic treatment, anodic bonding is performed at a lower temperature. And, it is to increase the bonding strength, and after the temporary bonding by the hydrophilization treatment, the main bonding is performed by the anodic bonding in which the process or the apparatus is separated, thereby improving the production efficiency and having a three-layer structure in which warpage does not occur. It is in a place that enables joining.

親水化処理による接合原理を図10に示す。図10(a)に示すように酸素プラズマなどによる親水化処理によりSi表面にOH基を付着させる。次に図10(b)に示すように両被接合物を接触させ、水素結合により仮接合する。続いて図10(c)に示すように加熱によりHOを放出させ、Si−O−Siの強固な共有結合を得る。プラズマ処理により親水化処理して接合する方法がSiやガラス、SiO、セラミック系を含む酸化物接合には簡易で有効である。 FIG. 10 shows the bonding principle by the hydrophilization treatment. As shown in FIG. 10A, OH groups are attached to the Si surface by a hydrophilization treatment using oxygen plasma or the like. Next, as shown in FIG. 10B, both objects to be joined are brought into contact and temporarily joined by hydrogen bonding. Subsequently, as shown in FIG. 10C, H 2 O is released by heating to obtain a strong covalent bond of Si—O—Si. The method of joining by hydrophilization by plasma treatment is simple and effective for oxide joining including Si, glass, SiO 2 and ceramics.

このように、表面にOH基を生成し、両表面のOH基により水素結合させて仮接合できる。強固に本接合するにはその後数時間の加熱が必要となるが、仮接合であれば瞬時に完結する。また、図8に示すような封止を伴う接合においても親水化処理した仮接合が界面に水を伴うので封止性に優れている。親水化処理には一般的に酸素プラズマや窒素プラズマが使用され、大気圧プラズマでも接合が可能である。強固に接合することはそれなりに条件出しが難しいが、仮接合レベルでよい場合は親水化処理による接合は比較的容易にでき仮接合には適している。   In this way, OH groups are generated on the surfaces, and hydrogen bonding is performed with the OH groups on both surfaces, whereby temporary bonding can be performed. Heating for a few hours is necessary for strong main joining, but if it is temporary joining, it is completed instantaneously. Further, even in the joining with sealing as shown in FIG. 8, the temporary joining subjected to the hydrophilic treatment is accompanied with water at the interface, and thus the sealing performance is excellent. In general, oxygen plasma or nitrogen plasma is used for the hydrophilic treatment, and bonding is possible even by atmospheric pressure plasma. Although it is difficult to determine the conditions as it is to join firmly, if the temporary bonding level is sufficient, the bonding by the hydrophilization treatment is relatively easy and suitable for temporary bonding.

従来の方法に記載したように、Arイオンでのエッチングによる表面活性化方法は低温で接合できる方法であるが、表面の有機物や酸化膜除去して金属の電気的活性化された面を作りだし原子間力により接合するため、金属以外の半導体や特に酸化物の接合では強固な本接合は難しく、仮接合には適する。また、金属でないSiなどの半導体や、特に酸化物を含んだSiO、ガラス、セラミックに対して常温での仮接合性と陽極接合による本接合によりSi−Oなどの共有結合がし易く接合強度も上がるため本発明の親水化処理方式が適する。また、常温接合ではSi同士の接合においても10−8Torrという高真空な状態が必要となるが、プラズマ処理方式では10−2Torr程度の真空度で容易に扱うことができるため好ましい。特に適する組み合わせはSiとガラスからなる組み合わせが陽極接合による本接合によりSi−Oなどの共有結合がし易く接合強度も上がるため好適である。また、親水化処理による接合にも適するので、好適である。 As described in the conventional method, the surface activation method by etching with Ar ions is a method that can be bonded at a low temperature. However, an organically activated surface of a metal is created by removing organic substances and oxide film on the surface to form atoms. Since bonding is performed by an interstitial force, strong main bonding is difficult in the bonding of semiconductors other than metals and particularly oxides, and is suitable for temporary bonding. Moreover, it is easy to form covalent bonds such as Si-O by temporary bonding at room temperature and main bonding by anodic bonding to non-metal semiconductors such as Si, especially SiO 2 , glass and ceramics containing oxides. Therefore, the hydrophilic treatment method of the present invention is suitable. Further, the room-temperature bonding requires a high vacuum state of 10 −8 Torr even in the bonding between Si, but the plasma processing method is preferable because it can be easily handled at a vacuum degree of about 10 −2 Torr. A particularly suitable combination is preferable because a combination of Si and glass facilitates covalent bonding such as Si—O by the main bonding by anodic bonding and increases the bonding strength. Moreover, since it is suitable also for joining by hydrophilic treatment, it is suitable.

また、前記接合面がお互いに密着し合う面形状をしており、前記接合表面にパーティクルが1つ以上乗っており、陽極接合する接合方法であってもよい。また、前記接合面がお互いに密着し合う面形状をしており、前記接合表面にパーティクルが1つ以上乗っており、陽極接合する接合装置でもよい。   Further, a bonding method may be employed in which the bonding surfaces have a surface shape in which the bonding surfaces are in close contact with each other, one or more particles are on the bonding surface, and anodic bonding is performed. Further, the joining surface may have a shape in which the joining surfaces are in close contact with each other, and one or more particles are on the joining surface, and a joining apparatus that performs anodic joining may be used.

前述のように微小パーティクルを挟み込んでも陽極接合であれば加熱によるガラスの軟化や静電気力による密着で隙間なく接合することができる。換言すれば、被接合物の親水化処理後、被接合物同士を重ね合わせる際に、接合面に微小パーティクル(ボイド)を挟みこんでしまったとしても、陽極接合の際の加熱により被接合物が軟化して静電気力によって接合面同士が引き合うことで、接合面が密着して被接合物同士を隙間無く接合することができる。この際、従来の陽極接合ではなしえなかった低温での接合でボイドを皆無とすることができる。すなわち、Si、SiO、ガラスのいずれかである被接合物を、低温で、しかもボイドの発生を防止して接合することができる。また、前記本接合時に300Mpa以下の加圧力で陽極接合する方法からなる。また、前記本接合時に300Mpa以下の加圧力で加圧する加圧手段を備え、陽極接合する接合装置からなる。前述の常温接合においては材料が軟化していないので300Mpa以上の加圧力が必要となるが、陽極接合による加熱と静電気力により300Mpa以下での接合、例えば100Mpaで接合が可能となる。 As described above, even if fine particles are sandwiched, if anodic bonding is used, bonding can be performed without gaps by softening of glass by heating or adhesion by electrostatic force. In other words, after the hydrophilic treatment of the objects to be bonded, even if the objects to be bonded are overlapped with each other, even if minute particles (voids) are sandwiched between the bonded surfaces, the objects to be bonded are heated by the anodic bonding. Since the bonding surfaces are attracted to each other by the electrostatic force and the bonding surfaces are in close contact with each other, the objects to be bonded can be bonded together without any gap. At this time, voids can be completely eliminated by bonding at a low temperature, which cannot be achieved by conventional anodic bonding. That is, it is possible to join objects to be joined which are any one of Si, SiO 2 and glass at a low temperature while preventing generation of voids. Further, it comprises a method of anodic bonding with a pressing force of 300 Mpa or less during the main bonding. In addition, it comprises a joining device for anodic joining, comprising a pressurizing means for pressurizing with a pressing force of 300 Mpa or less during the main joining. In the above-mentioned room temperature bonding, since the material is not softened, a pressure of 300 Mpa or more is required. However, it is possible to bond at 300 Mpa or less, for example, 100 Mpa by heating by anodic bonding and electrostatic force.

なお、表面活性化及び陽極接合を行う環境は、特に限定されるものではなく、真空中であっても大気中であっても本発明に含む。また、本発明は、表面活性化装置を接合装置と別に分離した状態も含む。   The environment for performing surface activation and anodic bonding is not particularly limited, and includes the present invention regardless of whether it is in a vacuum or in the atmosphere. The present invention also includes a state where the surface activation device is separated from the bonding device.

また本発明は、常温のもと前記仮接合した後、工程または装置を分離して前記陽極接合による本接合を行う請求項2に記載の接合方法からなる(請求項3)。   Moreover, this invention consists of the joining method of Claim 2 which isolate | separates a process or an apparatus and performs this joining by the said anodic bonding after the said temporary joining under normal temperature (Claim 3).

また本発明は、前記仮接合手段および前記本接合手段がそれぞれ独立した空間に設けられている請求項13に記載の接合装置からなる(請求項14)。   Moreover, this invention consists of the joining apparatus of Claim 13 with which the said temporary joining means and the said main joining means are each provided in the independent space (Claim 14).

常温とは、従来低温で金属接合できる代表的なハンダが183℃で接合できるのに対し、さらなる低温での接合が可能となる150℃以下での接合を示し、室温であることがより好ましい。従来からの接合方法は接着剤を使用したり、高温加熱により拡散接合する方法が知られている。接着剤は仮接合することができるが、MEMSのような微細な構造体の接合や、半導体のような電気的接合には使用できない。また、接着力も弱かったり、ガスを放出したり、水分を吸収するなどデメリットも多い。また、拡散方法では、高温であるため、材料の耐熱の問題や異種材料間の接合では線膨張係数の差からそりが発生したり、最悪割れるという問題が残る。   The normal temperature refers to bonding at a temperature of 150 ° C. or lower, which allows bonding at a lower temperature, while typical solder capable of metal bonding at a low temperature can be bonded at 183 ° C., and is preferably room temperature. Conventional bonding methods that use an adhesive or diffusion bonding by high-temperature heating are known. The adhesive can be temporarily bonded, but cannot be used for bonding a fine structure such as MEMS or electrical bonding such as a semiconductor. In addition, there are many disadvantages such as weak adhesive strength, gas release, and moisture absorption. In addition, since the diffusion method is at a high temperature, there still remains a problem of heat resistance of the material and a problem that warpage occurs due to a difference in linear expansion coefficient between the dissimilar materials or the worst cracking occurs.

しかし、プラズマにより親水化処理し、表面活性化されたものを常温で直接接合できればこれらの課題は解決できる。ところが、常温であるが故、量産材料の表面粗さやうねりによる残留応力やひずみを除去しないと接合強度はアップしないので、仮接合には容易に使用できるが、本接合するためには、加熱のもと数時間アニーリングして接合強度をアップする必要があり、これをひとつの工程または装置で行うと量産効率は低下する。そのため、常温で張り合わせる仮接合工程と加熱による本接合工程を分離し、別装置で行うことで量産効率をアップすることができる。前述のように、表面活性化処理とは、エッチングによる付着物除去と親水化処理を含む処理を示し、特にSiやガラス、SiO、セラミックでは親水化処理にも適するので好適である。 However, these problems can be solved if it is possible to directly bond a surface-activated material that has been hydrophilized by plasma at room temperature. However, because it is at room temperature, it can be easily used for temporary bonding because it does not increase the bonding strength unless residual stress and strain due to surface roughness and waviness of mass-produced materials are removed. Originally, it is necessary to anneal for several hours to increase the bonding strength, and if this is performed in one process or apparatus, the mass production efficiency decreases. Therefore, the mass production efficiency can be improved by separating the temporary joining step bonded at room temperature and the main joining step by heating, and performing them with a separate apparatus. As described above, the surface activation treatment is a treatment including removal of deposits by etching and a hydrophilic treatment, and Si, glass, SiO 2 and ceramic are particularly suitable for the hydrophilic treatment.

また本発明は、前記仮接合の工程の数1に対し、複数の前記本接合の工程をバランスさせる請求項3に記載の接合方法からなる(請求項4)。   Moreover, this invention consists of the joining method of Claim 3 which balances the process of the said some main joining with respect to the number 1 of the processes of the said temporary joining (Claim 4).

また本発明は、前記陽極接合手段は、前記仮接合手段の数1に対し、複数の前記本接合手段を有する請求項14に記載の接合装置からなる(請求項15)。   Moreover, this invention consists of a joining apparatus of Claim 14 with which the said anodic joining means has several said main joining means with respect to the number 1 of the said temporary joining means (Claim 15).

1台の仮接合を行う装置または工程に対し、複数の本接合を行う装置でラインバランスをとることでさらに量産効率をアップすることができる。たとえば、仮接合に10分かかり、本接合に1時間を要する場合は、仮接合の装置1に対し、本接合の装置を6並べることで10分に1枚の接合が可能となる。コスト的にも6台の仮本一体装置を並べるより、1台の仮接合の装置と単純に電圧印加して加熱するだけの本接合の装置を6台並べるほうが圧倒的にコウトダウンできる。   The mass production efficiency can be further improved by taking a line balance with a plurality of main bonding apparatuses with respect to a single temporary bonding apparatus or process. For example, if it takes 10 minutes for temporary bonding and 1 hour for main bonding, it is possible to bond one apparatus every 10 minutes by arranging six main bonding apparatuses on the temporary bonding apparatus 1. In terms of cost, it is overwhelmingly possible to arrange one temporary joining device and six main joining devices that are simply heated by applying a voltage rather than arranging six temporary book integrated devices.

また本発明は、減圧またはガス置換された減圧チャンバー中で前記仮接合を行い、大気中で前記本接合を行う請求項2ないし4のいずれかに記載の接合方法からなる(請求項5)。   Moreover, this invention consists of the joining method in any one of Claim 2 thru | or 4 which performs the said temporary joining in air | atmosphere in the pressure reduction chamber by which pressure reduction or gas substitution was carried out (Claim 5).

また本発明は、前記仮接合手段が内部に配設された減圧チャンバーを備え、減圧またはガス置換された前記減圧チャンバー中で前記仮接合を行い、大気中で前記本接合を行う請求項13ないし15のいずれかに記載の接合装置からなる(請求項16)。   Furthermore, the present invention includes a decompression chamber in which the temporary joining means is disposed, performs the temporary joining in the decompression chamber that has been decompressed or replaced with gas, and performs the final joining in the atmosphere. 15. The joining device according to any one of 15 (claim 16).

図8に示すような内部を真空または不活性ガスで封止するデバイスにおいて、仮接合を減圧チャンバー中で減圧雰囲気またはガス置換雰囲気で行えば、本接合は大気中で行っても、仮接合状態で封止されているので大気が混入することはない。特に親水化処理で接合している場合は水が界面に介在しているので封止効果も高い。そのため本接合は大気中で行え、コストダウンと効率アップが達成される。   In a device in which the inside is sealed with a vacuum or an inert gas as shown in FIG. 8, if temporary bonding is performed in a reduced pressure atmosphere or a gas replacement atmosphere in a reduced pressure chamber, Because it is sealed with, air does not enter. In particular, when bonding is performed by a hydrophilization treatment, water is present at the interface, so that the sealing effect is also high. Therefore, this joining can be performed in the atmosphere, and cost reduction and efficiency improvement are achieved.

また、プラズマが減圧または大気圧プラズマであれば、他のエネルギー波に比べて容易な真空度で扱え、コストダウンできる。また、大気圧プラズマであればより容易に扱える。但し、接合材料によっては減圧プラズマ処理をしないと接合できないものもあり、接合には優位である。   In addition, if the plasma is depressurized or atmospheric pressure plasma, it can be handled with a degree of vacuum that is easier than other energy waves, and costs can be reduced. Moreover, if it is atmospheric pressure plasma, it can be handled more easily. However, some bonding materials cannot be bonded without low-pressure plasma treatment, which is advantageous for bonding.

また本発明は、前前記接合面にOH基を原子的に結合させて付着させた後、大気に暴露することなく前記両被接合物を陽極接合する請求項1ないし4のいずれかに記載の接合方法からなる(請求項6)。   Further, the present invention provides the method according to any one of claims 1 to 4, wherein the OH groups are bonded atomically to the bonding surface before bonding, and then the two objects to be bonded are anodic bonded without being exposed to the atmosphere. It consists of a joining method (claim 6).

また本発明は、前記プラズマ処理手段と前記陽極接合手段とがそれぞれ減圧チャンバー中に設けられ、前記プラズマ処理手段により前記接合面にOH基を原子的に結合させて付着させた後、大気に暴露することなく前記両被接合物を陽極接合する請求項13ないし15のいずれかに記載の接合装置からなる(請求項17)。   In the present invention, the plasma processing means and the anodic bonding means are each provided in a decompression chamber, and OH groups are atomically bonded to the bonding surface by the plasma processing means and then exposed to the atmosphere. The joining apparatus according to any one of claims 13 to 15, wherein the two objects to be joined are subjected to anodic bonding without being performed (claim 17).

プラズマにより表面をエッチングし、付着物を除去し、基材の新生面が露出した状態で大気に暴露することなく、続いてプラズマにより親水処理することで、有機物層を伴わない親水処理ができる。続いて両被接合物を接触させ、電圧を印加し、加熱して陽極接合を行うため、有機物の付着も無く、基本的に接合力は電圧印加によることでSi−Oなどの共有結合が行われる。そのため、水素結合力による接合後の強度やアニーリング後の強度も弱い有機物層からの剥がれが無いため、拡散させなくとも水素結合後のHOを放出させるための低温でのアニーリングのみで十分な接合強度を得ることが可能となる。一方がガラスである場合、加熱はガラスを軟化させ、相手側被接合物に隙間無く倣わせるために必要な温度で良く、200℃程度で十分となる。また、被接合物同士の平坦度、平面度が出ていれば軟化させる必要もなく常温でも接合強度はそれなりに上がる。 Etching the surface with plasma, removing deposits, and performing hydrophilic treatment with plasma without exposing to the atmosphere with the new surface of the substrate exposed, allows hydrophilic treatment without an organic layer. Subsequently, both objects to be bonded are brought into contact, voltage is applied, and anodic bonding is performed by heating, so that there is no adhesion of organic substances, and basically the bonding force is due to voltage application, and covalent bonding such as Si-O is performed. Is called. Therefore, there is no peeling from the organic material layer after bonding due to hydrogen bonding force and strength after annealing, so that annealing at a low temperature is sufficient to release H 2 O after hydrogen bonding without diffusion. Bonding strength can be obtained. When one side is glass, the heating may be a temperature necessary to soften the glass and follow the other-side object to be joined without any gap, and about 200 ° C. is sufficient. Further, if the flatness and flatness of the objects to be joined are obtained, it is not necessary to soften them, and the joining strength increases accordingly even at room temperature.

また本発明は、前記プラズマが減圧プラズマであり、前記接合面に前記減圧プラズマを利用してOH基を原子的に結合させて付着させた後、同じチャンバー内で連続して前記両被接合物を真空中で接触させる請求項1ないし4のいずれかに記載の接合方法からなる(請求項7)。   Further, in the present invention, the plasma is a low pressure plasma, and after the OH group is atomically bonded to the bonding surface by using the low pressure plasma and attached, the two objects to be bonded are continuously formed in the same chamber. The bonding method according to any one of claims 1 to 4, wherein the contact is made in a vacuum (claim 7).

前記プラズマ処理手段と前記陽極接合手段とが内部に配設された減圧チャンバーを備え、前記プラズマ処理手段による前記プラズマが減圧プラズマであり、前記接合面に前記減圧プラズマを利用してOH基を原子的に結合させて付着させた後、前記減圧チャンバー内で連続して前記両被接合物を真空中で接触させる請求項13ないし15のいずれかに記載の接合装置からなる(請求項18)。   The plasma processing means and the anodic bonding means have a reduced pressure chamber disposed therein, and the plasma by the plasma processing means is a reduced pressure plasma, and OH groups are atomized on the bonding surface using the reduced pressure plasma. The bonding apparatus according to any one of claims 13 to 15, wherein the objects to be bonded are brought into contact with each other in vacuum continuously in the decompression chamber after being bonded together and attached (claim 18).

プラズマによる親水化処理と陽極接合を行うチャンバーを分割してハンドリングすることも可能であるが、例えば同じチャンバー内で両被接合物を上下電極に対向保持し、親水化処理後、連続してプラズマ電源を陽極接合電源と切り替えることにより同じ電極でそのまま使え、1チャンバーで済むのでコンパクト、コストダウンにつながる。また、他のエネルギー波に比べ高真空まで引く必要が無い。また、接合が真空中であるのでボイドの噛み込みも防ぐことができる。   Although it is possible to divide and handle the chamber for hydrophilization treatment and anodic bonding with plasma, for example, both objects to be bonded are held opposite to the upper and lower electrodes in the same chamber, and after the hydrophilization treatment, plasma is continuously applied. By switching the power source to the anodic bonding power source, the same electrode can be used as it is, and only one chamber is required, leading to compactness and cost reduction. Moreover, it is not necessary to draw a high vacuum compared to other energy waves. Further, since the bonding is in a vacuum, it is possible to prevent biting of the void.

また、プラズマ処理と接合を行うチャンバーを分割してハンドリングすることも可能であるが、図1や図11に示すように、同じチャンバー内で両被接合物を上下電極に対向保持し、プラズマ処理後、連続して仮接合することで、1チャンバーで済むのでコンパクト、コストダウンにつながり、また、仮接合が真空中であるのでボイドの噛み込みも防ぐことができる。また、前記プラズマが交番電源を用いる方法からなる。また、前記プラズマが交番電源を用いる接合装置からなる。交番電源を用いることにより、プラスイオンとマイナス電子が交互に被接合物表面にあたるため、中和され、他のエネルギー波に比べチャージアップなどのダメージが少ない。そのため、半導体や各デバイスには好適である。   It is also possible to divide and handle the plasma processing and bonding chambers. However, as shown in FIGS. 1 and 11, both objects to be bonded are held opposite to the upper and lower electrodes in the same chamber, and the plasma processing is performed. After that, the temporary bonding is continuously performed, so that one chamber is sufficient, which leads to compactness and cost reduction. Further, since the temporary bonding is in a vacuum, it is possible to prevent biting of voids. Further, the plasma is formed by using an alternating power source. Further, the plasma comprises a joining device using an alternating power source. By using an alternating power source, positive ions and negative electrons are alternately applied to the surface of the object to be joined, so that they are neutralized and less damaged such as charge-up than other energy waves. Therefore, it is suitable for semiconductors and devices.

なお、前記プラズマが交番電源を用いる方法及び装置であってもよい。交番電源を用いることにより、プラスイオンとマイナス電子が交互に被接合物表面にあたるため、中和され、他のエネルギー波に比べチャージアップなどのダメージが少ない。そのため、半導体や各デバイスには好適である。   The plasma may be a method and apparatus using an alternating power source. By using an alternating power source, positive ions and negative electrons are alternately applied to the surface of the object to be joined, so that they are neutralized and less damaged such as charge-up than other energy waves. Therefore, it is suitable for semiconductors and devices.

また本発明は、前記両被接合物を接合時または接合後に200℃以下で加熱する請求項1ないし7のいずれかに記載の接合方法からなる(請求項8)。   Moreover, this invention consists of the joining method in any one of Claim 1 thru | or 7 which heats both said to-be-joined objects at 200 degrees C or less at the time of joining or after joining (Claim 8).

また本発明は、前記両被接合物を接合時または接合後に200℃以下で加熱する請求項12ないし18のいずれかに記載の接合装置からなる(請求項19)。   Moreover, this invention consists of the joining apparatus in any one of Claim 12 thru | or 18 which heats both said to-be-joined objects at 200 degrees C or less at the time of joining or after joining (Claim 19).

加熱手段においても400℃以上に加熱する手段は特殊なヒータを選定する必要があり、難しい。図5に示すように、従来の大気搬送後にガラスとSiを陽極接合する方法では真空中で接合しても200℃で3MPaの接合強度しか無く、400℃の高温に上げてやっと9MPaの強度を得ることができた。これは大気搬送中に有機物が付着し、有機物層を含んだ接合面を含むため接合強度が上がらず、400℃の高温に上げて有機物を分解して始めて接合強度がアップしている。   Also in the heating means, the means for heating to 400 ° C. or more is difficult because a special heater needs to be selected. As shown in FIG. 5, in the conventional method of anodic bonding of glass and Si after carrying in the atmosphere, there is only a bonding strength of 3 MPa at 200 ° C. even when bonded in vacuum, and the strength of 9 MPa is finally raised to a high temperature of 400 ° C. I was able to get it. This is because the organic matter adheres to the air during transportation and includes a joining surface including the organic material layer, so that the joining strength does not increase, and the joining strength is increased only after the organic matter is decomposed by raising the temperature to 400 ° C.

しかし、真空中でArエッチングによるドライ洗浄後、大気に暴露することなく引き続き真空中で陽極接合されたものは、常温でも6MPaの接合強度であり、200℃で10MPaと従来の400℃の加熱と同等以上の十分な接合強度を得ることができた。ちなみにArイオンビーム処理後の高真空中での接合強度を測定すると常温で5MPa、400℃加熱してもそのままと接合強度が従来方法以上に上がらないことが分かる。ここでの接合強度は測定方法により倍近い強度を示す場合もあり、比較的低い強度データではあるが比較データとして用いる。また、詳細は後述するが、図6における親水化処理方法においても200℃以下での良好な接合結果が得られている。   However, what was subsequently anodic bonded in vacuum without being exposed to the atmosphere after dry cleaning by Ar etching in vacuum has a bonding strength of 6 MPa even at room temperature, 10 MPa at 200 ° C. and conventional heating at 400 ° C. A sufficient bonding strength equal to or higher than that was obtained. Incidentally, when the bonding strength in a high vacuum after Ar ion beam treatment is measured, it can be seen that the bonding strength does not increase more than the conventional method even if heated at room temperature at 5 MPa and 400 ° C. The bonding strength here may be nearly double the strength depending on the measurement method and is used as comparative data although it is relatively low strength data. Moreover, although mentioned later for details, also in the hydrophilization processing method in FIG. 6, the favorable joining result in 200 degrees C or less is obtained.

また本発明は、前記接合面にOH基を原子的に結合させて付着させる際にHOまたはH、OH基を含むガスを混入させた後、前記両被接合物を接触させる請求項1ないし8のいずれかに記載の接合方法からなる(請求項9)。 Further, in the present invention, when bonding OH groups atomically to the bonding surfaces, gas containing H 2 O or H, OH groups is mixed, and then both the objects to be bonded are brought into contact with each other. Or a joining method according to any one of claims 8 to 9 (claim 9).

また本発明は、水ガス発生手段を備え、前記接合面にOH基を原子的に結合させて付着させる際にHOまたはH、OH基を含むガスを混入させた後、前記両被接合物を接触させる請求項12ないし19のいずれかに記載の接合装置からなる(請求項20)。 The present invention also includes water gas generating means, and when OH groups are atomically bonded to the bonding surfaces to be attached, a gas containing H 2 O or H, OH groups is mixed, and then both the bonded surfaces are bonded. The bonding apparatus according to any one of claims 12 to 19 which contacts an object (claim 20).

OまたはH、OH基を含むガスを水ガスとも呼ぶ。通常、酸素プラズマにより処理し、大気中を搬送されると雰囲気中には水分が含まれるため、自然とOH基が作られるが、不純物や有機物の付着を避けるために真空中で大気に暴露することなく仮接合まで進める場合には、水分が不足してOH基が十分作られない場合が生じる。そのため、酸素プラズマ処理時または処理後接合までの間にHOまたはH、OH基を含むガスを供給することが有効である。水ガスをそのまま供給することもできるが、水ガスを酸素に混入するか、酸素プラズマ処理後、連続して水ガスを反応ガスとしてプラズマ処理することで活性化し、より有効である。 A gas containing H 2 O or H and OH groups is also called water gas. Normally, when treated with oxygen plasma and transported in the atmosphere, the atmosphere contains moisture, so OH groups are formed naturally, but in order to avoid the adhesion of impurities and organic substances, it is exposed to the atmosphere in a vacuum. In the case where the process proceeds to the temporary joining without any problem, there may be a case where water is insufficient and OH groups are not sufficiently formed. Therefore, it is effective to supply a gas containing H 2 O or H, OH groups during the oxygen plasma treatment or before the joining after the treatment. Although the water gas can be supplied as it is, it is more effective because it is activated by mixing the water gas into oxygen or by performing plasma treatment using the water gas as a reaction gas continuously after the oxygen plasma treatment.

また本発明は、3個以上の被接合物を重ねて接合する接合方法であって、線膨張係数が等しい被接合物で、線膨張係数の異なる被接合物を両側から挟み込む請求項1ないし9のいずれかに記載の接合方法からなる(請求項10)。   The present invention is also a bonding method in which three or more objects to be bonded are stacked and bonded, and objects to be bonded having the same linear expansion coefficient and having different linear expansion coefficients are sandwiched from both sides. It consists of the joining method in any one of Claims (Claim 10).

また本発明は、線膨張係数が等しい被接合物で、線膨張係数の異なる被接合物を両側から挟み込み、3個以上の被接合物を重ねて接合する接合装置であって、電圧印加手段により、前記挟み込まれた内側の線膨張係数の異なる被接合物から、前記線膨張係数が等しい外側の被接合物に向けて電圧を同時に印加する請求項12ないし20のいずれかに記載の接合装置からなる(請求項21)。   Further, the present invention is a joining apparatus that sandwiches joints having different linear expansion coefficients from both sides with joints having the same linear expansion coefficient, and stacks and joins three or more joints by voltage application means. 21. From the joining device according to claim 12, wherein a voltage is simultaneously applied from the sandwiched workpieces having different linear expansion coefficients toward an outer workpiece having the same linear expansion coefficient. (Claim 21).

図8に示すように、高周波デバイスやMEMSデバイスにおいては、片側を封止する方法(同図(a))と両側を封止する方法(同図(b))があるが、図9(a)に示すように、片側を封止する方法では、2つの材料の線膨張係数の差からそりが発生する。一方、図9(b)に示すように、線膨張係数が等しい被接合物で、線膨張係数の異なる被接合物を両側から挟み込んだのち加熱すれば、両サイドから相反する力で打ち消すため、そりは発生しなくなる。   As shown in FIG. 8, in a high-frequency device and a MEMS device, there are a method of sealing one side (FIG. 8A) and a method of sealing both sides (FIG. 9B). As shown in FIG. 4, in the method of sealing one side, warpage occurs due to the difference in linear expansion coefficient between the two materials. On the other hand, as shown in FIG. 9 (b), if the object to be joined having the same linear expansion coefficient is sandwiched from both sides and heated after being sandwiched from both sides, the opposing forces from both sides cancel each other. No warpage will occur.

しかし、従来の方法では、張り合わせ精度を出すためにはひとつずつ加熱して接合していくしか方法がなかった。これは、接着剤を使わずに仮止めするために治具でクランプすることになるが、位置がずれたり、クランプするスペースがなかったりして問題があった。そのため、表面活性化により常温で仮接合する方法を用いれば、図9(b)に示すように3つ以上の部材を両側を線膨張係数の等しい材料で挟み込んで、位置精度をだして常温仮接合させた後、加熱して本接合することでそりなく高精度に接合することができる。もちろん仮接合装置に対し、複数の本接合装置を並べることで生産効率を上げることができる。   However, in the conventional method, the only way to increase the bonding accuracy is to heat and bond one by one. This is clamped with a jig in order to temporarily fix without using an adhesive, but there is a problem that the position is shifted or there is no space for clamping. Therefore, if the method of temporary bonding at room temperature by surface activation is used, as shown in FIG. 9B, three or more members are sandwiched between materials having the same linear expansion coefficient on both sides, thereby obtaining positional accuracy and After joining, it can be joined with high accuracy without warping by heating and performing the main joining. Of course, it is possible to increase the production efficiency by arranging a plurality of main joining devices with respect to the temporary joining device.

また本発明は、前記プラズマによる親水化処理を、前記親水化処理前半において前記両被接合物をイオン衝突力の強い前記プラズマによりエッチングし、衝突したイオン分子を前記両被接合物の表面分子と置換するまたは該表面に付着させる物理処理後、大気に暴露することなく、前記親水化処理後半において、イオン衝突力を弱め、該イオン衝突力の弱いプラズマの活性なラジカルや活性なイオンにより前記両被接合物の表面を化学処理して行ってもよい。   Further, in the present invention, the hydrophilic treatment by the plasma is performed by etching the both objects to be bonded with the plasma having a strong ion collision force in the first half of the hydrophilic treatment, and the colliding ion molecules are surface molecules of the both objects to be bonded. After physical treatment to replace or adhere to the surface, the ion collision force is weakened in the latter half of the hydrophilization treatment without exposure to the atmosphere, and the both radicals are activated by active radicals or active ions of the plasma having a weak ion collision force. The surface of the object to be bonded may be chemically treated.

また本発明は、被接合物に対するイオン衝突力を切り替える減圧プラズマ処理手段を備え、該減圧プラズマ処理手段により、前記プラズマによる親水化処理を、前記親水化処理前半において前記両被接合物をイオン衝突力の強い前記プラズマによりエッチングし、衝突したイオン分子を前記両被接合物の表面分子と置換するまたは該表面に付着させる物理処理後、大気に暴露することなく、前記親水化処理後半において、前記減圧プラズマ処理手段によりイオン衝突力を弱め、該イオン衝突力の弱いプラズマの活性なラジカルや活性なイオンにより前記両被接合物の表面を化学処理して行ってもよい。   The present invention further includes a reduced pressure plasma processing means for switching an ion collision force against an object to be bonded. The reduced pressure plasma processing means performs the hydrophilic treatment by the plasma, and the both objects to be bonded are ion-impacted in the first half of the hydrophilic treatment. In the latter half of the hydrophilization treatment, the physical ions are etched by the strong plasma and replaced with or attached to the surface molecules of the objects to be bonded without being exposed to the atmosphere. Alternatively, the ion collision force may be weakened by a low-pressure plasma treatment means, and the surfaces of both the objects to be bonded may be chemically treated with active radicals or active ions of plasma having a weak ion collision force.

プラズマ処理による洗浄工程をプラズマ処理後半においてイオン衝突力を弱めてプラズマ処理を行うことにより、親水化処理がうまく行われる。通常のプラズマ処理においては物理処理により不純物を除去し、化学処理により表面にOH基を付けて並べたり、窒素などの置換が行われるが、せっかく表面に化学処理されたものがイオン衝突力が強いので除去され、表面を均一に化学処理することは難しい。   In the latter half of the plasma treatment, the hydrophilic treatment is successfully performed by performing the plasma treatment by reducing the ion collision force in the latter half of the plasma treatment. In normal plasma treatment, impurities are removed by physical treatment, OH groups are added to the surface by chemical treatment, and nitrogen is substituted. However, the chemical treatment of the surface has a strong ion impact force. Therefore, it is difficult to remove and uniformly chemically treat the surface.

そこで、プラズマ処理後半において、イオン衝突力を弱めてプラズマ処理することにより加速されないイオンやラジカルは多く存在するので化学反応は促進され接合表面に均一に化学処理を行い、表面活性化処理を行うことができる。そのため、低温で接合強度を増すことができ、しかも仮接合をしやすくできる。また、プラズマ処理後半とは時間的に半分とは限らず時間に関係しない意味を持つ。また、プラズマ処理前半と後半は間隔があっても良いが、連続された方が化学処理上好ましい。   Therefore, in the latter half of the plasma treatment, there are many ions and radicals that are not accelerated by weakening the ion collision force and performing the plasma treatment, so the chemical reaction is promoted and the chemical treatment is uniformly performed on the bonding surface, and the surface activation treatment is performed. Can do. Therefore, it is possible to increase the bonding strength at a low temperature and to facilitate temporary bonding. Further, the latter half of the plasma treatment is not necessarily half in time and has a meaning not related to time. Further, the first half and the second half of the plasma treatment may be spaced apart from each other, but it is preferable in terms of chemical treatment to be continuous.

また本発明は、前記物理処理をArまたはCFプラズマにより行ってもよい。 In the present invention, the physical treatment may be performed with Ar or CF 4 plasma.

また本発明は、前記化学処理を酸素または窒素プラズマにて行ってもよい。   In the present invention, the chemical treatment may be performed with oxygen or nitrogen plasma.

また本発明は、前記物理処理をArまたはCFプラズマにより行ってもよい。 In the present invention, the physical treatment may be performed with Ar or CF 4 plasma.

また本発明は、前記化学処理を酸素または窒素プラズマにて行ってもよい。   In the present invention, the chemical treatment may be performed with oxygen or nitrogen plasma.

プラズマにより表面をエッチングし、付着物を除去し、基材の新生面が露出した状態で大気に暴露することなく、続いて酸素プラズマにより親水処理することで、有機物層を伴わない親水処理ができる。そのため、水素結合力による接合後の強度やアニーリング後の強度も弱い有機物層からの剥がれが無いため、拡散させなくとも水素結合後のHOを放出させるための低温でのアニーリングのみで十分な接合強度を得ることが可能となる。図6に示すように、従来の大気搬送後の酸素プラズマ処理で接合する方法では常温で3MPaの接合強度で200℃で6MPa、400℃で9MPaとなっている。これは大気搬送中に有機物が付着し、有機物層を含んだ接合面を含むため接合強度が上がらず、拡散によってのみ強度アップしている。物理処理とは、表面層がエッチングされる現象、及びイオン分子が表面層に衝突することにより表面分子と置き換わる現象や表面に付着する現象を示す。例えばArプラズマによりArイオンが付着層をエッチングする行為であり、また、酸素プラズマにおいて酸素イオンが表面層と置き換わったり付着することを示す。化学処理とは、活性なラジカルやイオン衝突力の弱まった活性なイオンにより表面層が化学反応により処理される現象を示す。 Etching the surface with plasma, removing deposits, and exposing to the atmosphere with the new surface of the substrate exposed, followed by hydrophilic treatment with oxygen plasma allows hydrophilic treatment without an organic layer. Therefore, there is no peeling from the organic material layer after bonding due to hydrogen bonding force and strength after annealing, so that annealing at a low temperature is sufficient to release H 2 O after hydrogen bonding without diffusion. Bonding strength can be obtained. As shown in FIG. 6, in the conventional method of joining by oxygen plasma treatment after air conveyance, the joining strength at room temperature is 3 MPa, and the joining strength is 200 ° C., 6 MPa, and 400 ° C., 9 MPa. This is because organic matter adheres to the air during transportation and includes a joining surface including an organic material layer, so that the joining strength does not increase and the strength is increased only by diffusion. The physical treatment refers to a phenomenon in which the surface layer is etched, a phenomenon in which ion molecules collide with the surface layer, and a phenomenon in which the surface molecules are replaced or a phenomenon in which they adhere to the surface. For example, Ar ion is an action of etching an adhesion layer by Ar plasma, and indicates that oxygen ion replaces or adheres to a surface layer in oxygen plasma. Chemical treatment refers to a phenomenon in which a surface layer is treated by a chemical reaction with active radicals or active ions with weak ion collision force.

しかし、真空中でArエッチングによるドライ洗浄後、大気に暴露することなく引き続き酸素プラズマにより親水化処理されたものは、常温でも5MPaの接合強度であり、200℃で8MPaと十分な接合強度を得ることができた。ちなみにArイオンビーム処理後の高真空中での接合強度を測定すると常温で5MPa、400℃加熱してもそのままと接合強度が従来方法以上に上がらないことが分かった。物理処理で使用するプラズマとしては不活性であるArを使用すればどのような素材に対しても影響なく、原子重量も大きいのでエッチング力も高く好適である。また、被接合物がSi、SiO、ガラス、セラミックである場合には、プラズマ反応ガスとしてCFを使用するとより効率的な素材をエッチングすることができ、適する。化学処理で使用するプラズマとしては、酸素を使用することでOH基が付着し易くなり好適である。また、窒素を使用しても、同様にOH基を付着させることができる。 However, after being dry-cleaned by Ar etching in vacuum and subsequently subjected to a hydrophilic treatment with oxygen plasma without exposure to the atmosphere, the bonding strength is 5 MPa even at room temperature, and a sufficient bonding strength of 8 MPa is obtained at 200 ° C. I was able to. Incidentally, when the bonding strength in a high vacuum after the Ar ion beam treatment was measured, it was found that the bonding strength did not increase more than the conventional method as it was even when heated at room temperature at 5 MPa and 400 ° C. The use of Ar, which is inactive as the plasma used in the physical treatment, is not affected by any material, and the atomic weight is large, so that the etching power is high and suitable. In addition, when the object to be bonded is Si, SiO 2 , glass, or ceramic, it is preferable to use CF 4 as a plasma reaction gas because a more efficient material can be etched. As the plasma used in the chemical treatment, use of oxygen is preferable because OH groups are easily attached. Even when nitrogen is used, OH groups can be similarly attached.

なお、イオン衝突力を切り替えるプラズマ処理手段を備え、プラズマ処理後半においてイオン衝突力を弱め、化学処理を促進する接合方法、および、接合装置であってもよい。   Note that a bonding method and a bonding apparatus that include plasma processing means for switching the ion collision force, weaken the ion collision force in the latter half of the plasma processing, and promote chemical treatment may be used.

プラズマ処理による親水化処理する工程をプラズマ処理後半においてイオン衝突力を弱めてプラズマ処理を行うことにより、通常のプラズマ処理においては物理処理により不純物を除去し、化学処理により表面にOH基を付けて並べたり、窒素などの置換が行われるが、せっかく表面が化学処理されてもイオン衝突力が強いので除去され、表面を均一に化学処理することは難しい。   The process of hydrophilization treatment by plasma treatment is performed by reducing the ion collision force in the latter half of the plasma treatment, thereby removing impurities by physical treatment and attaching OH groups to the surface by chemical treatment. Although they are arranged or replaced with nitrogen or the like, even if the surface is chemically treated, it is removed because of the strong ion collision force, and it is difficult to chemically treat the surface uniformly.

そこで、プラズマ処理後半において、イオン衝突力を弱めてプラズマ処理することにより加速されないイオンやラジカルは多く存在するので化学反応は促進され接合表面に均一に化学処理を行い、表面活性化処理を行うことができる。そのため低温で接合強度を増すことができる。低温とは、従来方法では400℃以上必要であり、それ以下である400℃以内で接合できるので好ましい。   Therefore, in the latter half of the plasma treatment, there are many ions and radicals that are not accelerated by weakening the ion collision force and performing the plasma treatment, so the chemical reaction is promoted and the chemical treatment is uniformly performed on the bonding surface, and the surface activation treatment is performed. Can do. Therefore, the bonding strength can be increased at a low temperature. The low temperature is preferable because the conventional method requires 400 ° C. or higher and can be bonded within 400 ° C., which is lower than that.

なお、前記接合温度が200℃以下である接合方法及び接合装置であってもよい。図6に示すように200℃での接合が可能である。また、プラズマ処理後半とは時間的に半分とは限らず時間に関係しない意味を持つ。また、プラズマ処理前半と後半は間隔があっても良いが、連続された方が化学処理上好ましい。特に、物理処理とはOH基を付着させる前処理として不純物を除去するためのエッチングであるが、ここではOH基を付着させる工程において、イオン衝突力を切り替えることにより、物理処理により酸素を付着させ、化学処理によりOH基付着を増進させることであり、効率良くOH基を付着させることを目的とする。   In addition, the joining method and joining apparatus whose said joining temperature is 200 degrees C or less may be sufficient. As shown in FIG. 6, bonding at 200 ° C. is possible. Further, the latter half of the plasma treatment is not necessarily half in time and has a meaning not related to time. Further, the first half and the second half of the plasma treatment may be spaced apart from each other, but it is preferable in terms of chemical treatment to be continuous. In particular, the physical treatment is etching for removing impurities as a pretreatment for attaching OH groups. Here, in the step of attaching OH groups, by changing ion collision force, oxygen is attached by physical treatment. The purpose of this is to enhance the OH group adhesion by chemical treatment, and to efficiently attach the OH group.

また、イオン衝突力を切り替えるプラズマ処理手段が、減圧プラズマであり、プラズマ電極を被接合物保持電極と対向面電極の2箇所に切り替え可能に配置したものからなり、被接合物保持電極側に電源を印加してプラズマ処理を行い、次いで対向面電極側に電源を印加してイオン衝突力を弱め、化学処理を促進するプラズマ処理を行う接合方法、及び、接合装置であってもよい。   Further, the plasma processing means for switching the ion collision force is a low-pressure plasma, and the plasma electrode is arranged so that it can be switched between two parts, that is, the object holding electrode and the counter electrode, and the power source is connected to the object holding electrode side. A bonding method and a bonding apparatus may be used in which plasma processing is performed by applying plasma, and then power is applied to the counter electrode side to weaken ion collision force and plasma processing is performed to promote chemical processing.

プラズマ電極側では、電界が作られるためイオンが加速して衝突するのでイオン衝突力が増し、電極と対向面ではイオンは加速衝突しないのでイオン衝突力は低いが、加速されないイオンやラジカルは多く存在するので化学反応は促進される。プラズマ電極を被接合物保持電極と対向面電極の2箇所に切り替え可能に配置し、被接合物保持電極側に電源を印加してプラズマ処理を行い、次いで対向面電極側に電源を切り替えてイオン衝突力の弱いプラズマ処理を行うことにより、不純物を除去し、かつ、イオン衝突力を弱めることにより加速されないイオンやラジカルは多く存在するので化学反応は促進され接合表面に均一に表面活性化を行うことができる。そのため低温で接合強度を増すことができる。   On the plasma electrode side, an electric field is created and ions collide by acceleration, so the ion collision force increases. On the surface facing the electrode, ions do not accelerate and collision is low, but there are many ions and radicals that are not accelerated. Therefore, the chemical reaction is accelerated. The plasma electrode is arranged so that it can be switched between two parts, a workpiece holding electrode and a counter surface electrode, plasma processing is performed by applying power to the workpiece holding electrode side, and then the power source is switched to the counter surface electrode side to perform ion treatment. By performing plasma treatment with weak collision force, impurities are removed and there are many ions and radicals that are not accelerated by weakening ion collision force, so the chemical reaction is promoted and the surface of the junction is uniformly activated. be able to. Therefore, the bonding strength can be increased at a low temperature.

従来の被接合物保持電極のみにプラズマ電源を印加した場合と、被接合物保持電極と対向面電極を切り替え処理した場合の温度と接合強度の違いを図6に示す。従来方法では十分な強度を得るのに400℃必要であったが、本方式では400℃以内である常温から200℃以内で十分な接合強度を得ることができた。また、対向電極とは、平行平板型のように対向配置しても良いが、電極以外の周囲に配置しても同様な効果が表れる。また、スパッタエッチングによる電極材料の再付着を避けるためには、対向面より側面の方が好ましい。本文でいう対向面電極とはこれらの周囲の部位に電極を配置することも含む。   FIG. 6 shows the difference between the temperature and the bonding strength when the plasma power source is applied only to the conventional object-holding electrode and when the object-holding electrode and the counter electrode are switched. The conventional method required 400 ° C. to obtain sufficient strength, but in this method, sufficient bonding strength could be obtained from room temperature within 400 ° C. to within 200 ° C. In addition, the counter electrode may be arranged opposite to the parallel plate type, but the same effect can be obtained if it is arranged around other than the electrode. In order to avoid re-deposition of the electrode material due to sputter etching, the side surface is preferable to the facing surface. The term “opposite surface electrode” as used herein includes the placement of electrodes in the surrounding area.

また、前記イオン衝突力を切り替えるプラズマ処理手段が、減圧プラズマであり、Vdcが調整可能であるRFプラズマ電源からなり、プラズマ処理後半においてVdc値を変化させ、イオン衝突力を弱め、化学処理を促進するプラズマ処理を行う接合方法、及び、接合装置であってもよい。   Further, the plasma processing means for switching the ion collision force is a low-pressure plasma, and comprises an RF plasma power source capable of adjusting Vdc, and the Vdc value is changed in the latter half of the plasma processing to weaken the ion collision force and promote chemical treatment. It may be a bonding method and a bonding apparatus for performing plasma treatment.

プラズマ電極側では、電界が作られるが、Vdc値によりイオンが衝突する速度が変わる。例えば+酸素イオンはVdc値が−である程加速されイオン衝突力は増加し、0に近づく程、速度は遅くなり、イオン衝突力は低下し、加速されないイオンやラジカルは多く存在するので化学反応は促進される。Vdc値を−側に大きくしてプラズマ処理を行い、次いでVdc値を0に近づけ吸着工程を行うことにより、プラズマ処理後半に、イオン衝突力を弱めたプラズマ処理を行うことにより、不純物を除去し、かつ、イオン衝突力を弱めることにより加速されないイオンやラジカルは多く存在するので化学反応は促進され接合表面に均一に表面活性化を行うことができる。そのため低温で接合強度を増すことができる。接合結果も図6と同様な結果が得られた。   On the plasma electrode side, an electric field is created, but the speed at which ions collide depends on the Vdc value. For example, + oxygen ions are accelerated as the Vdc value is-and the ion collision force increases. As they approach 0, the velocity decreases, the ion collision force decreases, and there are many ions and radicals that are not accelerated. Is promoted. The plasma treatment is performed with the Vdc value increased to the-side, and then the adsorption process is performed by bringing the Vdc value close to 0, and in the latter half of the plasma treatment, the plasma treatment with weakened ion collision force is performed to remove impurities. In addition, since there are many ions and radicals that are not accelerated by weakening the ion collision force, the chemical reaction is promoted and the surface of the bonding surface can be uniformly activated. Therefore, the bonding strength can be increased at a low temperature. The result similar to FIG. 6 was obtained for the joining result.

また、イオン衝突力を切り替えるプラズマ処理手段が、減圧プラズマであり、パルス幅が調整可能であるパルス波プラズマ電源からなり、プラズマ処理後半においてパルス幅を変化させ、イオン衝突力を弱め、化学処理を促進するプラズマ処理を行う接合方法、及び、接合装置であってもよい。   In addition, the plasma processing means for switching the ion collision force is a low-pressure plasma and comprises a pulse wave plasma power source whose pulse width can be adjusted. The pulse width is changed in the latter half of the plasma processing to weaken the ion collision force and perform chemical treatment. A bonding method and a bonding apparatus that perform plasma treatment to be promoted may be used.

プラズマ電極側では、電界が作られるが、パルス幅を調整することにより+イオンが衝突する−電界の時間と、衝突が弱まる−電界が弱い時間との間隔を調整することができる。−電界の時間を多くすると+イオンの衝突は強められ、−電界の時間を少なくすると+イオンの衝突は弱められる。   On the plasma electrode side, an electric field is created, but by adjusting the pulse width, the interval between the + ion collision-electric field time and the collision weakens-the electric field weak time can be adjusted. -Increasing the time of the electric field increases + ion collision,-Reducing the electric field time decreases + ion collision.

例えば、+酸素イオンは−電界の時間を長くする程加速されイオン衝突力は増加し、−電界の時間を短くする程速度は遅くなり、イオン衝突力は低下し、加速されないイオンやラジカルは多く存在するので化学反応は促進される。パルス幅を調整して−電界の時間を多くしてプラズマ処理を行い、次いで−電界の時間を短くしてプラズマ処理を行うことにより、イオン衝突力を強めた減圧プラズマ処理後、イオン衝突力を弱めた減圧プラズマ処理にて、不純物を除去し、かつ、イオン衝突力を弱めることにより加速されないイオンやラジカルは多く存在するので化学反応は促進され接合表面に均一に表面活性化を行うことができる。そのため、低温で接合強度を増すことができる。接合結果も図6と同様な結果が得られた。   For example, + oxygen ions are accelerated and the ion collision force is increased as the electric field time is increased, and the velocity is decreased and the ion collision force is decreased as the electric field time is shortened, and many ions and radicals are not accelerated. The chemical reaction is accelerated because it is present. Adjust the pulse width to increase the electric field time to perform plasma treatment, and then reduce the electric field time to perform plasma processing. Since there are many ions and radicals that are not accelerated by removing impurities and weakening the ion collision force in the reduced pressure plasma treatment, the chemical reaction is promoted and the surface of the joint can be uniformly activated. . Therefore, the bonding strength can be increased at a low temperature. The result similar to FIG. 6 was obtained for the joining result.

なお、前記処理工程後に複数の被接合物を大気中で接合面同士を密着させ接合する接合方法、及び、接合装置であってもよい。この場合、プラズマ処理後半にてイオン衝突力を弱めることにより化学反応は促進され接合表面に均一に表面活性化処理を行うことができる。既に接合表面にはOH基や窒素置換などの化学処理が施されているので大気中でも接合することができる。   Note that a bonding method and a bonding apparatus for bonding a plurality of objects to be bonded to each other in the atmosphere after bonding may be used. In this case, the chemical reaction is promoted by weakening the ion collision force in the latter half of the plasma treatment, and the surface activation treatment can be performed uniformly on the bonding surface. Since the bonding surface has already been subjected to chemical treatment such as OH group or nitrogen substitution, bonding can be performed in the air.

さらに、前記処理工程後に複数の被接合物を減圧中で接合面同士を密着させ接合する接合方法及び表面活性化装置であってもよい。一旦大気圧に戻して吸着層を付けたとしても、真空チャンバー中で減圧して両被接合物を密着させ接合させることにより、空気を接合界面に巻き込むことなくボイドレスで接合させることができるので好ましい。   Furthermore, a bonding method and a surface activation device may be used in which a plurality of objects to be bonded are bonded to each other in a reduced pressure after the processing step. Even if it is once returned to atmospheric pressure and an adsorption layer is attached, it is preferable because the pressure can be reduced in a vacuum chamber and the objects to be bonded are brought into close contact with each other so that air can be bonded by a voiceless without involving the bonding interface. .

また、イオン衝突力を切り替えるプラズマ処理手段が、2つの減圧プラズマ照射手段を切り替える手段であり、被接合物保持電極側に電源を印加してプラズマ処理を行う第1のプラズマ照射手段と、プラズマ処理後半において別室で発生したプラズマをイオンをトラップしてラジカルを照射する第2のプラズマ照射手段に切り替えて、イオン衝突力を弱め、化学処理を促進するプラズマ処理を行う接合方法、及び、接合装置であってもよい。   Further, the plasma processing means for switching the ion collision force is a means for switching between the two low-pressure plasma irradiation means, a first plasma irradiation means for performing plasma processing by applying power to the object holding electrode side, and plasma processing In a joining method and a joining apparatus for switching plasma generated in a separate chamber to a second plasma irradiation means for trapping ions and irradiating radicals in the latter half to weaken ion collision force and promote chemical treatment There may be.

図12に示すように被接合物となるウエハー503をプラズマ電源となる被接合物保持電極に保持した状態で、まず、RFプラズマ電源501を印加して被接合物にイオン衝突による物理処理を行う。続いて上部の表面波プラズマにより、より多く発生されたラジカル504を、イオントラップ板502を通してダウンフローに照射する。イオントラップ板502により、イオン505は捕獲されるため、ラジカル504がより多く照射させることができ、より化学処理が促進される。なお、図12において、500は表面波プラズマ発生手段、506は真空チャンバー、507は反応ガス供給口、508は排気口、509は被接合物保持電極、510はマイクロウエーブ電源、511は表面波プラズマ発生領域、512はRFプラズマ発生領域である。   As shown in FIG. 12, in a state where the wafer 503 to be bonded is held on the bonded object holding electrode serving as a plasma power source, first, an RF plasma power source 501 is applied to perform physical processing by ion collision on the bonded object. . Subsequently, more radicals 504 generated by the upper surface wave plasma are irradiated to the down flow through the ion trap plate 502. Since ions 505 are captured by the ion trap plate 502, more radicals 504 can be irradiated, and chemical treatment is further promoted. In FIG. 12, 500 is a surface wave plasma generating means, 506 is a vacuum chamber, 507 is a reactive gas supply port, 508 is an exhaust port, 509 is an object holding electrode, 510 is a microwave power source, and 511 is a surface wave plasma. A generation region 512 is an RF plasma generation region.

また、イオン衝突力を切り替えるプラズマ処理手段が、減圧プラズマと大気圧プラズマを切り替える手段であり、被接合物表面を減圧プラズマにてイオン衝突力を高めて処理した後、大気圧プラズマにてイオン衝突力を弱め、化学処理を促進するプラズマ処理を行う接合方法、及び、接合装置であってもよい。   The plasma processing means for switching the ion collision force is a means for switching between the reduced pressure plasma and the atmospheric pressure plasma. After the surface of the object to be bonded is treated with the reduced pressure plasma by increasing the ion collision force, the ion collision is performed with the atmospheric pressure plasma. A bonding method and a bonding apparatus that perform plasma treatment that weakens force and promotes chemical treatment may be used.

プラズマ処理を減圧プラズマと大気圧プラズマに分けることにより、減圧プラズマ処理においては物理処理により不純物を除去し、化学処理により表面にOH基を付けて並べたり、窒素などの置換が行われるが、せっかく表面に化学処理されたものがイオン衝突力が強いので除去され、表面を均一に化学処理することは難しい。   By dividing the plasma treatment into low-pressure plasma and atmospheric pressure plasma, impurities are removed by physical treatment in the low-pressure plasma treatment, OH groups are added to the surface by chemical treatment, and substitution with nitrogen is performed. What has been chemically treated on the surface is removed because of its strong ion collision force, and it is difficult to uniformly chemically treat the surface.

そこで、減圧プラズマ処理後に大気圧プラズマ処理を行うことにより、大気圧プラズマでは、真空中のようにイオンが電界により加速できないのでイオン衝突力は弱く、加速されないイオンやラジカルは多く存在するので化学反応は促進され接合表面に均一に化学処理を行い、表面活性化処理を行うことができる。そのため低温で接合強度を増すことができる。低温とは、従来方法では400℃以上必要であり、それ以下である400℃以内で接合できるので好ましい。なお、前記接合温度が200℃以下である接合方法及び表面活性化装置であってもよい。図6に示すように200℃での接合が可能であり、より好ましい。   Therefore, by performing the atmospheric pressure plasma treatment after the reduced pressure plasma treatment, in the atmospheric pressure plasma, since ions cannot be accelerated by an electric field as in vacuum, the ion collision force is weak, and there are many ions and radicals that are not accelerated, so there is a chemical reaction. Is promoted, and the bonding surface can be uniformly subjected to chemical treatment and surface activation treatment can be performed. Therefore, the bonding strength can be increased at a low temperature. The low temperature is preferable because the conventional method requires 400 ° C. or higher and can be bonded within 400 ° C., which is lower than that. In addition, the joining method and surface activation apparatus whose said joining temperature is 200 degrees C or less may be sufficient. As shown in FIG. 6, bonding at 200 ° C. is possible, which is more preferable.

なお、反応ガスが酸素と窒素を含んだ混合ガスからなる接合方法、及び、接合装置であっても構わない。   Note that a bonding method and a bonding apparatus in which the reaction gas is a mixed gas containing oxygen and nitrogen may be used.

窒素を含むガスを使用することにより、イオン衝突力を弱めた化学処理において、OH基のみならず、OとNを含んだ基が生じる。そのことにより接合時に界面にSi、O、Nの化合物が生成され、常温においても強固な接合が可能となる。図6に酸素反応ガスのみの場合と酸素と窒素を含んだ反応ガスの場合の比較を示す。酸素のみの場合は、200℃程度加熱しないと強固な接合にはならないが、酸素と窒素が混合されたものでは常温から100℃でも強固な接合が可能となる。   By using a gas containing nitrogen, not only an OH group but also a group containing O and N is generated in a chemical treatment in which the ion collision force is weakened. As a result, Si, O, and N compounds are generated at the interface at the time of bonding, and strong bonding is possible even at room temperature. FIG. 6 shows a comparison between the case of only oxygen reaction gas and the case of reaction gas containing oxygen and nitrogen. In the case of only oxygen, strong bonding is not possible unless it is heated to about 200 ° C. However, when oxygen and nitrogen are mixed, strong bonding is possible even from room temperature to 100 ° C.

なお、プラズマ反応ガスをプラズマ処理後半に異なるガスまたは異なる配合ガスを使用する接合方法、及び、接合化装置であってもよい。プラズマ処理後半に異なるガスまたは異なる配合ガスを使用することにより化学処理に優位なガスを使用することができ好ましい。例えば、プラズマ処理前半にArガスを用い、後半に酸素ガスを用いることで効率よいプラズマ処理が可能となる。さらに、前半に酸素ガスを用い、後半に窒素ガスを用いることもできる。また、単に異なるガスを使用しなくとも、Arと酸素の混合ガスを使用し、前半ではArを多めに後半では酸素を多めに配合すれば良い。また、酸素と窒素の混合ガスを使用した場合は、前半では酸素を多めに後半では窒素を多めに配合すれば良い。   In addition, the joining method and joining apparatus which use different gas or different compound gas for plasma reaction gas in the latter half of plasma processing may be used. By using a different gas or a different gas mixture in the latter half of the plasma treatment, a gas superior in chemical treatment can be preferably used. For example, efficient plasma treatment can be achieved by using Ar gas in the first half of the plasma treatment and oxygen gas in the second half. Further, oxygen gas can be used in the first half and nitrogen gas can be used in the second half. Even if different gases are not used, a mixed gas of Ar and oxygen may be used, and Ar may be mixed in the first half and oxygen in the second half. In addition, when a mixed gas of oxygen and nitrogen is used, it is sufficient to add more oxygen in the first half and more nitrogen in the second half.

また、プラズマ反応ガスが、酸素を含んだ反応ガスを用い、イオン衝突力を弱めたプラズマ処理時に窒素を含んだ反応ガスに切り替える接合方法、及び、接合装置であってもよい。   Alternatively, the plasma reaction gas may be a bonding method and a bonding apparatus that use a reaction gas containing oxygen and switch to a reaction gas containing nitrogen during plasma processing with weakened ion collision force.

イオン衝突力を弱めた化学処理において、窒素を含むガスを使用することにより、OH基のみならず、OとNを含んだ基が生じる。また、プラズマ処理前半においても幾分OH基は付着しているので、イオン衝突力を弱めた化学処理時にOH基とNとの置換が行われる。化学処理とは置換も含む処理を意味する。そのことにより接合時に界面にSi、O、Nの化合物が生成され、常温においても強固な接合が可能となる。本方式においても図6と同様な良好な結果が得られた。   In the chemical treatment in which the ion collision force is weakened, by using a gas containing nitrogen, not only OH groups but also groups containing O and N are generated. In addition, since OH groups are somewhat attached even in the first half of the plasma treatment, substitution of OH groups and N is performed during chemical treatment with weakened ion collision force. Chemical treatment means treatment including substitution. As a result, Si, O, and N compounds are generated at the interface at the time of bonding, and strong bonding is possible even at room temperature. In this method, the same good results as in FIG. 6 were obtained.

なお、接合時の加熱温度が100℃以下で固層で接合する接合方法及び表面活性化装置であってもよい。さらに、接合時の加熱温度が常温で固層で接合する接合方法、及び、接合装置であっても構わない。   In addition, the joining method and surface activation apparatus which join the heating temperature at the time of joining to 100 degrees C or less by a solid layer may be sufficient. Furthermore, the joining method and joining apparatus which join by the heating temperature at the time of joining at normal temperature, and a solid layer may be sufficient.

水分子を除きOH基のみを効率良く配列させれば、100℃以下で接合させることが可能となる。また、窒素を含んだ反応ガスでプラズマ処理後半に化学処理すれば常温でも接合が可能となり好ましい。また、前記処理工程後、接合工程前に大気圧下の水分子または水素を含んだガス中に暴露する吸着工程後、接合する前記に記載の方法及び接合装置からなる。処理工程の後、大気圧下の水分子または水素を含んだガス中に暴露することにより、接合表面は、水分子や水素が少ない減圧プラズマ中と比べ、容易に水分子や水素を吸着してOH基を並べ、水素結合し易くなる。   If only OH groups are efficiently arranged except for water molecules, bonding can be performed at 100 ° C. or lower. Further, it is preferable to perform a chemical treatment in the latter half of the plasma treatment with a reactive gas containing nitrogen because bonding is possible even at room temperature. In addition, the method and the bonding apparatus described above are bonded after the adsorption step of exposure to a gas containing water molecules or hydrogen under atmospheric pressure after the treatment step and before the bonding step. After the treatment process, exposure to water molecules or gas containing hydrogen under atmospheric pressure makes it easier for the bonding surface to adsorb water molecules and hydrogen than in a low-pressure plasma with less water molecules and hydrogen. OH groups are arranged side by side, making hydrogen bonding easier.

また本発明は、請求項1〜10のいずれかに記載の接合方法により作成されたデバイスであって、被接合物がウエハーまたはウエハーから切り出されたチップであり、OH基を原子的に結合させて付着させた後、前記陽極接合することで作成された半導体デバイスまたはMEMSデバイスなどのデバイスからなる(請求項11)。   Further, the present invention is a device produced by the bonding method according to any one of claims 1 to 10, wherein the object to be bonded is a wafer or a chip cut out from the wafer, and OH groups are bonded atomically. Then, the device is made of a device such as a semiconductor device or a MEMS device created by the anodic bonding.

半導体においてSiは基材として用いられるため本方式は特に適する。また、半導体とパッケージとの封止や接合においても絶縁体であるガラス、セラミック、SiOは頻繁に用いられ有効である。具体的には、半導体の製造工程であるウエハー上でハンドリングして張り合わせるとが一番有効であるが、ダイシング後のチップ状態でも適する。 This method is particularly suitable because Si is used as a base material in semiconductors. Further, glass, ceramic, and SiO 2 that are insulators are frequently used and effective in sealing and bonding between a semiconductor and a package. Specifically, handling and bonding on a wafer, which is a semiconductor manufacturing process, is most effective, but it is also suitable in a chip state after dicing.

低温での接合が可能となり、イオン注入後、高温加熱するとイオンが抜けてしまうため、熱に弱い半導体デバイスには好適である。異種材料を重ね合わせるMEMSデバイスでは従来接合時の高温加熱によりひずみが生じ、一方がアクチュエータの場合は動作に不良が起こる。しかし、本方式においては低温で接合できるため、熱によるひずみが押さえられ好適である。また、圧力センサーなどでは、従来ガラスとSiの接合であったため、接合時の高温加熱によるひずみがデバイスの信頼性に影響を与えていた。本方式においては低温で接合できるため、ひずみなく信頼性の高いMEMSデバイスを作ることができ好適である。   Bonding at a low temperature is possible, and ions are released when heated at a high temperature after ion implantation. Therefore, it is suitable for a semiconductor device that is vulnerable to heat. In a MEMS device in which dissimilar materials are stacked, distortion occurs due to high-temperature heating during conventional bonding, and if one of them is an actuator, a malfunction occurs. However, in this method, since bonding can be performed at a low temperature, distortion due to heat is suppressed, which is preferable. In addition, since pressure sensors and the like are conventionally bonded to glass and Si, distortion due to high-temperature heating during bonding has affected the reliability of the device. In this method, since bonding can be performed at a low temperature, a highly reliable MEMS device without distortion is preferable.

また本発明は、被接合物同士の接合面を原子ビーム、イオンビームまたはプラズマであるエネルギー波により表面活性化処理した後、両被接合物を陽極接合する接合方法であって、前記エネルギー波による前記表面活性化処理でエッチングする量は1nm以上である接合方法からなる。   Further, the present invention is a bonding method for anodic bonding both bonded objects after surface activation treatment is performed on the bonded surfaces of the bonded objects by an energy wave that is an atomic beam, an ion beam, or plasma, The amount of etching by the surface activation treatment is a bonding method in which the amount is 1 nm or more.

また本発明は、電圧印加する手段と加熱する手段とを有し、被接合物同士の接合面を原子ビーム、イオンビームまたはプラズマであるエネルギー波により表面活性化処理した後、両被接合物を陽極接合する陽極接合手段を備えた接合装であって、前記エネルギー波による前記表面活性化処理でエッチングする量は1nm以上である接合装置からなる。   The present invention also includes means for applying a voltage and means for heating. After the surface activation treatment is performed on the bonding surfaces of the objects to be bonded by an energy wave that is an atomic beam, an ion beam, or plasma, both the objects are bonded. The bonding apparatus includes an anodic bonding means for performing anodic bonding, and includes a bonding apparatus in which the amount of etching by the surface activation treatment by the energy wave is 1 nm or more.

被接合物表面に存在する付着物はウェット洗浄後においても大気に暴露すると数秒で1nm以上付着することから少なくとも1nm以上エッチングすることが有効である。   It is effective to etch at least 1 nm since the deposits present on the surface of the object to be bonded are deposited to 1 nm or more in several seconds when exposed to the atmosphere even after wet cleaning.

本発明の効果はプラズマを利用して接合面にOH基を原子的に結合させて付着させ親水化処理した後、陽極接合することにより、より低温で、かつ、接合強度をアップすることができる。また、被接合物同士の接合面にプラズマを利用してOH基を原子的に結合させて付着させ前記両被接合物を仮接合した後、前記両被接合物を陽極接合して本接合することで、生産効率をアップし、そりを発生させずに3層構造で被接合物同士を接合することができる。   The effect of the present invention is that the bonding strength can be increased at a lower temperature by anodic bonding after OH groups are atomically bonded and adhered to the bonding surface using plasma and then subjected to hydrophilic treatment. . Further, OH groups are atomically bonded to the bonding surfaces of the objects to be bonded by atomic bonding to temporarily bond the both objects to be bonded, and then anodic bonding the objects to be bonded and perform the main bonding. Thus, the production efficiency can be increased, and the objects to be joined can be joined to each other with a three-layer structure without generating warpage.

また、両被接合物を同じ真空チャンバー内で対向配置して処理することで1チャンバーで全処理が可能となる。   Moreover, all the processing can be performed in one chamber by arranging both objects to be bonded in the same vacuum chamber.

この実施形態では、被接合物であるウエハーをプラズマにより表面活性化し、仮接合させ、工程を分けた本接合において陽極接合を行う方法及び接合装置である。以下に本発明の望ましい実施の形態について、図面を参照して説明する。図7に本発明の一実施形態として表面活性化による仮接合と陽極接合による本接合を分離して生産効率をアップさせる構成を示す。   In this embodiment, there is provided a method and a bonding apparatus in which a wafer to be bonded is surface-activated by plasma and temporarily bonded, and anodic bonding is performed in main bonding in which processes are divided. Preferred embodiments of the present invention will be described below with reference to the drawings. FIG. 7 shows a configuration for increasing production efficiency by separating the temporary bonding by surface activation and the main bonding by anodic bonding as an embodiment of the present invention.

図7に示すように、エネルギー波処理装置としてプラズマ処理装置Aで接合表面を表面活性化し、真空中での常温仮接合を、仮接合装置Bで行い、大気中での加熱本接合を本接合装置Cを複数台(図7では3台)でバランスさせて生産効率を上げている。   As shown in FIG. 7, the surface of the bonding is activated by a plasma processing apparatus A as an energy wave processing apparatus, a room temperature temporary bonding in a vacuum is performed by a temporary bonding apparatus B, and a heating main bonding in the atmosphere is a main bonding. The production efficiency is improved by balancing a plurality of apparatuses C (three in FIG. 7).

また、プラズマ処理装置Aと仮接合装置Bは同一装置でも構成できる。図1にプラズマ処理装置Aと仮接合装置Bを同一装置とした本発明の一実施形態に係るガラスとSiのウエハーを仮接合または、本接合となる陽極接合まで行うウエハー接合装置を示す。この実施形態では、被接合物であるガラスウエハーを上部にSiウエハーを下部に上下に対向して保持させた状態でチャンバーを閉じ、真空内でArプラズマによりエッチング後、両被接合物を接触させ接合させる。また、本接合まで行う場合は、電圧を印加して陽極接合させ、場合によっては加熱によりガラスを軟化させ接合面積を上げて強度アップさせる装置である。   Further, the plasma processing apparatus A and the temporary bonding apparatus B can be configured by the same apparatus. FIG. 1 shows a wafer bonding apparatus that performs glass bonding and Si wafer temporary bonding or anodic bonding for main bonding according to an embodiment of the present invention in which the plasma processing apparatus A and the temporary bonding apparatus B are the same apparatus. In this embodiment, the glass wafer as the object to be bonded is held on the upper side and the Si wafer is held on the lower side facing up and down, the chamber is closed, and after etching with Ar plasma in a vacuum, the objects to be bonded are brought into contact with each other. Join. In the case of performing up to the main bonding, the apparatus is an apparatus for applying a voltage to perform anodic bonding and, in some cases, softening the glass by heating to increase the bonding area and increase the strength.

装置構成は、図1に示すように、ガラスからなる上ウエハー7を保持し、Z軸1により昇降制御と加圧制御を行うヘッド部と、Siからなる下ウエハー8を保持し、場合によってはウエハーをアライメントするステージ部に分けられる。Z軸1には圧力検出手段が組み込まれ、Z軸サーボモータのトルク制御へフィードバックすることで加圧力制御を行う。別途アクチュエータにより昇降可能なチャンバー壁3が下降し、チャンバー台10に固定パッキン5を介して接地した状態で真空に引き、反応ガスを導入してプラズマ処理を行い、ヘッド部が下降して両ウエハーを接触加圧させ、陽極電源に切り替えて電圧を印加し陽極接合する構成となっている。チャンバー壁3を昇降可能にOリングで封止しているが、シャフトの細くなったところで受けてもピストン外周で受けても良い。また、場合によっては上部電極6、下部電極9は加熱ヒータも備えており、接合時に加熱することもできる。   As shown in FIG. 1, the apparatus configuration includes an upper wafer 7 made of glass, a head unit that performs elevation control and pressure control by the Z axis 1, and a lower wafer 8 made of Si. It is divided into a stage part for aligning the wafer. A pressure detection means is incorporated in the Z-axis 1 and feedback control is performed by feeding back to the torque control of the Z-axis servomotor. Separately, the chamber wall 3 that can be moved up and down by an actuator is lowered, vacuumed in a state of being grounded to the chamber base 10 through the fixed packing 5, and plasma treatment is performed by introducing a reactive gas, and the head portion is lowered to both wafers. Is contact-pressurized, switched to an anode power source, and a voltage is applied to perform anodic bonding. The chamber wall 3 is sealed with an O-ring so as to be movable up and down, but it may be received at the thinned shaft or on the outer periphery of the piston. In some cases, the upper electrode 6 and the lower electrode 9 are also provided with a heater and can be heated at the time of bonding.

図2に1台でプラズマ処理から陽極接合による本接合までを連続して行う一実施例を示す。動作を順を追って説明すると、図2(a)のようにチャンバー壁3が上昇した状態でガラスからなる上ウエハー7を上部電極6に保持させる。続いてSiからなる下ウエハー8を下部電極9に保持させる。保持させる方法はメカニカルなチャッキング方式もあるが、静電チャック方式が望ましい。続いて、同図(b)に示すようにチャンバー壁3を下降させ、チャンバー台10に固定パッキン5を介して接地させる。チャンバー壁3は摺動パッキン4により大気と遮断されているので、吸入バルブ13を閉止した状態で排出バルブ14を空け、真空ポンプ15により真空引きを行うことでチャンバー内の真空度を高めることができる。   FIG. 2 shows an embodiment in which one unit continuously performs plasma processing to main bonding by anodic bonding. The operation will be described in order. The upper wafer 7 made of glass is held by the upper electrode 6 with the chamber wall 3 raised as shown in FIG. Subsequently, the lower wafer 8 made of Si is held on the lower electrode 9. The holding method includes a mechanical chucking method, but an electrostatic chuck method is desirable. Subsequently, as shown in FIG. 2B, the chamber wall 3 is lowered, and the chamber base 10 is grounded via the fixed packing 5. Since the chamber wall 3 is shielded from the atmosphere by the sliding packing 4, the vacuum in the chamber can be increased by opening the discharge valve 14 with the suction valve 13 closed and evacuating the vacuum pump 15. it can.

次に、図2(c)に示すように、チャンバー内をArからなる反応ガスで満たす。真空ポンプ15は動作させながら排出バルブ14の排出量と吸入バルブ13でのガス吸入量をコントロールすることである一定の真空度に保ちながら反応ガスで満たすことが可能である。同図(d),(e)に示すように、本方式では、まずArガスを充満させ、10−2Torr程度の真空度で下部電極9に交番電源プラズマ電圧を印加することでプラズマを発生させ、下部ウエハー8表面をArプラズマによりエッチングし洗浄する。続いて、上部電極6に同様な交番電源を印加することで上部ウエハーをArプラズマによりエッチングし洗浄する。次に、図2(b)のようにチャンバー内を真空に引きArを排出する。場合によっては両電極を100℃程度に加熱しながら真空引きを行うことにより表面に付着したり部材内部に打ち込まれたArを排出する。 Next, as shown in FIG. 2 (c), the chamber is filled with a reaction gas composed of Ar. The vacuum pump 15 can be filled with the reaction gas while maintaining a certain degree of vacuum by controlling the discharge amount of the discharge valve 14 and the gas suction amount of the suction valve 13 while operating. As shown in FIGS. 4D and 4E, in this method, first, Ar gas is filled, and plasma is generated by applying an alternating power supply plasma voltage to the lower electrode 9 at a vacuum degree of about 10 −2 Torr. Then, the surface of the lower wafer 8 is etched and cleaned by Ar plasma. Subsequently, the same alternating power supply is applied to the upper electrode 6 to etch and clean the upper wafer with Ar plasma. Next, as shown in FIG. 2B, the chamber is evacuated and Ar is discharged. In some cases, vacuuming is performed while heating both electrodes to about 100 ° C., whereby Ar adhering to the surface or being driven into the member is discharged.

続いて、図2(f)に示すように、真空中でチャンバー壁3とZ軸1とが摺動パッキン4で接しながらピストン型ヘッド2がZ軸1により下降され、両ウエハーを真空中で接触させ、ガラスからなる上ウエハー7を保持している上部電極6をカソードとして下部電極9との間に陽極電源の電圧を印加し、接合界面でSi−Oなどの共有結合を起させ陽極接合させる。チャンバー内はチャンバー壁3とZ軸1との間の摺動パッキン4により外部雰囲気と遮断され、真空に保持された状態でピストン型ヘッド部が下降することができる。また、場合によっては同時に両電極に仕込まれたヒータにより200℃から400℃に加熱し、強度アップを行う。   Subsequently, as shown in FIG. 2 (f), the piston-type head 2 is lowered by the Z-axis 1 while the chamber wall 3 and the Z-axis 1 are in contact with the sliding packing 4 in a vacuum, and both wafers are evacuated in the vacuum. An anode power supply voltage is applied between the upper electrode 6 holding the upper wafer 7 made of glass and the lower electrode 9 as a cathode, and a covalent bond such as Si—O is caused at the bonding interface to perform anodic bonding. Let The inside of the chamber is shielded from the external atmosphere by the sliding packing 4 between the chamber wall 3 and the Z-axis 1, and the piston-type head portion can be lowered while being kept in a vacuum. In some cases, the strength is increased by simultaneously heating from 200 ° C. to 400 ° C. with heaters charged in both electrodes.

その後、図2(h)に示すようにチャンバー内に大気を供給し大気圧に戻して、ヘッド部を上昇させ、接合された両ウエハーを取り出す。Arと大気または窒素、酸素などの2種類のガスを1チャンバーで切り替える方法の場合はガス切替弁16にてArと大気ガスを選択して供給することができる。まずArを選択して充填した後、吸入バルブ13を閉じてチャンバー内を真空引きしArを排出した後、ガス切替弁16にて大気ガスに切り替え、吸入バルブ13を開き、チャンバー内を大気で充満させ、チャンバーを開く時に大気解放させることができる。   Thereafter, as shown in FIG. 2 (h), air is supplied into the chamber and the pressure is returned to atmospheric pressure, the head portion is raised, and both bonded wafers are taken out. In the case of a method of switching between Ar and the atmosphere or two kinds of gases such as nitrogen and oxygen in one chamber, the gas switching valve 16 can select and supply Ar and the atmosphere gas. First, after selecting and filling Ar, the suction valve 13 is closed, the inside of the chamber is evacuated, and Ar is discharged. Then, the gas switching valve 16 switches to atmospheric gas, the suction valve 13 is opened, and the inside of the chamber is opened to the atmosphere. Can be filled and released to the atmosphere when opening the chamber.

また、場合によっては、接合に際し、両ウエハー7,8の位置をアライメントした後、接合する場合もある。図3に真空引きする前にアライメントする方法を示す。上ウエハー7にはアライメント用の上マーク23が2箇所に付けられ、下ウエハー8にはアライメント用の下マーク24が同様な位置2箇所に付けられている。両ウエハー7,8の間に2視野の認識手段25を挿入し、上下のマーク位置を認識手段25で読み取る。2視野の認識手段25は上下のマーク像をプリズム26により分岐し、上マーク認識手段27と下マーク認識手段28に分離して読み取る。認識手段25はX軸、Y軸と場合によってはZ軸を持ったテーブルで移動され、任意の位置のマークを読み取ることができる。その後、アライメントテーブル20により下ウエハー8の位置を上ウエハー7の位置に補正移動させる。移動後、再度2視野の認識手段25を挿入して繰り返して補正し、精度を上げることも可能である。   In some cases, bonding may be performed after aligning the positions of both wafers 7 and 8. FIG. 3 shows a method of alignment before evacuation. An upper mark 23 for alignment is attached to the upper wafer 7 at two places, and a lower mark 24 for alignment is attached to the lower wafer 8 at two similar positions. A two-view recognition means 25 is inserted between the wafers 7 and 8, and the upper and lower mark positions are read by the recognition means 25. The two-field recognition means 25 branches the upper and lower mark images by a prism 26 and separates them into an upper mark recognition means 27 and a lower mark recognition means 28 and reads them. The recognizing means 25 is moved by a table having an X axis, a Y axis, and possibly a Z axis, and can read a mark at an arbitrary position. Thereafter, the position of the lower wafer 8 is corrected and moved to the position of the upper wafer 7 by the alignment table 20. After the movement, it is possible to increase the accuracy by inserting the recognizing means 25 with two fields of view and correcting it repeatedly.

図4に真空引きした後の接合する前にでもアライメントできる方法を示す。高精度に両被接合物をアライメントする必要がある場合には、プラズマ処理する工程の後、アライメントしてやる必要がある。これは、プラズマ処理の発熱により、被接合物や被接合物保持手段が熱膨張により位置ずれを起こすためであり、プラズマ処理後に両被接合物の位置を認識手段により認識してアライメントすることで位置ずれ無く数μm以内の高精度な接合が可能となる。   FIG. 4 shows a method that allows alignment even after joining after evacuation. When it is necessary to align both objects to be bonded with high accuracy, it is necessary to perform alignment after the plasma processing step. This is because the object to be bonded and the object to be bonded holding means are displaced due to thermal expansion due to the heat generated by the plasma processing. After the plasma processing, the positions of both objects to be bonded are recognized and aligned by the recognition means. High-precision bonding within a few μm is possible without displacement.

アライメントのための被接合物を平行移動及び/または回転移動させる手段は真空チャンバー内に設けることが精度上好ましく、両被接合物の位置を認識する認識手段となる光学系や撮像素子はチャンバーにガラス窓を設けることによりチャンバー外に設けることが好ましい。光学系や撮像素子は真空中で使用できないものが多く、精度を維持するためには外部大気中に設置することが好ましい。また、アライメントのための移動手段は外部からの操作では微少な移動を行うことは難しく、高精度を出すためにはチャンバー内に設けることが好ましい。また、プラズマ処理工程とアライメント工程及び/または仮接合工程を個別のチャンバーで行い、クラスター構造として真空中の搬送手段でつなげることも可能ではあるが、複雑で高価な装置となってしまう。   It is preferable in terms of accuracy that the means for translating and / or rotating the object to be joined for alignment is provided in the vacuum chamber, and an optical system and an image sensor serving as recognition means for recognizing the positions of both objects to be joined are provided in the chamber. A glass window is preferably provided outside the chamber. Many optical systems and image sensors cannot be used in a vacuum, and it is preferable to install them in the external atmosphere in order to maintain accuracy. Further, it is difficult to move the moving means for alignment by a small amount of operation from the outside, and it is preferable to provide the moving means in the chamber in order to obtain high accuracy. In addition, the plasma processing step, the alignment step, and / or the temporary bonding step can be performed in separate chambers and connected as a cluster structure by a conveying means in a vacuum, but the apparatus becomes complicated and expensive.

これを図1に示すような装置構成で、かつ、図4に示すようなアライメント方法を用いることで1つのチャンバーで連続して行うことが可能となり、装置の簡易化コストダウンが可能となる。また、連続して行うことで付着物を最小限に抑えることができる。上ウエハー7にはアライメント用の上マーク23が2箇所に付けられ、下ウエハー8にはアライメント用の下マーク24が2箇所に付けられている。上下マークは重なっても同視野で認識できるような形状となっている。プラズマ処理後の両ウエハーを近接させ、マーク読みとり用透過部19とガラス窓21を透過してIR(赤外)認識手段22により下ウエハーを透過して金属でつけられた上下のアライメントマークを同時に認識して位置を読み取る。焦点深度が合わない場合は、IR認識手段22を上下移動させて読み取る場合もある。   This can be performed continuously in one chamber by using the apparatus configuration as shown in FIG. 1 and the alignment method as shown in FIG. 4, thereby simplifying the apparatus and reducing the cost. Moreover, the deposits can be minimized by carrying out continuously. The upper wafer 7 is provided with two upper marks 23 for alignment, and the lower wafer 8 is provided with two lower marks 24 for alignment. The top and bottom marks are shaped so that they can be recognized in the same field of view even if they overlap. Both wafers after the plasma treatment are brought close to each other, passed through the mark reading transmission part 19 and the glass window 21, and passed through the lower wafer by the IR (infrared) recognition means 22, and the upper and lower alignment marks attached with metal are simultaneously formed. Recognize and read position. If the depth of focus does not match, the IR recognition means 22 may be moved up and down for reading.

IR認識手段22はX軸、Y軸と場合によってはZ軸を持ったテーブルで移動され任意の位置のマークを読み取ることができるようにしても良い。その後、アライメントテーブル20により下ウエハー8の位置を上ウエハー7の位置に補正移動させる。移動後、再度IR認識手段22により繰り返して補正し、精度を上げることも可能である。IR認識方式はSi同士の接合にも使用できる。また、ガラスを下にSiを上に保持した場合は、可視光でもアライメントが可能である。酸素プラズマ処理後、HOまたはH、OH基を含むガスに置換した後接合する方法として、水ガスが容易であるが、HO分子ビーム、水素ガスなども用いることができる。 The IR recognizing means 22 may be moved by a table having an X axis, a Y axis, and, in some cases, a Z axis so that a mark at an arbitrary position can be read. Thereafter, the position of the lower wafer 8 is corrected and moved to the position of the upper wafer 7 by the alignment table 20. After the movement, it is possible to repeat the correction by the IR recognition unit 22 again to increase the accuracy. The IR recognition method can also be used for bonding Si. In addition, when glass is held down and Si is held up, alignment is possible even with visible light. After the oxygen plasma treatment, water gas is easily used as a bonding method after substituting with a gas containing H 2 O or H or OH groups, but an H 2 O molecular beam, hydrogen gas, or the like can also be used.

Arプラズマにてエッチングすることが効率上好ましいが、窒素、酸素など他のガスで表面活性化処理することも可能であり、本発明に含む。特に、親水化処理により仮接合する場合は、酸素や窒素プラズマが使用され、接合表面にOH基を配置して表面活性化し、両ウエハーを接触させ、水素結合させる。加熱を併用すれば共晶結合へと強度アップしていく。また、本装置を仮接合装置として使用し、また、表面活性化による仮接合後に工程または装置を分離した陽極接合で本接合することにより、生産効率をアップし、そりの発生しない3層構造の接合を可能とすることもできる。上記フローに追記して説明すると、Arプラズマ処理の後、図2(c),(d),(e)に示す動作を、Arに替わって酸素ガスを供給することで表面を酸素プラズマ処理する。Arと酸素の2ガスを1チャンバーで切り替える方法はガス切替弁16にてArと酸素ガス(O)を選択して供給することができる。まずArを選択して充填した後、吸入バルブ13を閉じてチャンバー内を真空引きしArを排出した後、ガス切替弁16にて酸素ガスに切り替え、吸入バルブ13を開き、チャンバー内を酸素ガスで充満させる。また、このガス切替弁16は大気を吸入させることもできるのでチャンバーを開く時に大気解放させることもできる。次に、水ガスを供給し、場合によっては反応ガスとしてプラズマ処理し、表面を親水化処理する。 Etching with Ar plasma is preferable in terms of efficiency, but surface activation treatment with other gases such as nitrogen and oxygen is also possible and is included in the present invention. In particular, in the case of temporary bonding by hydrophilization treatment, oxygen or nitrogen plasma is used, OH groups are arranged on the bonding surface to activate the surface, and both wafers are brought into contact and hydrogen bonded. If heating is used in combination, the strength will increase to eutectic bonding. In addition, this apparatus is used as a temporary bonding apparatus, and after the temporary bonding by surface activation, the main bonding is performed by anodic bonding in which the process or apparatus is separated, thereby improving production efficiency and having a three-layer structure in which warpage does not occur. Bonding can also be possible. If it adds and describes to the said flow, after Ar plasma processing, the operation | movement shown to FIG.2 (c), (d), (e) will carry out oxygen plasma processing of the surface by supplying oxygen gas instead of Ar. . As a method of switching between two gases, Ar and oxygen, in one chamber, the gas switching valve 16 can select and supply Ar and oxygen gas (O 2 ). First, after selecting and filling Ar, the suction valve 13 is closed and the inside of the chamber is evacuated to discharge Ar, then the gas switching valve 16 is switched to oxygen gas, the suction valve 13 is opened, and the chamber is filled with oxygen gas. Fill with. Further, since the gas switching valve 16 can inhale the atmosphere, it can be released to the atmosphere when the chamber is opened. Next, water gas is supplied, and in some cases, plasma treatment is performed as a reaction gas, and the surface is hydrophilized.

続いて、図2(f)に示すように、真空中でチャンバー壁3とZ軸1とが摺動パッキン4で接しながらピストン型ヘッド2がZ軸1により下降され、両ウエハーを真空中で接触させ、水素結合力により仮接合させる。仮圧着本圧着一括接合させる装置として使用する場合は、図2(g)に示すように両電極6,9間に電圧を印加しながら加熱し、陽極接合を行う。チャンバー内はチャンバー壁3とZ軸1との間の摺動パッキン4により外部雰囲気と遮断され、真空に保持された状態でピストン型ヘッド部が下降することができる。また、場合によっては同時に両電極に仕込まれたヒータにより加熱し、強度アップを行う。その後、図2(h)に示すようにチャンバー内に大気を供給し大気圧に戻して、ヘッド部を上昇させ、接合された両ウエハー7,8を取り出す。   Subsequently, as shown in FIG. 2 (f), the piston-type head 2 is lowered by the Z-axis 1 while the chamber wall 3 and the Z-axis 1 are in contact with the sliding packing 4 in a vacuum, and both wafers are evacuated in the vacuum. They are brought into contact and temporarily joined by hydrogen bonding force. When used as an apparatus for pre-bonding and main-bonding batch bonding, as shown in FIG. 2 (g), heating is performed while applying a voltage between the electrodes 6 and 9, and anodic bonding is performed. The inside of the chamber is shielded from the external atmosphere by the sliding packing 4 between the chamber wall 3 and the Z-axis 1, and the piston-type head portion can be lowered while being kept in a vacuum. In some cases, the strength is increased by simultaneously heating with heaters charged in both electrodes. Thereafter, as shown in FIG. 2 (h), air is supplied into the chamber to return to the atmospheric pressure, the head portion is raised, and both bonded wafers 7 and 8 are taken out.

IR認識手段22にてマークを読み取る構成において、マーク読みとり用透過部19やガラス窓21、アライメントテーブル間の空間などにおけるIR光源の通り道は、空間やガラスに限らず、IR光を透過する材質で構成されていればよい。また、反射光のみならずIR認識手段22の反対側に光源を用いて透過光としても良い。   In the configuration in which the mark is read by the IR recognizing means 22, the path of the IR light source in the space between the mark reading transmission part 19, the glass window 21, and the alignment table is not limited to space and glass, but is made of a material that transmits IR light. It only has to be configured. Further, not only the reflected light but also a light source on the opposite side of the IR recognition means 22 may be used as the transmitted light.

プラズマ処理する方法として交番電極面のウエハーを洗浄するのが効率上好ましいが、均一性やダメージ軽減から電極をウエハー以外の場所に設置しウエハーを洗浄する場合もある。   Although it is preferable from the viewpoint of efficiency to clean the wafer on the alternating electrode surface as a plasma processing method, there are cases where the wafer is cleaned by setting the electrode in a place other than the wafer in order to reduce uniformity and damage.

次にプラズマ処理を、ウエハーを対向配置した位置で行わず、スライドさせた位置で行う仮接合装置を図11に示す。この仮接合装置は、図11に示すように構成され、上ウエハー210を保持するヘッド207と下ウエハー209を保持するステージ208が真空チャンバー211中に配置され、ヘッド207はトルク制御式昇降駆動モータ201が連結されたZ軸昇降機構202とZ軸昇降機構202を回転させるθ軸機構203と、ヘッド207をXY水平方向へアライメント移動させるXYアライメントテーブル206とが設けられている。圧力検出手段204により検出された接合時の加圧力をトルク制御式昇降駆動モータ201にフィ−ドバックすることで位置制御と圧力制御が切り替えながら行えるようになっている。XYアライメントテーブル206は真空中でも使用できる手段を使用するが、Z、θ軸機構は真空チャンバー外部に設置するため、ベローズ205により移動可能にヘッド部と外部が遮断されている。   Next, FIG. 11 shows a temporary bonding apparatus in which the plasma processing is performed at a slid position without performing the wafer processing at the position where the wafer is opposed. This temporary bonding apparatus is configured as shown in FIG. 11, and a head 207 for holding an upper wafer 210 and a stage 208 for holding a lower wafer 209 are arranged in a vacuum chamber 211. The head 207 is a torque-controlled lift drive motor. A Z-axis lifting mechanism 202 to which 201 is connected, a θ-axis mechanism 203 that rotates the Z-axis lifting mechanism 202, and an XY alignment table 206 that moves the head 207 in the XY horizontal direction are provided. By feeding back the applied pressure detected by the pressure detection means 204 to the torque control type lifting drive motor 201, position control and pressure control can be performed while switching. The XY alignment table 206 uses means that can be used even in a vacuum. However, since the Z and θ axis mechanisms are installed outside the vacuum chamber, the head portion and the outside are cut off by the bellows 205 so as to be movable.

ステージ208は接合位置と待機位置間をスライド移動手段229によりスライド移動することができる。スライド移動手段229には高精度なガイドと位置を認識するリニアスケールが取り付けられており、接合位置と待機位置間の停止位置を高精度に維持することができる。この移動手段229はいかなる構成であっても良い。   The stage 208 can be slid by the slide moving means 229 between the joining position and the standby position. A high-precision guide and a linear scale for recognizing the position are attached to the slide moving means 229, and the stop position between the joining position and the standby position can be maintained with high precision. This moving means 229 may have any configuration.

ヘッド207及びステージ208の被接合物保持手段としては、メカニカルなチャッキング方式であっても良いが、静電チャックを設けることが好ましい。また、加熱のためのヒータを備え、プラズマ電極ともなっており、保持手段、加熱手段、プラズマ発生手段の3つの機能を備える。   As an object holding means for the head 207 and the stage 208, a mechanical chucking method may be used, but an electrostatic chuck is preferably provided. In addition, a heater for heating is provided and serves as a plasma electrode, and has three functions of holding means, heating means, and plasma generating means.

減圧手段としては、排気管215に真空ポンプ217がつながれ、排気弁216により開閉と流量調整が行われ、真空度を調整可能な構造となっている。また、吸入側は、吸気管218に吸入ガス切り替え弁220が連結され吸気弁219により開閉と流量調整が行われる。吸入ガスとしてはプラズマの反応ガスを2種類連結でき、例えばAr221と酸素(O)222をつなぐことができる。また、混合ガスの配合を変えたガスを連結することもできる。もう一つは大気圧解放用の大気223または水分子を含んだ窒素がつながれる。大気圧を含めた真空度や反応ガス濃度は、吸気弁219と排気弁216の開閉を含めた流量調整により最適な値に調整可能となっている。 As the pressure reducing means, a vacuum pump 217 is connected to the exhaust pipe 215, and opening / closing and flow rate adjustment are performed by the exhaust valve 216, so that the degree of vacuum can be adjusted. On the intake side, an intake gas switching valve 220 is connected to the intake pipe 218, and opening / closing and flow rate adjustment are performed by the intake valve 219. As the suction gas, two kinds of plasma reaction gases can be connected, and for example, Ar 221 and oxygen (O 2 ) 222 can be connected. Moreover, the gas which changed the mixture of the mixed gas can also be connected. The other is connected to the atmosphere 223 for releasing the atmospheric pressure or nitrogen containing water molecules. The degree of vacuum and the reaction gas concentration including the atmospheric pressure can be adjusted to optimum values by adjusting the flow rate including opening and closing of the intake valve 219 and the exhaust valve 216.

アライメント用の光学系からなるアライメントマーク認識手段がステージ待機位置の上方とヘッド下方に真空チャンバー211外部に、それぞれステージ側認識手段213、ヘッド側認識手段212として配置される。これら認識手段は最低ステージ、ヘッド側に1つずつあれば良く、チップのような小さなものを認識するのであれば、アライメントマーク227,228がθ方向成分も読みとれる形状や2つのマークを1視野内に配置することで1つの認識手段でも十分読み取ることができる。また、認識手段は、例えば可視光やIR(赤外)光からなる光学レンズをともなったカメラからなる。   Alignment mark recognizing means comprising an alignment optical system is arranged above the stage standby position and below the head, outside the vacuum chamber 211, as stage side recognizing means 213 and head side recognizing means 212, respectively. These recognition means only need to be at least one stage and one on the head side. If a small object such as a chip is to be recognized, the alignment marks 227 and 228 can read a θ-direction component and two marks in one field of view. By arranging it inside, even one recognition means can read sufficiently. The recognition means is a camera with an optical lens made of, for example, visible light or IR (infrared) light.

真空チャンバー211には認識手段の光学系が透過できる材質、例えばガラスからなるガラス窓214が配置され、そこを透過して真空チャンバー211中の被接合物のアライメントマーク227,228を認識する。また、ナノレベルにより高精度にファインアライメントする場合は、粗位置決めを行った後、上ウエハー210と下ウエハー209を数μm程度に近接させた状態でヘッド側認識手段212に可視光、IR(赤外)兼用認識手段を使用し、ステージのアライメントマーク位置には透過孔や透過材を設けることで、下部からステージを透過して両ウエハー上のアライメントマークを同時認識して再度X、Y、θ方向へアライメントすることができる。   The vacuum chamber 211 is provided with a glass window 214 made of a material that can be transmitted through the optical system of the recognition means, for example, glass. The glass window 214 is transmitted through the vacuum chamber 211 to recognize the alignment marks 227 and 228 of the object to be bonded in the vacuum chamber 211. In the case of fine alignment with high accuracy at the nano level, after rough positioning, visible light, IR (red (red)) is applied to the head side recognition means 212 with the upper wafer 210 and the lower wafer 209 close to about several μm. Outside) By using a dual-purpose recognition means and providing a transmission hole or transmission material at the position of the alignment mark on the stage, the alignment mark on both wafers is recognized simultaneously through the stage from the bottom and again X, Y, θ Can be aligned in the direction.

このような仮接合装置により、上ウエハー210と下ウエハー209をスライドさせた位置でプラズマ処理することで、エッチングされた物質が対向ウエハーへ再付着することを防止したり、ウエハーと対向した面を電極とすることでエッチング力を弱めて化学処理を増進させOH基を付着しやすくすることができる。プラズマ処理後は下部ステージが上部ウエハーと対向する位置までスライドし、上記と同様の接合処理を行う。   By such a temporary bonding apparatus, plasma processing is performed at a position where the upper wafer 210 and the lower wafer 209 are slid to prevent the etched substance from re-adhering to the counter wafer, or the surface facing the wafer can be removed. By using an electrode, it is possible to weaken the etching force and enhance the chemical treatment to facilitate the attachment of OH groups. After the plasma processing, the lower stage slides to a position facing the upper wafer, and a bonding process similar to the above is performed.

また、エネルギー波処理がプラズマ以外のイオンビームや原子ビームである場合には図11の装置にビーム照射装置を2つ取り付けて、スライドさせた位置で斜めからウエハー表面に個別に照射させればいい。   When the energy wave treatment is an ion beam other than plasma or an atomic beam, two beam irradiation devices are attached to the apparatus shown in FIG. 11, and the wafer surface may be individually irradiated obliquely at the slid position. .

前述の仮接合装置は、もちろん、プラズマなどエネルギー波処理を専用装置で行い、エネルギー波処理を除いた仮接合装置として使用することもできる。   Of course, the above-described temporary bonding apparatus can also be used as a temporary bonding apparatus in which energy wave processing such as plasma is performed by a dedicated apparatus and energy wave processing is excluded.

次に本接合装置について説明する。本接合装置はすでに仮接合装置において、真空封止やガス封入された状態であるので、大気中で電圧を印加し、加熱するだけの簡易な装置でもよい。陽極接合装置として電圧を印加して加熱によりガラスを軟化させ、ゴミの噛み込みや材料の凹凸、うねりによる隙間を埋めて接合面積を上げて強度アップさせることができる。この簡易な本接合装置を図7(c)に示すように複数台並べることで生産効率をアップさせ、コストダウンをはかることができる。   Next, the present bonding apparatus will be described. Since the present bonding apparatus is already in the state of being vacuum-sealed or gas-filled in the temporary bonding apparatus, it may be a simple apparatus in which a voltage is applied and heated in the atmosphere. As an anodic bonding apparatus, it is possible to soften the glass by applying voltage and heating to fill the gaps due to the biting of dust, material irregularities and undulations, increasing the bonding area and increasing the strength. By arranging a plurality of such simple joining devices as shown in FIG. 7C, the production efficiency can be increased and the cost can be reduced.

図9(b)に示すように3つ以上の部材を両側を線膨張係数の等しい材料で挟み込んで位置精度を出して常温仮接合させた後、加熱して本接合することでそりなく高精度に接合することができる。   As shown in FIG. 9 (b), three or more members are sandwiched with materials having the same linear expansion coefficient on both sides to obtain positional accuracy, and are temporarily joined at room temperature, and then heated and fully joined to provide high accuracy without warping. Can be joined.

また、プラズマ処理工程をプラズマ処理後半においてエッチング力を弱めてプラズマ処理を行うことにより、親水化処理がうまく行われる。通常のプラズマ処理においては物理処理により不純物を除去し、化学処理により表面にOH基を付けて並べたり、窒素などの置換が行われるが、せっかく表面に化学処理されたにもかかわらずエッチング力が強いので除去され、表面を均一に化学処理することは難しい。   In addition, the hydrophilic treatment can be successfully performed by performing the plasma treatment by reducing the etching power in the latter half of the plasma treatment. In normal plasma treatment, impurities are removed by physical treatment, OH groups are added to the surface by chemical treatment, and nitrogen is replaced. However, the etching power is high despite chemical treatment on the surface. It is removed because it is strong, and it is difficult to chemically treat the surface uniformly.

そこで、プラズマ処理後半において、エッチング力を弱めてプラズマ処理することにより加速されないイオンやラジカルは多く存在するので化学反応は促進され接合表面に均一に化学処理を行い、表面活性化処理を行うことができる。そのため低温で接合強度を増すことができ、また、仮接合をしやすくできる。エッチング力を切り替える方法はプラズマのVdc値を切り替えたり、パルス幅を切り替えたり、ウエハーと対向面を電極にしたりすることで行える。   Therefore, in the latter half of the plasma treatment, there are many ions and radicals that are not accelerated by weakening the etching force and performing the plasma treatment, so the chemical reaction is promoted and the chemical treatment is uniformly performed on the bonding surface, and the surface activation treatment can be performed. it can. Therefore, it is possible to increase the bonding strength at a low temperature and to facilitate temporary bonding. The etching force can be switched by switching the plasma Vdc value, switching the pulse width, or using the wafer and the opposite surface as an electrode.

本発明の一実施態様に係る接合装置の概略構成図である。It is a schematic block diagram of the joining apparatus which concerns on one embodiment of this invention. 一実施態様における実際の接合過程を示す図である。It is a figure which shows the actual joining process in one embodiment. 2視野の認識手段を用いた大気中でのアライメント構成図である。It is an alignment block diagram in the air | atmosphere using the recognition means of 2 visual fields. IR認識手段を用いた真空中でのアライメント構成図である。It is the alignment block diagram in the vacuum which used IR recognition means. 従来工法とArプラズマ処理後の比較グラフである。It is a comparison graph after a conventional construction method and Ar plasma processing. 接合の比較グラフである。It is a comparison graph of joining. 仮接合装置、本接合装置を効率よく構成した図である。It is the figure which comprised the temporary joining apparatus and this joining apparatus efficiently. 封止を伴うデバイス図である。It is a device figure with sealing. 加熱によるそりを示す図である。It is a figure which shows the curvature | sledge by heating. 親水化処理による接合化学式を示す図である。It is a figure which shows the joining chemical formula by a hydrophilic treatment. ステージスライド式仮接合装置図である。It is a stage slide type temporary joining apparatus figure. 変形例における装置の概略構成図である。It is a schematic block diagram of the apparatus in a modification.

符号の説明Explanation of symbols

1 Z軸
2 ピストン型ヘッド
3 チャンバー壁
4 摺動パッキン
5 固定パッキン
6 上部電極
7 上ウエハー
8 下ウエハー
9 下部電極
10 チャンバー台
11 吸入口
12 排出口
13 吸入バルブ
14 排出バルブ
15 真空ポンプ
16 ガス切替弁
17 ガスA
18 ガスB
19 マーク読みとり用透過部
20 アライメントテーブル
21 ガラス窓
22 IR認識手段
23 上マーク
24 下マーク
25 2視野認識手段
26 プリズム
27 上マーク認識手段
28 下マーク認識手段
100 ガラス
101 シリコン
201 トルク制御式昇降駆動モータ
202 Z軸昇降機構
203 θ軸回転機構
204 圧力検出手段
205 ベローズ
206 XYアライメントテーブル
207 ヘッド
208 ステージ
209 下ウエハー
210 上ウエハー
211 真空チャンバー
212 ヘッド側認識手段
213 ステージ側認識手段
214 ガラス窓
215 排気管
216 排気弁
217 真空ポンプ
218 吸気管
219 吸気弁
220 吸入ガス切り替え弁
221 Ar
222 O
223 大気
227 上アライメントマーク
228 下アライメントマーク
229 スライド移動手段
DESCRIPTION OF SYMBOLS 1 Z-axis 2 Piston type head 3 Chamber wall 4 Sliding packing 5 Fixed packing 6 Upper electrode 7 Upper wafer 8 Lower wafer 9 Lower electrode 10 Chamber base 11 Inlet 12 Outlet 13 Inlet valve 14 Outlet valve 15 Vacuum pump 16 Gas switching Valve 17 Gas A
18 Gas B
19 Mark reading transmission unit 20 Alignment table 21 Glass window 22 IR recognition means 23 Upper mark 24 Lower mark 25 Two field of view recognition means 26 Prism 27 Upper mark recognition means 28 Lower mark recognition means 100 Glass 101 Silicon 201 Torque controlled lift drive motor 202 Z axis elevating mechanism 203 θ axis rotating mechanism 204 Pressure detecting means 205 Bellows 206 XY alignment table 207 Head 208 Stage 209 Lower wafer 210 Upper wafer 211 Vacuum chamber 212 Head side recognizing means 213 Stage side recognizing means 214 Glass window 215 Exhaust pipe 216 Exhaust valve 217 Vacuum pump 218 Intake pipe 219 Intake valve 220 Intake gas switching valve 221 Ar
222 O 2
223 Atmosphere 227 Upper alignment mark 228 Lower alignment mark 229 Slide moving means

Claims (21)

Si、SiO、ガラスのいずれかである被接合物同士の接合面にプラズマを利用してOH基を原子的に結合させて付着させた後、前記両被接合物を陽極接合する接合方法。 A bonding method in which plasma is used to bond OH groups to the bonding surfaces of bonded objects that are either Si, SiO 2 , or glass, and then anodic bonding the bonded objects. Si、SiO、ガラスのいずれかである被接合物同士の接合面にプラズマを利用してOH基を原子的に結合させて付着させ前記両被接合物を仮接合した後、前記両被接合物を陽極接合して本接合する接合方法。 After bonding both the objects to be bonded by temporarily bonding the OH groups to the bonding surfaces of the objects to be bonded which are either Si, SiO 2 or glass by atomically bonding them using plasma. A joining method in which an object is anodically bonded for main bonding. 常温のもと前記仮接合した後、工程または装置を分離して前記陽極接合による本接合を行う請求項2に記載の接合方法。   The bonding method according to claim 2, wherein after the temporary bonding at room temperature, the process or apparatus is separated and the main bonding by the anodic bonding is performed. 前記仮接合の工程の数1に対し、複数の前記本接合の工程をバランスさせる請求項3に記載の接合方法。   The bonding method according to claim 3, wherein a plurality of the main bonding processes are balanced against the number of the temporary bonding processes. 減圧またはガス置換された減圧チャンバー中で前記仮接合を行い、大気中で前記本接合を行う請求項2ないし4のいずれかに記載の接合方法。   The bonding method according to claim 2, wherein the temporary bonding is performed in a reduced pressure or gas-reduced reduced pressure chamber, and the main bonding is performed in the atmosphere. 前記接合面にOH基を原子的に結合させて付着させた後、大気に暴露することなく前記両被接合物を陽極接合する請求項1ないし4のいずれかに記載の接合方法。   The bonding method according to any one of claims 1 to 4, wherein after bonding OH groups to the bonding surfaces atomically and adhering, the two objects to be bonded are subjected to anodic bonding without exposure to the atmosphere. 前記プラズマが減圧プラズマであり、前記接合面に前記減圧プラズマを利用してOH基を原子的に結合させて付着させた後、同じチャンバー内で連続して前記両被接合物を真空中で接触させる請求項1ないし4のいずれかに記載の接合方法。   The plasma is a low-pressure plasma, and after the OH groups are bonded atomically to the bonding surface by using the low-pressure plasma, the two objects to be bonded are continuously contacted in a vacuum in the same chamber. The joining method according to any one of claims 1 to 4. 前記両被接合物を接合時または接合後に200℃以下で加熱する請求項1ないし7のいずれかに記載の接合方法。   The joining method according to claim 1, wherein the objects to be joined are heated at 200 ° C. or less during or after joining. 前記接合面にOH基を原子的に結合させて付着させる際にHOまたはH、OH基を含むガスを混入させた後、前記両被接合物を接触させる請求項1ないし8のいずれかに記載の接合方法。 9. The method according to claim 1, wherein, when OH groups are atomically bonded to the bonding surface and adhered, a gas containing H 2 O or H or OH groups is mixed, and then both the objects to be bonded are brought into contact with each other. The joining method described in 1. 3個以上の被接合物を重ねて接合する接合方法であって、線膨張係数が等しい被接合物で、線膨張係数の異なる被接合物を両側から挟み込む請求項1ないし9のいずれかに記載の接合方法。   10. A joining method for joining three or more objects to be joined together, wherein the objects to be joined having the same linear expansion coefficient and having different linear expansion coefficients are sandwiched from both sides. Joining method. 請求項1〜10のいずれかに記載の接合方法により作成されたデバイスであって、被接合物がウエハーまたはウエハーから切り出されたチップであり、OH基を原子的に結合させて付着させた後、前記陽極接合することで作成された半導体デバイスまたはMEMSデバイスなどのデバイス。   It is a device created by the bonding method according to any one of claims 1 to 10, wherein the object to be bonded is a wafer or a chip cut out from a wafer, and after OH groups are atomically bonded and attached A device such as a semiconductor device or a MEMS device produced by anodic bonding. Si、SiO、ガラスのいずれかである被接合物同士の接合面にプラズマを利用してOH基を原子的に結合させて付着させるプラズマ処理手段と、
前記プラズマ処理手段により前記接合面にOH基が付着した前記両被接合物を陽極接合する陽極接合手段と
を備えた接合装置。
Plasma processing means for attaching and bonding OH groups atomically to the bonding surfaces of the objects to be bonded which are either Si, SiO 2 or glass using plasma;
And an anodic bonding means for anodic bonding the objects to be bonded with OH groups attached to the bonding surfaces by the plasma processing means.
Si、SiO、ガラスのいずれかである被接合物同士の接合面にプラズマを利用してOH基を原子的に結合させて付着させるプラズマ処理手段と、
前記プラズマ処理手段により前記接合面にOH基が付着した前記両被接合物を接触させて仮接合する仮接合手段と、前記仮接合された前記両被接合物を電圧印加し加熱することで本接合する本接合手段とを有する陽極接合手段と
を備えた接合装置。
Plasma processing means for attaching and bonding OH groups atomically to the bonding surfaces of the objects to be bonded which are either Si, SiO 2 or glass using plasma;
A temporary bonding means for temporarily bonding the two bonded objects having OH groups attached to the bonding surface by the plasma processing means, and applying a voltage to the temporary bonded both bonded objects to heat An anodic bonding means having a main bonding means for bonding.
前記仮接合手段および前記本接合手段がそれぞれ独立した空間に設けられている請求項13に記載の接合装置。   The joining apparatus according to claim 13, wherein the temporary joining means and the main joining means are provided in independent spaces. 前記陽極接合手段は、
前記仮接合手段の数1に対し、複数の前記本接合手段を有する請求項14に記載の接合装置。
The anodic bonding means includes
The joining apparatus according to claim 14, wherein a plurality of the main joining means are provided for the number 1 of the temporary joining means.
前記仮接合手段が内部に配設された減圧チャンバーを備え、
減圧またはガス置換された前記減圧チャンバー中で前記仮接合を行い、大気中で前記本接合を行う請求項13ないし15のいずれかに記載の接合装置。
The temporary joining means includes a decompression chamber disposed therein,
The bonding apparatus according to any one of claims 13 to 15, wherein the temporary bonding is performed in the decompression chamber subjected to reduced pressure or gas replacement, and the main bonding is performed in the atmosphere.
前記プラズマ処理手段と前記陽極接合手段とがそれぞれ減圧チャンバー中に設けられ、前記プラズマ処理手段により前記接合面にOH基を原子的に結合させて付着させた後、大気に暴露することなく前記両被接合物を陽極接合する請求項13ないし15のいずれかに記載の接合装置。   The plasma processing means and the anodic bonding means are each provided in a decompression chamber, and after the OH groups are atomically bonded and attached to the bonding surface by the plasma processing means, the both of them are exposed without being exposed to the atmosphere. The bonding apparatus according to claim 13, wherein an object to be bonded is anodically bonded. 前記プラズマ処理手段と前記陽極接合手段とが内部に配設された減圧チャンバーを備え、
前記プラズマ処理手段による前記プラズマが減圧プラズマであり、前記接合面に前記減圧プラズマを利用してOH基を原子的に結合させて付着させた後、前記減圧チャンバー内で連続して前記両被接合物を真空中で接触させる請求項13ないし15のいずれかに記載の接合装置。
A vacuum chamber in which the plasma processing means and the anodic bonding means are disposed;
The plasma generated by the plasma processing means is a low-pressure plasma, and after the OH groups are atomically bonded and attached to the bonding surface using the low-pressure plasma, the two bonded portions are continuously formed in the low-pressure chamber. The bonding apparatus according to claim 13, wherein an object is contacted in a vacuum.
前記両被接合物を接合時または接合後に200℃以下で加熱する請求項12ないし18のいずれかに記載の接合装置。   The joining apparatus according to claim 12, wherein both the objects to be joined are heated at 200 ° C. or less during or after joining. 水ガス発生手段を備え、
前記接合面にOH基を原子的に結合させて付着させる際にHOまたはH、OH基を含むガスを混入させた後、前記両被接合物を接触させる請求項12ないし19のいずれかに記載の接合装置。
Water gas generating means,
20. Either of the objects to be joined is brought into contact with H 2 O or a gas containing H and OH groups when adhering OH groups to the bonding surfaces by atomic bonding. The joining apparatus as described in.
線膨張係数が等しい被接合物で、線膨張係数の異なる被接合物を両側から挟み込み、3個以上の被接合物を重ねて接合する接合装置であって、
電圧印加手段により、前記挟み込まれた内側の線膨張係数の異なる被接合物から、前記線膨張係数が等しい外側の被接合物に向けて電圧を同時に印加する請求項12ないし20のいずれかに記載の接合装置。
It is a joining device that sandwiches joints having different linear expansion coefficients from both sides with joined objects having the same linear expansion coefficient, and joins three or more joined objects in an overlapping manner,
21. The voltage is applied simultaneously from the sandwiched workpieces having different linear expansion coefficients to the outer workpieces having the same linear expansion coefficient by means of voltage application means. Welding equipment.
JP2006129069A 2003-12-02 2006-05-08 JOINING METHOD, DEVICE PRODUCED BY THIS METHOD, AND JOINING DEVICE Active JP4695014B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006129069A JP4695014B2 (en) 2003-12-02 2006-05-08 JOINING METHOD, DEVICE PRODUCED BY THIS METHOD, AND JOINING DEVICE

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003402527 2003-12-02
JP2003402527 2003-12-02
JP2006129069A JP4695014B2 (en) 2003-12-02 2006-05-08 JOINING METHOD, DEVICE PRODUCED BY THIS METHOD, AND JOINING DEVICE

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004348811A Division JP3820409B2 (en) 2003-12-02 2004-12-01 JOINING METHOD, DEVICE PRODUCED BY THIS METHOD, AND JOINING DEVICE

Publications (3)

Publication Number Publication Date
JP2006248895A true JP2006248895A (en) 2006-09-21
JP2006248895A5 JP2006248895A5 (en) 2008-01-17
JP4695014B2 JP4695014B2 (en) 2011-06-08

Family

ID=37089765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006129069A Active JP4695014B2 (en) 2003-12-02 2006-05-08 JOINING METHOD, DEVICE PRODUCED BY THIS METHOD, AND JOINING DEVICE

Country Status (1)

Country Link
JP (1) JP4695014B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008235776A (en) * 2007-03-23 2008-10-02 Sumco Corp Production process of laminated wafer
WO2008156152A1 (en) * 2007-06-21 2008-12-24 Nikon Corporation Transfer method and transfer apparatus
JP2009260007A (en) * 2008-04-16 2009-11-05 Nikon Corp Substrate overlaying device, substrate holding device, and method of manufacturing semiconductor device
WO2010097910A1 (en) * 2009-02-25 2010-09-02 セイコーインスツル株式会社 Anodic bonding method, anodic bonding jig and anodic bonding apparatus
JP2010247229A (en) * 2009-03-23 2010-11-04 Bondtech Inc Joining device, joining method and semiconductor device
JP2012161831A (en) * 2011-02-09 2012-08-30 Mitsubishi Electric Corp Method for manufacturing substrate
US8424746B2 (en) 2008-12-01 2013-04-23 Nihon Dempa Kogyo Co., Ltd. Method of manufacturing optical component and optical component
JP2017162919A (en) * 2016-03-08 2017-09-14 ボンドテック株式会社 Alignment device
JP2019012781A (en) * 2017-06-30 2019-01-24 株式会社 セルバック Joint device
KR20190052136A (en) * 2016-09-29 2019-05-15 가부시키가이샤 신가와 Method of manufacturing semiconductor device, and mounting device
JP2020065090A (en) * 2018-07-05 2020-04-23 エーファウ・グループ・エー・タルナー・ゲーエムベーハー Wafer permanent bonding method
JP2022016648A (en) * 2018-07-05 2022-01-21 エーファウ・グループ・エー・タルナー・ゲーエムベーハー Wafer permanent bonding method

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59174549A (en) * 1983-03-18 1984-10-03 Yokogawa Hokushin Electric Corp Method for joining metal and glass
JPH0391227A (en) * 1989-09-01 1991-04-16 Nippon Soken Inc Adhering method for semiconductor substrate
JPH07294862A (en) * 1994-04-22 1995-11-10 Sumitomo Electric Ind Ltd Oxide dielectric thin film and its production
JPH08244155A (en) * 1995-03-14 1996-09-24 Canon Inc Solid phase connection method
JPH10107295A (en) * 1996-09-30 1998-04-24 Nissan Motor Co Ltd Semiconductor sensor
JPH11192712A (en) * 1998-01-05 1999-07-21 Seiko Epson Corp Method and apparatus for anodic bonding of substrate
JP2001233640A (en) * 2001-01-29 2001-08-28 Seiko Epson Corp Method for producing micromechanical device
JP2002504977A (en) * 1997-05-21 2002-02-12 レッドウッド マイクロシステムズ インコーポレイテッド Low power thermopneumatic microvalve
JP2002086738A (en) * 2000-09-13 2002-03-26 Ricoh Co Ltd Method of making liquid jet head
JP2002160361A (en) * 2000-11-22 2002-06-04 Ricoh Co Ltd Ink drop ejecting head

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59174549A (en) * 1983-03-18 1984-10-03 Yokogawa Hokushin Electric Corp Method for joining metal and glass
JPH0391227A (en) * 1989-09-01 1991-04-16 Nippon Soken Inc Adhering method for semiconductor substrate
JPH07294862A (en) * 1994-04-22 1995-11-10 Sumitomo Electric Ind Ltd Oxide dielectric thin film and its production
JPH08244155A (en) * 1995-03-14 1996-09-24 Canon Inc Solid phase connection method
JPH10107295A (en) * 1996-09-30 1998-04-24 Nissan Motor Co Ltd Semiconductor sensor
JP2002504977A (en) * 1997-05-21 2002-02-12 レッドウッド マイクロシステムズ インコーポレイテッド Low power thermopneumatic microvalve
JPH11192712A (en) * 1998-01-05 1999-07-21 Seiko Epson Corp Method and apparatus for anodic bonding of substrate
JP2002086738A (en) * 2000-09-13 2002-03-26 Ricoh Co Ltd Method of making liquid jet head
JP2002160361A (en) * 2000-11-22 2002-06-04 Ricoh Co Ltd Ink drop ejecting head
JP2001233640A (en) * 2001-01-29 2001-08-28 Seiko Epson Corp Method for producing micromechanical device

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008235776A (en) * 2007-03-23 2008-10-02 Sumco Corp Production process of laminated wafer
WO2008156152A1 (en) * 2007-06-21 2008-12-24 Nikon Corporation Transfer method and transfer apparatus
US8244399B2 (en) 2007-06-21 2012-08-14 Nikon Corporation Transport method and transport apparatus
US8489227B2 (en) 2007-06-21 2013-07-16 Nikon Corporation Transport method and transport apparatus
JP2009260007A (en) * 2008-04-16 2009-11-05 Nikon Corp Substrate overlaying device, substrate holding device, and method of manufacturing semiconductor device
US8424746B2 (en) 2008-12-01 2013-04-23 Nihon Dempa Kogyo Co., Ltd. Method of manufacturing optical component and optical component
US8496767B2 (en) 2009-02-25 2013-07-30 Seiko Instruments Inc. Anodic bonding method, anodic bonding jig and anodic bonding apparatus
WO2010097910A1 (en) * 2009-02-25 2010-09-02 セイコーインスツル株式会社 Anodic bonding method, anodic bonding jig and anodic bonding apparatus
JP5557833B2 (en) * 2009-02-25 2014-07-23 セイコーインスツル株式会社 Anodic bonding method, anodic bonding jig, and anodic bonding apparatus
JPWO2010097910A1 (en) * 2009-02-25 2012-08-30 セイコーインスツル株式会社 Anodic bonding method, anodic bonding jig, and anodic bonding apparatus
JP2010247229A (en) * 2009-03-23 2010-11-04 Bondtech Inc Joining device, joining method and semiconductor device
JP2012161831A (en) * 2011-02-09 2012-08-30 Mitsubishi Electric Corp Method for manufacturing substrate
JP2017162919A (en) * 2016-03-08 2017-09-14 ボンドテック株式会社 Alignment device
KR20190052136A (en) * 2016-09-29 2019-05-15 가부시키가이샤 신가와 Method of manufacturing semiconductor device, and mounting device
KR102230921B1 (en) * 2016-09-29 2021-03-23 가부시키가이샤 신가와 Semiconductor device manufacturing method, and mounting device
JP2019012781A (en) * 2017-06-30 2019-01-24 株式会社 セルバック Joint device
JP2020065090A (en) * 2018-07-05 2020-04-23 エーファウ・グループ・エー・タルナー・ゲーエムベーハー Wafer permanent bonding method
JP2022016648A (en) * 2018-07-05 2022-01-21 エーファウ・グループ・エー・タルナー・ゲーエムベーハー Wafer permanent bonding method
JP7258992B2 (en) 2018-07-05 2023-04-17 エーファウ・グループ・エー・タルナー・ゲーエムベーハー Wafer permanent bonding method

Also Published As

Publication number Publication date
JP4695014B2 (en) 2011-06-08

Similar Documents

Publication Publication Date Title
JP4695014B2 (en) JOINING METHOD, DEVICE PRODUCED BY THIS METHOD, AND JOINING DEVICE
US7645681B2 (en) Bonding method, device produced by this method, and bonding device
JP3751972B2 (en) JOINING METHOD, DEVICE PRODUCED BY THIS METHOD, SURFACE ACTIVATION DEVICE, AND JOINING DEVICE PROVIDED WITH THIS DEVICE
JP6448848B2 (en) Substrate bonding method
JP4919604B2 (en) Joining method and joining apparatus
JP3820409B2 (en) JOINING METHOD, DEVICE PRODUCED BY THIS METHOD, AND JOINING DEVICE
JP2005294824A (en) Ultrasonic joining method and ultrasonic joining device in vacuum
US7192841B2 (en) Method of wafer/substrate bonding
US20070110917A1 (en) Bonding method, device formed by such method, surface activating unit and bonding apparatus comprising such unit
KR101427508B1 (en) Normal-temperature bonding device and normal-temperature bonding method
JP6429179B2 (en) Substrate bonding apparatus and substrate bonding method
KR102258659B1 (en) Substrate bonding method, substrate bonding system, and control method of hydrophilic treatment device
JP2011249643A (en) Bonding method and bonding system
CN112640039A (en) Joining system and joining method
JP2005191556A (en) Method and apparatus for gas-filled gold bonding
JP5438734B2 (en) Joining method
JP5181158B2 (en) Bonding method, device produced by this method, and bonding apparatus
JP2005142537A (en) Longitudinal vibration bonding method and device
JP2006073780A (en) Normal-temperature joint method, equipment, and device
WO2022158520A1 (en) Joining method, joining device and joining system
JP2018074050A (en) Board bonding method and board bonding device
EP4282572A1 (en) Joining method, joining device, and joining system
WO2023182255A1 (en) Joining system and joining method
WO2022181655A1 (en) Bonding method, substrate bonding device, and substrate bonding system
JP5535610B2 (en) SOI semiconductor substrate manufacturing method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071126

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071127

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20071203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110224

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4695014

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S202 Request for registration of non-exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R315201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250