JP2006246451A - 薄膜バルク音響波共振子およびフィルタならびに通信装置 - Google Patents

薄膜バルク音響波共振子およびフィルタならびに通信装置 Download PDF

Info

Publication number
JP2006246451A
JP2006246451A JP2006028355A JP2006028355A JP2006246451A JP 2006246451 A JP2006246451 A JP 2006246451A JP 2006028355 A JP2006028355 A JP 2006028355A JP 2006028355 A JP2006028355 A JP 2006028355A JP 2006246451 A JP2006246451 A JP 2006246451A
Authority
JP
Japan
Prior art keywords
protective layer
thin film
acoustic wave
bulk acoustic
wave resonator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006028355A
Other languages
English (en)
Inventor
Tetsuya Kishino
哲也 岸野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2006028355A priority Critical patent/JP2006246451A/ja
Publication of JP2006246451A publication Critical patent/JP2006246451A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

【課題】 従来よりも小型で信頼性が高く、しかも特性が良く低価格な薄膜バルク音響波共振子を提供する。
【解決手段】 基板11と、基板11上に配置され、圧電体薄膜14および該圧電体薄膜に上下から電圧を印加するための上部電極13および下部電極12からなる共振部と、基板11および前記共振部間に配置され、両者を音響的にアイソレートするためのアイソレート部とを具備する薄膜バルク音響波共振子において、共振部上に、樹脂材料または発泡材料からなる第1の保護層18および該第1の保護層上の第2の保護層20が形成されている薄膜バルク音響波共振子である。音響インピーダンスが小さい第1の保護層18により良好なアイソレーションを確保し、第2の保護層20により衝撃や水の浸入などから共振部を保護することができるので、信頼性が高く特性の良いものとなる。
【選択図】 図6

Description

本発明は圧電共振子の一種である薄膜バルク音響波共振子およびそれを用いたフィルタならびに通信装置に関し、特に、基板と、この基板の表面に薄膜プロセスにより形成された圧電体薄膜からなる共振素子とを具備する薄膜バルク音響波共振子およびそれを用いたフィルタ、ならびにそのフィルタを備えた通信装置に関するものである。
無線通信や電気回路に用いられる周波数の高周波化に伴い、これらの電気信号に対して用いられるフィルタも高周波数に対応したものが開発されている。特に、無線通信においては2GHz近傍のマイクロ波が主流になりつつあり、また既に数GHz以上の規格策定の動きもあることから、それらの周波数に対応した、安価で高性能なフィルタが求められている。そのようなフィルタの中で最近注目されているのは、固体の表面を伝わる音響波を利用する共振子である弾性表面波共振子(SAWR:Surface Acoustic Wave Resonator)を用いたSAWフィルタである。このSAWフィルタは、固体表面上に形成した櫛型電極間に印加される高周波電界と弾性表面波との共振を利用しており、周波数の選択性が高く、優れたバンドパスフィルタとして広く用いられている。
また、近年、圧電性を示す薄膜の厚み縦振動モードを用いた共振子が提案されている。これは、入力される高周波電気信号に対して、圧電薄膜が厚み縦振動を起こし、その振動が、薄膜の厚さ方向において共振を起こす原理を用いた共振子であり、薄膜バルク音響波共振子(FBAR:Film Bulk Acoustic Resonator)と呼ばれている。FBARは、基板上に薄膜プロセスにより下部電極,圧電体薄膜,上部電極を順次積層した共振部を形成した構造をしており、この共振部を基板から音響的にアイソレートする方法によって次の3方式に分類される。
1)異方性エッチング等で基板の裏面側から貫通孔を開け、共振部を基板から空間的に離す。
2)基板と共振部との間に犠牲層を設け、その犠牲層をエッチングして除去することによって共振部を基板から空間的に離す。
3)基板と共振部との間に多層膜からなる音響反射器(下部アイソレート層)を設け、共振部を基板から音響的にアイソレートする。
上記3)の方式のFBARはSolidly Mounted Resonator(SMR)とも呼ばれ、一般的に、厚さλ/4(λは音響波の波長)の高い音響インピーダンスを持つ層(例えば、W,Mo等の金属材料、またはZnO,AlN等の誘電材料)と厚さλ/4の低い音響インピーダンスを持つ層(例えばAl等の金属層、またはSiO等の誘電体材料)とを交互に積層した多層膜が音響反射器(下部アイソレート層)として使用されている。音響反射器の反射率が低い場合には、共振部で振動している音響波が音響反射器を通して基板へ漏洩するため、共振子に損失が発生してQ値が低下する。このため、音響反射器の反射率は高いほうが望ましい。高い反射率を得るためには、多層膜を構成する2つの材料の音響インピーダンスの比(コントラスト)を大きくするか、多層膜の層数を増やす等の手法がとられる。一般的に、多層膜の層数は6層から10層程度である。
また、FBARはその特性上、共振部の表面を基板側と同様にアイソレート層(上部アイソレート層)によって保護する必要がある。これは、FBARの素子表面は音響的に振動しているが、素子表面に異物が付着したり水分が吸着したりすると、それによって共振周波数が変化してしまうためである。これに対し、素子表面に保護膜を形成した場合には、保護膜によって素子内部に水分が浸入して信号電流のリークや素子破壊の原因となることは防ぐことができるが、その保護膜の表面に物質が付着した場合の周波数変動は避けられない。
そこで、一般的に、FBARでは、上部アイソレート層として空気層が用いられる。すなわち、素子とパッケージとの間に空隙を設けることによって、共振部の振動が外部からアイソレートされると同時に、パッケージにより外部からの異物付着を防ぎ、機械的強度を保っている。このため、FBARでは、例えば特許文献1に示されているようなセラミックパッケージや、非特許文献1に示されているように、ウエハー上にマイクロキャップと呼ばれるシリコンのカバーを取り付けて素子の振動空間を確保する、いわゆるウェハーレベルパッケージングにより封止することが一般的である。
図9にセラミックパッケージを用いたFBARの一例を示す。このFBARは基板11上に下部電極12、圧電体薄膜14および上部電極13からなる共振部が形成されている。また、基板11の裏面から、下部電極12と上部電極13とで圧電体薄膜14を挟んで構成されている共振部における下部電極12にかけて貫通孔21が開けられ、共振部を基板11からアイソレートしている。図9に示す例では、2つのFBARが同一の基板11上に形成されて直列に接続されている例を示している。これらのFBARからの入出力は、ワイヤボンド15を用いて、外部端子(図示せず)と接続されることによって行なわれる。これらの構成要素は、パッケージ16に収容されている。
特開2002−232253号公報 デビッド・フェルド(David Feld),"ア・ウエハー・レベル・エンキャプスレーテッド・エフバー・チップ・モールデッド・イントゥー・ア・2.0mmx1.6mm・プラスティック・パッケージ・フォー・ユーズ・アズ・ア・PCS・フル・バンド・Tx・フィルタ"("A Wafer Level Encapsulated FBAR Chip Molded into a 2.0mm x 1.6mm Plastic Package for Use as a PCS Full Band Tx Filter"),2003.アイイーイーイー・ウルトラソニックス・シンポジウム・ダイジェスト(2003 IEEE Ultrasonics Symposium Digest),2003年,p.1798−1801
しかしながら、図9に示したようなパッケージング方法を採用したFBARは、保護膜による封止が可能な半導体素子や薄膜キャパシタ等のデバイスと比較して、サイズやコストの面から著しく劣っていた。例えば、パッケージ16にセラミックパッケージを用いて封入する場合は、FBAR素子そのもののサイズは1mm角程度であっても、パッケージ16のサイズは数mm角以上にならざるを得ず、共振子やフィルタの小型化を阻害する要因となっていた。また、FBAR素子を個々にパッケージングする必要があるため生産性が悪く、さらなるコストダウンを阻害していた。これに対し、いわゆるウェハーレベルパッケージングによる封止ではこのような課題は解決されているが、封止性能が劣るため、新たに複雑なウエハー張り合わせ工程や、空隙形成工程が必要になる等の理由から、必ずしもコストダウンにはつながっていないという問題があった。
本発明は以上のような従来の技術における問題点に鑑みて案出されたものであり、その目的は、小型で信頼性が高く、しかも低損失な薄膜バルク音響波共振子を提供することにある。
また、本発明の他の目的は、小型で信頼性が高いフィルタ、および小型で信頼性が高い通信装置を提供することにある。
本発明の薄膜バルク音響波共振子は、基板と、この基板上に配置され、圧電体薄膜およびこの圧電体薄膜に上下から電圧を印加するための上部電極および下部電極からなる共振部と、前記基板および前記共振部間に配置され、両者を音響的にアイソレートするためのアイソレート部とを具備する薄膜バルク音響波共振子において、前記共振部上に、樹脂材料または発泡材料からなる第1の保護層およびこの第1の保護層上の第2の保護層が形成されていることを特徴とするものである。
また、本発明の薄膜バルク音響波共振子は、上記構成において、前記第1の保護層は、前記第1の保護層の厚みをd、前記第1の保護層中の音波の波長をλ、nを0以上の整数とすると、その厚みが、下記の式を満たすことを特徴とするものである。
(0.5n+0.1) < d/λ < (0.5n+0.4)
また、本発明の薄膜バルク音響波共振子は、上記構成において、前記第1の保護層および前記第2の保護層の少なくとも一方は、前記共振部と反対側の表面に前記共振部で発生する音響波の波長よりも大きい凹凸を有していることを特徴とするものである。
また、本発明の薄膜バルク音響波共振子は、上記構成において、前記第2の保護層は、前記共振部上にのみ形成されていることを特徴とするものである。
また、本発明の薄膜バルク音響波共振子は、上記構成において、前記第1の保護層は発泡材料からなり、前記第1の保護層中に前記第2の保護層を支持する支持部材が配設されていることを特徴とするものである。
また、本発明の薄膜バルク音響波共振子は、上記構成において、前記第2の保護層を構成する材料および前記支持部材を構成する材料は、それぞれ前記発泡材料よりも高強度であることを特徴とするものである。
また、本発明の薄膜バルク音響波共振子は、上記構成において、前記支持部材は、前記上部電極の外周部および中央部に配置されていることを特徴とするものである。
また、本発明の薄膜バルク音響波共振子は、上記構成において、前記支持部材は、金属材料からなるとともに前記第1の保護層の外側に電気的に導出されていることを特徴とするものである。
また、本発明のフィルタは、上記各構成のいずれかの本発明の薄膜バルク音響波共振子をフィルタを構成する共振子として用いたことを特徴とするものである。
また、本発明の通信装置は、上記構成の本発明のフィルタを有する、受信回路および送信回路の少なくとも一方を備えたことを特徴とするものである。
本発明の薄膜バルク音響波共振子によれば、基板と、この基板上に配置され、圧電体薄膜およびこの圧電体薄膜に上下から電圧を印加するための上部電極および下部電極からなる共振部と、基板および共振部間に配置され、両者を音響的にアイソレートするためのアイソレート部とを具備する薄膜バルク音響波共振子において、共振部上に、樹脂材料または発泡材料からなる第1の保護層およびこの第1の保護層上の第2の保護層が形成されていることから、樹脂材料または発泡材料は従来保護層として用いられていた無機材料や緻密な膜に比べて音響インピーダンスが著しく小さいため、共振部の上に空気層のような空隙を設けることなく、第1の保護層によって共振部と外部との間に良好で安定した音響的なアイソレーションを確保することができるので、低損失なものとなる。また、第2の保護層により共振部および第1の保護層を外部からの衝撃や水分等の浸入から防ぐことができるので、信頼性の高い薄膜バルク音響波共振子を提供することができる。さらに、このような第1の保護層,支持部材および第2の保護層により音響的なアイソレーションを取りつつ共振部を保護することができるので、従来のようなパッケージが不要となり、薄膜バルク音響波共振子をいわゆる薄膜プロセスのみで作製することができる。このため、小型で信頼性が高く、しかも低コストで製造可能な薄膜バルク音響波共振子を提供することができる。
また、本発明の薄膜バルク音響波共振子によれば、上記構成において、第1の保護層は、第1の保護層の厚みをd、第1の保護層中の音波の波長をλ、nを0以上の整数とすると、その厚みが、(1)式を満たすことから、共振部から第1の保護層に伝搬する音響波を第1の保護層が効率良く共振部側に反射させることができるので、共振部と外部との間に更に良好なアイソレーション特性を保つことができ、その結果、更に低損失な薄膜バルク音響波共振子を提供することができる。
(0.5n+0.1) < d/λ < (0.5n+0.4) ‥(1)
また、本発明の薄膜バルク音響波共振子によれば、上記構成において、第1の保護層および第2の保護層の少なくとも一方が、共振部と反対側の表面に共振部で発生する音響波の波長よりも大きい凹凸を有しているときには、第1の保護層中または第2の保護層中を伝播する音響波を、この表面の凹凸により散乱・吸収し、不要な反射波による共振子特性の変化や、不要な振動モード(スプリアス)を抑制することができるので、低ノイズのものとなる。
また、本発明の薄膜バルク音響波共振子によれば、上記構成において、第2の保護層は、共振部上にのみ形成されているときには、平面視で共振部の外側に位置する部位(以下、外側部ということもある。)は共振部に比べてアイソレーション特性が低くなるので、外側部の共振部の共振特性への影響を抑制することができ、その結果、外側部で起こる不要な振動モードを抑制することができるので低ノイズのものとなる。
また、本発明の薄膜バルク音響波共振子によれば、上記構成において、第1の保護層は発泡材料からなり、第1の保護層中に第2の保護層を支持する支持部材が配設されていることから、支持部材により第2の保護層を変形させることなく支持することができるので、例えば外部からの機械的な衝撃や第2の保護層自体の重みや応力により第2の保護層が変形し、その結果、第1の保護層が変形することを防ぐことができる。このため、共振部と外部との間の良好で安定した音響的なアイソレーションを保ちつつ、この第1の保護層および第2の保護層により、外部からの機械的な衝撃や水分等の浸入を防ぐことができるので、損失が少なく、信頼性の高い薄膜バルク音響波共振子を提供することができる。
また、本発明の薄膜バルク音響波共振子によれば、上記構成において、第2の保護層を構成する材料および支持部材を構成する材料が、それぞれ発泡材料よりも高強度であるときには、発泡材料からなる第1の保護層を支持部材により補強するとともに、この支持部材と第2の保護層とで確実に外部からの機械的な衝撃を防ぐことによって第1の保護層の変形を防ぎ、良好なアイソレーション特性を保つことができるので、信頼性の高い薄膜バルク音響波共振子を提供することができる。
また、本発明の薄膜バルク音響波共振子によれば、上記構成において、支持部材が、上部電極の外周部および中央部に配置されているときには、共振部直上に支持部材が形成される部分が少ないので、その部分の共振周波数が変化して共振子として働く実質面積が減少することおよび寄生容量が発生することを抑制しつつ、支持部材により第2の保護層を効率的に支持することができるものとなる。このため、共振子の設計に影響する寄生容量が少ないので共振子の設計が容易で、かつ良好なアイソレーション特性を有する薄膜バルク音響波共振子を提供することができる。
また、本発明の薄膜バルク音響波共振子によれば、上記構成において、支持部材が、金属材料からなるとともに第1の保護層の外側に電気的に導出されているときには、支持部材を共振部の上部電極へのコンタクト電極として使用することができるので、共振部と外部接続するための端子部とを接続する配線および電極の取り回しが容易になり、生産性の高いものとすることができる。
また、本発明のフィルタによれば、上記各構成のいずれかの薄膜バルク音響波共振子をフィルタを構成する共振子として用いたことから、小型で信頼性が高く、しかも低損失な共振子を用いてフィルタを構成できるので、従来のFBARやSMRを使用したフィルタに比べて、より小型で信頼性が高く、挿入損失や減衰特性の優れた、しかも低コストで製造可能なフィルタを提供することができる。
さらに、本発明の通信装置によれば、上記構成の本発明のフィルタを有する、受信回路および送信回路の少なくとも一方を備えたことから、回路中での損失が小さくなり、不要波の除去性能が上がる効果が得られるものとなる。また、小型で高信頼性のフィルタを用いて回路を構成できるので、より感度が良く、小型で信頼性が高い通信装置を提供することができる。
以下、本発明の薄膜バルク音響波共振子の実施の形態について、図面を参照しつつ詳細に説明する。
本発明の薄膜バルク音響波共振子は、基板と、この基板上に配置され、圧電体薄膜およびこの圧電体薄膜に上下から電圧を印加するための上部電極および下部電極からなる共振部と、基板および共振部間に配置され、両者を音響的にアイソレートするためのアイソレート部とを具備する薄膜バルク音響波共振子において、共振部上に、樹脂材料または発泡材料からなる第1の保護層およびこの第1の保護層上の第2の保護層が形成されているものである。このような本発明の実施の形態の一例について、図1(a)に平面図を、図1(b)に断面図を示す。なお、図面においては以下も同様であるが、薄膜バルク音響波共振子の構造が分かりやすいように各部の寸法は適宜拡大している。また、層構成が見やすいように、平面図では上側に位置する一部の層を省略して示している。
図1において、11は基板、12は下部電極、13は上部電極、14は圧電体薄膜である。圧電体薄膜14に上下から電圧を印加するための上部電極13および下部電極12が形成されて共振部が構成されており、この共振部が基板11上に配置されている。22は共振部を基板11から音響的にアイソレートするためのアイソレート部として設けられた音響反射器であり、高音響インピーダンス層22aと低音響インピーダンス層22bとを交互に積層してなる。積層する層数は特に限定されるものではないが、共振部の直下に低音響インピーダンス層22bが配置されていることが必要である。なお、ここでは共振部を基板11から音響的にアイソレートするアイソレート部として音響反射器を用いた例について示したが、従来技術に示した1)や2)のタイプとしてもよい。18は樹脂材料または発泡材料からなる第1の保護層であり、20は第2の保護層を示している。また、17は共振部を外部回路と接続するための端子である。
基板11は、薄膜バルク音響波共振子を支持する機能を有し、通常は厚みが0.05〜1mm、直径が75〜200mm程度の鏡面研磨されたSiウエハーが用いられる。Siウエハーは扱いやすく、また対応する薄膜プロセス装置も多いため、製造が容易となることから、特に好適に用いられる。また、基板11と共振部とのアイソレート部として、従来技術に示した1)のタイプとする(貫通孔21によりアイソレート部を形成する)場合には、基板11としてSiウエハーを用いると異方性エッチングにより所望の大きさおよび深さを有する貫通孔21を所望の位置に容易に形成することができる。基板11は、Siウエハーの他にも、薄膜プロセスと相性の良い、Si,Al,SiO,ガラス等のウエハーまたは平板を使用することができる。
下部電極12は、圧電体薄膜14に高周波電圧を印加する機能を有する部材であり、W,Mo,Au,Al,Cu等の金属材料で形成される。下部電極12はスパッタリング法やCVD法等の薄膜プロセスで基板11上に所定の厚さで形成され、フォトリソグラフィ技術等により所定の形状に加工される。また、下部電極12は、電極としての機能と同時に、共振部を構成する機能も有するため、薄膜バルク音響波共振子が必要な共振特性を発揮するために、その厚みは、材料の固有音響インピーダンスや密度,音速,波長等を考慮して、精密に設計する必要がある。最適な電極厚みは、使用周波数,共振子の設計,圧電体薄膜14の材料,電極材料等によって異なるが、1〜2GHz程度の共振周波数を持つ薄膜バルク音響波共振子の場合、通常、0.01〜0.5μm程度である。また、平面形状は、図1(a)に示す例では矩形状になっているが、不要振動(スプリアス)を防ぐため、円形状や不定形状,台形状とされる場合もある。
上部電極13は、下部電極12とともに、圧電体薄膜14に高周波電圧を印加する機能を有する部材であり、W,Mo,Au,Al,Cu等の金属材料で形成される。上部電極13はスパッタリング法やCVD法等の薄膜プロセスで圧電体薄膜14上に所定の厚さで形成され、フォトリソグラフィ技術等により所定の形状に加工される。また、上部電極13は、電極としての機能と同時に、共振部を構成する機能も有するため、薄膜バルク音響波共振子が必要な共振特性を発揮するために、その厚みは、材料の固有音響インピーダンスや密度,音速,波長等を考慮して、精密に設計する必要がある。最適な電極厚みは、使用周波数,共振子の設計,圧電体薄膜14の材料,電極材料等によって異なるが、1〜2GHz程度の共振周波数を持つ薄膜バルク音響波共振子の場合、通常、0.01〜0.5μm程度である。また、平面形状は、図1(a)に示す例では矩形状になっているが、不要振動(スプリアス)を防ぐため、円形状や不定形状,台形状とされる場合もある。
圧電体薄膜14は、例えばZnOやAlN,PZT等の圧電体材料からなり、下部電極12および上部電極13によって印加された高周波電圧に応じて伸縮し、電気的な信号を機械的な振動に変換する機能を持つ。圧電体薄膜14はスパッタリング法やCVD法等の薄膜プロセスで下部電極12上に所定の厚さで形成され、フォトリソグラフィ技術等により所定の形状に加工される。薄膜バルク音響波共振子が必要な共振特性を発揮するために、圧電体薄膜14の厚みは、材料の固有音響インピーダンスや密度,音速,波長等を考慮して、精密に設計する必要がある。最適な厚みは、使用周波数,共振子の設計,圧電体薄膜14の材料,下部電極12および上部電極13の電極材料等によって異なるが、1〜2GHz程度の共振周波数を持つ薄膜バルク音響波共振子の場合、通常、0.3〜1.5μm程度である。また、平面形状は、図1(a)に示す例では矩形状になっているが、不要振動(スプリアス)を防ぐため、円形状や不定形状,台形状とされる場合もある。
また、圧電体薄膜14が上下から下部電極12および上部電極13により挟まれて構成される共振部は、前述のように、その内部で音響波が厚み縦振動による共振を起こすものであり、使用周波数、共振子の設計,圧電体薄膜14の材料,下部電極12および上部電極13の材料等を考慮して精密に設計する必要がある。共振部は、下部電極12,圧電体薄膜14,上部電極13が重なった部分であり、下部電極12,圧電体薄膜14,上部電極13のそれぞれは、共振部よりも広く形成されていてもよい。通常、全体の厚みが、おおむねλ/2(λは使用周波数での音響波の波長)となるように設計される。また、平面形状は、図1(a)に示す例では矩形状になっているが、不要振動(スプリアス)を防ぐため、円形状や不定形状,台形状とされる場合もある。さらに、その面積は、共振子のインピーダンスを決定する要素となるため、厚みと同様に精密に設計する必要がある。50Ωインピーダンス系で使用する場合は、通常、上部電極13,圧電体薄膜14,下部電極12で構成される電気的なキャパシタンスが、使用周波数でおおむね50Ωのリアクタンスを持つように設計される。共振部の面積は、例えば2GHzの振動子の場合であれば、100μm×100μmから200μm×200μm程度となる。
そして、樹脂材料または発泡材料からなる第1の保護層18は、前述の共振部を外部から音響的にアイソレートするための部材であり、その材料としては、音響インピーダンスの小さい樹脂材料または発泡材料であればなんでも使用できるが、薄膜プロセスへの適応が容易という点から、エポキシや4フッ化エチレン、BCB(Benzocyclobutene)、ポリイミド等の樹脂材料や、発泡性ポリイミドなどの発泡性樹脂材料,シリカエアロゲルなどの発泡性無機材料,エアロゲル材料,発泡性金属材料などが好適である。また、多孔質材料、例えば、多孔質MSQ(Methyl−Silsesquioxane),多孔質BCBなどの多孔質樹脂材料、ポーラスシリカなどの多孔質無機材料も同様に使用できる。なお、発泡材料は各材料中に気泡もしくは気孔が分散したものであり、平均密度が非常に小さい材料である。このような樹脂材料または発泡材料からなる第1の保護層18の厚みは特に限定しないが、より効果的に音響波を反射するためには、おおむねλ/4(λ:第1の保護層18中を伝播する音響波の波長)の奇数倍の厚みが好適である。また、図1に示す例では、第1の保護層18は上部電極層13上の全面に形成しているが、共振部直上のみに形成してもよい。前者の場合には、第1の保護層18として発泡性金属性材料からなるものを用いれば、上部電極13の実効厚みが増すために電気抵抗が減少し、共振子のQ値を向上させる効果の高いものとなる。後者の場合には、共振部の外側部におけるアイソレーション特性が劣化するため、共振部と外側部とでは共振周波数が異なるものとなるので、不要のスプリアスを抑制することができ、損失およびノイズを少なくすることができる。
このような樹脂材料または発泡材料かなる第1の保護層18の作製プロセスは特に限定されるものではないが、例えば、樹脂材料の場合は溶媒に溶かした樹脂溶液を上部電極層13上にスピンコートした後、加熱処理することで得ることができ、発泡材料としてのシリカエアロゲルの場合には、TMOS(Tetramethoxy Silane)を上部電極13上にスピンコートした後、ゲル化処理、疎水処理を行ない、超臨界乾燥させることで得ることができる。
発泡材料かなる第1の保護層18の気泡もしく気孔の大きさは、音響波の散乱を防ぐという観点から、音響波の波長の1/10以下であることが望ましい。共振周波数が1〜2GHzの場合は、その大きさは、おおむね0.1μm以下である。また、気泡もしく気孔の大きさが音響波の波長よりも十分大きい場合にも、同様に音響波の散乱を防ぐことができる。その大きさは、おおむね5μm以上である。保護層18は、音響波から見れば、前者の場合には固有音響インピーダンスの小さい均質な材料のように、後者の場合には気泡もしくは気孔中に存在する雰囲気(例えば空気)が支配的となり、この雰囲気とその周囲を囲む薄い壁とのように振舞う。
また、第2の保護層20は、第1の保護層18および共振部を、外部から化学的に保護する機能を持つものである。第1の保護層18は、良好な音響的アイソレーションを確保することができるが、その一方で気孔率が大きいときには内部への水分等の浸入も起こり得るものである。これに対して、第1の保護層18および共振部を保護する第2の保護層20を設けることでこれらの問題点を解決することができる。このような第2の保護層20の材料は、第1の保護層18の材料に比べ気孔率の小さい材料であれば特に限定されず、ポリイミドなどの各種樹脂材料,SiO,Si,Al,ZnO,AlNなどの各種無機材料,W,Moなどの各種金属材料等を用いることができるが、機械的に強固で気密性に優れ、化学的にも安定である材料を用いることが好ましい。また、高い音響インピーダンスを持つ材料を用いる場合には、第2の保護層20を、第1の保護層18との界面で音響波を反射させ、音響波を共振部に閉じ込めるというアイソレート層としての機能も有するものとすることができる。なお、第2の保護層20として金属材料を使用する場合には、下部電極12および上部電極13との間に発生する寄生容量などに注意する必要がある。この第2の保護層20の厚みは特に限定しないが、製造の容易さという観点から、例えば高分子フィルムなどの樹脂薄膜や通常の薄膜作製プロセスで形成する無機材料薄膜,金属材料薄膜であれば1〜10μm程度が、厚膜レジストなどの樹脂材料を用いた場合には5〜100μm程度が好ましい。
また、図1に示す例では、第2の保護層20は平面視で共振部の上のみではなくその外側部も含めた第1の保護層18上の全面に形成しているが、図2に示すように、共振部直上のみに形成してもよい。前者の場合には、第1の保護層18および第2の保護層20に導電性を有する材料を用いれば、上部電極13の実効厚みが増すために電気抵抗が減少し、共振子のQ値を向上させる効果の高いものとなる。後者の場合には、共振部の外側部におけるアイソレーション特性が劣化するため、共振部と外側部とでは共振周波数が異なるものとなるので、不要のスプリアスを抑制でき、損失およびノイズを少なくすることができる。
また、下部電極層12,上部電極層13は互いに電気的に絶縁された状態で共振部の外側まで延在しており、この延在部にそれぞれ、例えば半田バンプ等からなる端子17が形成されている。
ここで、図1に示す薄膜バルク音響波共振子の表面に付着物がある場合について、付着物のある表面の音響インピーダンスの大きさと、薄膜バルク音響波共振子の共振周波数およびQ値との関係をシミュレーションした結果を図3(a)に、図1に示す薄膜バルク音響波共振子とほぼ同様の構成で、第1の保護層18のみ有し、第2の保護層20がない構成の薄膜バルク音響波共振子において、付着物のある表面の音響インピーダンスの大きさと、薄膜バルク音響波共振子の共振周波数およびQ値との関係をシミュレーションした結果を図3(b)にそれぞれ示す。ここで、第1の保護層18はBCB樹脂,第2の保護層20はW,付着物は共振部全面に均一に形成されているものとしてシミュレーションを行なった。シミュレーションでは、表面からのエネルギー漏洩がない場合の共振子のQ値が約3000となるような内部損失を仮定している。また、図中の点線は共振周波数を、実線はQ値をそれぞれ示す。
図3(a)からも明らかなように、本発明の薄膜バルク音響波共振子では、薄膜バルク音響波共振子表面に付着物があり音響インピーダンスが変化しても、共振周波数およびQ値に大きな変化は無い。これは、薄膜バルク音響波共振子表面への付着物や吸着物によって共振子の特性が変化しないことを示している。これに対し、図3(b)に示す例では、共振周波数は薄膜バルク音響波共振子表面における音響インピーダンスによって大きく変化すると同時に、第2の保護層20がある場合に比べて、Q値も低いものとなっている。これは、薄膜バルク音響波共振子表面への付着物や吸着物によって共振子の特性が大きく変化し、素子として信頼性の低いものとなることを示している。
このことからも、低音響インピーダンス材料からなる第1の保護層18に加え、その上に化学的に安定で緻密な材料からなる第2の保護層を設けることにより、損失が少なく信頼性の高い薄膜バルク音響波共振子とすることができる。
図3(b)から、図2に示す薄膜バルク音響波共振子において、第2の保護層20が形成されていない部位は、図3(b)と同様の特性を有すると推察されるので、Q値が低くなっている。このため、第2の保護層20が形成されていない部分は薄膜バルク音響波共振子の共振特性に殆ど寄与しないものとなり、所望の部分、即ち共振部以外の部分が励振されて生じるスプリアス振動を効果的に低減することができる。
また、図1に示す薄膜バルク音響波共振子において、第1の保護層18の厚みと共振周波数およびQ値との関係を図4に示す。図4において、横軸は第1の保護層18中を伝播する音響波の波長λに対する第1の保護層18の厚みd、すなわちd/λを、縦軸は、左側が共振周波数(単位:GHz)を、右側がQ値をそれぞれ示す。図4からも明らかなように、第1の保護層18の厚みが、λ/4の奇数倍((2n+1)倍:ただしnは0以上の自然数)のとき、すなわちd/λが(0.25+0.5n)となるときにQ値は最大となり、この値から離れるに連れて徐々に減少していくことが分かった。中でも、d/λが(0.1+0.5n)より大きく、(0.4+0.5n)より小さいときに、d/λに対する共振周波数の傾きが緩やかであり、高いQ値であるとともにQ値の変動が少ないことから、第1の保護層18の厚みが、(1)式を満たすことが好ましい。
(0.5n+0.1) < d/λ < (0.5n+0.4) ‥(1)
この場合には、共振部から第1の保護層18に伝搬する音響波を第1の保護層18が効率良く共振部側に反射させることができるので、共振部と外部との間に更に良好なアイソレーション特性を保つことができ、その結果、更に低損失な薄膜バルク音響波共振子を提供することができる。また、薄膜バルク音響波共振子を製造する際に製造誤差などで共振部を構成する各層の膜厚が変化した場合であっても、共振周波数が大きくずれることが無いことから、信頼性の高い薄膜バルク音響波共振子を提供することができる。
ここで、第1の保護層18の材料について、更に検討する。
前述のように、薄膜バルク音響波共振子はその特性上、共振部の表面を基板側と同様にアイソレート部(上部アイソレート層)によって保護する必要がある。これは、FBARの共振部表面は音響的に振動しているが、共振部表面に異物が付着したり水分が吸着したりすると、それによって共振周波数が変化してしまうためである。特に問題となるのは、共振子のQ値の劣化である。共振部は音響的に振動しているので、それに接触した部材があると、その部材への音響波の漏洩が生じ、エネルギーの損失となり、共振子のQ値の劣化を招くものとなる。このため、共振部の下部のみならず上部においてもアイソレート部を設け、このアイソレート部と共振部との界面で音響波を反射させることによって、共振部外への音響波の漏洩を防ぐという方法が考えられている。
ここで、図5(a)に共振部の表面に2層の保護層を積層した薄膜バルク音響波共振子における、共振部直上の保護層(第1層)の音響インピーダンスと共振子のQ値との関係のシミュレーション結果の一例を線図で示す。以下、共振部直上の保護層を第1層,第1層の上に積層された保護層を第2層という。この例では、第2層として、厚みλ/4(λは音響波の波長)のAl層を使用し、第1層の厚みはλ/4とし、共振周波数が約2GHzとなるように共振子の構成を設定した場合を示している。なお、この例では、上部のアイソレート部からの音響波の漏れのみを考慮しており、その他材料損失や下部のアイソレート部からの漏れは考慮していない。図5(a)から分かるように、第1層の材料の音響インピーダンスが低くなるほど、共振子のQ値は大きくなる。高周波で使用する共振子のQ値は一般的に1000以上が好ましく、上部のアイソレート部からの漏れ損失のみから計算されるQ値としては2000以上が必要である。このことから、第1層の材料の音響インピーダンスとして、1.4MRayl以下が望ましいことが分かる。
ここで、表1に各種材料の音響インピーダンスの値を示す。
Figure 2006246451
表1に示した各種材料の音響インピーダンスの値からも分かるように、1.4MRayl以下という低い音響インピーダンスは、これら通常のバルク材料では達成不可能である。このため、従来の薄膜バルク音響波共振子は上部のアイソレート部として、音響インピーダンスがほぼ0である空気層や音響多層膜を設けている。しかしながら、空気層を設けるために共振子をパッケージに収納すると大型で高コストなものとなり、音響多層膜を設けるために多数の膜を交互に積層する工程は複雑で製造に時間がかかるため高コストなものとなるという問題点がある。
本発明の薄膜バルク音響波共振子では、このような問題点を、音響インピーダンスの低い発泡材料からなる第1の保護層18を用いることで解決できる。発泡材料はその材料の組織に無数の気泡または気孔を含んでいることからその音響インピーダンスは非常に小さくなる。この第1の保護層18も固体組織部分では音響波の伝播が生じるが、この固体組織部分が上部電極13に接触している面積はごく僅かであるので、接触部分からの音響波の漏洩はほぼ無視できるものとなるからである。このため、本発明の薄膜バルク音響波共振子によれば、複雑な作製プロセスを必要とせずに形成することができる発泡材料からなる第1の保護層18により、共振部上に空隙を設けることなく、共振部を外部から音響的にアイソレートすることができ、高Q値のものを低コストで作製できるものとなる。
また、保護層は、共振部を共振部表面への水分その他の付着物などから音響的に保護する機能を担っている。図5(b)に共振部の表面に2層の保護層を積層した薄膜バルク音響波共振子における、保護層の最表面(第2層の表面)に付着物が付着した場合の付着物の音響インピーダンスに対する共振子のQ値の関係および共振子の共振周波数の関係のシミュレーション結果の一例を線図で示す。この例では、第1層の材料の音響インピーダンスを1MRaylとし、付着物は共振部全体を覆うように存在し、その中に浸入する音響波を完全に吸収するものとし、その他の条件については図5(a)に示す例と同様とした場合を示している。図5(b)から、第一層の材料の音響インピーダンスが1MRayl以下の場合には80MRaylの音響インピーダンスを持つ付着物に対しても、共振子のQ値は2000以上を保ち、共振周波数も変化しないことが分かった。
この結果の薄膜バルク音響波共振子を本発明の薄膜バルク音響波共振子に照らし合わしてみると、本発明の薄膜バルク音響波共振子は共振部上に音響インピーダンスが1MRayl以下となる発泡材料からなる第1の保護層18と第2の保護層20とを積層しているときには、より効果的に音響的に外部からアイソレートされており、かつ水分の吸着や異物の付着が生じても共振子としての特性に影響がないことが確認できた。
以上のように、第1の保護層18により共振部の振動が外部に漏れ出すことがないため、低損失な薄膜バルク音響波共振子を形成することができる。また、第1の保護層18により良好な音響的アイソレーション特性を得ることができるので、図9に示したような従来のパッケージ16が不要となり、標準的なウエハープロセスのみで作製することができるので、小型な薄膜バルク音響波共振子を低コストで提供することができる。
また、本発明の薄膜バルク音響波共振子では、第1の保護層18および第2の保護層20の少なくとも一方は、共振部と反対側の表面に、共振部で発生する音響波の波長よりも大きい凹凸を有していることが好ましい。本発明の第1の保護層18は、その共振部との界面において十分に音響波を反射できるものであるが、音響波の一部は第1の保護層18中および第2の保護層20中に入射され、伝播する。この第1の保護層18中および第2の保護層20中に入射され、伝播する音響波は、共振部と反対側の表面で反射され、再び共振部側に戻っていく。この反射された音響波(反射波)の位相が、共振部の音響波の位相と合致した場合は、共振エネルギーの閉じ込めがよくなり、共振子のQ値が向上する。しかし、反射波の位相が共振部における音響波のものと合致しない場合、もしくは反射波の伝播方向が、第1の保護層18中に入射された音響波の伝播方向と角度を持つ場合には、Q値が劣化したり、不要共振(スプリアス)が発生したりする原因となる。これに対して、第1の保護層18および第2の保護層20の少なくとも一方の、共振部と反対側の表面に共振部で発生する音響波の波長よりも大きい凹凸を有している場合には、その反対側の表面において音響波を散乱・乱反射させ、共振部へ戻る音響波を抑制することができる。このようにして、共振子のQ値の劣化を防ぎ、スプリアスの発生を抑制することができるようになる。このため、Q値が高く、スプリアスの少ない、高性能の薄膜バルク音響波共振子を提供できるようになる。このような凹凸は、発泡材料の気泡の径を音響波の波長よりも大きくすることにより容易に得られるが、その他にも、第1の保護層18を、気孔径の小さい多孔質材料層の上に気孔径の大きい発泡性材料層を積層した2層構造にすることによっても得られる。また、第1の保護層18の表面を、化学処理やプラズマ処理により荒らすことによって形成することができる。
なお、第1の保護層18上には、第2の保護層20を設ける必要があるため、大きい凹凸を持つ第1の保護層18の表面に、その凹凸を低減する目的の平滑層を導入しても良い。このような平滑層は、樹脂をスピンコートすることなどにより容易に形成することができる。また、このような平滑層を設けても、第1の保護層18と平滑層との間で音響波が乱反射されるため、Q値が高く、スプリアスの少ない、高性能の薄膜バルク音響波共振子を得ることができる。なお、凹凸の大きさは、生産性の点から、数μm〜数10μm程度が好適である。
次に、本発明の薄膜バルク音響波共振子の実施の形態の他の例について、図6(a)に平面図を、図6(b)に(a)のA−A’部の断面図を示す。図6に示す薄膜バルク音響波共振子は、図1に示す薄膜バルク音響波共振子と類似しており、主に異なる点は、第1の保護層が発泡材料からなり、第1の保護層中に第2の保護層を支持する支持部材が配設されている点である。なお、以下の図面においても同様であるが、図6において、図1と同様の箇所については同一の符号を付し、重複する説明を省略する。
図6(a)および(b)において、21は共振部を基板から音響的にアイソレートするためのアイソレート部として設けられた貫通孔であり、背景技術の項で説明した、1)のタイプのアイソレート構造である。貫通孔21は、通常は、基板11の裏側からDeep−RIE(Reactive Ion Etching)もしくは異方性ウエットエッチングによって基板11をエッチングし、共振部の下面に空隙が位置するように形成される。図6に示したのは、Deep−RIEにて形成した貫通孔21であり、異方性エッチングにて形成した貫通孔21は、基板11の主面(この例では下面)との角度が概略45°となる下広がりの孔となる。なお、この例では、共振部を基板から音響的にアイソレートするためのアイソレート部として空気を用いるタイプのものを示したが、アイソレート部としてはこのような貫通孔21の他にも、背景技術に示した2)や3)のタイプでもかまわない。19は支持部材を示している。
図6において、第1の保護層18は発泡材料からなるため、その音響インピーダンスは非常に小さい。このため、共振部で発生した音響波を確実に反射することができるので、損失の小さい薄膜バルク音響波共振子とすることができる。また、第1の保護層18は共振部の直上のみに形成されているが、この第1の保護層18として発泡性金属材料からなるものを用いて、上部電極13全体の上に設けてもよい。この場合には、上部電極13の実効厚みが増すために電気抵抗が減少し、共振子のQ値を向上させる効果の高いものとなる。
支持部材19は、第1の保護層18中に、第2の保護層20を支持するように配設されている。図6の例では、第1の保護層18中に、その下面から上面にかけて、支持部材19が形成されている。この支持部材19により第2の保護層20を変形することなく支持することができるので、例えば外部からの機械的な衝撃や第2の保護層20自体の重みにより第2の保護層20が変形することにより第1の保護層18が押し潰されたり破壊されたりして変形することを防ぐことができる。このため、共振部と外部との間に良好で安定した音響的なアイソレーションを保つことができる。支持部材19の材料は特に限定されず、第2の保護層20に合わせて支持部材19の材料を選択することができるが、作製プロセスが容易であることからは、各種樹脂材料,金属や無機物の緻密材が好適である。特に金属は、それ自身が導電体であるため、上部電極13の実質的な電気抵抗を低減することができるため好適である。
この図6に示す例では、支持部材19の平面視した形状が「田の字」型であるが、第2の保護層20を支持することができれば他の形状でも構わない。図7(a)〜(c)に支持部材19の変形例の平面図を示す。例えば図7(a)に示すような、共振部の周りを取り囲むような「ロ字型」でもよいし、図7(b)に示すような矩形状のものを多数個規則的に配置したものでもよいし、図7(c)に示すような矩形状のものを共振部の四隅と中央部とに並べたものでもよい。このような支持部材19の形状および配置は、支持部材19の強度および第2の保護層20の強度等に合わせて適宜決めればよい。ただし、共振部の直上にこの支持部材19を形成する場合は、その部分の共振周波数は変化して共振子として働かなくなるため、支持部材19を設けた部分の面積を共振部の実質面積から引いて設計する必要がある。なお、この場合には、支持部材19に接する共振部は、共振にかかわりの無い容量、いわゆる寄生容量となるため、共振子の設計の際に注意が必要となる。共振部の設計が容易になるという観点からは、支持部材19は、共振部(下部電極12,圧電体薄膜14,上部電極13が重なった部分)の外部に形成されることが望ましい。なお、図7(b),(c)における支持部材19の平面視の形状は、第2の上部電極20を支持するものであれば矩形状に限定されず、円形状,多角形状等でもよい。
上記の説明では、支持部材19と第2の保護層20とは別々のものとして記述したが、これらを同じ材料で同時に形成することもできる。例えば、第1の保護層18に支持部材19を形成する部分となる溝を形成した後、支持部材19,第2の保護層20となる膜を、第1の保護層18の膜厚よりも厚く成膜することにより、支持部材19,第2の保護層20を同時に形成することができる。
発泡材料からなる第1の保護層18は、気泡・気孔を介し外部からの水分等を十分に防ぐことができないという問題が発生する可能性がある。これに対して、図6に示す薄膜バルク音響波共振子によれば、支持部材19により支持された第2の保護膜20により、共振部および第1の保護層18を保護することができるので、信頼性に優れた薄膜バルク音響波共振子を提供することができる。なお、支持部材19によりこのような第2の保護層20を変形させることなく支持することができるので、第1の保護層18が変形することを防ぐことができ、その結果、アイソレーション特性を保つことができる。このため、上述のような第2の保護層20の機能を、アイソレーション特性を保ちつつ発揮することができるので、小型で低損失、かつ信頼性の高い薄膜バルク音響波共振子を提供することができる。
図6では、第1の保護層18および第2の保護層20はそれぞれ1層からなるものが例示されているが、この他に、2層以上の層から第1の保護層18および第2の保護層20を形成する場合でも、組み合わされた層が全体として本発明の主旨に沿ったものであればよい。例えば、第1の保護層18として、上部電極13上に密着層を設け、その上に発泡性樹脂層を形成し、さらにその上に表面平滑層を形成したものなども使用できる。また、第2の保護層20として、気密性を高めると同時に、第2の保護層20の膜応力の低減を目的として、SiとSiO薄膜を交互に重ねたものを使用することができる。また、第2の保護層20を薄膜プロセスで形成した場合は機械的な強度が弱くなるため、第2の保護層20の上にポリイミドやBCB樹脂などを塗布してもよい。
また、図6ではアイソレート部として貫通孔21を設けているが、貫通孔21に代えて基板11上に、基板11と共振部との間にアイソレート部として第1の保護層18と同様の材料からなるアイソレート層を設けてもよい。基板11と共振部とのアイソレート部として貫通孔21に代えてアイソレート層を用いることにより、貫通孔21を形成する複雑な工程が不要となり、かつ共振部の機械的強度を劣化させることがないため、生産性が高く、信頼性の高いものとなる。
また、図6では、下部電極12、上部電極13が共振部外への取り出し/配線電極もかねているが、取り出し/配線用の電極を、第1の保護層18または第2の保護層20上に別途設けても良い。
なお、本発明の薄膜バルク音響波共振子における共振部,基板,その他材料や構造,プロセス等については以上の例に特に限定されるものではなく、さらに、共振部と外部接続のための端子部(図示せず)とを接続する配線および電極の取り回しや、複数の共振部を接続してフィルタとする構成や構造についても特に限定されるものではない。
本発明の薄膜バルク音響波共振子では、第2の保護層20を構成する材料および支持部材19を構成する材料は、それぞれ第1の保護層18を構成する発泡材料よりも高強度であるものが好ましい。第1の保護層18を構成する発泡剤は一般に緻密体に比べて強度が弱い。例えば第1の保護層18の材料としてシリカエアロゲル材料を用いた場合には、この材料のヤング率は1MPa以下であるため、外力によって容易に変形したり傷が付いたりするので、第1の保護層18のみでは共振部を機械的な衝撃から保護することはできない。また、第1の保護層18が機械的な衝撃(圧力)で押し潰されたりして変形すると、共振部を音響的にアイソレートするという本来の機能を果たせなくなる。しかし、より高強度の材料からなる第2の保護層20および支持部材19によって、発泡材料からなる第1の保護層18の強度を支持部材19により補強するとともに、この支持部材19と第2の保護層20とで確実に外部からの機械的な衝撃を防ぐことで、第1の保護層18の変形を防ぐことができ、良好なアイソレーション特性を保つことができるので、信頼性の高い薄膜バルク音響波共振子を提供することができる。
また、本発明の薄膜バルク音響波共振子では、支持部材19は、上部電極13の外周部および中央部に配置されていることが好ましい。この支持部材19の配置例としては、図7(a)に示すような共振部の外側(上部電極13の外周部)を取り囲むロ字型の支持部材19の中央部に矩形状の支持部材19を配置したものとしてもよいし、図7(c)に示すようなものとしてもよい。このような配置とすることにより、共振部にかかる外部からの機械的な圧力を、第2の保護層20から上部電極13の外周部,すなわち共振部の外側に設けた支持部材19を介して基板11へと伝播させることができ、第2の保護層20および支持部材19に加えて基板11でも、外部からの機械的な圧力から共振部を保護することができるものなる。これにより、外部からの機械的ショックを十分に分散させることができるようになり、より機械的強度が高い、つまり信頼性の高い薄膜バルク音響波共振子を提供することができるようになる。また、共振部直上に支持部材19が占める面積が少ないので、その部分の共振周波数が変化して共振子として働く実質面積が減少することおよび寄生容量が発生することを抑制しつつ、支持部材19により第2の保護層20を効率的に支持することができるものとなる。このため、共振子の設計に影響する寄生容量が少ないので共振子の設計が容易であり、かつ良好なアイソレーション特性を有する薄膜バルク音響波共振子を提供することができる。
さらに、本発明の薄膜バルク音響波共振子は、支持部材19は、金属材料からなるとともに第1の保護層18の外側に電気的に導出されていることが好ましい。このような構成の場合の本発明の薄膜バルク音響波共振子の実施の形態の他の例について、図8(a)に平面図を、図8(b)に(a)のA−A’部の断面図を示す。なお、図面においては、薄膜バルク音響波共振子の構造が分かりやすいように各部の寸法は適宜拡大している。また、層構成が見やすいように、平面図では上部に位置する層を省略して示している。また、図8において図1,6と同様の箇所には同一の符合を付し、重複する説明を省略する。
図8において、矩形状の支持部材19は、第1の保護層18の外側に電気的に導出されるように複数形成され、金属などの導電性材料からなる第2の保護膜20と接続されている。さらに、下部電極12と絶縁された状態で上部電極13と第2の保護層20とを覆うように取り出し電極22が形成されている。また、第2の保護層20が非導電性の材料で形成されている場合には、支持部材19を第2の保護層20の外側まで延ばし、取り出し電極22を支持部材19に直接接続するように第2の保護層20を覆って形成することで取り出し電極22と支持部材19とを電気的に接続することができる。また、第2の保護層20に、支持部材19との接続孔を形成し、取り出し電極22を支持部材19に接続することもできる。このように、金属などの導電性材料からなる支持部材19が第2の保護層20,取り出し電極22を介して外部に導出されているものとなる。
このような構成とすることにより、上部電極13を共振部のみに形成しても、支持部材19を介して共振部を外部接続することができるものとなるので、共振部と外部接続するための端子部とを接続する配線および電極の取り回しが容易とになり、生産性の高いものとすることができる。
上部電極13を外部接続のための端子部とするためには、上部電極13を共振部外にも延ばして形成する必要があり、この場合には少なくとも共振部と共振部外部との境界部において生じる下部電極12の厚み分の段差(図8(b)においてBで示す部分)においても途切れることなく上部電極13を形成する必要がある。また、この段差部における上部電極13と下部電極12との絶縁を保つために、圧電体薄膜14も共振部から段差部を経て共振部外へ途切れることなく形成する必要がある。しかしながら、上部電極13および圧電体薄膜14は、一般に所望の共振特性を得るために非常に薄い厚みとなるため、段差部におけるステップカバレッジが悪い場合には、上部電極13の端子部としての電気抵抗が大きくなったり、下部電極12と上部電極13とがショートしたり、絶縁抵抗が劣化したりする可能性があった。
これに対して、図8に示す構成とすることで、支持部材19により上部電極13と外部接続するための端子部となる取り出し電極22とを電気的に接続することができるので、段差部Bにおけるステップカバレッジが悪い場合においても、下部電極12と上部電極13との電気的絶縁を確保できることにより、信頼性が高く、特性の良い薄膜バルク音響波共振子を提供できる。また、取り出し電極22は共振部から音響的に独立しているため、材料,膜厚を音響的な共振特性を考慮せずに設定することができる。すなわち、取り出し電極22にAuなどの導電率の高い金属を使用したり、膜厚を大きくしたりすることにより、電気抵抗を減少させることができ、Q値の高い薄膜バルク音響波共振子を提供することができる。支持部材19および取り出し電極22の材料は、導電性の材料なら何でも用いることができるが、導電率が高いという観点から、Au,Cu,Alなどが最適である。また、取り出し電極22の厚みは自由に設定することができるが、薄膜プロセスにおける生産性の観点から、0.1〜10μm程度が好適である。また、図8では、第2の保護層20と取り出し電極22とが別材料にて構成されている例について示したが、第2の保護層20を導電性材料で形成して、これが取り出し電極22を兼ねていても良い。
また、本発明のフィルタは、以上のような本発明の薄膜バルク音響波共振子をフィルタを構成する共振子として用いたことにより、小型で信頼性が高く、しかも特性が良く低価格な共振子を用いてフィルタを構成できるので、従来のFBARやSMRを使用したフィルタに比べて、より小型で信頼性が高く、しかも特性が良く低価格な製造可能なフィルタを提供することができる。
さらに、本発明の通信装置は、本発明のフィルタを有する、受信回路および送信回路の少なくとも一方を備えたことにより、回路中での損失が小さくなり、不要波の除去性能が高くなるので、より感度が良く、小型で信頼性が高い通信装置を提供することができる。
(実施例1)
本発明の薄膜バルク音響波共振子の具体例について以下に説明する。ここでは、2GHzで共振する薄膜バルク音響波共振子を作製した。
まず、高抵抗のSi基板11を準備し、酸を用いて洗浄を行なった。次に、スパッタリング法により形成した0.15μmのMoからなる金属膜に、フォトリソグラフィおよびフッ硝酸によるウエットエッチングを行なって、下部電極12のパターンを形成した。その後、スパッタリング法により0.67μmのZnO膜から成る圧電体薄膜14を成膜した。ZnO膜のパターンニングは、フォトリソグラフィおよび希塩酸によるウエットエッチングによって行なった。そして、上部電極13は、厚み0.15μmのMoをスパッタリング法により形成し、同様にフォトリソグラフィおよびウエットエッチングによりパターン形成を行なった。次に、多孔質BCB樹脂をスピンコートし、支持部材19となる部分をフォトリソグラフィによって除去した後、260℃でキュアを行ない、第1の保護層18とした。多孔質BCB樹脂の膜厚は約0.2μmであった。その上から多孔質BCB樹脂を除去した部分を含めて、1.4μmのAl膜をスパッタリング法により形成し、支持部材19および第2の保護層20とした。第2の保護層20は、フォトリソグラフィおよびフッ硝酸によるウエットエッチングを行なってパターニングを行なった。最後に、基板11裏側からRIEによって貫通孔21を形成した。
このようにして作製した図6に示す薄膜バルク音響波共振子について、その共振特性をインピーダンスアナライザにて行なったところ、共振周波数が1.94GHzであり、Q値が1300の良好な特性を得た。さらに、第2の保護膜20の上にエポキシ樹脂を滴下しても、共振周波数の変動はなく、第1の保護層18および第2の保護層20が有効に働いていることが分かった。
(実施例2)
実施例1と同様に多孔質BCB樹脂からなる第1の保護層18を形成した後、1.4μmのAu膜をスパッタリング法により形成し、フォトリソグラフィおよびヨウ素−ヨウ化カリウムによるウエットエッチングを行なってパターニングし、支持部材19,第2の保護層20および取り出し電極22として、図8に示す本発明の薄膜バルク音響波共振子を作製した。
このようにして作製した本発明の薄膜バルク音響波共振子について、その共振特性をインピーダンスアナライザにて行なったところ、共振周波数が2.02GHzであり、Q値が1400の良好な特性を得た。さらに、第2の保護膜20であるAu上にエポキシ樹脂を滴下しても、共振周波数の変動はなく、保護層が有効に働いていることが分かった。
なお、本発明は以上の実施の形態の例に限定されるものではなく、本発明の要旨を逸脱しない範囲であれば種々の変更を加えることは何ら差し支えない。例えば、圧電体薄膜14の材料として、AlNやPZT等を使用してもよいし、成膜方法としてCVD法やゾルゲル法(材料の溶液を基板にスピンコートし、焼成して圧電体薄膜とする方法)等も使用できる。特に、PZT等の電気機械結合係数が大きい強誘電体材料を使用した場合は、周波数差(共振周波数と反共振周波数との差)が大きい薄膜バルク音響波共振子を実現することができる。また、それを用いたフィルタは、通過帯域幅が広く、広帯域のスペクトルを使用する無線通信装置に好適に使用することができる。
上部および下部電極の材料としては、Moの他に、W,Al,Au,Cu等を使用することもできるし、それらの材料を組み合わせて使用することもできる。例えば、本発明の実施例で使用したMo電極は、固有音響インピーダンスが大きいため、良好な共振特性を得ることができるが、導電率が比較的小さいという欠点を持っている。このため、例えば、下部電極をMoとAuとを積層したものとすることにより、良好な共振特性と良好な電気特性とを併せ持つ電極とすることができる。
(a)および(b)本発明の薄膜バルク音響波共振子の実施の形態の一例を示す平面図および断面図である。 (a)および(b)は、それぞれ図6に示す薄膜バルク音響波共振子の変形例を示す平面図および断面図である。 図1に示す薄膜バルク音響波共振子における、(a)第2の保護層がある場合の素子表面付着物の音響インピーダンスと共振子のQ値との関係のシミュレーション結果の一例を、(b)第2の保護層がない場合の素子表面付着物の音響インピーダンスと共振子のQ値との関係のシミュレーション結果の一例をそれぞれ示す線図である。 図1に示す薄膜バルク音響波共振子において、第1の保護層中を伝搬する音響波の波長λに対する第1の保護層の厚みdと共振子の共振周波数およびQ値との関係のシミュレーション結果の一例を示す線図である。 共振部の表面に2層の保護層を積層した薄膜バルク音響波共振子における、(a)共振部直上の保護層の音響インピーダンスと共振子のQ値との関係のシミュレーション結果の一例を、(b)保護層の最表面(第2層の表面)に付着物が付着した場合の付着物の音響インピーダンスに対する共振子のQ値の関係および共振子の共振周波数の関係のシミュレーション結果の一例をそれぞれ示す線図である。 (a)および(b)は、それぞれ本発明の薄膜バルク音響波共振子の実施の形態の他の例を示す平面図および断面図である。 (a)〜(c)は、それぞれ図6に示す本発明の薄膜バルク音響波共振子における支持部材の配置例を示す平面図である。 (a)および(b)は、それぞれ本発明の別の薄膜バルク音響波共振子の実施の形態の他の例を示す平面図および断面図である。 従来の薄膜バルク音響波共振子およびそれを収容したパッケージを示す断面図である。
符号の説明
11・・・基板
12・・・下部電極
13・・・上部電極
14・・・圧電体薄膜
15・・・ワイヤーボンド
16・・・パッケージ
18・・・第1の保護層
19・・・支持部材
20・・・第2の保護層
21・・・貫通孔
22・・・取り出し電極

Claims (10)

  1. 基板と、該基板上に配置され、圧電体薄膜および該圧電体薄膜に上下から電圧を印加するための上部電極および下部電極からなる共振部と、前記基板および前記共振部間に配置され、両者を音響的にアイソレートするためのアイソレート部とを具備する薄膜バルク音響波共振子において、前記共振部上に、樹脂材料または発泡材料からなる第1の保護層および該第1の保護層上の第2の保護層が形成されていることを特徴とする薄膜バルク音響波共振子。
  2. 前記第1の保護層は、前記第1の保護層の厚みをd、前記第1の保護層中の音波の波長をλ、nを0以上の整数とすると、その厚みが、下記の式を満たすことを特徴とする請求項1記載の薄膜バルク音響波共振子。
    (0.5n+0.1) < d/λ < (0.5n+0.4)
  3. 前記第1の保護層および前記第2の保護層の少なくとも一方は、前記共振部と反対側の表面に前記共振部で発生する音響波の波長よりも大きい凹凸を有していることを特徴とする請求項1記載の薄膜バルク音響波共振子。
  4. 前記第2の保護層は、前記共振部上にのみ形成されていることを特徴とする請求項1乃至3のいずれかに記載の薄膜バルク音響波共振子。
  5. 前記第1の保護層は発泡材料からなり、前記第1の保護層中に前記第2の保護層を支持する支持部材が配設されていることを特徴とする請求項1乃至4のいずれかに記載の薄膜バルク音響波共振子。
  6. 前記第2の保護層を構成する材料および前記支持部材を構成する材料は、それぞれ前記発泡材料よりも高強度であることを特徴とする請求項5記載の薄膜バルク音響波共振子。
  7. 前記支持部材は、前記上部電極の外周部および中央部に配置されていることを特徴とする請求項5記載の薄膜バルク音響波共振子。
  8. 前記支持部材は、金属材料からなるとともに前記第1の保護層の外側に電気的に導出されていることを特徴とする請求項5記載の薄膜バルク音響波共振子。
  9. 請求項1乃至請求項8のいずれかに記載の薄膜バルク音響波共振子をフィルタを構成する共振子として用いたことを特徴とするフィルタ。
  10. 請求項9記載のフィルタを有する、受信回路および送信回路の少なくとも一方を備えたことを特徴とする通信装置。

JP2006028355A 2005-02-07 2006-02-06 薄膜バルク音響波共振子およびフィルタならびに通信装置 Pending JP2006246451A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006028355A JP2006246451A (ja) 2005-02-07 2006-02-06 薄膜バルク音響波共振子およびフィルタならびに通信装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005030718 2005-02-07
JP2006028355A JP2006246451A (ja) 2005-02-07 2006-02-06 薄膜バルク音響波共振子およびフィルタならびに通信装置

Publications (1)

Publication Number Publication Date
JP2006246451A true JP2006246451A (ja) 2006-09-14

Family

ID=37052320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006028355A Pending JP2006246451A (ja) 2005-02-07 2006-02-06 薄膜バルク音響波共振子およびフィルタならびに通信装置

Country Status (1)

Country Link
JP (1) JP2006246451A (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008244266A (ja) * 2007-03-28 2008-10-09 Seiko Epson Corp 圧電素子の製造方法、インクジェット式記録ヘッド、およびインクジェットプリンター
WO2009148525A1 (en) * 2008-06-04 2009-12-10 Alcatel-Lucent Usa Inc. Light-weight low-thermal-expansion polymer foam for radiofrequency filtering applications
JP2013217812A (ja) * 2012-04-10 2013-10-24 Seiko Epson Corp 振動片、振動片の製造方法、振動デバイスおよび電子機器
US20150024537A1 (en) * 2011-05-31 2015-01-22 Seiko Epson Corporation Ultrasonic transducer, biological sensor, and method for manufacturing an ultrasonic transducer
US20160126930A1 (en) * 2011-02-28 2016-05-05 Avago Technologies General Ip (Singapore) Pte. Ltd. Bulk acoustic wave resonator comprising a ring
JP2017046225A (ja) * 2015-08-27 2017-03-02 株式会社ディスコ Bawデバイス及びbawデバイスの製造方法
JP2020202564A (ja) * 2019-06-12 2020-12-17 ツー−シックス デラウェア インコーポレイテッドII−VI Delaware,Inc. 電極画定された非サスペンデッド音響共振器
JP2022068857A (ja) * 2020-10-22 2022-05-10 タイワン・カーボン・ナノ・テクノロジー・コーポレーション 特定共振周波数を有する薄膜バルク音響共振装置を製造する方法
US11362640B2 (en) 2018-07-17 2022-06-14 Ii-Vi Delaware, Inc. Electrode-defined unsuspended acoustic resonator
US11750169B2 (en) 2018-07-17 2023-09-05 Ii-Vi Delaware, Inc. Electrode-defined unsuspended acoustic resonator
WO2023248558A1 (ja) * 2022-06-22 2023-12-28 株式会社村田製作所 弾性波装置
US12021499B2 (en) 2018-07-17 2024-06-25 Ii-Vi Delaware, Inc. Electrode defined resonator
US12076973B2 (en) 2018-07-17 2024-09-03 Ii-Vi Delaware, Inc. Bonded substrate including polycrystalline diamond film

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008244266A (ja) * 2007-03-28 2008-10-09 Seiko Epson Corp 圧電素子の製造方法、インクジェット式記録ヘッド、およびインクジェットプリンター
WO2009148525A1 (en) * 2008-06-04 2009-12-10 Alcatel-Lucent Usa Inc. Light-weight low-thermal-expansion polymer foam for radiofrequency filtering applications
US7847658B2 (en) 2008-06-04 2010-12-07 Alcatel-Lucent Usa Inc. Light-weight low-thermal-expansion polymer foam for radiofrequency filtering applications
CN102046710A (zh) * 2008-06-04 2011-05-04 阿尔卡特朗讯美国公司 用于射频滤波应用的轻重量低热膨胀的聚合物泡沫
CN102046710B (zh) * 2008-06-04 2013-11-06 阿尔卡特朗讯美国公司 用于射频滤波应用的轻重量低热膨胀的聚合物泡沫
US9991871B2 (en) * 2011-02-28 2018-06-05 Avago Technologies General Ip (Singapore) Pte. Ltd. Bulk acoustic wave resonator comprising a ring
US20160126930A1 (en) * 2011-02-28 2016-05-05 Avago Technologies General Ip (Singapore) Pte. Ltd. Bulk acoustic wave resonator comprising a ring
US20150024537A1 (en) * 2011-05-31 2015-01-22 Seiko Epson Corporation Ultrasonic transducer, biological sensor, and method for manufacturing an ultrasonic transducer
US9231190B2 (en) * 2011-05-31 2016-01-05 Seiko Epson Corporation Method for manufacturing an ultrasonic transducer, biological sensor
JP2013217812A (ja) * 2012-04-10 2013-10-24 Seiko Epson Corp 振動片、振動片の製造方法、振動デバイスおよび電子機器
JP2017046225A (ja) * 2015-08-27 2017-03-02 株式会社ディスコ Bawデバイス及びbawデバイスの製造方法
US11362640B2 (en) 2018-07-17 2022-06-14 Ii-Vi Delaware, Inc. Electrode-defined unsuspended acoustic resonator
US11750169B2 (en) 2018-07-17 2023-09-05 Ii-Vi Delaware, Inc. Electrode-defined unsuspended acoustic resonator
US12021499B2 (en) 2018-07-17 2024-06-25 Ii-Vi Delaware, Inc. Electrode defined resonator
US12076973B2 (en) 2018-07-17 2024-09-03 Ii-Vi Delaware, Inc. Bonded substrate including polycrystalline diamond film
JP2020202564A (ja) * 2019-06-12 2020-12-17 ツー−シックス デラウェア インコーポレイテッドII−VI Delaware,Inc. 電極画定された非サスペンデッド音響共振器
JP7307032B2 (ja) 2019-06-12 2023-07-11 ツー-シックス デラウェア インコーポレイテッド 電極画定された非サスペンデッド音響共振器
JP2022068857A (ja) * 2020-10-22 2022-05-10 タイワン・カーボン・ナノ・テクノロジー・コーポレーション 特定共振周波数を有する薄膜バルク音響共振装置を製造する方法
WO2023248558A1 (ja) * 2022-06-22 2023-12-28 株式会社村田製作所 弾性波装置

Similar Documents

Publication Publication Date Title
JP2006246451A (ja) 薄膜バルク音響波共振子およびフィルタならびに通信装置
US10404231B2 (en) Acoustic resonator device with an electrically-isolated layer of high-acoustic-impedance material interposed therein
US10284173B2 (en) Acoustic resonator device with at least one air-ring and frame
US9401691B2 (en) Acoustic resonator device with air-ring and temperature compensating layer
US9112134B2 (en) Resonator, frequency filter, duplexer, electronic device, and method of manufacturing resonator
CN1383610B (zh) 包括谐振器的可调谐滤波器装置
JP4171214B2 (ja) モノリシックfbarデュプレクサおよびそれを作製する方法
JP5792554B2 (ja) 弾性波デバイス
JP4791181B2 (ja) 薄膜バルク音響波共振子、それを備えるフィルタおよび通信装置ならびに薄膜バルク音響波共振子の製造方法
US7224105B2 (en) Piezoelectric element, composite piezoelectric element, and filter, duplexer and communication equipment using the same
US20070115079A1 (en) Piezoelectric filter
JP6427075B2 (ja) 弾性波デバイス、分波器、及びモジュール
JP4884134B2 (ja) 音響波共振子およびフィルタならびに通信装置
JP2008507869A (ja) 体積音波によって作動する共振器
JP2008236743A (ja) 圧電共振子構造およびフレーム素子を有する電気フィルタ
JP2008301453A (ja) 薄膜圧電共振器及びこれを用いたフィルタ回路
JP4836748B2 (ja) バルク音響波共振子及びフィルタ装置並びに通信装置
KR20180107852A (ko) 음향 공진기 및 그 제조방법
JP2006340007A (ja) 薄膜バルク音響波共振子およびフィルタならびに通信装置
JP6302437B2 (ja) 弾性波フィルタ、分波器、及びモジュール
JP2005538643A (ja) バルク弾性波フィルタにおける通過帯域リップルを抑制する手段を有するバルク弾性波共振器
JP4663401B2 (ja) 薄膜バルク音響波共振子およびフィルタならびに通信装置
JP4693397B2 (ja) 薄膜バルク音響波共振子およびフィルタならびに通信装置
JP4854501B2 (ja) バルク音響波共振子及びフィルタ並びに通信装置
JP2006229282A (ja) 薄膜バルク音響波共振子およびフィルタならびに通信装置