JP2006229213A - High-frequency device mounting board, communication equipment, and characteristic evaluation method for high-frequency device - Google Patents

High-frequency device mounting board, communication equipment, and characteristic evaluation method for high-frequency device Download PDF

Info

Publication number
JP2006229213A
JP2006229213A JP2006012825A JP2006012825A JP2006229213A JP 2006229213 A JP2006229213 A JP 2006229213A JP 2006012825 A JP2006012825 A JP 2006012825A JP 2006012825 A JP2006012825 A JP 2006012825A JP 2006229213 A JP2006229213 A JP 2006229213A
Authority
JP
Japan
Prior art keywords
frequency device
device mounting
mounting substrate
circuit board
conductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006012825A
Other languages
Japanese (ja)
Other versions
JP4837998B2 (en
Inventor
Wataru Koga
亘 古賀
Takanori Ikuta
貴紀 生田
Hiroko Yokota
裕子 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2006012825A priority Critical patent/JP4837998B2/en
Publication of JP2006229213A publication Critical patent/JP2006229213A/en
Application granted granted Critical
Publication of JP4837998B2 publication Critical patent/JP4837998B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-frequency device mounting board, communication equipment, and a characteristic evaluation method for the high-frequency device, in which an out-band attenuation characteristic in a highly miniaturized filter can be correctly measured/evaluated, each out-band attenuation characteristic and an isolation characteristic in a highly miniaturized duplexer can be correctly measured and evaluated with a transmission filter and a reception filter, and those characteristics can be excellently exhibited. <P>SOLUTION: On the surface of a circuit board whose rear face is covered by a rear face conductive layer 6, a terminal electrode 9 for mounting the high-frequency device 3 is formed, and a plurality of signal lines 2 for communicating between the high-frequency device 3 and an external circuit are formed. The terminal electrode 9 is arranged in the center section of the circuit board, and the signal lines 2 are radially extended from the terminal electrode 9. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は高周波デバイスを実装する基板に関するものであり、特に移動体通信機器に使用される高周波デバイスである高周波フィルタまたは送受信分波器(以下「デュプレクサ」という)を実装するのに好適な高周波デバイス実装基板に関するものである。
また本発明は、前記高周波デバイス実装基板を搭載した通信機器に関するものである。
また本発明は、前記高周波デバイス実装基板に実装された高周波デバイスの特性を評価する方法に関するものである。
The present invention relates to a substrate on which a high-frequency device is mounted, and particularly suitable for mounting a high-frequency filter or a transmission / reception duplexer (hereinafter referred to as “duplexer”) which is a high-frequency device used in mobile communication equipment. The present invention relates to a mounting board.
The present invention also relates to a communication device on which the high-frequency device mounting substrate is mounted.
The present invention also relates to a method for evaluating characteristics of a high-frequency device mounted on the high-frequency device mounting substrate.

近年、携帯電話等の移動体通信機器に使用される高周波フィルタに対して、小型・軽量で、通過帯域内では低損失であり、通過帯域外での減衰量が大きく、かつ通過帯域から通過帯域外にかけての特性変化が急峻であるという要求が強くなっている。
また、送信側周波数帯(例えば比較的低周波側)の信号と受信側周波数帯(例えば比較的高周波側)の信号とを分離するデュプレクサに対しても、小型・軽量で、デュプレクサ内の送信用高周波フィルタにおいては、送信帯域では低損失でかつ受信帯域では高減衰であり、受信用高周波フィルタにおいては、受信帯域では低損失でかつ送信帯域では高減衰であることが求められている。また、デュプレクサにおいては、送信信号が送信端子から受信端子へ漏れるのを防ぐために、送信端子から受信端子へのアイソレーション特性が良好なことが求められている。また、デュプレクサとして、送信用高周波フィルタである例えば低周波数帯域側高周波フィルタ及び受信用高周波フィルタである例えば高周波数帯域側高周波フィルタが一体化された、さらに小型の素子が要求されている。
In recent years, high-frequency filters used in mobile communication devices such as mobile phones are small and light, have low loss in the passband, have a large attenuation outside the passband, and passband to passband. There is an increasing demand for a sharp change in characteristics toward the outside.
In addition, the duplexer that separates the signal on the transmission side frequency band (for example, relatively low frequency side) and the signal on the reception side frequency band (for example, relatively high frequency side) is also small and light, and is used for transmission within the duplexer. High frequency filters are required to have low loss in the transmission band and high attenuation in the reception band, and high frequency filters for reception are required to have low loss in the reception band and high attenuation in the transmission band. Further, in the duplexer, in order to prevent a transmission signal from leaking from the transmission terminal to the reception terminal, it is required that the isolation characteristic from the transmission terminal to the reception terminal is good. Further, as a duplexer, there is a demand for a smaller element in which a transmission high-frequency filter such as a low-frequency band side high-frequency filter and a reception high-frequency filter such as a high-frequency band side high-frequency filter are integrated.

その中でデュプレクサには、従来、誘電体を用いたものが使用されてきた。しかし、誘電体分波器は現状の通信規格の周波数帯では原理的に小型することができなかった。
そこで近年、弾性表面波素子を用いたフィルタをデュプレクサに利用する試みがなされている。弾性表面波素子は通常、圧電基板上に櫛歯状電極を有する複数の励振電極が形成されて構成される。弾性表面波フィルタは従来から段間のフィルタとして使用されていたが、デュプレクサとして使用するには耐電力性が低かった。しかし、近年この耐電力性の問題は励振電極の電極構造や電極材料を工夫することで解決することができるようになってきたため、誘電体分波器より小型で通過帯域近傍の減衰特性の良い弾性表面波分波器が現れ始めている。
Among them, conventionally, a duplexer using a dielectric has been used. However, the dielectric duplexer cannot be reduced in principle in the frequency band of the current communication standard.
Therefore, in recent years, attempts have been made to use a filter using a surface acoustic wave element for a duplexer. A surface acoustic wave element is usually configured by forming a plurality of excitation electrodes having comb-like electrodes on a piezoelectric substrate. The surface acoustic wave filter has been conventionally used as an interstage filter, but its power resistance is low when used as a duplexer. In recent years, however, this problem of power durability has been able to be solved by devising the electrode structure and electrode material of the excitation electrode, so that it is smaller than a dielectric duplexer and has good attenuation characteristics near the passband. Surface acoustic wave duplexers are beginning to appear.

一方、弾性表面波フィルタをさらに小型化するための技術も進化している。従来は、パッケージ本体の凹部の中に圧電基板上に励振電極を設けた弾性表面波デバイスを実装し、ワイヤボンディング技術により圧電基板上の電極パターンとパッケージの端子部とを接続した後、その凹部をキャップ等により気密封止することにより弾性表面波フィルタを作製することが一般的であった。この場合は、ボンディングワイヤによるインダクタンス成分を有効に利用することにより、帯域外減衰特性等の向上を図ることも可能であった。   On the other hand, a technology for further downsizing the surface acoustic wave filter is also evolving. Conventionally, a surface acoustic wave device provided with an excitation electrode on a piezoelectric substrate is mounted in a recess of the package body, and the electrode pattern on the piezoelectric substrate and the terminal portion of the package are connected by wire bonding technology, and then the recess It is common to produce a surface acoustic wave filter by hermetically sealing with a cap or the like. In this case, it is possible to improve out-of-band attenuation characteristics and the like by effectively using the inductance component of the bonding wire.

また、近年では、パッケージをより小型化するためにCSP(Chip Size Package:チップサイズパッケージ)技術を積極的に活用し、弾性表面波デバイスを回路基板上にフリップチップ実装することにより、従来のワイヤボンディングに必要なスペースや高さを削減することも提案されている(例えば、特許文献1,2を参照。)。
前記要求を満たさない高周波デバイスを通信機器に用いれば、不要な無線信号を送信したり、または受信したりすることとなり、受信した無線信号の品質が低下したり、他の無線通信機器への妨害等の問題が発生したりする可能性がある。
In recent years, the CSP (Chip Size Package) technology has been actively used to further reduce the size of the package, and the surface acoustic wave device is flip-chip mounted on the circuit board, so that the conventional wire It has also been proposed to reduce the space and height required for bonding (see, for example, Patent Documents 1 and 2).
If a high-frequency device that does not satisfy the above requirements is used for communication equipment, unnecessary radio signals will be transmitted or received, and the quality of the received radio signals will be reduced, or interference to other radio communication equipment will occur. Or other problems may occur.

また、以上のような高周波フィルタやデュプレクサ等の高周波デバイスの特性を評価するためには、それら高周波デバイスを、評価用の実装基板に搭載して、所望の特性が得られているかどうかを測定し評価することが行われる。
測定・評価は正確に行われなければならないので、通常、高周波デバイスと高周波デバイス実装基板との間の接続や、高周波デバイス実装基板と測定器に接続された同軸ケーブルとを接続するための同軸コネクタと高周波デバイス実装基板との間は、半田を用いて強固に確実な導電性を確保して接合される必要がある。
In addition, in order to evaluate the characteristics of high-frequency devices such as the above-mentioned high-frequency filters and duplexers, these high-frequency devices are mounted on an evaluation mounting board, and whether or not the desired characteristics are obtained is measured. Evaluation is done.
Since the measurement and evaluation must be performed accurately, the coaxial connector is usually used to connect the high-frequency device and the high-frequency device mounting board, or the high-frequency device mounting board and the coaxial cable connected to the measuring instrument. And the high-frequency device mounting substrate need to be firmly and securely joined using solder.

図22に、一般的な高周波デバイス実装基板と、それに接続された高周波デバイス及び同軸コネクタとの概略斜視図を示す。
高周波デバイス実装基板は複数の絶縁体層(図示せず)が積層され内部に接地導体層(図示せず)が形成された回路基板50の表面に、必要な電気回路を導体で形成したものである。
FIG. 22 shows a schematic perspective view of a general high-frequency device mounting substrate, a high-frequency device connected thereto, and a coaxial connector.
The high-frequency device mounting board is a circuit board 50 in which a plurality of insulator layers (not shown) are stacked and a ground conductor layer (not shown) is formed inside, and a necessary electric circuit is formed of a conductor. is there.

この電気回路は、評価したい高周波デバイス41を実装するための端子電極(図示せず)と、測定器に接続されたケーブルと高周波デバイス実装基板とを接続するために取り付ける同軸コネクタを接続するための信号電極23及び接地電極24と、高周波デバイス41の端子電極と信号電極23とを接続する信号線2とによって構成される。
また、回路基板50の絶縁体層を貫通する貫通孔47を設け、貫通孔47の内面にも導体層を設けることにより内部の接地導体層を互いに電気的に接続し、接地電極24の寄生インダクタンスを小さくすることにより接地効果を大きくすることもある。
This electric circuit is for connecting a terminal electrode (not shown) for mounting the high-frequency device 41 to be evaluated, and a coaxial connector attached to connect a cable connected to the measuring instrument and the high-frequency device mounting substrate. The signal electrode 23 and the ground electrode 24, and the signal line 2 that connects the terminal electrode of the high-frequency device 41 and the signal electrode 23 are configured.
Further, a through hole 47 that penetrates the insulator layer of the circuit board 50 is provided, and a conductor layer is also provided on the inner surface of the through hole 47 so that the internal ground conductor layers are electrically connected to each other. The grounding effect may be increased by decreasing the height.

同軸コネクタは通常、信号を伝えるための中心導体44と、これを取り囲み接地される外周導体45と、これらを絶縁する絶縁部材とからなり、中心導体44は高周波デバイス実装基板の信号電極23と接続できるよう、絶縁部材から突出した形状となっており、信号電極23の幅に合わせた太さのものが用いられる。
それぞれの部材を図22のように組み立てるには、まず、回路基板50上に形成された端子電極にクリーム半田を塗布し、その上に端子電極に対応する位置に電極を設けた高周波デバイス41を搭載し、リフローすることにより高周波デバイス実装基板と高周波デバイス41とを接続した後、信号電極23及び接地電極24と、同軸コネクタの中心導体44及び外周導体45とを、それぞれ糸半田及び半田ごてを用いて半田で接続する。
The coaxial connector usually includes a central conductor 44 for transmitting a signal, an outer peripheral conductor 45 surrounding and grounding the central conductor 44, and an insulating member for insulating them. The central conductor 44 is connected to the signal electrode 23 of the high-frequency device mounting substrate. In order to be able to do so, a shape protruding from the insulating member and having a thickness matching the width of the signal electrode 23 is used.
In order to assemble each member as shown in FIG. 22, first, cream solder is applied to the terminal electrode formed on the circuit board 50, and the high-frequency device 41 having the electrode provided at a position corresponding to the terminal electrode is formed thereon. After the high-frequency device mounting substrate and the high-frequency device 41 are connected by mounting and reflowing, the signal electrode 23 and the ground electrode 24, and the central conductor 44 and the outer peripheral conductor 45 of the coaxial connector are respectively connected to the thread solder and the soldering iron. Connect with solder.

そして、同軸コネクタを測定器に接続された同軸ケーブルに接続し、高周波デバイス41の特性を測定する。
また、同軸コネクタを高周波デバイス実装基板から取り外すには、高周波デバイス実装基板を半田が溶融する温度(200℃〜300℃)にまで加熱し、ピンセット等で高周波デバイス41を取り外す必要がある。
特表平11−510666号公報 特表2002−504773号公報
Then, the coaxial connector is connected to the coaxial cable connected to the measuring instrument, and the characteristics of the high frequency device 41 are measured.
In order to remove the coaxial connector from the high-frequency device mounting substrate, it is necessary to heat the high-frequency device mounting substrate to a temperature at which the solder melts (200 ° C. to 300 ° C.) and to remove the high-frequency device 41 with tweezers or the like.
Japanese National Publication No.11-510666 Special Table 2002-504773

現在では、弾性表面波素子を用いたデュプレクサとして、送信用フィルタである例えば低周波数帯域側フィルタおよび受信用フィルタである例えば高周波数帯域側フィルタが一体化された、さらに小型の弾性表面波装置が要求されている。また、フィルタとして低挿入損失であるのはもちろんのこと、帯域外減衰特性に関してもさらに高い減衰特性が要求されている。さらに、送信信号が送信端子から受信端子へ漏れるのを防ぐために高いアイソレーション特性が要求されている。   At present, as a duplexer using a surface acoustic wave element, there is a smaller surface acoustic wave device in which a transmission filter, for example, a low frequency band side filter and a reception filter, for example, a high frequency band side filter are integrated. It is requested. In addition to a low insertion loss as a filter, higher attenuation characteristics are required for out-of-band attenuation characteristics. Furthermore, high isolation characteristics are required to prevent the transmission signal from leaking from the transmission terminal to the reception terminal.

ここで、送信用フィルタおよび受信用フィルタの帯域外減衰特性が劣化した場合には、不要な無線信号を送信したり、または受信したりすることとなり、受信した無線信号の品質が低下したり、他の無線通信装置への妨害等の問題が発生したりする可能性がある。
そこで、以上のような弾性表面波フィルタやデュプレクサ等の高周波デバイスの特性を評価するために、実際にそれら高周波デバイスを搭載する携帯電話等に使用される回路基板において帯域外減衰特性およびアイソレーション特性を満たさなければならないため、それら高周波デバイスを評価用の実装基板に搭載して、所望の特性が得られているかどうかを測定し評価することが行なわれる。そして、そのための高周波デバイス実装基板には、所望の特性の測定・評価に当たって、その実装基板に起因して正しく測定・評価が行えなくなるような影響を与えるものでないことが要求されている。
Here, when the out-of-band attenuation characteristics of the transmission filter and the reception filter are deteriorated, an unnecessary wireless signal is transmitted or received, and the quality of the received wireless signal is reduced, Problems such as interference with other wireless communication devices may occur.
Therefore, in order to evaluate the characteristics of high-frequency devices such as surface acoustic wave filters and duplexers as described above, out-of-band attenuation characteristics and isolation characteristics in circuit boards that are actually used in mobile phones or the like equipped with such high-frequency devices. Therefore, these high frequency devices are mounted on a mounting substrate for evaluation, and it is measured and evaluated whether or not desired characteristics are obtained. The high-frequency device mounting substrate for that purpose is required not to affect the measurement / evaluation of desired characteristics so that the measurement / evaluation cannot be correctly performed due to the mounting substrate.

以上のような要求に対し、従来の比較的大型の弾性表面波装置を高周波デバイス実装基板に実装する場合には、評価対象の装置の端子間が充分に離れていたために例えばアイソレーション特性のうち実装基板に起因する成分は問題にならなかったが、最近の高度に小型化された弾性表面波装置を従来の高周波デバイス実装基板に搭載すると、実装基板上の信号線同士が小型化された弾性表面波装置のサイズに合わせて近接してしまうこととなるため、信号線同士の間に不要な電磁気的な結合が生じ、その影響を受けて帯域外減衰特性およびアイソレーション特性が劣化して測定されてしまうという問題点が生じていた。   In response to the above requirements, when a conventional relatively large surface acoustic wave device is mounted on a high-frequency device mounting substrate, the terminals of the device to be evaluated are sufficiently separated from each other. Components caused by the mounting board did not become a problem, but when a recent highly downsized surface acoustic wave device is mounted on a conventional high-frequency device mounting board, the signal lines on the mounting board are reduced in size. Measurements are performed due to unnecessary electromagnetic coupling between the signal lines due to the close proximity of the surface wave device size, resulting in degradation of out-of-band attenuation and isolation characteristics. The problem of being done has arisen.

本発明は以上のような従来の技術における問題点に鑑みて案出されたものであり、その目的は、高度に小型化されたフィルタについて帯域外減衰特性が正確に測定・評価でき、また高度に小型化されたデュプレクサにおいては送信用フィルタおよび受信用フィルタでそれぞれの帯域外減衰特性を正確に、かつアイソレーション特性も正確に測定し評価することができ、またそれらの特性を良好に発揮させることができる高周波デバイス実装基板を提供することにある。   The present invention has been devised in view of the problems in the prior art as described above, and its purpose is to accurately measure and evaluate the out-of-band attenuation characteristics of a highly miniaturized filter. In a miniaturized duplexer, the transmission filter and the reception filter can accurately measure and evaluate the out-of-band attenuation characteristics and the isolation characteristics accurately, and also exhibit these characteristics well. An object of the present invention is to provide a high-frequency device mounting substrate that can be used.

また、近年、高周波デバイスの小型化・軽量化が進められており、それに伴いデバイス自体の熱容量が小さくなるため、耐熱性が劣化してしまうという問題があることから、前述のように同軸コネクタを取り付け、取り外す必要があるときには、従来の作業時間に比べてより短時間の加熱時間で取り付け、取り外しを完了したいという要求がある。
さらに、前記のように測定・評価を行う場合のみならず、高周波デバイス実装基板を基地局や端末などの通信機器に搭載して、実運用する場合でも、高周波デバイス実装基板と他の回路部品とを接続するための同軸コネクタと高周波デバイス実装基板との間は、半田を用いて強固に接続することが要求されている。接続が弱いと、導電性の確実性が失われ、高周波デバイスの動作の信頼度が低下してしまう。
Also, in recent years, high-frequency devices have been reduced in size and weight, and as a result, the heat capacity of the device itself is reduced, and there is a problem that heat resistance deteriorates. When it is necessary to attach and detach, there is a demand to complete the attachment and detachment with a heating time shorter than the conventional work time.
Furthermore, not only when performing measurement / evaluation as described above, but also when mounting a high-frequency device mounting board in a communication device such as a base station or a terminal and actually operating it, the high-frequency device mounting board and other circuit components It is required that the coaxial connector for connecting the connector and the high-frequency device mounting substrate be firmly connected using solder. If the connection is weak, the certainty of conductivity is lost, and the reliability of the operation of the high-frequency device is lowered.

そこで本発明の他の目的は、同軸コネクタとの強固な接続を確保することができ、かつ取り外すときには、簡単に同軸コネクタを取り外すことができる高周波デバイス実装基板を提供することにある。
本発明のさらに他の目的は、前記高周波デバイス実装基板に実装された高周波デバイスの特性を、高い信頼度で評価することのできる高周波デバイスの特性評価方法を提供することにある。
Accordingly, another object of the present invention is to provide a high-frequency device mounting substrate that can ensure a strong connection with a coaxial connector and that can be easily removed when removed.
Still another object of the present invention is to provide a method for evaluating the characteristics of a high-frequency device that can evaluate the characteristics of the high-frequency device mounted on the high-frequency device mounting substrate with high reliability.

本発明の高周波デバイス実装基板は、絶縁体層の裏面又は内部に導体層を有する回路基板と、前記回路基板の表面に設置された、高周波デバイスを搭載するための複数の端子電極と、前記回路基板に設置され、前記端子電極につながる複数の信号線とを備え、前記信号線は、前記端子電極から放射状に延び、任意の1本の信号線を前記端子電極から仮想的に延長した直線と、他の任意の1本の信号線を前記端子電極から仮想的に延長した直線とが、同一直線を構成しないことを特徴とするものである。   The high-frequency device mounting substrate of the present invention includes a circuit board having a conductor layer on the back surface or inside of an insulator layer, a plurality of terminal electrodes installed on the surface of the circuit board for mounting a high-frequency device, and the circuit A plurality of signal lines installed on a substrate and connected to the terminal electrodes, the signal lines extending radially from the terminal electrodes, and a straight line virtually extending any one signal line from the terminal electrodes; The straight line obtained by virtually extending another arbitrary signal line from the terminal electrode does not constitute the same straight line.

前記2つの延長線は、1点で交わる場合と、互いに平行である場合とがある。
前記端子電極は前記回路基板の任意の位置に配置されていてもよい。例えば中央部に配置されていてもよい。
この高周波デバイス実装基板によれば、前記端子電極から前記信号線が放射状に延びていることにより、隣接する信号線間において、信号線同士の近接する部分を短くすることが可能となり、信号線間の電磁気的結合を低減させることができる。また、信号線同士の方向がずれているため、信号線を直線的に伝搬してきた信号が他の信号線に伝搬しにくくなるという利点がある。一般にマイクロストリップラインの伝送モードである準TEM波においては、2本の信号線の延長方向が同一直線を構成する場合、当該信号線間で信号が最も伝搬しやすいが、本発明のように、放射状に伸びている信号線が、端子電極を間に挟んで互いに対向していない構成とした場合、相互の信号線間での電磁気的な干渉を減少させて不要な伝搬を抑えることができる。
The two extension lines may intersect at one point or may be parallel to each other.
The terminal electrode may be disposed at an arbitrary position on the circuit board. For example, you may arrange | position in the center part.
According to this high-frequency device mounting substrate, the signal lines extending radially from the terminal electrodes can shorten the adjacent portions of the signal lines between adjacent signal lines. Can be reduced. Further, since the directions of the signal lines are deviated, there is an advantage that a signal that has propagated linearly through the signal line is difficult to propagate to other signal lines. In general, in a quasi-TEM wave that is a transmission mode of a microstrip line, when the extending directions of two signal lines constitute the same straight line, a signal is most easily propagated between the signal lines. In the case where the radially extending signal lines are not opposed to each other with the terminal electrode interposed therebetween, electromagnetic interference between the signal lines can be reduced, and unnecessary propagation can be suppressed.

よって、本発明は、高周波デバイスとして高周波フィルタあるいはデュプレクサを用いた場合に、それらの帯域外減衰特性やアイソレーション特性を良好に発揮させることができる。
前記回路基板の表面の、前記信号線の両側に接地導体層が設置され、前記信号線と前記接地導体層との間隔Wが、前記信号線と前記絶縁体層の裏面又は内部に形成された前記導体層との間隔tよりも大きいことが好ましい。
Therefore, when the high frequency filter or duplexer is used as the high frequency device, the present invention can satisfactorily exhibit the out-of-band attenuation characteristics and the isolation characteristics.
A ground conductor layer is provided on both sides of the signal line on the surface of the circuit board, and a gap W between the signal line and the ground conductor layer is formed on the back surface or inside of the signal line and the insulator layer. It is preferable that it is larger than the space | interval t with the said conductor layer.

信号線と接地導体層との間は空気と空気より誘電率が高い誘電体とで半々に満たされているのに対し、信号線と導体層との間は空気より誘電率が高い誘電体で満たされている。このため信号線と導体層との間に電界が集中しやすい。
そこで、信号線と導体層との間隔を、信号線と接地導体層との間隔より狭くすることにより、信号線の周りに発生する電磁界を、特に信号線と対向する裏面の導体層との間の絶縁体層の中に閉じ込めることができる。
The space between the signal line and the ground conductor layer is half-filled with air and a dielectric with a higher dielectric constant than air, whereas the gap between the signal line and the conductor layer is a dielectric with a higher dielectric constant than air. be satisfied. For this reason, the electric field tends to concentrate between the signal line and the conductor layer.
Therefore, by making the distance between the signal line and the conductor layer narrower than the distance between the signal line and the ground conductor layer, the electromagnetic field generated around the signal line is reduced with the conductor layer on the back surface facing the signal line in particular. It can be confined in the insulating layer between.

したがって、実装基板の表面に設置された信号線同士の空気中での電磁気的干渉を減らすことができ、高周波デバイスとして高周波フィルタあるいはデュプレクサを用いた場合にそれらの帯域外減衰量やアイソレーション特性の測定への影響や発揮への障害をさらに改善することができる。
前記回路基板を貫通し、前記絶縁体層の裏面又は内部に形成された前記導体層と電気的に接続される複数の貫通導体が形成されている場合には、貫通導体と裏面又は内部の導体層を介して、信号線の両側に配置された接地導体層が電気的に接続されるので、接地導体層間で電位差をなくすことができる。よって、回路基板の表面における接地導体層の接地電位を安定させることができ、接地導体層を介した信号線同士の干渉を減らすことができるので、高周波デバイスとして高周波フィルタあるいはデュプレクサを用いた場合にそれらの帯域外減衰特性やアイソレーション特性をさらに良好に測定・評価することができ、あるいは特性を発揮させることができる。
Therefore, electromagnetic interference in the air between the signal lines installed on the surface of the mounting board can be reduced, and when a high frequency filter or duplexer is used as a high frequency device, their out-of-band attenuation and isolation characteristics are reduced. The influence on the measurement and the obstacle to the performance can be further improved.
When a plurality of through conductors that penetrate the circuit board and are electrically connected to the conductor layer formed on the back surface or inside of the insulator layer are formed, the through conductor and the back surface or internal conductor Since the ground conductor layers disposed on both sides of the signal line are electrically connected via the layers, a potential difference can be eliminated between the ground conductor layers. Therefore, since the ground potential of the ground conductor layer on the surface of the circuit board can be stabilized and interference between signal lines through the ground conductor layer can be reduced, when a high frequency filter or duplexer is used as a high frequency device. These out-of-band attenuation characteristics and isolation characteristics can be measured and evaluated more satisfactorily, or the characteristics can be exhibited.

また、高周波デバイスが圧電体フィルタであるときには、圧電体フィルタの入力端子と出力端子とから延びる信号線を前述のように構成することで、圧電体フィルタの帯域外減衰特性に対する影響を従来の高周波デバイス実装基板に比べて改善することができる。しかも、高度に小型化された圧電体フィルタを用いても、優れた帯域外減衰特性を維持することができる。   In addition, when the high frequency device is a piezoelectric filter, the signal line extending from the input terminal and the output terminal of the piezoelectric filter is configured as described above, so that the influence on the out-of-band attenuation characteristic of the piezoelectric filter is affected. This can be improved compared to the device mounting board. Moreover, excellent out-of-band attenuation characteristics can be maintained even when a highly miniaturized piezoelectric filter is used.

また、高周波デバイスが圧電体フィルタを用いた分波器であるときには、分波器の送信用端子とアンテナ端子と受信用端子とから延びる信号線同士での電磁気的な結合を抑えることができるので、分波器の送信用高周波フィルタ及び受信用高周波フィルタそれぞれでの帯域外減衰特性が優れており、かつ高いアイソレーション特性を得られる実装基板を実現することができる。しかも、高度に小型化された分波器を用いても優れた帯域外減衰特性とアイソレーション特性を維持することができる。   In addition, when the high frequency device is a duplexer using a piezoelectric filter, electromagnetic coupling between signal lines extending from the transmission terminal, the antenna terminal, and the reception terminal of the duplexer can be suppressed. In addition, it is possible to realize a mounting substrate that has excellent out-of-band attenuation characteristics in each of the transmission high-frequency filter and the reception high-frequency filter of the duplexer and that can obtain high isolation characteristics. Moreover, excellent out-of-band attenuation characteristics and isolation characteristics can be maintained even when a highly miniaturized duplexer is used.

なお、本発明の高周波デバイス実装基板に高周波デバイスとして搭載される圧電体フィルタ及びこれを用いた分波器は、弾性表面波を用いた素子であっても、バルク波を用いたいわゆるFBAR(Film Balk Acoustic Resonator)を用いた素子等であっても構わない。本発明の効果は小型化されたすべての高周波フィルタ及び分波器について有効である。
また、本発明の高周波デバイス実装基板は、実際に移動体通信機器等に用いられる回路基板や通信機器のRF部を一体化し小型化するためのモジュール基板等の回路モジュールを構成するのにも好適に使用することができる。
Note that the piezoelectric filter mounted on the high-frequency device mounting substrate of the present invention and the duplexer using the same are so-called FBAR (Film) using bulk waves even if they are elements using surface acoustic waves. An element using a Balk Acoustic Resonator may be used. The effect of the present invention is effective for all miniaturized high frequency filters and duplexers.
The high-frequency device mounting substrate of the present invention is also suitable for configuring a circuit module such as a circuit substrate that is actually used in mobile communication devices or the like, or a module substrate for integrating and reducing the RF part of communication devices. Can be used for

さらに、後に説明するように本発明の高周波デバイス実装基板は、高周波デバイスの測定・評価用にも好適に使用することができる。
次に、本発明の高周波デバイス実装基板は、上記構成に加えて以下のような構成(以下、構成Aと称する)を備えるようにしてもよい。
すなわち、絶縁体層の裏面又は内部に導体層を有する回路基板と、前記回路基板の表面に設置された、高周波デバイスを搭載するための端子電極と、前記回路基板の表面に設置され、前記端子電極につながる信号線と、前記回路基板の表面の周辺部に配置され、前記信号線につながり、同軸コネクタの中心導体が接続される信号電極と、前記回路基板の表面の周辺部に配置され、前記同軸コネクタの外周導体を、半田を用いて接続するための接地電極とを備え、前記接地電極には、前記半田が付着する領域に、前記回路基板を貫通する貫通孔が形成されており、該貫通孔の内面には導体層が被着されている。
Furthermore, as will be described later, the high-frequency device mounting substrate of the present invention can be suitably used for measurement and evaluation of high-frequency devices.
Next, the high-frequency device mounting substrate of the present invention may have the following configuration (hereinafter referred to as configuration A) in addition to the above configuration.
That is, a circuit board having a conductor layer on the back surface or inside of the insulator layer, a terminal electrode for mounting a high-frequency device installed on the surface of the circuit board, the terminal installed on the surface of the circuit board, and the terminal A signal line connected to an electrode, and disposed at a peripheral portion of the surface of the circuit board; a signal electrode connected to the signal line and connected to a central conductor of a coaxial connector; and disposed at a peripheral portion of the surface of the circuit board; A ground electrode for connecting the outer peripheral conductor of the coaxial connector using solder, and in the ground electrode, a through hole penetrating the circuit board is formed in a region to which the solder adheres, A conductor layer is deposited on the inner surface of the through hole.

この高周波デバイス実装基板によれば、同軸コネクタの外周導体を、半田を用いて取り付ける際に、貫通孔内に半田が流入する。これによって、同軸コネクタの外周導体を、回路基板の接地電極に対して強固に接合することができる。
また、従来の図22のように回路基板50の高周波デバイス41に近い部分に貫通孔47を設けるよりも、より寄生インダクタンスが小さい状態で、内部の接地導体層を測定器の接地電位と接続することができるため、より正確に高周波デバイスの特性を測定することができる。
According to this high-frequency device mounting substrate, when the outer peripheral conductor of the coaxial connector is attached using solder, the solder flows into the through hole. As a result, the outer peripheral conductor of the coaxial connector can be firmly joined to the ground electrode of the circuit board.
Further, the internal ground conductor layer is connected to the ground potential of the measuring instrument in a state where the parasitic inductance is smaller than in the case where the through hole 47 is provided in the portion of the circuit board 50 close to the high frequency device 41 as in the conventional FIG. Therefore, the characteristics of the high frequency device can be measured more accurately.

なお、以上説明したような本発明の高周波デバイス実装基板における同軸コネクタを高周波デバイス実装基板に取り付ける際の効果は、同軸コネクタと高周波デバイス実装基板とを一時的に接続し、測定後に同軸コネクタを取り外す場合はもちろんのこと、恒久的な接続を必要とするいわゆるメインボードと、このメインボードと外部回路とを接続するコネクタとを接続する際にも有効である。   The effect of attaching the coaxial connector in the high-frequency device mounting substrate of the present invention as described above to the high-frequency device mounting substrate is that the coaxial connector and the high-frequency device mounting substrate are temporarily connected, and the coaxial connector is removed after the measurement. Of course, this is also effective when connecting a so-called main board that requires a permanent connection and a connector that connects the main board and an external circuit.

また、後に説明するように、同軸コネクタを高周波デバイス実装基板から取り外す際においても、恒久的な接続を必要とするそのメインボードとコネクタとの接続において、リペアが必要なときに有効である。
前記回路基板は、複数の絶縁体層が積層された積層基板であり、その内部に内部導体層が形成され、前記貫通孔の内面に形成された導体層は、前記内部導体層に接続されていてもよい。
Further, as will be described later, when removing the coaxial connector from the high-frequency device mounting substrate, it is effective when repair is necessary in the connection between the main board and the connector that require permanent connection.
The circuit board is a laminated board in which a plurality of insulator layers are laminated, an internal conductor layer is formed therein, and the conductor layer formed on the inner surface of the through hole is connected to the internal conductor layer. May be.

また、前記回路基板の裏面の前記接地電極と対応する部位に第2の接地電極が形成されており、該第2の接地電極は、前記貫通孔の内面に形成された前記導体層を介して前記接地電極に接続されていることが好ましい。
この構造では、半田が貫通孔を通って第2の接地電極まで連続に存在するため、同軸コネクタをより強固に接続することができる。それとともに、半田接続する際に、貫通孔内の半田を介して半田ごての熱が片方の面(例えば表面)に存在する半田からもう片方の面(例えば裏面)に存在する半田へと速やかに伝搬するため、両面の半田を同時に溶融することができ、このため、貫通孔を介して両面の半田量が均等化される。
Further, a second ground electrode is formed at a portion corresponding to the ground electrode on the back surface of the circuit board, and the second ground electrode is interposed through the conductor layer formed on the inner surface of the through hole. It is preferable to be connected to the ground electrode.
In this structure, since the solder continuously exists through the through hole to the second ground electrode, the coaxial connector can be connected more firmly. At the same time, when soldering, the heat of the soldering iron quickly passes from the solder existing on one surface (for example, the front surface) to the solder existing on the other surface (for example, the back surface) through the solder in the through hole. Therefore, the solder on both sides can be melted at the same time, and the amount of solder on both sides is equalized through the through holes.

また、同軸コネクタを取り外す際も同様に両面の半田を同時に溶融することができるため、短時間で容易に取り外し作業を完了することができる。従って、搭載された高周波デバイスをその特性を劣化させることなく取り外すことができる。また、同軸コネクタや高周波デバイス実装基板に熱によるダメージを与えることなくこれらを再利用するこができる。   Also, when removing the coaxial connector, the solder on both sides can be melted at the same time, so that the removal operation can be completed easily in a short time. Therefore, the mounted high frequency device can be removed without deteriorating its characteristics. Further, they can be reused without damaging the coaxial connector or the high-frequency device mounting substrate by heat.

前記貫通孔が、前記接地電極の、前記回路基板の外周に沿った部位に複数配置されている場合は、半田によって接続される同軸コネクタの外周導体−貫通孔内の導体層−内層導体という電気的経路を最も短くすることができるので、貫通孔内の導体層に起因する寄生インダクタンスを最も小さくすることができる。
前記貫通孔は、前記接地電極の前記信号線と反対側の部位に、前記回路基板の外周から中央部に向かってさらに配置されている場合は、次のような効果がある。
In the case where a plurality of the through holes are arranged in a portion of the ground electrode along the outer periphery of the circuit board, the electrical connection of the outer peripheral conductor of the coaxial connector to be connected by solder-the conductor layer in the through hole-the inner layer conductor Since the target path can be made the shortest, the parasitic inductance caused by the conductor layer in the through hole can be made the smallest.
When the through hole is further arranged at a portion of the ground electrode opposite to the signal line from the outer periphery of the circuit board toward the central portion, the following effects are obtained.

従来の高周波デバイス実装基板では同軸コネクタの接続に際して強固な接合とするために半田量を多くすると、接近して配置されている信号電極と接地電極とが半田を介して短絡する場合があったが、本発明の高周波デバイス実装基板によれば、前記貫通孔が、前記接地電極の前記信号線と反対側の部位に前記回路基板の外周から中央部に向かってさらに配置されているときには、同軸コネクタを接合する際に、表面の接地電極に対する余分な半田がそのさらに配置された貫通孔を通して裏面の第2の接地電極に流動するため、半田の形状がやや接地電極の信号線と反対側寄りとなる。このため、使用される半田を信号電極側に流れ難くすることができるので、信号電極と接地電極とが半田を介して短絡するのを有効に防止することができる。   In conventional high-frequency device mounting boards, if the amount of solder is increased in order to achieve a strong joint when connecting the coaxial connector, the signal electrode and the ground electrode that are placed close to each other may be short-circuited via the solder. According to the high-frequency device mounting substrate of the present invention, when the through hole is further arranged from the outer periphery of the circuit board toward the central portion at a portion opposite to the signal line of the ground electrode, When soldering, the excessive solder with respect to the ground electrode on the front surface flows to the second ground electrode on the back surface through the further disposed through hole, so that the shape of the solder is slightly opposite to the signal line of the ground electrode. Become. For this reason, it is possible to make it difficult for the solder to be used to flow to the signal electrode side, so that it is possible to effectively prevent the signal electrode and the ground electrode from being short-circuited via the solder.

また、前記接地電極に、前記回路基板の表面に前記信号線に沿って形成された表面接地導体層が接続されている場合は、表面接地導体層を寄生インダクタンスが最も小さい状態で測定器の接地電極と接続することができるので、高周波デバイスの信号端子のうち、接地される電極の電位をより測定器の接地電位に近づけることができる。
本発明の高周波デバイスの特性評価方法は、高周波デバイスを、前記端子電極から信号線が放射状に延びている高周波デバイス実装基板に実装し、前記高周波デバイス実装基板に測定用配線を接続し、前記高周波デバイス実装基板に実装された前記高周波デバイスの特性検査を行う方法である。この方法では、高周波デバイス実装基板の端子電極から信号線が放射状に延びているので、信号線間の電磁気的結合が少なくなり、前記高周波デバイスの特性を正確に測定することができる。
When the surface ground conductor layer formed along the signal line is connected to the surface of the circuit board to the ground electrode, the surface ground conductor layer is grounded with the smallest parasitic inductance. Since it can be connected to an electrode, the potential of the grounded electrode among the signal terminals of the high-frequency device can be made closer to the ground potential of the measuring instrument.
In the method for evaluating characteristics of a high-frequency device according to the present invention, the high-frequency device is mounted on a high-frequency device mounting substrate in which signal lines extend radially from the terminal electrodes, and a measurement wiring is connected to the high-frequency device mounting substrate. This is a method for inspecting characteristics of the high-frequency device mounted on a device mounting board. In this method, since the signal lines extend radially from the terminal electrodes of the high-frequency device mounting substrate, the electromagnetic coupling between the signal lines is reduced, and the characteristics of the high-frequency device can be accurately measured.

なお、本発明の高周波デバイスの特性評価方法は、高周波デバイス実装基板として、構成Aを備えたものを用いた場合、前記高周波デバイス実装基板に同軸コネクタを確実に接続して、高周波デバイスの特性評価を行うことができるとともに、高周波デバイスを取り外すときも、簡単に取り外すことができる。   In the method for evaluating the characteristics of the high-frequency device according to the present invention, when a high-frequency device mounting substrate having the configuration A is used, a coaxial connector is securely connected to the high-frequency device mounting substrate, and the characteristics evaluation of the high-frequency device is performed. In addition, it is possible to easily remove the high-frequency device.

以下、本発明の実施の形態を、添付図面を参照しながら詳細に説明する。なお、以下に説明する図面においては、同一部品および同一部分には同じ符号を付すものとする。
図1及び図2に本発明の高周波デバイス実装基板の一例を示す。図1は、高周波デバイス実装基板1に、高周波デバイスとしてのデュプレクサ3を搭載した状態を示す平面図である。図2は、デュプレクサ3を搭載しない高周波デバイス実装基板1のみを示す平面図である。
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the drawings described below, the same parts and the same parts are denoted by the same reference numerals.
1 and 2 show an example of the high-frequency device mounting substrate of the present invention. FIG. 1 is a plan view showing a state in which a duplexer 3 as a high frequency device is mounted on a high frequency device mounting substrate 1. FIG. 2 is a plan view showing only the high-frequency device mounting substrate 1 on which the duplexer 3 is not mounted.

高周波デバイス実装基板1は、絶縁体層7を含む回路基板で構成されている。絶縁体層7の表面にデュプレクサ3が搭載される。デュプレクサ3は、少なくとも送信用高周波フィルタと受信用高周波フィルタと(いずれも図示せず)を含んでいる。
回路基板の絶縁体層7の表面には、デュプレクサ3の電極配置に対応して、デュプレクサ3に接続されるための複数の端子電極9が設置されている。
The high-frequency device mounting substrate 1 is composed of a circuit board including an insulator layer 7. The duplexer 3 is mounted on the surface of the insulator layer 7. The duplexer 3 includes at least a transmission high-frequency filter and a reception high-frequency filter (both not shown).
A plurality of terminal electrodes 9 to be connected to the duplexer 3 are installed on the surface of the insulator layer 7 of the circuit board corresponding to the electrode arrangement of the duplexer 3.

また、回路基板の絶縁体層7の表面には、表面接地導体層4と、複数の信号線2a〜2c(総称するときは「信号線2」という)とが設置されている。
各信号線2は、所定の端子電極9に接続され、端子電極9から放射状に延びている。
表面接地導体層4は、他の所定の端子電極9に接続されている。
このように、端子電極9には、各信号線2に接続されるものと、表面接地導体層4に接続されるものとがある。
A surface ground conductor layer 4 and a plurality of signal lines 2 a to 2 c (collectively referred to as “signal lines 2”) are provided on the surface of the insulator layer 7 of the circuit board.
Each signal line 2 is connected to a predetermined terminal electrode 9 and extends radially from the terminal electrode 9.
The surface ground conductor layer 4 is connected to another predetermined terminal electrode 9.
Thus, the terminal electrode 9 includes one connected to each signal line 2 and one connected to the surface ground conductor layer 4.

絶縁体層7の裏面は、裏面導体層6(図3参照)で覆われている。
また、図1及び図2に示すように、接地導体層4は、それぞれ放射状に延びている信号線2に対して、その両側に配置されている。それら表面接地導体層4は、絶縁体層7の表面で信号線2の両側に、ギャップWを設けて設置されている。このギャップWは、信号線2と裏面導体層6との間隔t(図3参照)よりも広くされている。
The back surface of the insulator layer 7 is covered with a back conductor layer 6 (see FIG. 3).
As shown in FIGS. 1 and 2, the ground conductor layers 4 are disposed on both sides of the signal lines 2 that extend radially. These surface ground conductor layers 4 are installed on both surfaces of the signal line 2 on the surface of the insulator layer 7 with gaps W provided. This gap W is made wider than the interval t (see FIG. 3) between the signal line 2 and the back conductor layer 6.

5は貫通導体であり、表面接地導体層4の信号線2に近い辺に沿って複数配置されている。これらの貫通導体5は、表面接地導体層4と絶縁体層7の裏面導体層6とを接続するためのものである。このような貫通導体5は、絶縁体層7に設けた貫通孔の内壁に導体が被着形成された、いわゆるスルーホール導体でもよく、貫通孔の内部が導体で充填された、いわゆるビア導体でもよい。   A plurality of through conductors 5 are arranged along the side of the surface ground conductor layer 4 close to the signal line 2. These through conductors 5 are for connecting the surface ground conductor layer 4 and the back conductor layer 6 of the insulator layer 7. Such a through conductor 5 may be a so-called through-hole conductor in which a conductor is deposited on the inner wall of a through-hole provided in the insulator layer 7, or a so-called via conductor in which the inside of the through-hole is filled with a conductor. Good.

図3は、図1のA−A′線で切断した要部断面図である。
図3に示すように、絶縁体層7の裏面導体層6は、貫通導体5によって絶縁体層7の表面の表面接地導体層4と電気的に接続されている。裏面導体層6は、信号線2を外部の測定装置等と接続するための高周波デバイス実装基板1の端面のコネクタ取付部において、コネクタの接地用外周導体と半田で接続されることにより接地され、これによって表面接地導体層4の接地電位が安定するものとなる。
FIG. 3 is a cross-sectional view of the main part taken along the line AA ′ of FIG.
As shown in FIG. 3, the back conductor layer 6 of the insulator layer 7 is electrically connected to the surface ground conductor layer 4 on the surface of the insulator layer 7 by the through conductor 5. The back conductor layer 6 is grounded by being connected to the grounding outer conductor of the connector with solder at the connector mounting portion on the end face of the high-frequency device mounting substrate 1 for connecting the signal line 2 to an external measuring device or the like, As a result, the ground potential of the surface ground conductor layer 4 is stabilized.

図1〜図3に示した実施形態においては、端子電極9は、図2に示すように、絶縁体層(回路基板)7の中央部に配置され、これら端子電極9から信号線2が放射状に延びていることから、信号線2同士の近接する部分の長さを短くすることができるので、信号線同士の電磁気的干渉を減らすことができるものとなる。
特に、図1及び図2に示すように、放射状に延びている信号線2同士が端子電極9を間に挟んで配設されている。すなわち、端子電極9が放射状に延びた信号線2を終端するように配設されている。それとともに、任意の1本の信号線2を端子電極9から仮想的に延長した直線と、他の任意の1本の信号線2を他の端子電極9から仮想的に延長した直線とが、同一直線を構成しないものとしている。
In the embodiment shown in FIGS. 1 to 3, the terminal electrode 9 is arranged at the center of the insulator layer (circuit board) 7 as shown in FIG. 2, and the signal line 2 is radiated from the terminal electrode 9. Since the length of the adjacent portion between the signal lines 2 can be shortened, electromagnetic interference between the signal lines can be reduced.
In particular, as shown in FIGS. 1 and 2, the radially extending signal lines 2 are arranged with the terminal electrode 9 therebetween. That is, the terminal electrode 9 is disposed so as to terminate the radially extending signal line 2. At the same time, a straight line virtually extending one arbitrary signal line 2 from the terminal electrode 9 and a straight line virtually extending another arbitrary signal line 2 from the other terminal electrode 9 are: The same straight line is not configured.

このため、信号線を直線的に伝搬してきた信号が他の信号線に結合しにくくなるので、信号線同士の電磁気的干渉を抑えることができ、それによって、優れた帯域外減衰特性及びアイソレーション特性を維持することができるものとなる。
また、信号線2の両側に表面接地導体層4を設置しているが、信号線2と表面接地導体層4との間が空気と誘電体(例えば、ガラスエポキシ樹脂;比誘電率4.7)とで満たされているのに対して、信号線2と裏面導体層6との間が誘電体ですべて満たされている。このため、信号線2と裏面導体層6との間に電界が集中しやすくなる。
For this reason, since the signal propagating linearly through the signal line is less likely to be coupled to other signal lines, it is possible to suppress electromagnetic interference between the signal lines, thereby providing excellent out-of-band attenuation characteristics and isolation. The characteristics can be maintained.
Further, although the surface ground conductor layer 4 is provided on both sides of the signal line 2, air and a dielectric (for example, glass epoxy resin; relative dielectric constant 4.7) are formed between the signal line 2 and the surface ground conductor layer 4. In contrast, the space between the signal line 2 and the back conductor layer 6 is all filled with a dielectric. For this reason, the electric field tends to concentrate between the signal line 2 and the back conductor layer 6.

特に、信号線2と表面接地導体層4とのギャップWを信号線2と裏面導体層6との距離tより広くする事によって、前記電界が集中はさらに顕著になる。
よって、信号線の周りに発生する電磁界分布が広がるのを抑えることができるため、信号が空気中に漏れて隣接する信号線2に干渉を与えにくくなる。したがって、隣接する信号線2同士の干渉を良好に抑えることができ、優れた帯域外減衰特性及びアイソレーション特性を維持することができるものとなる。
In particular, when the gap W between the signal line 2 and the surface ground conductor layer 4 is made wider than the distance t between the signal line 2 and the back conductor layer 6, the concentration of the electric field becomes more remarkable.
Therefore, since it is possible to suppress the spread of the electromagnetic field distribution generated around the signal line, it is difficult for the signal to leak into the air and interfere with the adjacent signal line 2. Therefore, interference between adjacent signal lines 2 can be satisfactorily suppressed, and excellent out-of-band attenuation characteristics and isolation characteristics can be maintained.

具体的には、800MHz帯のデュプレクサ3を、厚みt=0.1mmの絶縁体層7に、幅0.13mmの信号線2を配置し、信号線2との間にW=1mmのギャップを持って表面接地導体層4を設けた高周波デバイス実装基板1に、前記デュプレクサ3を実装して特性を評価すると、送信帯域のアイソレーション特性が−70dBとなる。絶縁体層7の厚みt及び信号線2と表面接地導体層4とのギャップWとの比が1:1のとき、−60dBとなる。これらを比べると、絶縁体層7の厚みtと信号線2及び表面接地導体層4のギャップWとの比を1:10にすることにより、アイソレーション特性が10dBほど改善される。   Specifically, an 800 MHz band duplexer 3 is arranged with a signal line 2 having a width of 0.13 mm on an insulator layer 7 having a thickness t = 0.1 mm, and a gap of W = 1 mm between the signal line 2 and the signal line 2. When the duplexer 3 is mounted on the high-frequency device mounting substrate 1 provided with the surface ground conductor layer 4 and the characteristics are evaluated, the isolation characteristic of the transmission band becomes −70 dB. When the ratio of the thickness t of the insulating layer 7 and the gap W between the signal line 2 and the surface ground conductor layer 4 is 1: 1, it becomes −60 dB. When these are compared, the isolation characteristic is improved by about 10 dB by setting the ratio of the thickness t of the insulator layer 7 to the gap W between the signal line 2 and the surface ground conductor layer 4 to 1:10.

また、信号線2の両側に配置された接地導体層4に、裏面導体層6と電気的に接続された複数の貫通導体5が接続されているので、表面接地導体層4同士が、貫通導体5と裏面導体層6とを介して、電気的に接続されることになる。よって、信号線2の両側の表面接地導体層4が同電位となり表面接地導体層4間で電位差をなくすことができ、表面接地導体層4の接地電位を安定させることができる。したがって、表面接地導体層4を介した信号線2同士の干渉を減らすことができ、高周波デバイス3の特性を良好にすることができるものとなる。   Further, since the plurality of through conductors 5 electrically connected to the back surface conductor layer 6 are connected to the ground conductor layer 4 disposed on both sides of the signal line 2, the front surface ground conductor layers 4 are connected to each other through the through conductors. 5 and the back conductor layer 6 are electrically connected. Therefore, the surface ground conductor layers 4 on both sides of the signal line 2 have the same potential, and a potential difference between the surface ground conductor layers 4 can be eliminated, and the ground potential of the surface ground conductor layer 4 can be stabilized. Therefore, interference between the signal lines 2 via the surface ground conductor layer 4 can be reduced, and the characteristics of the high-frequency device 3 can be improved.

具体的には、表面接地導体層4の信号線側の辺に沿って、貫通導体5として直径0.3mmのビア導体を0.7mm間隔で配置することにより、貫通導体5がない場合に比べてアイソレーション特性を約5dB改善することができる。
以上のような高周波デバイス実装基板1によれば、高周波デバイス3がデュプレクサであるときには、デュプレクサ3の送信用高周波フィルタ及び受信用高周波フィルタの帯域外減衰特性及びアイソレーション特性を劣化させることなく所望の特性を得ることできる。
Specifically, by arranging via conductors having a diameter of 0.3 mm as the through conductors 5 at intervals of 0.7 mm along the side of the surface ground conductor layer 4 on the signal line side, the via conductors 5 are more isolated than the case without the through conductors 5. About 5 dB.
According to the high-frequency device mounting substrate 1 as described above, when the high-frequency device 3 is a duplexer, it can be obtained without deteriorating out-of-band attenuation characteristics and isolation characteristics of the transmission high-frequency filter and the reception high-frequency filter of the duplexer 3. You can get the characteristics.

したがって、高周波モジュールとして用いれば、デュプレクサ3等の高周波デバイスの特性を所望通りに発揮させて高周波デバイス実装基板としての機能を改善することができる。
また、高周波デバイス3が圧電体フィルタであるときには、表面接地導体層4の接地電位が安定することにより、表面接地導体層4を介した信号線2同士の干渉を減らすことができるので、帯域外減衰特性を良好に維持することできる。
Therefore, when used as a high-frequency module, the function of the high-frequency device mounting substrate can be improved by exhibiting the characteristics of the high-frequency device such as the duplexer 3 as desired.
Further, when the high-frequency device 3 is a piezoelectric filter, the ground potential of the surface ground conductor layer 4 is stabilized, whereby interference between the signal lines 2 via the surface ground conductor layer 4 can be reduced. The attenuation characteristic can be maintained well.

なお、信号線2の本数や設置角度は、図1,図2に示されたものに限られない。
図1,図2では、信号線2を3本等角度で配置していたが、例えば図4に示すように、信号線2を4本放射状に配置してもよい。信号線2同士の角度も等角度とする必要はかならずしもない。
この図4の場合、任意の1本の信号線2を端子電極9から仮想的に延長した直線と、他の任意の1本の信号線2を端子電極9から仮想的に延長した直線とは、1点で交差している。
The number of signal lines 2 and the installation angle are not limited to those shown in FIGS.
In FIG. 1 and FIG. 2, three signal lines 2 are arranged at an equal angle. However, for example, as shown in FIG. 4, four signal lines 2 may be arranged radially. The angle between the signal lines 2 is not necessarily equal.
In the case of FIG. 4, a straight line obtained by virtually extending one arbitrary signal line 2 from the terminal electrode 9 and a straight line obtained by virtually extending another arbitrary signal line 2 from the terminal electrode 9 Cross at one point.

また、図5に示すように、信号線2を放射状に、かつ平行に配置してもよい。この場合、任意の1本の信号線2を端子電極9から仮想的に延長した直線と、他の任意の1本の信号線2を端子電極9から仮想的に延長した直線とは、互いに平行になっている。
前記図4、図5の場合であっても、図1、図2の構成と同様、信号線を直線的に伝搬してきた信号が他の信号線に結合しにくくなるので、信号線同士の電磁気的干渉を抑えることができ、それによって、優れた帯域外減衰特性及びアイソレーション特性を維持することができるものとなる。
Further, as shown in FIG. 5, the signal lines 2 may be arranged radially and in parallel. In this case, a straight line obtained by virtually extending any one signal line 2 from the terminal electrode 9 and a straight line obtained by virtually extending another arbitrary signal line 2 from the terminal electrode 9 are parallel to each other. It has become.
Even in the case of FIG. 4 and FIG. 5, similarly to the configuration of FIG. 1 and FIG. 2, the signal that has propagated linearly through the signal line becomes difficult to be coupled to other signal lines. Interference can be suppressed, whereby excellent out-of-band attenuation characteristics and isolation characteristics can be maintained.

図6に本発明の高周波デバイス実装基板の他の構造例を要部断面図で示す。また、比較例として高周波デバイス実装基板の構造を図7に同様の要部断面図で示す。
これらの高周波デバイス実装基板の平面形状は、図1及び図2と同様であるので、平面図を省略している。
図6は、図1のB−B′線で切断した要部断面図であり、図7も同様の位置で切断した要部断面図である。なお、図6において、図1及び図2と同様の箇所には同じ符号を付してある。
FIG. 6 is a cross-sectional view of a principal part of another structural example of the high-frequency device mounting substrate of the present invention. As a comparative example, the structure of the high-frequency device mounting substrate is shown in FIG.
Since the planar shapes of these high-frequency device mounting substrates are the same as those in FIGS. 1 and 2, the plan views are omitted.
6 is a cross-sectional view of a main part cut along a line BB ′ in FIG. 1, and FIG. 7 is a cross-sectional view of a main part cut at the same position. In FIG. 6, the same parts as those in FIGS. 1 and 2 are denoted by the same reference numerals.

図6に示す本発明の実施形態例では、高周波デバイス実装基板1′は、信号線2(図示せず),表面接地導体層4,絶縁体層7b,絶縁体層7bの裏面を覆う裏面導体層6b,裏面導体層6bを挟んで絶縁体層7bに積層された絶縁体層7a及び絶縁体層7aの裏面を覆う裏面導体層6aからなる多層回路基板である。
数値例をあげると、絶縁体層7aの厚みは1mm、絶縁体層7bの厚みは0.1mmとなっており、絶縁体層7aを設けることにより、高周波デバイス実装基板1′の強度を高めることができる。さらに裏面導体層6aに他の回路を形成することもできる。
In the embodiment example of the present invention shown in FIG. 6, the high-frequency device mounting substrate 1 'is a back conductor covering the back of the signal line 2 (not shown), the surface ground conductor layer 4, the insulator layer 7b, and the insulator layer 7b. The multilayer circuit board includes a layer 6b, an insulator layer 7a laminated on the insulator layer 7b with the back conductor layer 6b interposed therebetween, and a back conductor layer 6a covering the back surface of the insulator layer 7a.
As a numerical example, the insulator layer 7a has a thickness of 1 mm and the insulator layer 7b has a thickness of 0.1 mm. By providing the insulator layer 7a, the strength of the high-frequency device mounting substrate 1 'can be increased. it can. Furthermore, another circuit can be formed on the back conductor layer 6a.

絶縁体層をさらに設けて導体層を多層構造にすると、さらに回路を集積することができる。この集積化によって、携帯電話等の移動体通信機器に用いられる回路基板を小型化することができる。
図7に示す高周波デバイス実装基板10は、図6と同様に、接地導体層14,絶縁体層17b,所定のパターン形状にパターニングされた、絶縁体層17bの裏面を覆う導体層16b,導体層16bを挟んで絶縁体層17bに積層された絶縁体層17a,絶縁体層17aの裏面を覆う導体層16aからなる多層回路基板である。
If an insulating layer is further provided and the conductor layer has a multilayer structure, circuits can be further integrated. By this integration, a circuit board used for mobile communication equipment such as a mobile phone can be reduced in size.
As in FIG. 6, the high-frequency device mounting substrate 10 shown in FIG. 7 includes a ground conductor layer 14, an insulator layer 17 b, a conductor layer 16 b that covers the back surface of the insulator layer 17 b patterned in a predetermined pattern shape, and a conductor layer This is a multilayer circuit board comprising an insulating layer 17a laminated on an insulating layer 17b with 16b interposed therebetween, and a conductor layer 16a covering the back surface of the insulating layer 17a.

この図7の高周波デバイス実装基板では、デュプレクサ等の高周波デバイス3を実装する端子電極19の直下付近の領域18に導体層を設けると、端子電極19と導体層との間に寄生容量が発生し、そのようにして寄生容量が発生すると端子電極19の部分の特性インピーダンスが50Ωからずれることになり、信号の反射が生じ特性が劣化してしまうため、端子電極19の直下付近の領域18に導体層を設けないようにしている。   In the high-frequency device mounting substrate of FIG. 7, when a conductor layer is provided in the region 18 immediately below the terminal electrode 19 on which the high-frequency device 3 such as a duplexer is mounted, parasitic capacitance is generated between the terminal electrode 19 and the conductor layer. If the parasitic capacitance is generated in this way, the characteristic impedance of the terminal electrode 19 part deviates from 50Ω, and signal reflection occurs and the characteristic deteriorates. Therefore, the conductor is connected to the region 18 immediately below the terminal electrode 19. The layer is not provided.

このために、高周波デバイス3が搭載される絶縁体層17bの裏面を覆う導体層16bには、図7に示すようにその領域18に対応させて導体層16bに非形成領域を設けてパターニングしている(このパターニングにより導体層16bの非形成領域となる領域18には絶縁体17cが充填されることがある)。
しかしながら、このように寄生容量の発生を防止する目的で端子電極19の直下付近の導体層16bに非形成領域を設けることによって、高周波デバイス3の動作時に、端子電極19近傍の電界分布が導体層16bの非形成領域を通して絶縁体層17aの内部に深く入り込み、領域18において導体層16aと結合してしまい、その内の一部の電磁界が隣の導体層16bの非形成領域を通して別の端子電極19に信号が漏れてしまうフィードスルーの原因となっていた。
For this purpose, the conductor layer 16b covering the back surface of the insulator layer 17b on which the high-frequency device 3 is mounted is patterned by providing a non-formed region in the conductor layer 16b corresponding to the region 18 as shown in FIG. (By this patterning, the region 18 which is a region where the conductor layer 16b is not formed may be filled with an insulator 17c).
However, by providing a non-formation region in the conductor layer 16b near the terminal electrode 19 for the purpose of preventing the occurrence of parasitic capacitance in this way, the electric field distribution in the vicinity of the terminal electrode 19 is reduced when the high-frequency device 3 is operated. It penetrates deeply into the insulator layer 17a through the non-formation region of 16b and couples with the conductor layer 16a in the region 18, and a part of the electromagnetic field passes through another non-formation region of the adjacent conductor layer 16b to another terminal. This caused feedthrough in which a signal leaked to the electrode 19.

これに対し、図6に示す高周波デバイス実装基板1′はこの問題点を改善したものである。図6によれば、高周波デバイス3が搭載される絶縁体層7bの裏面を覆う裏面導体層6bについて、図6に示すように端子電極9の直下付近の領域8に対応する部分に対して非形成領域を設けるようなパターニングをしていない。
このように裏面導体層6bに非形成領域を設けない場合であっても、非常に小型化された高周波デバイス3では端子電極9自体の大きさが小さいため、発生した寄生容量は微小であるため無視できる。よって、裏面導体層6bと端子電極9と間に寄生容量が発生してインピーダンスの不連続により信号の反射が起こるようなことはない。
On the other hand, the high-frequency device mounting substrate 1 'shown in FIG. 6 improves on this problem. According to FIG. 6, the back conductor layer 6 b covering the back surface of the insulator layer 7 b on which the high frequency device 3 is mounted is not applied to the portion corresponding to the region 8 immediately below the terminal electrode 9 as shown in FIG. 6. Patterning is not performed so as to provide a formation region.
Even when the non-formation region is not provided in the back conductor layer 6b as described above, since the size of the terminal electrode 9 itself is small in the extremely miniaturized high-frequency device 3, the generated parasitic capacitance is very small. Can be ignored. Therefore, parasitic capacitance is not generated between the back conductor layer 6b and the terminal electrode 9, and signal reflection does not occur due to impedance discontinuity.

また、裏面導体層6bについて端子電極9の直下付近の領域8に対応した非形成領域を設けないことにより、高周波デバイス3の動作時に端子電極9近傍の電界分布が裏面導体層6bを通って絶縁体層7aの内部に深く入り込むようなことがなくなり、裏面導体層6aと結合してフィードスルーが発生するのを抑えることができる。
高周波デバイス3が圧電体フィルタである場合、シミュレーション結果によると、図7に示した高周波デバイス実装基板における構造では、端子電極19の直下付近の領域18に対応して導体層16bに非形成領域を設けていることにより、端子電極19間のアイソレーション特性は−76.5dBであった。
Further, by not providing a non-forming region corresponding to the region 8 immediately below the terminal electrode 9 in the back surface conductor layer 6b, the electric field distribution in the vicinity of the terminal electrode 9 is insulated through the back surface conductor layer 6b during the operation of the high frequency device 3. The body layer 7a is prevented from entering deeply, and it is possible to suppress the occurrence of feedthrough due to coupling with the back conductor layer 6a.
When the high-frequency device 3 is a piezoelectric filter, according to the simulation result, in the structure of the high-frequency device mounting substrate shown in FIG. 7, a non-formation region is formed in the conductor layer 16 b corresponding to the region 18 near the terminal electrode 19. By providing, the isolation characteristic between the terminal electrodes 19 was -76.5 dB.

図6に示した本発明の構造では、端子電極9の直下付近の領域8に対応して裏面導体層6bに非形成領域を設けていないことにより、高周波デバイス3が圧電体フィルタである場合の端子電極9間のアイソレーション特性は−80.4dBとなり、アイソレーション特性に対する影響が著しく改善されていることが分かる。
このように、本発明の高周波デバイス実装基板によれば、搭載される高周波デバイス3が圧電体フィルタや圧電体フィルタを用いた分波器である場合に、端子電極9間におけるアイソレーション特性を損なうようなことがないものとなる。
In the structure of the present invention shown in FIG. 6, the non-formation region is not provided in the back surface conductor layer 6b corresponding to the region 8 immediately below the terminal electrode 9, so that the high frequency device 3 is a piezoelectric filter. It can be seen that the isolation characteristic between the terminal electrodes 9 is −80.4 dB, and the influence on the isolation characteristic is remarkably improved.
Thus, according to the high frequency device mounting substrate of the present invention, when the high frequency device 3 to be mounted is a piezoelectric filter or a duplexer using a piezoelectric filter, the isolation characteristics between the terminal electrodes 9 are impaired. There will be no such thing.

また、フィードスルーの発生を抑制することができるので、帯域外減衰特性を良好に維持することができる。
また、高周波デバイス3がデュプレクサであるときには、フィードスルーの発生を抑制することができるので、送信用高周波フィルタと受信用高周波フィルタとの両方で帯域外減衰特性を良好に維持することができ、送信端子から受信端子に信号が漏れるのを抑制してアイソレーション特性を良好に維持することができる。
Moreover, since the occurrence of feedthrough can be suppressed, the out-of-band attenuation characteristic can be maintained well.
Further, when the high-frequency device 3 is a duplexer, it is possible to suppress the occurrence of feedthrough. Therefore, both the transmission high-frequency filter and the reception high-frequency filter can maintain the out-of-band attenuation characteristics satisfactorily. It is possible to maintain good isolation characteristics by suppressing signal leakage from the terminal to the receiving terminal.

図8は本発明の高周波デバイス実装基板の他の一例を示す平面図である。また、図9は図8のC−C′線で切断した要部断面図である。
高周波デバイス実装基板1は、絶縁体層32,39及び41と、接地導体層33及び40とが積層された構造の回路基板30の表面の中央部に、高周波デバイスが実装される端子電極9を設けている。また、回路基板30の表面には、抵抗、コンデンサ、集積回路などの電子部品60が搭載されている。
FIG. 8 is a plan view showing another example of the high-frequency device mounting substrate of the present invention. FIG. 9 is a cross-sectional view of the main part taken along the line CC ′ of FIG.
The high-frequency device mounting substrate 1 has a terminal electrode 9 on which a high-frequency device is mounted at the center of the surface of the circuit board 30 having a structure in which insulator layers 32, 39, and 41 and ground conductor layers 33 and 40 are laminated. Provided. An electronic component 60 such as a resistor, a capacitor, or an integrated circuit is mounted on the surface of the circuit board 30.

回路基板30の表面の周辺部には、同軸コネクタの中心導体(図示せず)が接続される信号電極23と、同軸コネクタの外周導体(図示せず)が半田で接続される接地電極24とが形成されている。
端子電極9と信号電極23とは、回路基板30の中央部から放射状に延びた信号線2によって接続される。
A signal electrode 23 to which a central conductor (not shown) of the coaxial connector is connected, and a ground electrode 24 to which an outer peripheral conductor (not shown) of the coaxial connector is connected by solder to the periphery of the surface of the circuit board 30 Is formed.
The terminal electrodes 9 and the signal electrodes 23 are connected by signal lines 2 that extend radially from the center of the circuit board 30.

ここで、接地電極24の回路基板30の外周側の部位には、回路基板30の外周に沿って貫通孔(スルーホール)25が形成されている。
貫通孔25の内面には、図9に示したとおり、導体層27が被着されている。導体層27は接地電極24と接地導体層33,40とを電気的に接続している。
また、端子電極9のうち、接地される所定の端子は、その直下の接地導体層33に、導体が充填されたビア導体(図示せず)を介して接続されている。
Here, a through hole (through hole) 25 is formed along the outer periphery of the circuit board 30 at a portion of the ground electrode 24 on the outer peripheral side of the circuit board 30.
As shown in FIG. 9, a conductor layer 27 is attached to the inner surface of the through hole 25. The conductor layer 27 electrically connects the ground electrode 24 and the ground conductor layers 33 and 40.
In addition, a predetermined terminal to be grounded among the terminal electrodes 9 is connected to a ground conductor layer 33 immediately below the terminal electrode 9 via a via conductor (not shown) filled with a conductor.

このような本発明の高周波デバイス実装基板1を用いて、高周波デバイス(図示せず)の特性を測定する場合は、まず、端子電極9にクリーム半田等を塗布し、これに高周波デバイスの対応する端子(図示せず)を接触させ、クリーム半田の溶融温度以上に加熱する。このことによって、高周波デバイスは、高周波デバイス実装基板1上に実装される。
その次に、同軸コネクタ(図示せず)を、半田及び半田ごてを用いて、同軸コネクタの中心導体を信号電極23に、及び同軸コネクタの外周導体を接地電極24に接合する。
When measuring the characteristics of a high-frequency device (not shown) using the high-frequency device mounting substrate 1 of the present invention, first, cream solder or the like is applied to the terminal electrode 9 and this corresponds to the high-frequency device. A terminal (not shown) is brought into contact and heated above the melting temperature of the cream solder. Thus, the high frequency device is mounted on the high frequency device mounting substrate 1.
Next, a coaxial connector (not shown) is joined to the signal electrode 23 and the outer peripheral conductor of the coaxial connector to the ground electrode 24 using solder and a soldering iron.

その際、貫通孔25の存在により、溶融した半田は接地電極24から貫通孔25内に流動し、貫通孔25内に入り込む。このようにして、貫通孔25内部から同軸コネクタの外周導体45(図22参照)に至って、半田が連続して形成される。
このため、高周波デバイス実装基板1と同軸コネクタとの強固な接続を確保することができる。よって、測定中に接続したケーブル等から物理的な負荷がかかっても同軸コネクタの中心導体と信号電極23とが外れる確率を極めて小さくすることができる。
At that time, due to the presence of the through hole 25, the molten solder flows from the ground electrode 24 into the through hole 25 and enters the through hole 25. In this way, solder is continuously formed from the inside of the through hole 25 to the outer peripheral conductor 45 (see FIG. 22) of the coaxial connector.
For this reason, the strong connection between the high-frequency device mounting substrate 1 and the coaxial connector can be ensured. Therefore, even when a physical load is applied from a cable or the like connected during measurement, the probability that the central conductor of the coaxial connector and the signal electrode 23 are disconnected can be extremely reduced.

また、高周波デバイス実装基板1の中で接地電極24及び貫通孔25内の導体層27を介して、測定器の接地電極と最も近い位置で同軸コネクタの外周導体と接地導体層33,40とを接続することができるため、測定器の接地電極から接地導体層33,40との間の物理的な距離に起因する寄生インダクタンスを小さくでき、従って、より正確に高周波デバイスの特性を測定することができる。   In addition, the outer peripheral conductor of the coaxial connector and the ground conductor layers 33 and 40 are located in the position closest to the ground electrode of the measuring instrument via the ground electrode 24 and the conductor layer 27 in the through hole 25 in the high-frequency device mounting substrate 1. Since the connection can be made, the parasitic inductance due to the physical distance between the ground electrode of the measuring instrument and the ground conductor layers 33 and 40 can be reduced, and therefore the characteristics of the high-frequency device can be measured more accurately. it can.

次に、本発明の実施形態のさらに他の例を説明する。
本例では、高周波デバイス実装基板1の平面図は図8と同様であるが、回路基板30の裏面の接地電極24に対向する部位に、第2の接地電極28を設けたものである。
図10に、本例の高周波デバイス実装基板1の裏面の平面図を示す。また、本例について図8のC−C′線で切断した要部断面図を図11に示す。図11と図9との相違は、図11では、高周波デバイス実装基板1の裏面に、第2の接地電極28が設けられていることである。
Next, still another example of the embodiment of the present invention will be described.
In this example, the plan view of the high-frequency device mounting substrate 1 is the same as that of FIG. 8, but the second ground electrode 28 is provided on the back surface of the circuit board 30 facing the ground electrode 24.
In FIG. 10, the top view of the back surface of the high frequency device mounting substrate 1 of this example is shown. Further, FIG. 11 shows a cross-sectional view of the main part of this example cut along the line CC ′ of FIG. The difference between FIG. 11 and FIG. 9 is that in FIG. 11, the second ground electrode 28 is provided on the back surface of the high-frequency device mounting substrate 1.

この第2の接地電極28は、貫通孔25の内面の導体層27を介して、表面の接地電極24及び内部の接地導体層33,40と電気的に接続されている。
本例の高周波デバイス実装基板1と同軸コネクタとを半田で接合した場合の、図8のD−D′線で切断した要部断面図を図12に示す。
図12に示すように、同軸コネクタの外周導体(図示せず)に対して高周波デバイス実装基板1の裏面側から貫通孔25を通って表面側の外周導体にまで連続して半田36を存在させることができるため、より強固に高周波デバイス実装基板1の接地電極24と同軸コネクタの外周導体とを接続することができる。
The second ground electrode 28 is electrically connected to the ground electrode 24 on the surface and the ground conductor layers 33 and 40 inside through the conductor layer 27 on the inner surface of the through hole 25.
FIG. 12 shows a cross-sectional view of the main part taken along the line DD ′ of FIG. 8 when the high-frequency device mounting substrate 1 of this example and the coaxial connector are joined by solder.
As shown in FIG. 12, solder 36 is continuously present from the back surface side of the high-frequency device mounting substrate 1 to the outer peripheral conductor on the front surface side through the through hole 25 with respect to the outer peripheral conductor (not shown) of the coaxial connector. Therefore, the ground electrode 24 of the high-frequency device mounting substrate 1 and the outer peripheral conductor of the coaxial connector can be connected more firmly.

また、接地電極24と同軸コネクタの外周導体とを半田36で接続する際、貫通孔25内の半田36を介して半田ごての熱が片方の面に存在する半田36からもう片方の面に存在する半田36へと速やかに伝搬するため両面の半田36を同時に溶融することができる。これによって両面の半田量が均等化されるため、同軸コネクタの中心導体44や高周波デバイス実装基板1の信号電極23にかかる応力・負荷を小さくすることができる。   Further, when the ground electrode 24 and the outer peripheral conductor of the coaxial connector are connected by the solder 36, the heat of the soldering iron is transferred from the solder 36 existing on one surface to the other surface via the solder 36 in the through hole 25. Since it quickly propagates to the existing solder 36, the solder 36 on both sides can be melted simultaneously. As a result, the amount of solder on both sides is equalized, so that the stress and load applied to the central conductor 44 of the coaxial connector and the signal electrode 23 of the high-frequency device mounting substrate 1 can be reduced.

また、同軸コネクタを取り外す際も、同様に両面の半田36を同時に溶融することができるため、短時間で容易に取り外し作業を完了することができる。従って、搭載された高周波デバイスを、その特性を劣化させることなく取り外すことができる。また、同軸コネクタや高周波デバイス実装基板1にダメージを与えることなくこれらを再利用することができる。   Also, when removing the coaxial connector, the solder 36 on both sides can be melted at the same time, so that the removal operation can be completed easily in a short time. Therefore, the mounted high frequency device can be removed without deteriorating its characteristics. Moreover, these can be reused without damaging the coaxial connector or the high-frequency device mounting substrate 1.

また、高周波デバイス実装基板1の中で接地電極24,第2の接地電極28及び貫通孔25内の導体層27を介して、測定器の接地電極と最も近い位置で同軸コネクタの外周導体と接地導体層33とを接続することができるため、測定器の接地電極から接地導体層33との間の物理的な距離に起因する寄生インダクタンスを小さくでき、従って、より正確に高周波デバイスの特性を測定することができるのは前記実施形態例と同様である。   Further, the outer peripheral conductor of the coaxial connector is grounded at a position closest to the ground electrode of the measuring instrument via the ground electrode 24, the second ground electrode 28 and the conductor layer 27 in the through hole 25 in the high-frequency device mounting substrate 1. Since the conductor layer 33 can be connected, the parasitic inductance caused by the physical distance between the ground electrode of the measuring instrument and the ground conductor layer 33 can be reduced. Therefore, the characteristics of the high-frequency device can be measured more accurately. What can be done is the same as in the above embodiment.

次に、本発明の実施形態のさらに他の例を説明する。
図13A及び図13Bに本例の高周波デバイス実装基板1の表面の平面図を示す。
図13Aの本例では、高周波デバイス実装基板1の表面の接地電極24の回路基板30の外周側の部位に、貫通孔25を形成するとともに、接地電極24の信号線3と反対側の部位に、回路基板30の外周から中央部に向かってさらに貫通孔25′を配置した。
Next, still another example of the embodiment of the present invention will be described.
13A and 13B are plan views of the surface of the high-frequency device mounting substrate 1 of this example.
In this example of FIG. 13A, a through hole 25 is formed in a portion of the surface of the high-frequency device mounting substrate 1 on the outer peripheral side of the circuit board 30 of the ground electrode 24, and at a portion of the ground electrode 24 opposite to the signal line 3. Further, a through hole 25 ′ is arranged from the outer periphery of the circuit board 30 toward the center.

図13Bの本例では、貫通孔25を形成せず、それに代えて、接地電極24の信号線3と反対側の部位に、回路基板30の外周から中央部に向かって貫通孔25′を配置した。
また、この高周波デバイス実装基板1に同軸コネクタを半田36で接続した場合の図13A,図13BのE−E’線で切断した要部断面図を図14に示す。
さらに、比較例として貫通孔25′を設けない場合の、図14と同様の要部断面図を図15に示す。
In this example of FIG. 13B, the through hole 25 is not formed, and instead, a through hole 25 ′ is arranged from the outer periphery of the circuit board 30 toward the central portion at a portion opposite to the signal line 3 of the ground electrode 24. did.
FIG. 14 is a cross-sectional view of an essential part taken along line EE ′ of FIGS. 13A and 13B when a coaxial connector is connected to the high-frequency device mounting substrate 1 with solder 36.
Furthermore, FIG. 15 shows a cross-sectional view of the main part similar to FIG. 14 in the case where the through hole 25 ′ is not provided as a comparative example.

接地電極24に対して貫通孔25′を設けない場合は、図15に示すように、接地電極24の上面と信号電極23の上面とに存在する半田36のそれぞれの分布が半田36の表面張力のために接近しており、半田量が多ければ半田同士が短絡する場合がある。
これに対して、本例の場合は、半田36の分布が図14に示すよう、貫通孔25′に半田36が流れ込むため、接地電極24の上面に存在する半田36を信号電極23からやや遠ざかるように分布させることができる。したがって、信号電極23と接地電極24とを半田36を介して短絡し難くすることができる。
When the through hole 25 ′ is not provided for the ground electrode 24, the distribution of the solder 36 existing on the upper surface of the ground electrode 24 and the upper surface of the signal electrode 23 is shown in FIG. Therefore, if the amount of solder is large, the solder may be short-circuited.
On the other hand, in the case of this example, the solder 36 flows into the through hole 25 ′ as shown in FIG. 14, so that the solder 36 existing on the upper surface of the ground electrode 24 is moved away from the signal electrode 23 slightly. Can be distributed as follows. Therefore, it is possible to make it difficult to short-circuit the signal electrode 23 and the ground electrode 24 via the solder 36.

なお、ここでは裏面の第2の接地電極28が無い場合を示したが、図10〜図12に示す例と同様に、高周波デバイス実装基板1の裏面に第2の接地電極28を設けても構わない。
なお、今まで図8から図15に説明した回路基板30の表面において、信号線2に沿って表面接地導体層4を設けてもよい。
Here, the case where there is no second ground electrode 28 on the back surface is shown, but the second ground electrode 28 may be provided on the back surface of the high-frequency device mounting substrate 1 as in the examples shown in FIGS. I do not care.
Note that the surface ground conductor layer 4 may be provided along the signal line 2 on the surface of the circuit board 30 described so far with reference to FIGS.

図16は、表面接地導体層4と接地電極24とを接続した、本例の高周波デバイス実装基板1の表面の平面図を示す。
このような構成とすることにより、表面接地導体層4を、寄生インダクタンスが最も小さい状態で、測定器の接地電極と接続することができるので、高周波デバイスの信号端子の内、接地される端子の電位を、より寄生インダクタンスの小さい状態で測定器の接地電位に近づけることができる。
FIG. 16 is a plan view of the surface of the high-frequency device mounting substrate 1 of this example in which the surface ground conductor layer 4 and the ground electrode 24 are connected.
With such a configuration, the surface ground conductor layer 4 can be connected to the ground electrode of the measuring instrument with the smallest parasitic inductance. Therefore, of the signal terminals of the high-frequency device, The potential can be brought close to the ground potential of the measuring instrument with a smaller parasitic inductance.

本発明の高周波デバイス実装基板1は、通信機器に適用することができる。
すなわち、受信回路又は送信回路の一方又は両方を備える通信機器において、本発明の高周波デバイス実装基板1を用いることができる。
前記送信回路は、例えば、送信信号をミキサでキャリア周波数にのせて、不要信号をバンドパスフィルタで減衰させ、その後、パワーアンプで送信信号を増幅して、デュプレクサを通ってアンテナより送信する回路である。
The high-frequency device mounting substrate 1 of the present invention can be applied to communication equipment.
That is, the high-frequency device mounting substrate 1 of the present invention can be used in a communication device including one or both of a receiving circuit and a transmitting circuit.
The transmission circuit is, for example, a circuit that places a transmission signal on a carrier frequency with a mixer, attenuates an unnecessary signal with a bandpass filter, then amplifies the transmission signal with a power amplifier, and transmits it from an antenna through a duplexer. is there.

前記受信回路は、受信信号をアンテナで受信し、デュプレクサを通った受信信号をローノイズアンプで増幅し、その後、バンドパスフィルタで不要信号を減衰して、ミキサでキャリア周波数から信号を分離し、この信号を取り出す回路である。
前記デュプレクサやバンドパスフィルタを本発明の高周波デバイス実装基板1に実装し、通信機器に組み込むことにより、本発明の高周波デバイス実装基板1が搭載された、優れた特性を有する通信機器が実現できる。
The receiving circuit receives the received signal with an antenna, amplifies the received signal that has passed through the duplexer with a low noise amplifier, then attenuates an unnecessary signal with a bandpass filter, and separates the signal from the carrier frequency with a mixer. A circuit for extracting a signal.
By mounting the duplexer or band-pass filter on the high-frequency device mounting substrate 1 of the present invention and incorporating the duplexer or the band-pass filter into the communication device, a communication device having excellent characteristics on which the high-frequency device mounting substrate 1 of the present invention is mounted can be realized.

次に、高周波デバイス実装基板1を用いて高周波デバイスを評価する方法を説明する。
この高周波デバイス実装基板1は、高周波デバイスの量産工程の特性検査工程にて良品判定を行う目的や、開発品の特性を評価する目的のために使用される。
具体的には、高周波デバイスとして圧電体フィルタを用いたデュプレクサである場合には、圧電体から成るウェハ上に多数の圧電体フィルタを一括して形成した後、圧電体フィルタをそれぞれ個片に切断し、個々の圧電体フィルタを所定の回路基板にフェースダウンでフリップチップ実装してデュプレクサを得、得られたデュプレクサを高周波デバイス実装基板1に実装して良品判定する。前記良品判定をするための特性検査工程では、デュプレクサを高周波デバイス実装基板1に半田で接着することができないため、デュプレクサと高周波デバイス実装基板1との接続は、高周波デバイス実装基板1上の端子電極に配置されたコンタクトピンなどを介して行なわれる。この場合、安定して特性を測るために、高周波デバイス実装基板1は、コンタクトピンを固定する治具やデュプレクサの搭載位置を固定するガイドと共に真鍮やアルミなどの台座上に固定され、デュプレクサの上部より一定の圧力で押さえつけることによって、コンタクトピンとの接続を一定にする。
Next, a method for evaluating a high frequency device using the high frequency device mounting substrate 1 will be described.
The high-frequency device mounting substrate 1 is used for the purpose of performing non-defective product determination in the characteristic inspection process of the high-frequency device mass production process and for the purpose of evaluating the characteristics of the developed product.
Specifically, in the case of a duplexer using a piezoelectric filter as a high-frequency device, a large number of piezoelectric filters are collectively formed on a wafer made of a piezoelectric material, and then the piezoelectric filter is cut into individual pieces. Then, each piezoelectric filter is flip-chip mounted on a predetermined circuit board in a flip-chip manner to obtain a duplexer, and the obtained duplexer is mounted on the high-frequency device mounting board 1 to determine non-defective products. Since the duplexer cannot be bonded to the high frequency device mounting substrate 1 with solder in the characteristic inspection process for determining the non-defective product, the connection between the duplexer and the high frequency device mounting substrate 1 is a terminal electrode on the high frequency device mounting substrate 1. This is done via a contact pin or the like. In this case, in order to stably measure the characteristics, the high frequency device mounting substrate 1 is fixed on a base such as brass or aluminum together with a jig for fixing the contact pin and a guide for fixing the mounting position of the duplexer, and the upper part of the duplexer. By pressing with a more constant pressure, the connection with the contact pin is made constant.

この状態で、上に説明したように、高周波デバイス実装基板1の信号電極23及び接地電極24に、半田付けにより同軸ケーブルを接続して、高周波デバイスの特性評価を行う。   In this state, as described above, the coaxial cable is connected to the signal electrode 23 and the ground electrode 24 of the high-frequency device mounting substrate 1 by soldering, and the characteristics of the high-frequency device are evaluated.

<実施例1>
高周波デバイス実装基板の絶縁体層(回路基板)の材料として、FR−4(ガラスエポキシ樹脂)を用いた。
回路基板の表面に接地導体層が一層に形成され、回路基板の裏面側に厚みが0.1mmの絶縁体層とその裏面を覆う導体層とが交互に3回繰り返される積層構造とした。
<Example 1>
FR-4 (glass epoxy resin) was used as a material for the insulator layer (circuit board) of the high-frequency device mounting board.
A grounding conductor layer was formed in a single layer on the surface of the circuit board, and an insulating layer having a thickness of 0.1 mm and a conductor layer covering the back surface were alternately repeated three times on the back side of the circuit board.

回路基板の表面に配置される信号線の幅は0.13mm、厚み0.06mmとし、信号線とその両側に設置した接地導体層とのギャップWは1mmとした。信号線は図1、図2に示したように回路基板の中央から放射状に延びている配置とした。
また、各絶縁体層の裏面を覆う導体層は、それぞれ絶縁体層の裏面の全面を覆っているようにした。
The width of the signal line arranged on the surface of the circuit board was 0.13 mm, the thickness was 0.06 mm, and the gap W between the signal line and the ground conductor layer installed on both sides thereof was 1 mm. The signal lines are arranged so as to extend radially from the center of the circuit board as shown in FIGS.
The conductor layer covering the back surface of each insulator layer covers the entire back surface of the insulator layer.

接地導体層の信号線側の辺に沿って辺から0.5mmの位置に、一定の間隔0.7mmで絶縁体層の1〜3層目を貫通するビア導体を設けることにより、表面に設置された接地導体層の接地電位の安定化を図った。なお、信号線の特性インピーダンスは50Ωとなるように設計した。
このような構造の本発明の高周波デバイス実装基板の実施例に、実装基板に対向する面のサイズが2.5mm×2.0mmである超小型の800MHz帯デュプレクサを搭載し、前記信号線に測定用配線としての同軸ケーブルをつないで、アイソレーション特性の測定を行った。
Installed on the surface by providing via conductors that penetrate the first to third layers of the insulator layer at a constant interval of 0.7 mm at a position 0.5 mm from the side along the signal line side of the ground conductor layer The ground potential of the ground conductor layer was stabilized. The characteristic impedance of the signal line was designed to be 50Ω.
In the embodiment of the high-frequency device mounting substrate of the present invention having such a structure, an ultra-small 800 MHz band duplexer having a size of a surface facing the mounting substrate of 2.5 mm × 2.0 mm is mounted, and the measurement wiring is mounted on the signal line. As a result, the isolation characteristics were measured.

また、比較例として、デュプレクサの搭載位置の直下の一層目の絶縁体層の裏面の導体層を端子電極の直下付近の領域に導体層の非形成領域をパターニングした高周波デバイス実装基板についても同様の測定を行った。図17にそのアイソレーション特性の測定結果をグラフで示す。
図17において、横軸は周波数(Frequency、単位:MHz)、縦軸はアイソレーション(Isolation、単位:dB)を表す。
Further, as a comparative example, the same applies to a high-frequency device mounting substrate in which the conductor layer on the back surface of the first insulator layer immediately below the duplexer mounting position is patterned in the region near the terminal electrode and the non-conductive layer formation region. Measurements were made. FIG. 17 is a graph showing the measurement results of the isolation characteristics.
In FIG. 17, the horizontal axis represents frequency (Frequency, unit: MHz), and the vertical axis represents isolation (Isolation, unit: dB).

実線の特性曲線は比較例の結果を示し、破線の特性曲線は本発明の実施例の結果を示している。
図17に示すグラフから分かるように、本発明の実施例のようにデュプレクサの搭載位置の直下付近の領域を絶縁体層の裏面に形成した導体層で覆うことにより、送信帯域(824〜849MHz)でのアイソレーション特性を約10dBと大きく改善することができた。
<実施例2>
図16に示す構造の高周波デバイス実装基板1を作製した。
The solid characteristic curve indicates the result of the comparative example, and the broken characteristic curve indicates the result of the example of the present invention.
As can be seen from the graph shown in FIG. 17, the transmission band (824 to 849 MHz) is obtained by covering the region immediately below the duplexer mounting position with a conductor layer formed on the back surface of the insulator layer as in the embodiment of the present invention. The isolation characteristics at 10 nm were greatly improved to about 10 dB.
<Example 2>
A high-frequency device mounting substrate 1 having the structure shown in FIG. 16 was produced.

信号線2は端子電極9から放射状に延びており、同軸コネクタを接続する領域Fの構造も、図16に示すとおりである。
図18は図16の破線で示した領域Fの拡大図である。貫通孔25の数及び位置は図18に示したものとした。
なお、同軸コネクタを接続する部分は、図16に示すとおり領域Fを含み3箇所あるが、その全てについて図18に示した形状とした。
The signal line 2 extends radially from the terminal electrode 9, and the structure of the region F to which the coaxial connector is connected is as shown in FIG.
FIG. 18 is an enlarged view of a region F indicated by a broken line in FIG. The number and position of the through holes 25 are as shown in FIG.
In addition, there are three portions including the region F as shown in FIG. 16 to which the coaxial connector is connected, but all of them have the shape shown in FIG.

図18に対応する部位の裏面の拡大図を図19に示す。回路基板30の表面の2つの接地電極24に対向する第2の接地電極28を、一続きのものとして形成した。なお図19において4′は、回路基板30の裏面に形成された接地導体層を示す。
なお、回路基板30の要部断面図は図11と同様である。
回路基板30の絶縁体層32,39,41の材料としては、FR−4(ガラスエポキシ樹脂)を、接地導体層33,40、接地電極24、第2の接地電極28、および裏面接地導体層4’の材料としては銅を用いた。
FIG. 19 shows an enlarged view of the back surface of the portion corresponding to FIG. A second ground electrode 28 opposed to the two ground electrodes 24 on the surface of the circuit board 30 was formed as a series. In FIG. 19, 4 ′ indicates a ground conductor layer formed on the back surface of the circuit board 30.
The cross-sectional view of the main part of the circuit board 30 is the same as FIG.
As a material of the insulator layers 32, 39, and 41 of the circuit board 30, FR-4 (glass epoxy resin) is used as the ground conductor layers 33 and 40, the ground electrode 24, the second ground electrode 28, and the back surface ground conductor layer. Copper was used as the 4 'material.

絶縁体層32及び絶縁体層41の厚みはそれぞれ0.1mmであり、絶縁体層39の厚みは1mmである。また、接地導体層33及び接地導体層40の厚みはそれぞれ0.035mmである。接地電極24及び第2の接地電極28の厚みはそれぞれ0.06mmである。回路基板30の表面の信号線2の幅は0.13mm、同軸コネクタの中心導体44が接続される信号電極23の幅w1は0.6mm、接地電極24の横幅w2は5mm、信号電極23と接地電極24とのギャップw3は0.85mmとした。 The thickness of the insulator layer 32 and the insulator layer 41 is 0.1 mm, respectively, and the thickness of the insulator layer 39 is 1 mm. Moreover, the thickness of the ground conductor layer 33 and the ground conductor layer 40 is 0.035 mm, respectively. The thicknesses of the ground electrode 24 and the second ground electrode 28 are each 0.06 mm. The width of the signal line 2 on the surface of the circuit board 30 is 0.13 mm, the width w 1 of the signal electrode 23 to which the central conductor 44 of the coaxial connector is connected is 0.6 mm, the lateral width w 2 of the ground electrode 24 is 5 mm, The gap w 3 with the ground electrode 24 was 0.85 mm.

なお、信号線2の特性インピーダンスは50Ωとなるように設計した。接地電極24の縦幅w4は3mmとした。また、回路基板30の裏面の第2の接地電極28の横幅w5は13mm、縦幅w6は3mmとした。また、接地電極24に、回路基板30と回路基板30の裏面の第2の接地電極28とを貫通する半径0.3mmの貫通孔25を、接地電極24の内側から0.6mm、接地電極24の外周部(回路基板30の外周側)から0.3mmの位置から、0.8mmの間隔で6個設けた。各貫通孔25には内面に銅からなる導体層27を設け、接地電極24に接続されている表面接地導体層4及び第2の接地電極28に接続されている裏面接地導体層4′の接地電位の安定化を図った。 The characteristic impedance of the signal line 2 was designed to be 50Ω. The vertical width w 4 of the ground electrode 24 was 3 mm. The width w 5 of the second ground electrode 28 on the back surface of the circuit board 30 was 13 mm, and the width w 6 was 3 mm. Further, a through hole 25 having a radius of 0.3 mm that penetrates the circuit board 30 and the second ground electrode 28 on the back surface of the circuit board 30 is formed on the ground electrode 24 by 0.6 mm from the inside of the ground electrode 24, and the outer periphery of the ground electrode 24. Six pieces were provided at intervals of 0.8 mm from a position of 0.3 mm from the portion (the outer peripheral side of the circuit board 30). Each through hole 25 is provided with a conductor layer 27 made of copper on the inner surface, and grounding of the front surface ground conductor layer 4 connected to the ground electrode 24 and the back surface ground conductor layer 4 ′ connected to the second ground electrode 28. The potential was stabilized.

また、比較例として、貫通孔25を設けないこと以外の設計が全て前記実施例と同じである高周波デバイス実装基板を作製した。
このようにして作製した本発明の実施例と比較例について、それぞれ高周波デバイスを搭載し、同軸コネクタを取り付けた後、信号線2を介して高周波特性を測定し、次いで同軸コネクタを取り外した後、再び高周波特性を測定した。
Further, as a comparative example, a high frequency device mounting substrate was manufactured in which all the designs except for not providing the through hole 25 were the same as those in the above example.
About the examples and comparative examples of the present invention thus produced, each mounted with a high-frequency device and attached with a coaxial connector, then measured the high-frequency characteristics via the signal line 2, and then removed the coaxial connector, The high frequency characteristics were measured again.

このときの測定は、高周波デバイスの端子電極に直接、高周波プローブ(GGB社製、商品名:ピコプローブ40A−GS−600−DP)を接触させることにより行った。
なお、高周波デバイスとしては、端子電極9と接続される面のサイズが2.5mm×2.0mmであり、高さが0.6mmである小型の高周波フィルタを用いた800MHz帯デュプレクサを用いた。
The measurement at this time was performed by bringing a high-frequency probe (product name: Picoprobe 40A-GS-600-DP) directly into contact with the terminal electrode of the high-frequency device.
As the high frequency device, an 800 MHz band duplexer using a small high frequency filter having a size of a surface connected to the terminal electrode 9 of 2.5 mm × 2.0 mm and a height of 0.6 mm was used.

まず、実施例と比較例に対してともに、端子電極9にクリーム半田を塗布し、この高周波デバイスを搭載した。そして、ホットプレートを用いてクリーム半田を溶融させ、高周波デバイスの端子と端子電極9とを接続した。
次に、同軸コネクタを取り付けた。実施例と比較例に対してともに信号電極23と接地電極24と第2の接地電極28とに糸半田(Sn−Cu−Ag:融点217 ℃)を、半田ごてを用いて溶融させ、高周波デバイス実装基板1に同軸コネクタを取り付けた。
First, cream solder was applied to the terminal electrode 9 for both the example and the comparative example, and this high frequency device was mounted. Then, the cream solder was melted using a hot plate, and the terminal of the high-frequency device and the terminal electrode 9 were connected.
Next, a coaxial connector was attached. For both the example and the comparative example, thread solder (Sn—Cu—Ag: melting point 217 ° C.) is melted to the signal electrode 23, the ground electrode 24, and the second ground electrode 28 using a soldering iron, and high frequency A coaxial connector was attached to the device mounting board 1.

比較例を用いた場合は、糸半田に同じ時間だけ熱を加えても溶融する量が一定ではなく、また、接地電極24と第2の接地電極28との半田が直接流動できないため、接地電極24と接地電極8との半田の量を均一にすることは非常に困難であった。
それに対し、実施例では、信号電極23と接地電極24との半田36を、半田ごてを用いて溶融させると、貫通孔25を介して第2の接地電極28上にある半田36にも熱が伝導するため、第2の接地電極28上の半田36も同時に溶融させることができ、また溶融した半田36が貫通孔25を通ってお互いに流動するため、接地電極24と第2の接地電極28とにおける半田量の偏りをなくすことができた。
When the comparative example is used, even if heat is applied to the thread solder for the same time, the amount of melting is not constant, and the solder between the ground electrode 24 and the second ground electrode 28 cannot flow directly. It has been very difficult to make the amount of solder between 24 and the ground electrode 8 uniform.
On the other hand, in the embodiment, when the solder 36 of the signal electrode 23 and the ground electrode 24 is melted using a soldering iron, the solder 36 on the second ground electrode 28 is also heated through the through hole 25. Therefore, the solder 36 on the second ground electrode 28 can be melted at the same time, and since the melted solder 36 flows through the through hole 25, the ground electrode 24 and the second ground electrode Thus, it was possible to eliminate the deviation of the solder amount with respect to 28.

次に、高周波デバイス実装基板1に接続した同軸コネクタと測定器とをケーブルによって接続し、高周波デバイスの高周波特性を測定した。
この測定中に、比較例では同軸コネクタと測定装置とをつなげるケーブルによって加わる力によって同軸コネクタが外れたものがあったが、実施例では、図12に示したように、同軸コネクタの外周導体に対して高周波デバイス実装基板1の裏面の第2の接地電極28側から貫通孔25を通って表面の接地電極24側の外周導体にまで連続して半田36を存在させることができたため、より強固に高周波デバイス実装基板1と同軸コネクタを接続することができ、同軸コネクタが外れることはなかった。
Next, the coaxial connector connected to the high frequency device mounting substrate 1 and the measuring device were connected by a cable, and the high frequency characteristics of the high frequency device were measured.
During this measurement, in the comparative example, there was one in which the coaxial connector was disconnected due to the force applied by the cable connecting the coaxial connector and the measuring device, but in the example, as shown in FIG. On the other hand, the solder 36 can be continuously present from the second ground electrode 28 side on the back surface of the high-frequency device mounting substrate 1 through the through hole 25 to the outer peripheral conductor on the surface ground electrode 24 side. The high frequency device mounting substrate 1 and the coaxial connector could be connected to each other, and the coaxial connector was never detached.

次に、同軸コネクタを高周波デバイス実装基板1から取り外した。
比較例の場合は、同軸コネクタを取り外すためには、まず第2の接地電極28の半田を半田吸い取り器(製造元:ハッコー社製、商品名:半田除去ステーション24V474)を用いて除去し、同軸コネクタと高周波デバイス実装基板1との接合が信号電極23及び接地電極24上の半田のみによって保持される状態とした後に、信号電極23と接地電極24との半田を溶融して同軸コネクタを高周波デバイス実装基板1から取り外した。
Next, the coaxial connector was removed from the high frequency device mounting substrate 1.
In the case of the comparative example, in order to remove the coaxial connector, first, the solder of the second ground electrode 28 is removed using a solder sucker (manufacturer: manufactured by Hakko Co., Ltd., product name: solder removal station 24V474). And the high-frequency device mounting substrate 1 are held in a state in which only the solder on the signal electrode 23 and the ground electrode 24 is held, and then the solder between the signal electrode 23 and the ground electrode 24 is melted to mount the coaxial connector on the high-frequency device. It was removed from the substrate 1.

これに対して実施例の場合は、信号電極23と接地電極24との半田36を、半田ごてを用いて溶融させると、貫通孔25を介して第2の接地電極28上にある半田36にも熱が伝導するため、第2の接地電極28上の半田36も同時に溶融させることができた。このため、比較例に比べて非常に容易に短時間で同軸コネクタを取り外すことができた。
このように、実施例は比較例に比べて、半田吸い取り器を使用する必要がなく、片面の半田36に半田ごてを用いて熱を加えるだけでもう片面の半田36も溶融させて同軸コネクタを取り外すことができ、高周波デバイス実装基板1及び高周波デバイスに熱が加わる時間を極めて短くすることができた。
On the other hand, in the case of the embodiment, when the solder 36 of the signal electrode 23 and the ground electrode 24 is melted using a soldering iron, the solder 36 on the second ground electrode 28 through the through hole 25. In addition, since heat is conducted, the solder 36 on the second ground electrode 28 can be melted at the same time. For this reason, the coaxial connector was able to be removed very easily in a short time as compared with the comparative example.
In this way, the embodiment does not require the use of a solder sucker as compared with the comparative example, and by simply applying heat to the solder 36 on one side using a soldering iron, the solder 36 on the other side is melted to form a coaxial connector. And the time during which heat is applied to the high-frequency device mounting substrate 1 and the high-frequency device can be extremely shortened.

次に、高周波デバイスを取り外した。実施例と比較例とをともにホットプレート上に載置し、加熱することによりクリーム半田を溶融させ、ピンセットを用いて高周波デバイスを取り外した。
その後に、取り外された高周波デバイスの高周波特性を測定した。その結果、本発明の実施例の高周波デバイス実装基板1を用いた場合では上記の一連の作業の前後で特性の劣化した高周波デバイスは無かったが、比較例の高周波デバイス実装基板を用いた場合には同軸コネクタの取り付け及び取り外し時に加えられた熱によって、高周波特性の劣化した高周波デバイスが発生した。
<実施例3>
高周波デバイス実装基板1の表面の平面図は第1の実施例と同様であるが、図20に拡大図で示すように、接地電極24の信号電極23と反対側の端部に位置する貫通孔25Aから、回路基板30の外周部から中央部に向かって貫通孔25と同様の寸法の2個の貫通孔25′を設置した点が異なっている。
Next, the high frequency device was removed. Both the example and the comparative example were placed on a hot plate and heated to melt the cream solder, and the high frequency device was removed using tweezers.
Thereafter, the high frequency characteristics of the removed high frequency device were measured. As a result, when the high-frequency device mounting substrate 1 of the example of the present invention was used, there was no high-frequency device whose characteristics deteriorated before and after the above series of operations, but when the high-frequency device mounting substrate of the comparative example was used. High-frequency devices with deteriorated high-frequency characteristics were generated by heat applied during installation and removal of the coaxial connector.
<Example 3>
The plan view of the surface of the high-frequency device mounting substrate 1 is the same as that of the first embodiment, but as shown in the enlarged view of FIG. 20, the through hole located at the end of the ground electrode 24 opposite to the signal electrode 23 The difference is that two through-holes 25 ′ having the same dimensions as the through-holes 25 are provided from 25 A toward the central part from the outer peripheral part of the circuit board 30.

実施例2では、図15に示すように、接地電極24の上面と信号電極23の上面とに存在する半田36の分布が半田36の表面張力のために接近しており、半田量によってはこれら半田36を介して短絡する場合があった。
本実施例のように、接地電極24に貫通孔25′を設けることで、半田36が図14に示すように貫通孔25′に流れ込むため、接地電極24の上部に存在する半田36を信号電極23からやや遠ざかるように分布させることができたため、信号電極23と接地電極24とが半田36を介して短絡することがなかった。
In the second embodiment, as shown in FIG. 15, the distribution of the solder 36 existing on the upper surface of the ground electrode 24 and the upper surface of the signal electrode 23 is close due to the surface tension of the solder 36. There was a case where a short circuit occurred via the solder 36.
As in this embodiment, by providing the through hole 25 'in the ground electrode 24, the solder 36 flows into the through hole 25' as shown in FIG. 14, so that the solder 36 existing above the ground electrode 24 is replaced with the signal electrode. Therefore, the signal electrode 23 and the ground electrode 24 were not short-circuited via the solder 36.

なお、本発明は以上の実施形態・実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の変更を加えることは何ら差し支えない。
例えば、回路基板の絶縁体層の材料としては、以下の実施例に挙げる材料に限定されるものではなく、テトラフルオロエチレンやBTレジン等の有機材料や、アルミナ等のセラミックス、あるいはアルミナを主成分とするガラスセラミックス等の無機材料を用いてもよい。
In addition, this invention is not limited to the above embodiment and an Example, A various change may be added in the range which does not deviate from the summary of this invention.
For example, the material of the insulator layer of the circuit board is not limited to the materials listed in the following examples, but is mainly composed of organic materials such as tetrafluoroethylene and BT resin, ceramics such as alumina, or alumina as a main component. Inorganic materials such as glass ceramics may be used.

また、絶縁体層及び絶縁体層の裏面を覆う導体層の積層数は任意でよい。以上の例では接地導体層33の他にも裏面側にさらに接地導体層28を設けた例を示したが、この接地導体層28は省略しても構わない。
また、貫通孔25の形状は図8等では円形で示したが、形状は任意でよい。また、貫通孔25の位置についても回路基板30の外周から中心部に向かって中心部側に多少入った領域に設けたが、回路基板30の外周に貫通孔を長さ方向に開口させて形成し、その内面に導体層27を被着していわゆるキャスタレーション導体として、回路基板30の外周側面を介して接地電極24と接地導体層33,40及び第2の接地電極28とを接続するようにしてもよい。
Further, the number of laminated conductor layers covering the insulator layer and the back surface of the insulator layer may be arbitrary. In the above example, the ground conductor layer 28 is further provided on the back side in addition to the ground conductor layer 33. However, the ground conductor layer 28 may be omitted.
Moreover, although the shape of the through hole 25 is shown as a circle in FIG. 8 and the like, the shape may be arbitrary. In addition, the position of the through hole 25 is also provided in a region slightly entering the center side from the outer periphery of the circuit board 30 toward the center, but the through hole is formed in the outer periphery of the circuit board 30 so as to open in the length direction. Then, the conductor layer 27 is attached to the inner surface of the circuit board 30 so as to connect the ground electrode 24, the ground conductor layers 33 and 40, and the second ground electrode 28 through the outer peripheral side surface of the circuit board 30. It may be.

また、信号線の特性インピーダンスとしては50Ωに限定されるものではなく、高周波デバイスを用いるシステムの特性インピーダンスに合わせても構わない。
また、以上の説明では信号線は高周波デバイス実装基板の表面に配置されている場合を示したが、図21に示すように、信号線のうち何本かが絶縁体層の内部に配置されていても構わない。この場合には、互いに異なる層に信号線を設けることにより、厚み方向にも信号線が対向しなくなるので、それら信号線間のアイソレーション特性を、さらに向上させることができ、それによって、高周波デバイスの特性への影響をより低減でき、あるいはその特性をより良好に発揮させることができる。
Further, the characteristic impedance of the signal line is not limited to 50Ω, and may be matched to the characteristic impedance of the system using the high frequency device.
In the above description, the signal lines are arranged on the surface of the high-frequency device mounting substrate. However, as shown in FIG. 21, some of the signal lines are arranged in the insulator layer. It doesn't matter. In this case, since the signal lines are not opposed to each other in the thickness direction by providing the signal lines in different layers, it is possible to further improve the isolation characteristics between the signal lines. The influence on the characteristics can be further reduced, or the characteristics can be exhibited better.

また、説明に用いた図では高周波デバイス実装基板1と同軸コネクタとが接続される端子(信号電極23と接地電極24との組)が3組ある場合を示したが、その数は高周波デバイスの端子数に合わせて任意でよい。
また、高周波デバイス実装基板1の表面のうち、半田と接触する必要がない部分をソルダーレジスト等で保護しても構わない。このようにすることにより、半田を接触させたい部分のみに半田を存在させることができるとともに、信号線2等の導体同士が余分な半田を介して短絡することを防止することができる。
Further, in the figure used for the description, there is shown a case where there are three terminals (a set of the signal electrode 23 and the ground electrode 24) to which the high-frequency device mounting substrate 1 and the coaxial connector are connected. It may be arbitrary according to the number of terminals.
Moreover, you may protect the part which does not need to contact solder among the surfaces of the high frequency device mounting substrate 1 with a soldering resist etc. By doing so, it is possible to make the solder exist only in a portion where the solder is desired to be in contact, and it is possible to prevent the conductors such as the signal line 2 from being short-circuited through the extra solder.

さらに、高周波デバイスとしては、圧電体フィルタやデュプレクサに限定されるものではなく、移動体通信機器や無線LAN,ETC等の高周波信号処理用途で用いられる高周波デバイスの全てに適用が可能である。
また、本発明の範囲は、上述した各請求項記載の構成を任意に組み合わせた構成にも及ぶものとする。
Furthermore, the high-frequency device is not limited to a piezoelectric filter or a duplexer, and can be applied to all high-frequency devices used in high-frequency signal processing applications such as mobile communication devices, wireless LAN, and ETC.
Further, the scope of the present invention extends to a configuration in which the configurations described in the claims are arbitrarily combined.

本発明の高周波デバイス実装基板に高周波デバイスを搭載した状態を示す平面図である。It is a top view which shows the state which mounted the high frequency device on the high frequency device mounting board | substrate of this invention. 本発明の高周波デバイス実装基板の平面図である。It is a top view of the high frequency device mounting substrate of the present invention. 図1のA−A’線で切断した要部断面図である。It is principal part sectional drawing cut | disconnected by the A-A 'line | wire of FIG. 信号線の本数や設置角度を変えた、本発明の高周波デバイス実装基板の平面図である。It is a top view of the high frequency device mounting substrate of the present invention in which the number of signal lines and the installation angle are changed. 信号線2の本数や設置角度を変えた、本発明の高周波デバイス実装基板の平面図である。It is a top view of the high frequency device mounting board of the present invention which changed the number of signal lines 2 and the installation angle. 図6は、図1のB−B’線で切断した要部断面図である。FIG. 6 is a cross-sectional view of the main part taken along line B-B ′ of FIG. 1. 比較例に係る高周波デバイス実装基板の要部断面図である。It is principal part sectional drawing of the high frequency device mounting board | substrate which concerns on a comparative example. 本発明の高周波デバイス実装基板の他の例を示す平面図である。It is a top view which shows the other example of the high frequency device mounting board | substrate of this invention. 図8のC−C’線で切断した要部断面図である。It is principal part sectional drawing cut | disconnected by the C-C 'line | wire of FIG. 第2の接地電極28を有する高周波デバイス実装基板の裏面図である。3 is a back view of a high-frequency device mounting substrate having a second ground electrode 28. FIG. 第2の接地電極28を有する高周波デバイス実装基板の、図8のC−C’線で切断した要部断面図である。FIG. 9 is a cross-sectional view of a main part of a high-frequency device mounting substrate having a second ground electrode 28 cut along line C-C ′ in FIG. 8. 高周波デバイス実装基板と同軸コネクタとを、半田で接続した場合の、図8のD−D’線で切断した要部断面図である。FIG. 9 is a cross-sectional view of a principal part taken along line D-D ′ of FIG. 8 when the high-frequency device mounting substrate and the coaxial connector are connected by solder. 本発明の高周波デバイス実装基板のさらに他の例を示す表面の平面図である。It is a top view of the surface which shows the other example of the high frequency device mounting substrate of this invention. 本発明の高周波デバイス実装基板のさらに他の例を示す表面の平面図である。It is a top view of the surface which shows the other example of the high frequency device mounting substrate of this invention. 図13Aに示す高周波デバイス実装基板を、E−E’線で切断した要部断面図である。It is principal part sectional drawing which cut | disconnected the high frequency device mounting board | substrate shown to FIG. 13A by the E-E 'line | wire. 比較例の高周波デバイス実装基板の要部断面図である。It is principal part sectional drawing of the high frequency device mounting board | substrate of a comparative example. 本発明の高周波デバイス実装基板のさらに他の例を示す表面の平面図である。It is a top view of the surface which shows the other example of the high frequency device mounting substrate of this invention. 本発明の実施例及び比較例におけるアイソレーション特性を比較したグラフである。It is the graph which compared the isolation characteristic in the Example and comparative example of this invention. 図16における領域Fの拡大図である。It is an enlarged view of the area | region F in FIG. 領域Fの裏面の拡大図である。FIG. 6 is an enlarged view of the back surface of a region F. 領域Fにおける他の構造を示す拡大図である。10 is an enlarged view showing another structure in the region F. FIG. 回路基板の中に信号線を形成した本発明の高周波デバイス実装基板を示す断面図である。It is sectional drawing which shows the high frequency device mounting substrate of this invention which formed the signal wire | line in the circuit board. 一般的な高周波デバイス実装基板と、それに接続された高周波デバイス及び同軸コネクタとを示す概略斜視図である。It is a schematic perspective view which shows a common high frequency device mounting board | substrate, the high frequency device connected to it, and a coaxial connector.

符号の説明Explanation of symbols

1 高周波デバイス実装基板
2,2a〜2c 信号線
3 デュプレクサ
4 表面接地導体層
5 貫通導体
6 裏面導体層
7 絶縁体層
8,18 領域
9 端子電極
10 高周波デバイス実装基板
14 接地導体層
16a,16b 導体層
17a,17b 絶縁体層
23 信号電極
24 接地電極
25 貫通孔
27 導体層
28 接地電極
30 回路基板
32,39,41 絶縁体層
33,40 接地導体層
36 半田
44 中心導体
60 電子部品
DESCRIPTION OF SYMBOLS 1 High frequency device mounting substrate 2, 2a-2c Signal line 3 Duplexer 4 Surface grounding conductor layer 5 Through conductor 6 Back surface conductor layer 7 Insulator layer 8, 18 Area | region 9 Terminal electrode 10 High frequency device mounting substrate 14 Grounding conductor layer 16a, 16b Conductor Layers 17a, 17b Insulator layer 23 Signal electrode 24 Ground electrode 25 Through hole 27 Conductor layer 28 Ground electrode 30 Circuit boards 32, 39, 41 Insulator layer 33, 40 Ground conductor layer 36 Solder 44 Central conductor 60 Electronic component

Claims (17)

絶縁体層の裏面又は内部に導体層を有する回路基板と、
前記回路基板の表面に設置された、高周波デバイスを搭載するための複数の端子電極と、
前記回路基板に設置され、前記端子電極につながる複数の信号線とを備え、
前記信号線は、前記端子電極から放射状に延び、任意の1本の信号線を前記端子電極から仮想的に延長した直線と、他の任意の1本の信号線を前記端子電極から仮想的に延長した直線とが、同一直線を構成しない、高周波デバイス実装基板。
A circuit board having a conductor layer on the back surface or inside of the insulator layer;
A plurality of terminal electrodes installed on the surface of the circuit board for mounting a high-frequency device;
A plurality of signal lines installed on the circuit board and connected to the terminal electrodes;
The signal line extends radially from the terminal electrode, and a straight line obtained by virtually extending any one signal line from the terminal electrode and another arbitrary signal line virtually extending from the terminal electrode. A high-frequency device mounting board in which the extended straight line does not form the same straight line.
前記2つの延長線が1点で交わる、請求項1記載の高周波デバイス実装基板。   The high frequency device mounting substrate according to claim 1, wherein the two extension lines intersect at one point. 前記2つの延長線が互いに平行である、請求項1記載の高周波デバイス実装基板。   The high frequency device mounting substrate according to claim 1, wherein the two extension lines are parallel to each other. 前記端子電極は前記回路基板の中央部に配置されている、請求項1から請求項3のいずれかに記載の高周波デバイス実装基板。   The high-frequency device mounting substrate according to any one of claims 1 to 3, wherein the terminal electrode is disposed in a central portion of the circuit board. 前記回路基板の表面の、前記信号線の両側に接地導体層が設置され、
前記信号線と前記接地導体層との間隔Wが、前記信号線と前記絶縁体層の裏面又は内部に形成された前記導体層との間隔tよりも大きい、請求項1から請求項4のいずれかに記載の高周波デバイス実装基板。
A ground conductor layer is installed on both sides of the signal line on the surface of the circuit board,
The distance W between the signal line and the ground conductor layer is larger than the distance t between the signal line and the conductor layer formed on the back surface or inside the insulator layer. The high-frequency device mounting substrate according to the above.
前記接地導体層には、前記回路基板を貫通し、前記絶縁体層の裏面又は内部に形成された前記導体層と電気的に接続される複数の貫通導体が接続されている、請求項5記載の高周波デバイス実装基板。   The said grounding conductor layer is connected with the several through-conductor which penetrates the said circuit board and is electrically connected with the said conductor layer formed in the back surface or the inside of the said insulator layer. High frequency device mounting board. 前記高周波デバイスが圧電体フィルタである請求項1から請求項6のいずれかに記載の高周波デバイス実装基板。   The high-frequency device mounting substrate according to claim 1, wherein the high-frequency device is a piezoelectric filter. 前記高周波デバイスが分波器である請求項1から請求項7のいずれかに記載の高周波デバイス実装基板。   The high-frequency device mounting substrate according to claim 1, wherein the high-frequency device is a duplexer. 請求項1から請求項8のいずれかに記載の高周波デバイス実装基板が搭載された通信機器。   A communication device on which the high-frequency device mounting substrate according to any one of claims 1 to 8 is mounted. 前記回路基板の表面の周辺部に配置され、前記信号線につながり、同軸コネクタの中心導体が接続される信号電極と、
前記回路基板の表面の周辺部に配置され、前記同軸コネクタの外周導体を、半田を用いて接続するための接地電極とをさらに備え、
前記接地電極には、前記半田が付着する領域に、前記回路基板を貫通する貫通孔が形成されており、
該貫通孔の内面に導体層が被着されている請求項1から請求項8のいずれかに記載の高周波デバイス実装基板。
A signal electrode disposed in a peripheral portion of the surface of the circuit board, connected to the signal line, and connected to a central conductor of a coaxial connector;
A ground electrode disposed on the periphery of the surface of the circuit board, and connected to the outer peripheral conductor of the coaxial connector using solder;
In the ground electrode, a through-hole penetrating the circuit board is formed in a region where the solder adheres,
The high-frequency device mounting substrate according to any one of claims 1 to 8, wherein a conductor layer is attached to an inner surface of the through hole.
前記回路基板は、複数の絶縁体層が積層された積層基板であり、その内部に内部導体層が形成され、前記貫通孔の内面に形成された導体層は、前記内部導体層に接続されている請求項10記載の高周波デバイス実装基板。   The circuit board is a laminated board in which a plurality of insulator layers are laminated, an inner conductor layer is formed therein, and a conductor layer formed on an inner surface of the through hole is connected to the inner conductor layer. The high-frequency device mounting substrate according to claim 10. 前記回路基板の裏面の前記接地電極と対応する部位に第2の接地電極が形成されており、該第2の接地電極は、前記貫通孔の内面に形成された前記導体層を介して前記回路基板の表面の前記接地電極に接続されている請求項10又は請求項11記載の高周波デバイス実装基板。   A second ground electrode is formed on the back surface of the circuit board corresponding to the ground electrode, and the second ground electrode is connected to the circuit via the conductor layer formed on the inner surface of the through hole. The high-frequency device mounting substrate according to claim 10 or 11, which is connected to the ground electrode on the surface of the substrate. 前記貫通孔は、前記接地電極の、前記回路基板の外周に沿った部位に複数配置されている請求項10から請求項12のいずれかに記載の高周波デバイス実装基板。   The high-frequency device mounting substrate according to any one of claims 10 to 12, wherein a plurality of the through holes are arranged in a portion of the ground electrode along a periphery of the circuit board. 前記貫通孔は、前記接地電極の前記信号線と反対側の部位に、前記回路基板の外周から中央部に向かってさらに配置されている請求項13記載の高周波デバイス実装基板。   The high-frequency device mounting substrate according to claim 13, wherein the through-hole is further disposed from a periphery of the circuit board toward a central portion at a portion of the ground electrode opposite to the signal line. 前記貫通孔は、前記接地電極の前記信号線と反対側の部位に、前記回路基板の外周から中央部に向かって配置されている請求項10から請求項14のいずれかに記載の高周波デバイス実装基板。   The high-frequency device mounting according to any one of claims 10 to 14, wherein the through hole is disposed from a periphery of the circuit board toward a central portion at a portion of the ground electrode opposite to the signal line. substrate. 前記接地電極に、前記回路基板の表面に前記信号線に沿って形成された表面接地導体層が接続されている請求項10から請求項14のいずれかに記載の高周波デバイス実装基板。   The high-frequency device mounting board according to claim 10, wherein a surface ground conductor layer formed along the signal line is connected to the surface of the circuit board to the ground electrode. 高周波デバイス実装基板に実装された高周波デバイスの特性を評価する方法であって、
高周波デバイスを、請求項1から請求項16のいずれかに記載の高周波デバイス実装基板に実装する工程と、
前記高周波デバイス実装基板に測定用配線を接続する工程と、
前記高周波デバイス実装基板に実装された前記高周波デバイスの特性検査を行う特性検査工程とを含む、高周波デバイスの特性評価方法。
A method for evaluating characteristics of a high-frequency device mounted on a high-frequency device mounting substrate,
Mounting the high-frequency device on the high-frequency device mounting substrate according to any one of claims 1 to 16;
Connecting the measurement wiring to the high-frequency device mounting substrate;
A characteristic evaluation method for a high-frequency device, including a characteristic inspection step for performing a characteristic inspection of the high-frequency device mounted on the high-frequency device mounting substrate.
JP2006012825A 2005-01-20 2006-01-20 High frequency device mounting substrate and communication equipment Active JP4837998B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006012825A JP4837998B2 (en) 2005-01-20 2006-01-20 High frequency device mounting substrate and communication equipment

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005012430 2005-01-20
JP2005012430 2005-01-20
JP2006012825A JP4837998B2 (en) 2005-01-20 2006-01-20 High frequency device mounting substrate and communication equipment

Publications (2)

Publication Number Publication Date
JP2006229213A true JP2006229213A (en) 2006-08-31
JP4837998B2 JP4837998B2 (en) 2011-12-14

Family

ID=36990241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006012825A Active JP4837998B2 (en) 2005-01-20 2006-01-20 High frequency device mounting substrate and communication equipment

Country Status (1)

Country Link
JP (1) JP4837998B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010258586A (en) * 2009-04-22 2010-11-11 Taiyo Yuden Co Ltd Communication module
JP2013005296A (en) * 2011-06-17 2013-01-07 Hitachi Chem Co Ltd Line interlayer connector, planar array antenna having line interlayer connector and planar array antenna module
KR101383745B1 (en) 2012-01-09 2014-04-10 주식회사 기가레인 High frequency transmission line using printed circuit board for improving MIMO anntena system
JP2014222858A (en) * 2013-05-14 2014-11-27 株式会社村田製作所 High-frequency module and method of manufacturing the same
JP7364364B2 (en) 2019-06-18 2023-10-18 矢崎総業株式会社 amplifier circuit board

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60186704A (en) * 1984-03-07 1985-09-24 Toshiba Corp Angle measuring instrument
JPH05102711A (en) * 1991-10-08 1993-04-23 Nec Corp Microwave transmission line converter
JPH07202532A (en) * 1994-01-05 1995-08-04 Fuji Elelctrochem Co Ltd Dielectric filter measuring jig
JPH09223894A (en) * 1996-02-16 1997-08-26 Nippon Telegr & Teleph Corp <Ntt> Transmission line and package
JPH10229301A (en) * 1997-02-14 1998-08-25 Mitsubishi Electric Corp High-frequency switch
JPH10327004A (en) * 1997-05-22 1998-12-08 Hitachi Ltd Circuit module with coaxial connector
JPH11154806A (en) * 1997-11-19 1999-06-08 Nec Corp Substrate type irreversible element and integrated circuit using the same
JP2001144222A (en) * 1999-08-31 2001-05-25 Sumitomo Metal Electronics Devices Inc High frequency package
JP2002243812A (en) * 2001-02-20 2002-08-28 Tdk Corp High-frequency circuit evaluating module
JP2004072358A (en) * 2002-08-06 2004-03-04 Sharp Corp Antenna integrated high frequency radio equipment

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60186704A (en) * 1984-03-07 1985-09-24 Toshiba Corp Angle measuring instrument
JPH05102711A (en) * 1991-10-08 1993-04-23 Nec Corp Microwave transmission line converter
JPH07202532A (en) * 1994-01-05 1995-08-04 Fuji Elelctrochem Co Ltd Dielectric filter measuring jig
JPH09223894A (en) * 1996-02-16 1997-08-26 Nippon Telegr & Teleph Corp <Ntt> Transmission line and package
JPH10229301A (en) * 1997-02-14 1998-08-25 Mitsubishi Electric Corp High-frequency switch
JPH10327004A (en) * 1997-05-22 1998-12-08 Hitachi Ltd Circuit module with coaxial connector
JPH11154806A (en) * 1997-11-19 1999-06-08 Nec Corp Substrate type irreversible element and integrated circuit using the same
JP2001144222A (en) * 1999-08-31 2001-05-25 Sumitomo Metal Electronics Devices Inc High frequency package
JP2002243812A (en) * 2001-02-20 2002-08-28 Tdk Corp High-frequency circuit evaluating module
JP2004072358A (en) * 2002-08-06 2004-03-04 Sharp Corp Antenna integrated high frequency radio equipment

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010258586A (en) * 2009-04-22 2010-11-11 Taiyo Yuden Co Ltd Communication module
US8269580B2 (en) 2009-04-22 2012-09-18 Taiyo Yuden Co., Ltd. Communication module
JP2013005296A (en) * 2011-06-17 2013-01-07 Hitachi Chem Co Ltd Line interlayer connector, planar array antenna having line interlayer connector and planar array antenna module
KR101383745B1 (en) 2012-01-09 2014-04-10 주식회사 기가레인 High frequency transmission line using printed circuit board for improving MIMO anntena system
JP2014222858A (en) * 2013-05-14 2014-11-27 株式会社村田製作所 High-frequency module and method of manufacturing the same
JP7364364B2 (en) 2019-06-18 2023-10-18 矢崎総業株式会社 amplifier circuit board

Also Published As

Publication number Publication date
JP4837998B2 (en) 2011-12-14

Similar Documents

Publication Publication Date Title
EP3477693A1 (en) High-frequency ceramic substrate and high-frequency semiconductor element housing package
US8170629B2 (en) Filter having impedance matching circuits
US7477118B2 (en) High frequency device mounting substrate and communications apparatus
JP6643714B2 (en) Electronic devices and equipment
JP2004023567A (en) Mounting structure for dielectric filter, dielectric filter device, and mounting structure for dielectric duplexer and communication equipment system
US20100231320A1 (en) Semiconductor device, transmission system, method for manufacturing semiconductor device, and method for manufacturing transmission system
US7613009B2 (en) Electrical transition for an RF component
JP4837998B2 (en) High frequency device mounting substrate and communication equipment
EP1585184B1 (en) Direct current cut structure
JP7358371B2 (en) Thin film surface mountable high frequency coupler
JP2006211620A (en) Filter and duplexer
US7183878B2 (en) Surface acoustic wave filter
JP4873958B2 (en) High frequency device mounting board
JP4818321B2 (en) Manufacturing method of high-frequency device
JPH09186268A (en) High-frequency semiconductor device
JP2002185201A (en) Wiring board for high frequency
CN100559913C (en) High-frequency equipments assembly base plate and communicating machine
JP2008263360A (en) High-frequency substrate device
JP4206185B2 (en) High frequency semiconductor device
JP3833426B2 (en) High frequency wiring board
TWI783489B (en) Integrated circulator systems, methods of fabricating the same and isolator circuits using the same
KR100550917B1 (en) Saw duplexer using pcb substrate
KR102657057B1 (en) Surface mountable thin film high frequency coupler
JP4969193B2 (en) Duplexer
JP3600729B2 (en) High frequency circuit package

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080717

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110609

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110706

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110908

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110929

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4837998

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150