JP2006221850A - Energy station - Google Patents

Energy station Download PDF

Info

Publication number
JP2006221850A
JP2006221850A JP2005031792A JP2005031792A JP2006221850A JP 2006221850 A JP2006221850 A JP 2006221850A JP 2005031792 A JP2005031792 A JP 2005031792A JP 2005031792 A JP2005031792 A JP 2005031792A JP 2006221850 A JP2006221850 A JP 2006221850A
Authority
JP
Japan
Prior art keywords
hydrogen
dehydrogenation
aromatic hydrocarbon
hydride
energy station
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005031792A
Other languages
Japanese (ja)
Other versions
JP5036969B2 (en
Inventor
Takahiko Matsuda
隆彦 松田
Junko Matsui
順子 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Japan Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corp filed Critical Japan Energy Corp
Priority to JP2005031792A priority Critical patent/JP5036969B2/en
Publication of JP2006221850A publication Critical patent/JP2006221850A/en
Application granted granted Critical
Publication of JP5036969B2 publication Critical patent/JP5036969B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide an energy station capable of reducing the amount of the emission of CO<SB>2</SB>and efficiently supplying petroleum fuel, hydrogen, and electricity. <P>SOLUTION: In the energy station supplying petroleum fuel, high purity hydrogen, and electricity, a facility producing hydrogen by the dehydrogenation reaction of a hydride of aromatic hydrocarbon and a facility producing electricity and heat by operating a solid oxide fuel cell 6 with a reforming reaction product of the petroleum fuel are installed, and exhaust heat generated at the solid oxide fuel cell 6 is used as the heat source of the facility producing hydrogen by the dehydrogenation reaction of the hydride of the aromatic hydrocarbon. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、石油燃料、高純度水素および電気を顧客の選択にあわせて供給するエネルギーステーションに関し、特に、効率よく高純度の水素を供給することができるエネルギーステーションに関するものである。   The present invention relates to an energy station that supplies petroleum fuel, high-purity hydrogen, and electricity according to the customer's choice, and more particularly to an energy station that can efficiently supply high-purity hydrogen.

近年、環境問題やエネルギー問題から、新しいエネルギー源として水素が有望視されており、例えば、水素を直接燃料として用いる水素自動車、あるいは水素を用いる燃料電池などの開発が進められている。該燃料電池は、小型でも高い発電効率を有しており、加えて騒音や振動も発生せず、さらには排熱を利用することができるなどの優れた利点を有している。   In recent years, hydrogen has been considered promising as a new energy source due to environmental problems and energy problems. For example, development of hydrogen automobiles using hydrogen directly as fuel or fuel cells using hydrogen has been promoted. Although the fuel cell is small, it has high power generation efficiency. In addition, the fuel cell does not generate noise and vibration, and has excellent advantages such as use of exhaust heat.

また、自動車においては、高圧水素を搭載する燃料電池自動車や水素ロータリーエンジン車が次世代自動車として注目されており、公道試験を行うなど実用化に向けた評価が行われている。これに対し、これらの自動車に燃料として水素を供給するための水素スタンド等の施設が全国的に必要になることが予想され、圧縮水素や液体水素を輸送して水素スタンドに貯蔵する方式、水素スタンドにおいてメタノール・都市ガス・炭化水素系石油燃料を改質して水素を製造・貯蔵する方式、水素製造所において芳香族炭化水素に水素を貯蔵して輸送しそれを水素スタンドにおいて脱水素して水素を製造する方式など種々の方式の水素スタンドが提案されている。   As for automobiles, fuel cell vehicles equipped with high-pressure hydrogen and hydrogen rotary engine vehicles are attracting attention as next-generation vehicles, and evaluations for practical applications such as public road tests are being conducted. On the other hand, it is expected that facilities such as hydrogen stations for supplying hydrogen as fuel to these vehicles will be required nationwide, and a method of transporting compressed hydrogen and liquid hydrogen and storing them in a hydrogen station, hydrogen A system that reforms methanol, city gas, and hydrocarbon petroleum fuel at a stand to produce and store hydrogen, a hydrogen factory that stores and transports hydrogen in aromatic hydrocarbons, and dehydrogenates it at a hydrogen stand. Various types of hydrogen stands such as a method for producing hydrogen have been proposed.

しかしながら、上記圧縮水素を輸送する方式では、輸送効率が低く、また、水素スタンドにおいて大きなカードルを設置する広いスペースが必要となるため都市部には不向きであり、更に、インフラを新たに整備する必要があるという問題がある。   However, the above method of transporting compressed hydrogen has low transport efficiency and requires a large space for installing a large cardle in the hydrogen stand, so it is not suitable for urban areas, and it is necessary to newly develop infrastructure. There is a problem that there is.

また、液体水素を輸送する方式では、輸送効率が高いものの、液体水素の製造コストが非常に高く、更には、ボイルオフ、インフラの新規整備が必要となるという問題がある。   In addition, although the method of transporting liquid hydrogen has high transport efficiency, there are problems that the production cost of liquid hydrogen is very high, and that boil-off and new infrastructure are required.

更に、都市ガス改質で水素を製造する方式では、都市ガスのインフラが都市部に限られており、該方式の採用が全国各地どこでも可能ではないという問題がある。また、メタノール改質で水素を製造する方式では、インフラの新規整備が必要になるという問題がある。   Furthermore, in the method of producing hydrogen by city gas reforming, the city gas infrastructure is limited to urban areas, and there is a problem that the adoption of this method is not possible anywhere in the country. In addition, the method of producing hydrogen by methanol reforming has a problem that a new infrastructure is required.

これらに対し、炭化水素系石油燃料の改質により水素を製造する方式、および芳香族炭化水素に水素を貯蔵して輸送しそれを水素スタンドで脱水素して水素を製造する方式では、既存の石油燃料インフラを使用できるため、インフラ整備のコストを最小限に抑え、水素スタンドの普及を促進することが出来る。特に、芳香族炭化水素の水素化物を利用する方式では、水素スタンドにおける脱水素反応装置の温度を石油燃料の改質反応装置の温度よりも低くすることが出来、更には、脱水素反応の際に二酸化炭素を発生しない、水素製造後にリサイクルすることが出来るなど種々の点で優れている。反面、芳香族炭化水素の水素化物の脱水素反応は吸熱反応であるので、エネルギー効率を上げるためには脱水素反応装置の熱源の選択が重要であり、この目的のためにいくつかの提案がなされている。   On the other hand, in the method of producing hydrogen by reforming hydrocarbon-based petroleum fuel and the method of producing hydrogen by storing and transporting hydrogen in aromatic hydrocarbons and dehydrogenating it in a hydrogen stand, Since the oil and fuel infrastructure can be used, the cost of infrastructure development can be minimized and the spread of hydrogen stations can be promoted. In particular, in the method using hydrides of aromatic hydrocarbons, the temperature of the dehydrogenation reactor in the hydrogen stand can be made lower than the temperature of the reforming reactor of petroleum fuel. It does not generate carbon dioxide, and can be recycled after hydrogen production. On the other hand, the dehydrogenation reaction of aromatic hydrocarbon hydride is an endothermic reaction, so the selection of the heat source of the dehydrogenation reactor is important to increase the energy efficiency. Several proposals have been made for this purpose. Has been made.

例えば、芳香族炭化水素の水素化物の脱水素反応により水素を製造し、得られた水素を含むガスを用いて、固体酸化物型燃料電池、溶融炭酸塩型燃料電池、リン酸水溶液型燃料電池などの燃料電池により電力を供給する分散型発電システムにおいて、これら燃料電池の排熱を脱水素反応の熱源として利用する方法、さらには脱水素反応装置で発生する水素の一部、燃料電池からオーバーフローした水素並びに芳香族炭化水素及びその水素化物の一部を燃焼器により燃焼させ、その燃焼熱を脱水素反応の熱源に利用する方法が提案されている(特許文献1参照)。   For example, hydrogen is produced by a dehydrogenation reaction of an aromatic hydrocarbon hydride, and the resulting gas containing hydrogen is used to produce a solid oxide fuel cell, a molten carbonate fuel cell, an aqueous phosphoric acid fuel cell In a distributed power generation system that supplies power from a fuel cell, such as a method of using the exhaust heat of these fuel cells as a heat source for a dehydrogenation reaction, a part of the hydrogen generated in the dehydrogenation reactor, overflow from the fuel cell A method has been proposed in which a part of hydrogen and aromatic hydrocarbons and hydrides thereof are combusted by a combustor and the heat of combustion is used as a heat source for the dehydrogenation reaction (see Patent Document 1).

また、芳香族炭化水素の水素化物の脱水素反応により製造した水素を供給する高圧水素の供給システムにおいて、灯油などの石油系燃料、LPGなどを燃料とする燃焼タービン発電装置を稼動させて、それから得られる電力及び排ガスを前記脱水素反応の熱源として利用する方法も提案されている(特許文献2参照)。   In addition, in a high-pressure hydrogen supply system that supplies hydrogen produced by dehydrogenation of aromatic hydrocarbon hydride, a combustion turbine power generator using petroleum-based fuel such as kerosene or LPG as a fuel is operated. A method of using the obtained electric power and exhaust gas as a heat source for the dehydrogenation reaction has also been proposed (see Patent Document 2).

一方、従来の石油燃料を用いる自動車から水素を燃料として用いる自動車へ総て置き換わるには数十年以上の長い期間が必要であると考えられており、その間は、従来の石油系燃料を利用する自動車と、水素を利用する自動車とが混在することになる。これら混在する燃料の異なる自動車への燃料供給のために、水素スタンドと石油燃料スタンドとを個別に設置することは膨大な費用と土地の確保が必要となるため、自動車利用者がその燃料に応じてステーションで燃料の種類を選択できる形態が望まれ、従来のガソリンスタンドでも水素を補給できる機能を付与したものが提案されている(特許文献3参照)。   On the other hand, it is considered that a long period of several decades or more is required to replace the conventional vehicle using petroleum fuel with the vehicle using hydrogen as fuel. During that period, the conventional petroleum fuel is used. There will be a mix of cars and cars that use hydrogen. In order to supply fuel to vehicles with different types of mixed fuel, installing hydrogen stations and oil fuel stations separately requires enormous costs and securing land. Thus, there is a demand for a mode in which the type of fuel can be selected at the station, and a conventional gas station having a function of supplying hydrogen has been proposed (see Patent Document 3).

一方、家庭用分散電源としても水素を利用する燃料電池が注目されており、都市ガス、灯油、LPGなど現に家庭に供給することが可能な炭化水素を改質して燃料電池を稼動させるための水素を得る方式、あるいは水素パイプラインで水素を供給する方式などが提案されている。しかしながら、個々の家庭に新規に設備を導入するには、家庭の費用負担が大きいため、中大規模の燃料電池で発電し、電気と熱に変換してから個々の家庭に供給する方式も提案されている。ここで、中大規模の燃料電池に水素を供給するには、水素スタンドを利用することが可能であり、電気は家庭からの距離に関係なく供給することが出来る。   On the other hand, fuel cells that use hydrogen are also attracting attention as a distributed power source for households. For reforming hydrocarbons that can be supplied to homes, such as city gas, kerosene, and LPG, to operate the fuel cells. A method for obtaining hydrogen or a method for supplying hydrogen through a hydrogen pipeline has been proposed. However, in order to introduce new equipment into individual households, the cost burden of the household is large, so a method of generating electricity with medium and large scale fuel cells, converting it to electricity and heat and then supplying it to individual households is also proposed Has been. Here, in order to supply hydrogen to a medium-sized fuel cell, a hydrogen stand can be used, and electricity can be supplied regardless of the distance from the home.

以上のことから、従来の石油燃料スタンド(自動車用サービステーション)に水素供給設備、燃料電池を設置し、石油系燃料、水素、電気の3種類の形態のエネルギーを顧客の需要に合わせて供給するエネルギーステーションが望まれている。これまでも石油燃料その他の炭化水素燃料を水素製造の原料として用いる改質器と、これから得られた水素含有ガスを用いる燃料電池とを設置し、炭化水素燃料、水素、電気を供給できるエネルギーステーションが提案されている(特許文献4参照)。   Based on the above, hydrogen supply facilities and fuel cells are installed in conventional oil fuel stations (automotive service stations), and three types of energy, petroleum-based fuel, hydrogen, and electricity, are supplied to meet customer demand. An energy station is desired. An energy station that can supply hydrocarbon fuel, hydrogen, and electricity by installing a reformer that uses petroleum fuel and other hydrocarbon fuels as raw materials for hydrogen production, and a fuel cell that uses the hydrogen-containing gas obtained from this. Has been proposed (see Patent Document 4).

特開2004−39351号公報JP 2004-39351 A 特開2004−197705号公報JP 2004-197705 A 特開2002−241772号公報JP 2002-241772 A 特開2002−337999号公報JP 2002-337999 A

このような状況下、本発明の目的は、CO2排出量を削減し、効率よく、石油燃料、水素、電気を供給することができるエネルギーステーションを提供することにある。 Under such circumstances, an object of the present invention is to provide an energy station that can reduce CO 2 emissions and efficiently supply petroleum fuel, hydrogen, and electricity.

本発明者は、この課題を解決するために鋭意研究した結果、従来の石油燃料スタンド(自動車用サービスステーション)の機能に、水素供給機能、電気供給機能を付与する方法として、水素の供給にはCO2を排出しない芳香族炭化水素水素化物の脱水素反応装置を利用し、電気の供給には石油燃料の改質生成物を用いる燃料電池を利用することにより、エネルギーステーション全体のCO2排出量を削減することが出来ることを見出し、さらには、燃料電池として固体酸化物型燃料電池を用い、その排熱を芳香族炭化水素の水素化物の脱水素反応装置の熱源に用いることにより、エネルギーステーション全体の効率を高めることが可能になることを見出し、本発明を完成させた。すなわち、本発明は下記1から5に示すエネルギーステーションに関するものである。 As a result of diligent research to solve this problem, the present inventor, as a method of adding a hydrogen supply function and an electric supply function to the function of a conventional petroleum fuel stand (automobile service station), the CO 2 utilizing a dehydrogenation reactor aromatic hydrocarbon hydrides not discharged, by the supply of electricity utilizing fuel cells using modified products of petroleum fuels, the total energy station CO 2 emissions In addition, a solid oxide fuel cell is used as a fuel cell, and its exhaust heat is used as a heat source for an aromatic hydrocarbon hydride dehydrogenation reactor. The present inventors have found that it is possible to increase the overall efficiency and completed the present invention. That is, the present invention relates to energy stations shown in 1 to 5 below.

1.石油燃料、高純度水素および電気を供給するエネルギーステーションにおいて、
芳香族炭化水素の水素化物の脱水素反応により水素を製造する設備と、
前記石油燃料の改質反応生成物により固体酸化物型燃料電池を作動させて電気と熱を製造する設備とを備え、
前記固体酸化物型燃料電池で発生した排熱を前記芳香族炭化水素の水素化物の脱水素反応により水素を製造する設備の熱源に用いることを特徴とするエネルギーステーション。
1. In energy stations supplying petroleum fuel, high purity hydrogen and electricity,
Equipment for producing hydrogen by dehydrogenation of aromatic hydrocarbon hydride,
A facility for producing electricity and heat by operating a solid oxide fuel cell with the reforming reaction product of the petroleum fuel,
An energy station, wherein exhaust heat generated in the solid oxide fuel cell is used as a heat source of a facility for producing hydrogen by dehydrogenation of the hydride of the aromatic hydrocarbon.

2.前記芳香族炭化水素の水素化物の脱水素反応により水素を製造する設備の後段に更に水素精製設備を備え、該水素精製設備を介して前記芳香族炭化水素の水素化物の脱水素反応で得られた水素を純度99.99%以上の高純度水素とし、その一部を高純度水素として供給し、他の一部を前記芳香族炭化水素の水素化物の脱水素反応により水素を製造する設備へリサイクルすることを特徴とする上記1に記載のエネルギーステーション。 2. A hydrogen refining facility is further provided in the latter stage of the facility for producing hydrogen by dehydrogenation of the aromatic hydrocarbon hydride, and obtained by dehydrogenation of the hydride of the aromatic hydrocarbon through the hydrogen refining facility. To a facility that produces high-purity hydrogen with a purity of 99.99% or more, supplies a part thereof as high-purity hydrogen, and produces another hydrogen by dehydrogenation of the aromatic hydrocarbon hydride. 2. The energy station according to 1 above, wherein the energy station is recycled.

3.前記芳香族炭化水素の水素化物の脱水素反応により水素を製造する設備の脱水素反応器が固定床流通式反応器であることを特徴とする上記1又は2に記載のエネルギーステーション。 3. 3. The energy station according to 1 or 2 above, wherein the dehydrogenation reactor of the facility for producing hydrogen by dehydrogenation of the aromatic hydrocarbon hydride is a fixed bed flow reactor.

4.前記脱水素反応器に用いる脱水素触媒が白金、ルテニウム、パラジウム、ロジウム、スズ、レニウム、及びゲルマニウムよりなる群から選択される少なくとも1種の金属を多孔質担体に担持してなり、平均細孔径が40〜130Åであることを特徴とする上記3に記載のエネルギーステーション。 4). The dehydrogenation catalyst used in the dehydrogenation reactor comprises at least one metal selected from the group consisting of platinum, ruthenium, palladium, rhodium, tin, rhenium, and germanium supported on a porous carrier, and has an average pore diameter 4. The energy station as described in 3 above, wherein is 40 to 130 mm.

5.前記固体酸化物型燃料電池を作動させるために用いる石油燃料が、ガソリン、灯油、ナフサ、又はLPGであることを特徴とする上記1から4のいずれかに記載のエネルギーステーション。 5. 5. The energy station according to any one of 1 to 4, wherein the petroleum fuel used for operating the solid oxide fuel cell is gasoline, kerosene, naphtha, or LPG.

本発明のエネルギーステーションによれば、芳香族炭化水素水素化物の脱水素反応装置と石油燃料の改質生成物を用いる燃料電池との組み合わせにより、CO2の排出量を削減しつつ、石油燃料、水素、電気を同時に供給することができ、また、燃料電池として固体酸化物型燃料電池を用い、その排熱を脱水素反応装置の熱源として用いることにより、エネルギーステーション全体のエネルギー効率を高めることができる。特に、本発明のエネルギーステーションを既存の石油燃料スタンドを活用して建設すれば、既存の貯蔵設備、輸送設備を活用できるので、設備投資が少なくてすみ、従来型の内燃機関自動車から燃料電池自動車への移行期間に長期にわたり営業を続けることが出来るので、実用的メリットが大きい。 According to the energy station of the present invention, the combination of an aromatic hydrocarbon hydride dehydrogenation reactor and a fuel cell using a reformed product of petroleum fuel, while reducing CO 2 emissions, Hydrogen and electricity can be supplied simultaneously, and a solid oxide fuel cell can be used as the fuel cell, and its exhaust heat can be used as a heat source for the dehydrogenation reactor, thereby improving the energy efficiency of the entire energy station. it can. In particular, if the energy station of the present invention is constructed using an existing petroleum fuel station, existing storage facilities and transportation facilities can be utilized, so that capital investment can be reduced, and conventional internal combustion engine vehicles can be reduced to fuel cell vehicles. Since the business can be continued for a long time during the transition period, there is a great practical advantage.

以下に、本発明の好適な実施の形態を、図1を用いて具体的に説明する。しかしながら、本発明は、図1に示す形態に限定されるものではない。   Hereinafter, a preferred embodiment of the present invention will be specifically described with reference to FIG. However, the present invention is not limited to the form shown in FIG.

図1に示すエネルギーステーションは、石油燃料タンク1と、芳香族炭化水素水素化物タンク2と、脱水素反応回収油タンク3とを備える。ここで、石油燃料タンク1は、内燃機関自動車および改質器4に供給するための石油燃料を貯蔵し、芳香族炭化水素水素化物タンク2は、脱水素反応器5により水素を発生させるための芳香族炭化水素水素化物を貯蔵し、脱水素反応回収油タンク3は、脱水素反応後発生する芳香族炭化水素を主成分とする回収油を貯蔵する。なお、芳香族炭化水素水素化物タンク2と脱水素反応回収油タンク3とは、内部が隔壁で仕切られた2室型の1タンクであってもかまわない。また、脱水素反応回収油タンク3に回収された回収油は、水素化反応により芳香族炭化水素の水素化物に再生して、再利用することが出来る。   The energy station shown in FIG. 1 includes a petroleum fuel tank 1, an aromatic hydrocarbon hydride tank 2, and a dehydrogenation reaction recovery oil tank 3. Here, the petroleum fuel tank 1 stores petroleum fuel to be supplied to the internal combustion engine automobile and the reformer 4, and the aromatic hydrocarbon hydride tank 2 is used to generate hydrogen by the dehydrogenation reactor 5. The aromatic hydrocarbon hydride is stored, and the dehydrogenation reaction recovery oil tank 3 stores recovered oil mainly composed of aromatic hydrocarbons generated after the dehydrogenation reaction. In addition, the aromatic hydrocarbon hydride tank 2 and the dehydrogenation reaction recovery oil tank 3 may be a two-chamber one tank whose interior is partitioned by a partition wall. The recovered oil recovered in the dehydrogenation reaction recovery oil tank 3 can be regenerated and reused by regenerating into a hydride of an aromatic hydrocarbon by a hydrogenation reaction.

本発明のエネルギーステーションには、従来の石油燃料スタンド(自動車用サービスステーション)の機能を維持したまま、水素供給機能及び電気供給機能が付与されているので、従来の石油燃料スタンドで受けることの出来る灯油・軽油・LPG・エンジンオイル等の販売、タイヤなどのカー用品の販売、エンジンオイルやタイヤなどの交換、洗車、点検作業などのサービスは、本発明のエネルギーステーションでも同様に受けることが出来る。   The energy station of the present invention is provided with a hydrogen supply function and an electric supply function while maintaining the function of a conventional oil fuel station (automobile service station), and can be received by a conventional oil fuel station. Services such as sales of kerosene, light oil, LPG, engine oil, etc., sales of car supplies such as tires, replacement of engine oil and tires, car washing, inspection work, etc. can be similarly received at the energy station of the present invention.

図1に示すエネルギーステーションにおいて、石油燃料の改質反応生成物により固体酸化物型燃料電池を作動させて電気と熱を製造する設備は、改質器4と、固体酸化物型燃料電池(SOFC)6とから構成される。   In the energy station shown in FIG. 1, facilities for producing electricity and heat by operating a solid oxide fuel cell with a reforming reaction product of petroleum fuel include a reformer 4, a solid oxide fuel cell (SOFC). 6).

改質器4に供給する石油燃料は、ガソリン以外に、本発明のエネルギーステーションで販売する灯油・軽油・LPGのいずれでもよい。また、改質器4に供給する石油燃料としては、脱硫装置を介して含有する硫黄分を除去したものが好ましい。改質器4に供給する石油燃料中に硫黄分が存在すると、該硫黄分が改質器4に充填される改質触媒の被毒物質となるので、吸着剤など公知の方法で除去することが好ましい。なお、石油燃料として、GTLなどの硫黄分が存在しない燃料を用いる場合は、そのまま用いることが出来る。   The petroleum fuel supplied to the reformer 4 may be any of kerosene, light oil, and LPG sold at the energy station of the present invention in addition to gasoline. Moreover, as a petroleum fuel supplied to the reformer 4, what removed the sulfur content contained via a desulfurization apparatus is preferable. If there is a sulfur content in the petroleum fuel supplied to the reformer 4, the sulfur content becomes a poisoning substance for the reforming catalyst filled in the reformer 4. Is preferred. In addition, when using fuel without sulfur content, such as GTL, as petroleum fuel, it can use as it is.

改質器4は、水蒸気改質反応、部分酸化反応、自己熱改質反応により水素を含む燃料を得るための装置である。燃料電池として固体高分子型燃料電池を用いると高純度の水素が必要となるが、本発明では脱水素反応器5への排熱利用に鑑み、比較的純度の低い水素でも作動する固体酸化物型燃料電池6を用いる。ここで、固体酸化物型燃料電池6に供給する水素含有燃料には、水素の他に、メタン、CO、CO2などが含まれていてもよいが、C2以上の炭化水素はコーキングの原因となりやすいため、含まれないことが好ましい。 The reformer 4 is an apparatus for obtaining a fuel containing hydrogen by a steam reforming reaction, a partial oxidation reaction, and an autothermal reforming reaction. When a polymer electrolyte fuel cell is used as a fuel cell, high-purity hydrogen is required. However, in the present invention, in view of utilization of exhaust heat to the dehydrogenation reactor 5, a solid oxide that operates even with relatively low-purity hydrogen. Type fuel cell 6 is used. Here, the hydrogen-containing fuel supplied to the solid oxide fuel cell 6 may contain methane, CO, CO 2, etc. in addition to hydrogen, but C2 or higher hydrocarbons cause coking. Since it is easy, it is preferable that it is not included.

改質器4に用いる改質用触媒としては、水蒸気改質用触媒として一般に知られる触媒を用いればよく、Ni、Ru、Rhなどの金属をアルミナ、ジルコニア、セリア等の担体に担持したものが用いられる。また、改質器4における改質反応は、反応温度:400〜900℃、反応圧力:常圧〜3MPa、GHSV:500〜500000、S/C:0.5〜3の条件で行うことが好ましい。   As the reforming catalyst used in the reformer 4, a catalyst generally known as a steam reforming catalyst may be used. A catalyst in which a metal such as Ni, Ru or Rh is supported on a carrier such as alumina, zirconia, or ceria. Used. The reforming reaction in the reformer 4 is preferably performed under the conditions of reaction temperature: 400 to 900 ° C., reaction pressure: normal pressure to 3 MPa, GHSV: 500 to 500,000, S / C: 0.5 to 3. .

エネルギーステーションにおいて電気を供給するためには、燃料電池以外の石油燃料を原料とする発電機、たとえばガスタービンを用いることも出来るが、本発明のエネルギーステーションでは、発電効率の高い固体酸化物型燃料電池6を用いる。固体酸化物型燃料電池6により発電した電気は、コミュニティーに提供され、家庭・ビル・事業所等で使用したり、電気自動車に供給することも出来る。   In order to supply electricity in the energy station, a generator using petroleum fuel other than the fuel cell as a raw material, for example, a gas turbine can be used. However, in the energy station of the present invention, the solid oxide fuel with high power generation efficiency is used. A battery 6 is used. The electricity generated by the solid oxide fuel cell 6 is provided to the community, and can be used in homes, buildings, offices, etc., or supplied to electric vehicles.

燃料電池自動車や燃料電池バス等に供給する高純度水素をオンサイトで製造する方法としては、従来より、石油燃料や都市ガスなどの炭化水素あるいはメタノールを改質する方法があるが、この方法による生成ガスにはCOやCO2が含まれ、水素純度は高々70〜80%であるため、燃料電池自動車用高純度水素(純度99.99%以上)を得るためには、これらを除去するCO変成器やCO除去装置を経た後、更にPSA(プレシャースイングアドソープション)や膜分離など通常の水素精製設備にて高純度化することが必要になる。これに対し、本発明に用いる芳香族炭化水素の水素化物を用いる脱水素反応によれば、水素製造の際にCOやCO2の発生が無く、生成ガスには水素以外に未反応芳香族炭化水素水素化物のベーパー、脱水素反応後生じる芳香族炭化水素のベーパー、副反応により微量に生じるメタンなどが含まれるだけであり、これらは気液分離や通常の水素精製設備によって、容易に除去することが出来るので、設備の簡略化、コスト削減の面から、オンサイトでの高純度水素製造方法として好ましい。 As a method for producing on-site high-purity hydrogen to be supplied to fuel cell vehicles, fuel cell buses, etc., there are conventional methods for reforming hydrocarbons such as petroleum fuel and city gas, or methanol. The produced gas contains CO and CO 2 , and the hydrogen purity is at most 70 to 80%. Therefore, in order to obtain high-purity hydrogen (purity of 99.99% or more) for fuel cell vehicles, CO to be removed is used. After passing through a transformer and a CO removal device, it is necessary to further purify the product using ordinary hydrogen purification equipment such as PSA (pressure swing adsorption) and membrane separation. In contrast, according to the dehydrogenation reaction using the aromatic hydrocarbon hydride used in the present invention, there is no generation of CO or CO 2 during the production of hydrogen, and the product gas contains unreacted aromatic carbon other than hydrogen. It contains only hydrogen hydride vapor, aromatic hydrocarbon vapor generated after the dehydrogenation reaction, and a small amount of methane produced by side reactions. These can be easily removed by gas-liquid separation or ordinary hydrogen purification equipment. Therefore, it is preferable as an on-site high-purity hydrogen production method from the viewpoint of simplification of equipment and cost reduction.

図1に示すエネルギーステーションにおいて、芳香族炭化水素の水素化物の脱水素反応により水素を製造する設備は、芳香族炭化水素水素化物タンク2、脱水素反応器5、回収油タンク3から構成されるが、本発明のエネルギーステーションに用いる水素製造設備は、更に、水素精製装置、気液分離器などを備えてもよい。原料となる芳香族炭化水素の水素化物は、芳香族炭化水素水素化物タンク2からポンプ等でくみ上げ、予熱後、脱水素反応器5に供給されることが好ましい。   In the energy station shown in FIG. 1, the facility for producing hydrogen by dehydrogenation of an aromatic hydrocarbon hydride includes an aromatic hydrocarbon hydride tank 2, a dehydrogenation reactor 5, and a recovered oil tank 3. However, the hydrogen production facility used in the energy station of the present invention may further include a hydrogen purification device, a gas-liquid separator, and the like. It is preferable that the aromatic hydrocarbon hydride as a raw material is pumped up from the aromatic hydrocarbon hydride tank 2 with a pump or the like, and supplied to the dehydrogenation reactor 5 after preheating.

本発明に用いる芳香族炭化水素の水素化物としては、シクロヘキサン類、デカリン類が挙げられるが、脱水素反応後生じる芳香族炭化水素の安全性、取り扱いやすさから、置換基を持つものが好ましく、メチルシクロヘキサン、エチルシクロヘキサン、ジメチルシクロヘキサン、ジエチルシクロヘキサン、トリメチルシクロヘキサンなどのアルキルシクロヘキサン、メチルデカリン、エチルデカリン、ジメチルデカリン、ジエチルデカリンなどのアルキルデカリン、およびこれらの混合物を用いることが好ましい。   Examples of hydrides of aromatic hydrocarbons used in the present invention include cyclohexanes and decalins, but those having substituents are preferred from the viewpoint of safety and ease of handling of aromatic hydrocarbons generated after dehydrogenation reaction, It is preferable to use alkylcyclohexane such as methylcyclohexane, ethylcyclohexane, dimethylcyclohexane, diethylcyclohexane and trimethylcyclohexane, alkyldecalin such as methyldecalin, ethyldecalin, dimethyldecalin and diethyldecalin, and mixtures thereof.

本発明に用いる脱水素反応器5には触媒を充填し、芳香族炭化水素水素化物を供給して脱水素反応を行わせる。ここで、脱水素反応器5への供給方式としては、芳香族炭化水素水素化物を液体で供給する方式、および予熱して気体で供給する方式のいずれをとることも出来るが、特には、固定床式反応器に気体で供給する方式が好ましい。   The dehydrogenation reactor 5 used in the present invention is filled with a catalyst, and an aromatic hydrocarbon hydride is supplied to cause a dehydrogenation reaction. Here, the supply method to the dehydrogenation reactor 5 can be either a method of supplying an aromatic hydrocarbon hydride as a liquid or a method of supplying it as a preheated gas. A system in which gas is supplied to the bed reactor is preferred.

また、脱水素反応器5に充填する触媒としては、白金、ルテニウム、パラジウム、ロジウム、スズ、レニウム、及びゲルマニウムよりなる群から選択される少なくとも1種の金属を多孔質担体に担持したものが好ましく、脱水素反応器5に供給する芳香族炭化水素の水素化物の種類により、平均細孔径を適宜選択することが好ましい。すなわち、1環のシクロヘキサン類を用いる場合には、特に40〜80Åの平均細孔径を持つ触媒が好ましく、2環のデカリン類を用いる場合には、特に65〜130Åの平均細孔径を持つ触媒を選択することが好ましく、いずれも好ましい細孔径をもつ細孔の容量が全細孔容量の50%以上であることが好ましい。   Further, the catalyst charged in the dehydrogenation reactor 5 is preferably a catalyst in which at least one metal selected from the group consisting of platinum, ruthenium, palladium, rhodium, tin, rhenium, and germanium is supported on a porous carrier. The average pore diameter is preferably selected as appropriate depending on the type of hydride of the aromatic hydrocarbon supplied to the dehydrogenation reactor 5. That is, a catalyst having an average pore diameter of 40 to 80 mm is particularly preferred when using one-ring cyclohexanes, and a catalyst having an average pore diameter of 65 to 130 mm is particularly preferred when using two-ring decalins. It is preferable to select them, and it is preferable that the volume of pores having a preferable pore diameter is 50% or more of the total pore volume.

上記触媒の平均細孔径および細孔容量の比率を制御するには、触媒の担体としてAl23あるいはSiO2を用いることが好ましく、それぞれ単独で用いてもよいし、適当な割合で両者を組み合わせて用いてもかまわない。芳香族炭化水素水素化物が1環と2環の混合物である場合は、その組成により、好ましい平均細孔径をもつ触媒を混合して用いても良い。 In order to control the ratio of the average pore diameter and the pore volume of the catalyst, it is preferable to use Al 2 O 3 or SiO 2 as the catalyst support, and each may be used alone or in an appropriate ratio. They may be used in combination. When the aromatic hydrocarbon hydride is a mixture of one ring and two rings, a catalyst having a preferable average pore diameter may be mixed and used depending on the composition.

また、上記触媒の金属担持率は、0.001〜10質量%の範囲が好ましく、0.01〜5質量%の範囲が更に好ましい。金属担持率が0.001質量%未満では、十分に脱水素反応を進行させることができず、一方、10質量%を超えて金属を担持しても、金属の増量に見合う効果が得られない。   The metal loading of the catalyst is preferably in the range of 0.001 to 10% by mass, more preferably in the range of 0.01 to 5% by mass. If the metal loading is less than 0.001% by mass, the dehydrogenation reaction cannot be sufficiently progressed. On the other hand, even if the metal is loaded exceeding 10% by mass, an effect commensurate with the increase in the amount of metal cannot be obtained. .

本発明で行う脱水素反応は、上記脱水素反応用触媒の存在下、LHSV:0.5〜4、反応温度:100〜450℃、好ましくは250℃〜450℃、反応圧力:常圧〜2MPaで、水素を流通させながら実施することが好ましい。ここで、水素流通量は、水素/芳香族炭化水素水素化物のモル比で0.01〜10の範囲が好ましい。水素を流通させて脱水素反応を行うことで、水素を流通させない場合に比べ副反応を抑えることが出来、水素を効率的に製造できるだけでなく、脱水素反応後回収される油を再度水素化して芳香族炭化水素水素化物として再利用する際に含まれる不純物を少なくすることが出来る。さらに、水素を効率的に製造するには、転化率90%以上になるように反応条件を選択することが好ましい。   The dehydrogenation reaction carried out in the present invention is carried out in the presence of the above-mentioned catalyst for dehydrogenation reaction, LHSV: 0.5-4, reaction temperature: 100-450 ° C, preferably 250 ° C-450 ° C, reaction pressure: normal pressure-2MPa. Therefore, it is preferable to carry out the process while circulating hydrogen. Here, the hydrogen flow rate is preferably in the range of 0.01 to 10 in terms of a hydrogen / aromatic hydrocarbon hydride molar ratio. By conducting hydrogen dehydrogenation reaction, side reactions can be suppressed compared to when hydrogen is not circulated, and not only hydrogen can be produced efficiently, but also the oil recovered after dehydrogenation reaction is hydrogenated again. Thus, impurities contained in the reuse as an aromatic hydrocarbon hydride can be reduced. Furthermore, in order to produce hydrogen efficiently, it is preferable to select reaction conditions so that the conversion rate is 90% or more.

上記芳香族炭化水素水素化物の脱水素反応は吸熱反応であるので、外部より熱を供給する必要があるが、本発明のエネルギーステーションでは、その熱源の全量あるいは一部として、電気を供給するために用いる固体酸化物型燃料電池6の排熱を利用する。固体酸化物型燃料電池6の排熱の利用の仕方としては、例えば、図2に示すように、排ガスを多管式の脱水素反応器5の上部に吹き込む方法、あるいは図3に示すように、熱交換器7を介して芳香族炭化水素の水素化物を加熱する方法、好ましくは、芳香族炭化水素の水素化物及び水素の混合物を加熱する方法をとることができる。   Since the dehydrogenation reaction of the aromatic hydrocarbon hydride is an endothermic reaction, it is necessary to supply heat from the outside. However, in the energy station of the present invention, electricity is supplied as all or part of the heat source. The exhaust heat of the solid oxide fuel cell 6 used for the above is utilized. As a method of using the exhaust heat of the solid oxide fuel cell 6, for example, as shown in FIG. 2, a method in which exhaust gas is blown into the upper portion of the multi-tubular dehydrogenation reactor 5, or as shown in FIG. 3. A method of heating a hydride of an aromatic hydrocarbon via the heat exchanger 7, preferably a method of heating a hydride of an aromatic hydrocarbon and a mixture of hydrogen can be employed.

脱水素反応により生成するガスは、水素を主成分とするが、その他に、未反応の芳香族炭化水素水素化物、脱水素反応により生じる芳香族炭化水素、副反応により生じるメタン、エタン等の低級炭化水素、副反応により生じるアルキルシクロペンタンなどを含むことがある。しかしながら、都市ガス、灯油、ナフサ等の改質反応により水素を製造する場合に反応生成ガス中に含まれる一酸化炭素は、芳香族炭化水素の水素化物の脱水素反応生成ガス中には含まれない。   The gas produced by the dehydrogenation reaction is mainly composed of hydrogen, but in addition, unreacted aromatic hydrocarbon hydrides, aromatic hydrocarbons produced by the dehydrogenation reaction, methane, ethane, etc. produced by side reactions. It may contain hydrocarbons, alkylcyclopentane generated by side reactions, and the like. However, carbon monoxide contained in the reaction product gas when hydrogen is produced by reforming reaction such as city gas, kerosene, naphtha, etc. is included in the dehydrogenation reaction product gas of hydrides of aromatic hydrocarbons. Absent.

脱水素反応により生成したガスを燃料電池自動車に供給するためには、該ガスを純度99.99%以上の高純度水素とすることが好ましいので、本発明のエネルギーステーションは、芳香族炭化水素の水素化物の脱水素反応により水素を製造する設備の後段に更に水素精製設備を備えることが好ましい。また、脱水素反応には、水素を流通させることが好ましいが、該流通水素の純度が低いと、水素流通下で脱水素反応を行うことによる利点が十分に得られないため、水素精製設備を介して得られる純度99.99%以上の高純度水素の一部を芳香族炭化水素の水素化物の脱水素反応により水素を製造する設備へリサイクルすることが好ましい。水素精製設備を備えた本発明のエネルギーステーションの好適例を図4及び図5に示す。   In order to supply the gas generated by the dehydrogenation reaction to the fuel cell vehicle, it is preferable to make the gas high purity hydrogen having a purity of 99.99% or more. It is preferable to further provide a hydrogen purification facility after the facility for producing hydrogen by hydride dehydrogenation. In addition, it is preferable to circulate hydrogen for the dehydrogenation reaction. However, if the purity of the circulated hydrogen is low, the advantage of performing the dehydrogenation reaction under the circulated hydrogen cannot be sufficiently obtained. It is preferable to recycle a part of high-purity hydrogen having a purity of 99.99% or more obtained through the process to a facility for producing hydrogen by dehydrogenation of hydrides of aromatic hydrocarbons. A preferred example of the energy station of the present invention equipped with a hydrogen purification facility is shown in FIGS.

上記水素精製設備としては、通常、水素ガスの精製に用いられるPSA(プレシャースイングアドソープション)、水素分離膜等の装置を用いることができる。ここで、水素精製設備としてPSAを用いる場合は、図4に示すように、脱水素反応器5からの生成ガスを熱交換器7を経由して気液分離器8に送り、該気液分離器8でガス分と油分とに分離し、得られたガス分をPSA9によって、純度99.99%以上の高純度水素と、水素およびその他のガスとに分離することが好ましい。また、水素精製設備として水素分離膜を用いる場合は、図5に示すように、脱水素反応器5からの生成ガスを水素分離膜10によって、純度99.99%以上の高純度水素と、その他の成分とに分離し、その他の成分を熱交換器7を経由して気液分離器8に送り、該気液分離器8で水素およびその他のガスと油分とに分離することが好ましい。なお、気液分離は、PSA9や水素分離膜10等による水素精製工程の前工程および後工程のいずれであってもよいが、水素分離膜10を用いる場合は、水素精製工程後に気液分離を行うことが好ましい。また、設備全体を小型化するためには、ガス精製としては水素分離膜10による精製が特に好ましい。ここで、水素分離膜としては、金属膜、ゼオライト膜、セラミック膜、高分子膜等を例示できるが、脱水素反応器5の温度、圧力、流体に含まれる成分から作動できるものとして、Pd合金膜を用いることが好ましく、特には、圧延膜として薄膜化が可能であり、水素脆化の少ないPd−Cu膜を用いることが好ましい。   As the hydrogen purification equipment, apparatuses such as PSA (pressure swing adsorption), hydrogen separation membrane, etc., which are usually used for purifying hydrogen gas can be used. Here, when PSA is used as the hydrogen purification equipment, as shown in FIG. 4, the product gas from the dehydrogenation reactor 5 is sent to the gas-liquid separator 8 via the heat exchanger 7, and the gas-liquid separation is performed. It is preferable that the gas component and the oil component are separated by the vessel 8 and the obtained gas component is separated by the PSA 9 into high-purity hydrogen having a purity of 99.99% or more and hydrogen and other gases. When a hydrogen separation membrane is used as the hydrogen purification facility, as shown in FIG. 5, the product gas from the dehydrogenation reactor 5 is converted into high-purity hydrogen having a purity of 99.99% or more by the hydrogen separation membrane 10 and others. The other components are preferably sent to the gas-liquid separator 8 via the heat exchanger 7 and separated into hydrogen and other gases and oil by the gas-liquid separator 8. The gas-liquid separation may be either a pre-process or a post-process of the hydrogen purification process using the PSA 9 or the hydrogen separation membrane 10 or the like. However, when the hydrogen separation membrane 10 is used, the gas-liquid separation is performed after the hydrogen purification process. Preferably it is done. Moreover, in order to reduce the size of the entire facility, purification by the hydrogen separation membrane 10 is particularly preferable as gas purification. Here, examples of the hydrogen separation membrane include metal membranes, zeolite membranes, ceramic membranes, polymer membranes, etc., but it is possible to operate from components contained in the temperature, pressure, and fluid of the dehydrogenation reactor 5 as Pd alloys. It is preferable to use a film, and in particular, it is preferable to use a Pd—Cu film that can be thinned as a rolled film and has little hydrogen embrittlement.

水素精製装置を介して製造した純度99.99%以上の高純度水素は、燃料電池自動車へ供給されるが、その一部を脱水素反応器5にリサイクルし、脱水素反応における流通水素として用いることが好ましい。脱水素反応に用いる流通水素としては、外部から導入される水素、脱水素反応器5から出る反応生成ガスの未精製ガス中に含まれる水素、水素分離膜10を透過しなかったガスに含まれる水素、PSA9のオフガス中の水素を用いることも出来るが、水素純度が低いと、リサイクルしているうちに水素以外のガスの濃度が高くなってしまい、水素流通下で脱水素反応を行うことの利点が十分に得られないので、水素分離膜10を透過して得た、あるいはPSA9を介して得た純度99.99%以上の高純度水素をリサイクルすることが特に好ましい。   High-purity hydrogen having a purity of 99.99% or more produced through a hydrogen purifier is supplied to the fuel cell vehicle, but a part of it is recycled to the dehydrogenation reactor 5 and used as circulating hydrogen in the dehydrogenation reaction. It is preferable. The flowing hydrogen used for the dehydrogenation reaction is included in hydrogen introduced from the outside, hydrogen contained in the unpurified gas of the reaction product gas exiting from the dehydrogenation reactor 5, and gas not permeated through the hydrogen separation membrane 10. Hydrogen and hydrogen in the off-gas of PSA 9 can also be used. However, if the purity of hydrogen is low, the concentration of gas other than hydrogen becomes high during recycling, and the dehydrogenation reaction can be performed under hydrogen flow. Since a sufficient advantage cannot be obtained, it is particularly preferable to recycle high-purity hydrogen having a purity of 99.99% or more obtained through the hydrogen separation membrane 10 or obtained through the PSA 9.

本発明において、脱水素反応生成ガスから気液分離後に水素精製装置を経て低純度水素として回収されたガス、あるいは水素精製装置を経た後に気液分離して得られた低純度水素は、水素および副反応により生じた低級炭化水素、並びに分離しきれなかった液体のベーパーを含むので、これらは、脱水素反応器5の加熱のために他の燃料と共にバーナーで燃焼させるなどして、熱源原料の一部として利用することが出来る。   In the present invention, the gas recovered from the dehydrogenation reaction product gas after gas-liquid separation through a hydrogen purifier as low-purity hydrogen, or the low-purity hydrogen obtained by gas-liquid separation after passing through the hydrogen purifier is hydrogen and Since it contains lower hydrocarbons generated by side reactions and liquid vapor that could not be separated, these were burned with a burner together with other fuels to heat the dehydrogenation reactor 5, and so on. Can be used as a part.

一方、水素精製装置および気液分離の2工程を経て液体として回収された油には、未反応芳香族炭化水素水素化物、脱水素反応により生成した芳香族炭化水素が含まれる。これらは回収して、再度水素化することにより、芳香族炭化水素水素化物とすることができ、再び脱水素反応器5に供給して再利用することが出来る。   On the other hand, the oil recovered as a liquid through the two steps of the hydrogen purifier and the gas-liquid separation contains unreacted aromatic hydrocarbon hydride and aromatic hydrocarbon generated by the dehydrogenation reaction. These can be recovered and hydrogenated again to form an aromatic hydrocarbon hydride, which can be supplied again to the dehydrogenation reactor 5 for reuse.

本発明のエネルギーステーションの構成を示す模式図である。It is a schematic diagram which shows the structure of the energy station of this invention. 本発明のエネルギーステーションにおいて、固体酸化物型燃料電池の排熱を脱水素反応器の熱源として利用する例である。In the energy station of the present invention, the exhaust heat of the solid oxide fuel cell is used as a heat source of the dehydrogenation reactor. 本発明のエネルギーステーションにおいて、固体酸化物型燃料電池の排熱を脱水素反応器の熱源として利用する他の例である。It is another example using the exhaust heat of a solid oxide fuel cell as a heat source of a dehydrogenation reactor in the energy station of this invention. 本発明のエネルギーステーションの好適例のフローチャートであり、水素精製装置としてPSAを利用する例である。It is a flowchart of the suitable example of the energy station of this invention, and is an example using PSA as a hydrogen purification apparatus. 本発明のエネルギーステーションの他の好適例のフローチャートであり、水素精製装置として水素分離膜を利用する例である。It is a flowchart of the other suitable example of the energy station of this invention, and is an example using a hydrogen separation membrane as a hydrogen purification apparatus.

符号の説明Explanation of symbols

1 石油燃料タンク
2 芳香族炭化水素水素化物タンク
3 脱水素反応回収油タンク
4 改質器
5 脱水素反応器
6 固体酸化物型燃料電池(SOFC)
7 熱交換器
8 気液分離器
9 PSA(プレシャースイングアドソープション)
10 水素分離膜
DESCRIPTION OF SYMBOLS 1 Petroleum fuel tank 2 Aromatic hydrocarbon hydride tank 3 Dehydrogenation reaction recovery oil tank 4 Reformer 5 Dehydrogenation reactor 6 Solid oxide fuel cell (SOFC)
7 Heat exchanger 8 Gas-liquid separator 9 PSA (Pressure Swing Adsorption)
10 Hydrogen separation membrane

Claims (5)

石油燃料、高純度水素および電気を供給するエネルギーステーションにおいて、
芳香族炭化水素の水素化物の脱水素反応により水素を製造する設備と、
前記石油燃料の改質反応生成物により固体酸化物型燃料電池を作動させて電気と熱を製造する設備とを備え、
前記固体酸化物型燃料電池で発生した排熱を前記芳香族炭化水素の水素化物の脱水素反応により水素を製造する設備の熱源に用いることを特徴とするエネルギーステーション。
In energy stations supplying petroleum fuel, high purity hydrogen and electricity,
Equipment for producing hydrogen by dehydrogenation of aromatic hydrocarbon hydride,
A facility for producing electricity and heat by operating a solid oxide fuel cell with the reforming reaction product of the petroleum fuel,
An energy station, wherein exhaust heat generated in the solid oxide fuel cell is used as a heat source of a facility for producing hydrogen by dehydrogenation of the hydride of the aromatic hydrocarbon.
前記芳香族炭化水素の水素化物の脱水素反応により水素を製造する設備の後段に更に水素精製設備を備え、該水素精製設備を介して前記芳香族炭化水素の水素化物の脱水素反応で得られた水素を純度99.99%以上の高純度水素とし、その一部を高純度水素として供給し、他の一部を前記芳香族炭化水素の水素化物の脱水素反応により水素を製造する設備へリサイクルすることを特徴とする請求項1に記載のエネルギーステーション。   A hydrogen refining facility is further provided in the latter stage of the facility for producing hydrogen by dehydrogenation of the aromatic hydrocarbon hydride, and obtained by dehydrogenation of the hydride of the aromatic hydrocarbon through the hydrogen refining facility. To a facility that produces high-purity hydrogen with a purity of 99.99% or more, supplies a part thereof as high-purity hydrogen, and produces another hydrogen by dehydrogenation of the aromatic hydrocarbon hydride. The energy station according to claim 1, wherein the energy station is recycled. 前記芳香族炭化水素の水素化物の脱水素反応により水素を製造する設備の脱水素反応器が固定床流通式反応器であることを特徴とする請求項1又は2に記載のエネルギーステーション。   The energy station according to claim 1 or 2, wherein a dehydrogenation reactor of a facility for producing hydrogen by a dehydrogenation reaction of the hydride of the aromatic hydrocarbon is a fixed bed flow reactor. 前記脱水素反応器に用いる脱水素触媒が、白金、ルテニウム、パラジウム、ロジウム、スズ、レニウム、及びゲルマニウムよりなる群から選択される少なくとも1種の金属を多孔質担体に担持してなり、平均細孔径が40〜130Åであることを特徴とする請求項3に記載のエネルギーステーション。   The dehydrogenation catalyst used in the dehydrogenation reactor comprises at least one metal selected from the group consisting of platinum, ruthenium, palladium, rhodium, tin, rhenium, and germanium supported on a porous carrier, and has an average fine particle size. The energy station according to claim 3, wherein the hole diameter is 40 to 130 mm. 前記固体酸化物型燃料電池を作動させるために用いる石油燃料が、ガソリン、灯油、ナフサ、又はLPGであることを特徴とする請求項1から4のいずれかに記載のエネルギーステーション。   The energy station according to any one of claims 1 to 4, wherein the petroleum fuel used to operate the solid oxide fuel cell is gasoline, kerosene, naphtha, or LPG.
JP2005031792A 2005-02-08 2005-02-08 Energy station Active JP5036969B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005031792A JP5036969B2 (en) 2005-02-08 2005-02-08 Energy station

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005031792A JP5036969B2 (en) 2005-02-08 2005-02-08 Energy station

Publications (2)

Publication Number Publication Date
JP2006221850A true JP2006221850A (en) 2006-08-24
JP5036969B2 JP5036969B2 (en) 2012-09-26

Family

ID=36984036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005031792A Active JP5036969B2 (en) 2005-02-08 2005-02-08 Energy station

Country Status (1)

Country Link
JP (1) JP5036969B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006232607A (en) * 2005-02-24 2006-09-07 Japan Energy Corp Hydrogen production method
JP2009143744A (en) * 2007-12-12 2009-07-02 Petroleum Energy Center Energy station
JP2009221057A (en) * 2008-03-17 2009-10-01 Japan Energy Corp Hydrogen production system
JP2011251916A (en) * 2010-05-31 2011-12-15 Hitachi Ltd System for dehydrogenating organic hydride
WO2013078142A3 (en) * 2011-11-21 2014-02-20 Saudi Arabian Oil Company Method and a system for combined hydrogen and electricity production using petroleum fuels
JP2016172679A (en) * 2015-03-18 2016-09-29 富士電機株式会社 Hydrogen production apparatus, and hydrogen production method
JP2018043913A (en) * 2016-09-14 2018-03-22 東京瓦斯株式会社 Hydrogen production device
CN108043332A (en) * 2018-01-17 2018-05-18 北京国能中林科技开发有限公司 A kind of efficient dehydrogenation reactor applied to liquid hydrogen source material
CN113701380A (en) * 2021-07-05 2021-11-26 中国科学院理化技术研究所 CO2 multi-energy complementary distributed energy station based on supersonic speed rotational flow two-phase expansion system
US11414972B2 (en) 2015-11-05 2022-08-16 Saudi Arabian Oil Company Methods and apparatus for spatially-oriented chemically-induced pulsed fracturing in reservoirs

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07235322A (en) * 1994-02-21 1995-09-05 Mitsubishi Heavy Ind Ltd Fuel recycling method for fuel cell with solid high polymer electrolyte
JP2002337999A (en) * 2001-05-18 2002-11-27 Nippon Oil Corp Fuel feeding system
JP2004197705A (en) * 2002-12-20 2004-07-15 Chiyoda Corp High pressure hydrogen supply system
WO2005001980A1 (en) * 2003-06-30 2005-01-06 Japan Energy Corporation Fuel cell with reformer
JP2005532241A (en) * 2001-10-05 2005-10-27 ジーテック コーポレーション No / low exhaust energy supply station

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07235322A (en) * 1994-02-21 1995-09-05 Mitsubishi Heavy Ind Ltd Fuel recycling method for fuel cell with solid high polymer electrolyte
JP2002337999A (en) * 2001-05-18 2002-11-27 Nippon Oil Corp Fuel feeding system
JP2005532241A (en) * 2001-10-05 2005-10-27 ジーテック コーポレーション No / low exhaust energy supply station
JP2004197705A (en) * 2002-12-20 2004-07-15 Chiyoda Corp High pressure hydrogen supply system
WO2005001980A1 (en) * 2003-06-30 2005-01-06 Japan Energy Corporation Fuel cell with reformer

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006232607A (en) * 2005-02-24 2006-09-07 Japan Energy Corp Hydrogen production method
JP2009143744A (en) * 2007-12-12 2009-07-02 Petroleum Energy Center Energy station
JP2009221057A (en) * 2008-03-17 2009-10-01 Japan Energy Corp Hydrogen production system
JP2011251916A (en) * 2010-05-31 2011-12-15 Hitachi Ltd System for dehydrogenating organic hydride
US10283795B2 (en) 2011-11-21 2019-05-07 Saudi Arabian Oil Company Method and system for combined hydrogen and electricity production using petroleum fuels
US9365131B2 (en) 2011-11-21 2016-06-14 Saudi Arabian Oil Company Method and a system for combined hydrogen and electricity production using petroleum fuels
US9806364B2 (en) 2011-11-21 2017-10-31 Saudi Arabian Oil Company System for combined hydrogen and electricity production using petroleum fuels
US10008730B2 (en) 2011-11-21 2018-06-26 Saudi Arabian Oil Company System and method for fueling alternative fuel vehicles
US10218020B2 (en) 2011-11-21 2019-02-26 Saudi Arabian Oil Company System and method for fueling alternative fuel vehicles
WO2013078142A3 (en) * 2011-11-21 2014-02-20 Saudi Arabian Oil Company Method and a system for combined hydrogen and electricity production using petroleum fuels
JP2016172679A (en) * 2015-03-18 2016-09-29 富士電機株式会社 Hydrogen production apparatus, and hydrogen production method
US11414972B2 (en) 2015-11-05 2022-08-16 Saudi Arabian Oil Company Methods and apparatus for spatially-oriented chemically-induced pulsed fracturing in reservoirs
JP2018043913A (en) * 2016-09-14 2018-03-22 東京瓦斯株式会社 Hydrogen production device
CN108043332A (en) * 2018-01-17 2018-05-18 北京国能中林科技开发有限公司 A kind of efficient dehydrogenation reactor applied to liquid hydrogen source material
CN113701380A (en) * 2021-07-05 2021-11-26 中国科学院理化技术研究所 CO2 multi-energy complementary distributed energy station based on supersonic speed rotational flow two-phase expansion system
CN113701380B (en) * 2021-07-05 2022-11-01 中国科学院理化技术研究所 CO based on supersonic speed rotational flow two-phase expansion system2Multi-energy complementary distributed energy station

Also Published As

Publication number Publication date
JP5036969B2 (en) 2012-09-26

Similar Documents

Publication Publication Date Title
JP5036969B2 (en) Energy station
Ferreira‐Aparicio et al. New trends in reforming technologies: from hydrogen industrial plants to multifuel microreformers
JP4801359B2 (en) Hydrogen production method
JP5288840B2 (en) Hydrogen production system
JP2004079262A (en) Hydrogen-supply system and mobile hydrogen production equipment
JP4886229B2 (en) Hydrogen station
JP2010006653A (en) Method for producing hydrogen
MX2012010052A (en) Method for producing hydrogen for storage and transportation.
US20240072286A1 (en) Carbon-neutral process for generating electricity
US20230402636A1 (en) Carbon-neutral process for generating electricity
Hansen Fuel processing for fuel cells and power to fuels as seen from an industrial perspective
JP2004197705A (en) High pressure hydrogen supply system
JP5138586B2 (en) Liquid fuel synthesis system
JP4835967B2 (en) Hydrogen production system
JP4537666B2 (en) Fuel for fuel cell system and fuel cell system
JP2005203266A (en) Hydrogen production method and hydrogen production system
JP3671040B2 (en) Hydrogen-based infrastructure system
JP2003095612A (en) Hydrogen producing plant
JP5098073B2 (en) Energy station
JP2002316043A (en) Desulfurizing agent for organic sulfur compound- containing fuel oil and method of manufacturing hydrogen for fuel cell
Lee et al. Catalytic ammonia decomposition to produce hydrogen: A mini-review
JP4201119B2 (en) Hydrogen storage and supply system
JP2004319401A (en) Fuel for fuel cell system, its manufacturing method, and fuel cell system
US20230163335A1 (en) Integrated production of hydrogen, electricity, and heat
JP2005093214A (en) Method of supplying liquefied petroleum gas to hydrogen production system for fuel cell

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060609

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071129

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120703

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120704

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5036969

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250