JP4886229B2 - Hydrogen station - Google Patents

Hydrogen station Download PDF

Info

Publication number
JP4886229B2
JP4886229B2 JP2005201972A JP2005201972A JP4886229B2 JP 4886229 B2 JP4886229 B2 JP 4886229B2 JP 2005201972 A JP2005201972 A JP 2005201972A JP 2005201972 A JP2005201972 A JP 2005201972A JP 4886229 B2 JP4886229 B2 JP 4886229B2
Authority
JP
Japan
Prior art keywords
hydrogen
fuel cell
cell vehicle
stationary
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005201972A
Other languages
Japanese (ja)
Other versions
JP2007016975A (en
Inventor
慶太 由良
岳史 山下
昇 中尾
彰利 藤澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2005201972A priority Critical patent/JP4886229B2/en
Publication of JP2007016975A publication Critical patent/JP2007016975A/en
Application granted granted Critical
Publication of JP4886229B2 publication Critical patent/JP4886229B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は、燃料電池用水素を供給する水素ステーションに関し、詳しくは、定置形燃料電池および燃料電池自動車のいずれへの水素供給をも可能とする水素ステーションに関する。   The present invention relates to a hydrogen station that supplies hydrogen for a fuel cell, and more particularly to a hydrogen station that can supply hydrogen to either a stationary fuel cell or a fuel cell vehicle.

環境負荷が小さいクリーンな発電技術として期待される燃料電池は、近年、固体高分子型燃料電池(PEFC)の実用化にむけた開発が加速され、定置形燃料電池(家庭用/業務用コージェネレーション)および燃料電池用自動車については、実証段階に進んできている。   Fuel cells, which are expected to be a clean power generation technology with a low environmental impact, have recently been accelerated toward the practical application of polymer electrolyte fuel cells (PEFC), and stationary fuel cells (household / commercial cogeneration) ) And fuel cell vehicles are now in the demonstration stage.

PEFCは、リン酸型、溶融炭酸塩型、固体酸化物型に比較して、低作動温度(約80℃)、高出力密度という特徴があり、電池システムがコンパクトになる期待が高い。しかし、電極に使用する白金触媒が一酸化炭素の被毒を受けるため、その実用化に際しては、燃料水素中の微量一酸化炭素を少なくとも10ppm以下まで除去する必要があるとされている。   PEFC is characterized by low operating temperature (about 80 ° C.) and high power density compared to phosphoric acid type, molten carbonate type, and solid oxide type, and is expected to have a compact battery system. However, since the platinum catalyst used for the electrode is poisoned by carbon monoxide, it is said that it is necessary to remove a trace amount of carbon monoxide in the fuel hydrogen to at least 10 ppm or less for practical use.

燃料電池用水素は、将来的には太陽光を利用した水の電気分解で製造することが環境負荷から考えて理想的とされるものの、当面は化石燃料の改質によって製造された水素を燃料とし、水素供給インフラの整備とともに燃料電池が普及していくとの見通しが主流になっている。改質の候補原料となる化石燃料としては、天然ガス、都市ガス、LPG、ナフサ、ガソリン、灯油、メタノール、DME、GTLなどが検討されているが、いずれから水素を製造しても、一酸化炭素(CO)の副生は避けられない。たとえば天然ガスを原料にする場合、一般的には、水蒸気改質反応(700℃程度)で、水素(H)、二酸化炭素(CO)、一酸化炭素(CO)の混合ガスを製造し、さらに、一酸化炭素(CO)と水蒸気(HO)を水素(H)と二酸化炭素(CO)に変える変成反応(300℃程度)で一酸化炭素(CO)を極力低減させる方法がとられるが、それでもなお1000ppm〜1容積%(以下、単に「%」と表示する。)程度のCOが含まれている。したがって、PEFCの燃料として使用するためには、さらにCOを10ppm以下程度まで除去するプロセスの併設が不可欠であり、このような仕様に見合うCO除去プロセスとして圧力スイング吸着法(PSA法)、水素選択透過膜分離法、一酸化炭素選択酸化法が提案されている。また、本発明者らは、これらの方法に匹敵するCOを選択的に吸着する吸着剤を用いた一酸化炭素吸着除去法に関する発明を完成し、先に特許出願(特願2004−334932、特願2004−352309)を行った。 In the future, hydrogen for fuel cells is ideally produced by electrolysis of water using sunlight, considering the environmental impact, but for the time being, hydrogen produced by fossil fuel reforming is used as fuel. As a result, the outlook is that fuel cells will become more widespread with the development of the hydrogen supply infrastructure. Natural gas, city gas, LPG, naphtha, gasoline, kerosene, methanol, DME, GTL, etc. have been studied as fossil fuels that are candidate raw materials for reforming. The byproduct of carbon (CO) is inevitable. For example, when natural gas is used as a raw material, a mixed gas of hydrogen (H 2 ), carbon dioxide (CO 2 ), and carbon monoxide (CO) is generally produced by a steam reforming reaction (about 700 ° C.). Furthermore, a method of reducing carbon monoxide (CO) as much as possible by a transformation reaction (about 300 ° C.) that changes carbon monoxide (CO) and water vapor (H 2 O) into hydrogen (H 2 ) and carbon dioxide (CO 2 ). However, it still contains about 1000 ppm to 1% by volume (hereinafter simply referred to as “%”) of CO. Therefore, in order to use it as a fuel for PEFC, it is indispensable to additionally install a process that removes CO to about 10 ppm or less. As a CO removal process that meets such specifications, pressure swing adsorption method (PSA method), hydrogen selection A permeable membrane separation method and a carbon monoxide selective oxidation method have been proposed. In addition, the present inventors have completed an invention relating to a carbon monoxide adsorption removal method using an adsorbent that selectively adsorbs CO, which is comparable to these methods, and previously filed a patent application (Japanese Patent Application No. 2004-334932, Application 2004-352309) was made.

これらの発明は、水素インフラ整備にも十分に活用できるものと考えられる。例えば、「地域のコミュニティが自立化し、自ら水素ステーションを保有して、コミュニティ内の消費電力相当分を燃料電池で賄うため、水素を製造するとともに、余剰水素を燃料電池自動車用の燃料として外販する」というような仕組みの実現とそれを促進するための政策による誘導が図られたとする。インフラ整備の初期においては、行政主導の実施が不可欠であるものの、その経済性が検証されれば、水素ステーションの普及にむけた機運に拍車がかかるものと思われる(例えば、非特許文献1参照)。上記本発明者らの出願に係る発明は、コミュニティを自立化させる際に重要となるコスト低減を技術面でサポートする有望な発明である。さらに本発明者らは、コミュニティ普及のための有望技術として、安全で安心なコミュニティを確立するための概念と技術に係る発明を完成し、すでに特許出願(特願2004−067697)を行った。   It is considered that these inventions can be fully utilized for hydrogen infrastructure development. For example, “Local communities become self-sufficient, own hydrogen stations, and produce hydrogen to cover the power consumption in the community with fuel cells, and sell surplus hydrogen as fuel for fuel cell vehicles. Suppose that the implementation of a mechanism such as “and the guidance by the policy to promote it” was attempted. At the initial stage of infrastructure development, implementation by the government is indispensable. However, if its economic efficiency is verified, it is thought that the momentum for the spread of hydrogen stations will be spurred (for example, see Non-Patent Document 1). ). The invention according to the above-mentioned application by the present inventors is a promising invention that technically supports cost reduction that is important when making a community independent. Furthermore, the present inventors have completed an invention relating to a concept and technology for establishing a safe and secure community as a promising technology for spreading the community, and have already filed a patent application (Japanese Patent Application No. 2004-0667697).

しかし、コミュニティが保有する水素ステーションにもいろいろな考え方がある。例えば、定置形燃料電池と燃料電池自動車それぞれに求められる燃料源としての水素仕様は大きく異なっており、水素ステーションの水素に求められる仕様については明確ではない。   However, there are various ways of thinking about the hydrogen stations owned by the community. For example, the hydrogen specifications as the fuel source required for stationary fuel cells and fuel cell vehicles differ greatly, and the specifications required for hydrogen at the hydrogen station are not clear.

定置形燃料電池は通常、水素製造装置を併設しているため、必要水素量より過剰の水素を燃料電池セルの燃料極に導入しつつ、余剰水素を燃料極から排出される未反応ガス(水素やその他不純物ガス)を回収し、水素製造用(水蒸気改質)の熱源として活用することが考えられている。   A stationary fuel cell usually has a hydrogen production device, so that excess hydrogen is introduced into the fuel electrode of the fuel cell while surplus hydrogen is discharged from the fuel electrode (hydrogen). And other impurity gases) are collected and used as a heat source for hydrogen production (steam reforming).

いっぽう、燃料電池自動車は、軽量化の観点等から水素製造装置を保有することは想定されておらず、また燃料電池自動車に給給する水素は極力有効利用を図りたいことから、燃料電池セルから未反応水素が排出されることは想定されておらず、すべて電力に変換して消費してしまえるようできるだけ高い純度の水素が望まれている。   On the other hand, fuel cell vehicles are not expected to have hydrogen production equipment from the viewpoint of weight reduction, and the hydrogen supplied to fuel cell vehicles is intended to be used as effectively as possible. It is not assumed that unreacted hydrogen is discharged, and hydrogen having the highest possible purity is desired so that it can be completely converted into electric power and consumed.

したがって、コミュニティが保有する水素ステーションに求められる水素ガスの仕様としては、定置形燃料電池には、それほどの純度が要求される訳ではないが、燃料電池自動車には相当高い純度が求められることとなる。
吉田 隆(発行),水素利用技術集成 製造・貯蔵・エネルギー利用,初版,株式会社エヌ・ティー・エス,2003年11月1日,p.543−578
Therefore, the specifications of the hydrogen gas required for the hydrogen stations owned by the community do not necessarily require so much purity for stationary fuel cells, but the fuel cell vehicles require considerably high purity. Become.
Takashi Yoshida (issued), Hydrogen technology collection Manufacturing, storage and energy use, first edition, NTS Corporation, November 1, 2003, p. 543-578

そこで本発明の目的は、経済性および技術的安定性を確保しつつ、定置形燃料電池および燃料電池自動車のいずれの水素仕様にも対応して、いずれへの水素供給をも可能とする水素ステーションを提供することにある。   SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a hydrogen station that can supply hydrogen to any of the stationary fuel cell and the fuel cell vehicle while ensuring economic efficiency and technical stability. Is to provide.

本発明者らは、上記課題を解決すべく、以下のような検討を行った。   In order to solve the above problems, the present inventors have conducted the following studies.

定置形燃料電池に求められる水素仕様は、H濃度70%以上、CO濃度10ppm以下が一般的に望まれている。H濃度は燃料電池の発電効率を高めるためには高い方が望ましいが、電極に供給されるH分圧が常時一定以上であれば致命的な発電低下が起こる訳ではない。CO濃度は、燃料電池のセル電極の被毒成分として極力除去すべきものであるが、昨今の技術開発により10ppm程度の混入であっても致命的な性能低下に結びつく訳ではないとされている。 The hydrogen specifications required for stationary fuel cells are generally desired to be an H 2 concentration of 70% or more and a CO concentration of 10 ppm or less. A higher H 2 concentration is desirable in order to increase the power generation efficiency of the fuel cell. However, if the H 2 partial pressure supplied to the electrode is always above a certain level, a fatal power generation decrease does not occur. The CO concentration should be removed as much as possible as a poisoning component of the cell electrode of the fuel cell. However, due to the recent technological development, it is said that even if it is about 10 ppm, it does not lead to a fatal performance degradation.

したがって、コミュニティ内の発電燃料用に水素ステーションで貯蔵される水素仕様としては、少なくとも定置形燃料電池用の水素の仕様を満たす程度の仕様に定めることが無理のない設計であると考えられる。すなわち、水素製造、精製の各工程を経てH濃度が70%以上に高められ、CO濃度が10ppm以下に低減されたものがコミュニティの有する水素ステーションで貯蔵される水素の仕様となる。実際には、CO濃度を10ppm以下に抑えるような精製工程を経た水素は、純度が90%以上に到達しているのが普通である。 Therefore, it can be considered that the hydrogen specification stored in the hydrogen station for power generation fuel in the community is a design that can be set to a specification that satisfies at least the specification of hydrogen for stationary fuel cells. That is, the specification of hydrogen stored in the hydrogen station owned by the community is that the H 2 concentration is increased to 70% or more through the steps of hydrogen production and purification and the CO concentration is reduced to 10 ppm or less. In practice, the purity of hydrogen that has undergone a purification process that suppresses the CO concentration to 10 ppm or less usually reaches 90% or more.

このようにして貯蔵された水素は、コミュニティ内の個々の家庭あるいはオフィスの燃料電池(定置形燃料電池)にパイプラインを介して供給される。
しかしながら、上記程度の純度の水素は、燃料電池自動車用途に対しては安心して用いることができない。自動車に搭載された燃料電池は、水素を余らせない、すなわち水素を極力使い切るような方式となっており、COが存在すれば、たとえ10ppmといえども電極の白金触媒に蓄積されてその耐久性に大きく影響を与える。したがって、燃料電池自動車用水素中のCO濃度は可及的に低くすることが要請されており、0.2ppm以下まで低減することが必要とされている。
The hydrogen stored in this way is supplied via pipelines to individual home or office fuel cells (stationary fuel cells) in the community.
However, hydrogen of the above degree of purity cannot be used with confidence for fuel cell automobile applications. Fuel cells installed in automobiles have a system that does not use excessive hydrogen, that is, uses up hydrogen as much as possible. If CO is present, even if it is 10 ppm, it is accumulated in the platinum catalyst of the electrode and its durability. Greatly affects. Therefore, the CO concentration in hydrogen for fuel cell vehicles is required to be as low as possible, and is required to be reduced to 0.2 ppm or less.

そこで本発明者らは、さらに検討を進めた結果、水素貯蔵タンクから燃料電池自動車へ水素を供給する際にはCO除去器によりCO濃度を例えば0.2ppm以下へとさらに低減し、必要な場合には吸着器によりCO、HOなどその他の不純物ガスも除去して高純度化してから供給するようにすれば、上記本発明の解決課題である経済性および技術的安定性を確保しつつ水素仕様の問題を解決しうることに想到し、以下の発明を完成するに至った。 Therefore, as a result of further studies, the present inventors have further reduced the CO concentration to, for example, 0.2 ppm or less by a CO remover when supplying hydrogen from a hydrogen storage tank to a fuel cell vehicle. In this case, if other impurity gases such as CO 2 and H 2 O are removed by an adsorber to be purified and then supplied, the economical and technical stability, which are the problems to be solved by the present invention, are ensured. While conceiving that the problem of hydrogen specifications can be solved, the inventors have completed the following invention.

請求項1に記載の発明は、定置形燃料電池および燃料電池自動車のいずれへの水素供給をも可能とする水素ステーションであって、定置形燃料電池に適した純度の水素(以下、「定置形燃料電池用水素」という。)を貯蔵する水素貯蔵タンクと、この水素貯蔵タンクから前記定置形燃料電池用水素を定置形燃料電池および燃料電池自動車へ別個に供給する少なくとも2系統の水素供給ラインと、を備え、前記燃料電池自動車への水素供給ラインには、燃料電池自動車に適した純度の水素(以下、「燃料電池自動車用水素」という。)となるように、前記貯蔵された水素からCOを除去するCO除去器を備え、前記定置形燃料電池用水素のCO濃度を10ppm以下とし、前記燃料電池自動車用水素のCO濃度を0.2ppm以下、水素純度を99.999容量%以上とすることを特徴とする水素ステーションである。 The invention described in claim 1 is a hydrogen station that can supply hydrogen to both a stationary fuel cell and a fuel cell vehicle, and has a purity of hydrogen suitable for the stationary fuel cell (hereinafter referred to as “stationary fuel cell”). A hydrogen storage tank for storing hydrogen for a fuel cell) and at least two hydrogen supply lines for separately supplying the hydrogen for the stationary fuel cell from the hydrogen storage tank to the stationary fuel cell and the fuel cell vehicle; The hydrogen supply line to the fuel cell vehicle is supplied with CO 2 having a purity suitable for the fuel cell vehicle (hereinafter referred to as “hydrogen for a fuel cell vehicle”) from the stored hydrogen. It includes a CO remover for removing said concentration of CO stationary fuel cells for hydrogen and 10ppm or less, the CO concentration of the fuel cell vehicle for hydrogen 0.2ppm or less, the hydrogen purity 9.999 is a hydrogen station, characterized in that the volume percent or more.

請求項2に記載の発明は、前記燃料電池自動車への水素供給ラインに、COおよびHOを除去する吸着器をさらに備えたことを特徴とする請求項1に記載の水素ステーションである。 The invention according to claim 2 is the hydrogen station according to claim 1, further comprising an adsorber for removing CO 2 and H 2 O in a hydrogen supply line to the fuel cell vehicle. .

請求項に記載の発明は、前記CO除去器がCO吸着剤を充填してなるものであって、このCO吸着剤が、シリカ、アルミナ、活性炭、グラファイトおよびポリスチレン系樹脂よりなる群から選択される1種以上の担体に、ハロゲン化銅(I)および/もしくはハロゲン化銅(II)を担持させた材料、またはこの材料を還元処理したものである請求項1または2に記載の水素ステーションである。 According to a third aspect of the present invention, the CO remover is filled with a CO adsorbent, and the CO adsorbent is selected from the group consisting of silica, alumina, activated carbon, graphite, and polystyrene resin. The hydrogen station according to claim 1 or 2 , wherein a material in which copper (I) halide and / or copper (II) halide is supported on one or more kinds of carriers, or a reduction treatment of this material. is there.

請求項に記載の発明は、燃料電池自動車への前記燃料電池自動車用水素の供給時に前記定置形燃料電池用水素から除去したCOが吸着して吸着能力が低下した前記CO吸着剤を再生するために、COを実質的に含まないガスを再生ガスとして前記CO除去器に供給する再生ガス供給ラインを備えた請求項1〜のいずれか1項に記載の水素ステーションである。 The invention described in claim 4 regenerates the CO adsorbent whose adsorption capacity is reduced by adsorption of CO removed from hydrogen for the stationary fuel cell when supplying the fuel cell vehicle hydrogen to the fuel cell vehicle. Therefore, it is a hydrogen station of any one of Claims 1-3 provided with the regeneration gas supply line which supplies the gas which does not contain CO substantially as regeneration gas to the said CO removal device.

請求項に記載の発明は、改質用原料を改質して前記定置形燃料電池用水素を製造する水素製造装置を備えた請求項1〜のいずれか1項に記載の水素ステーションである。 Invention of Claim 5 is a hydrogen station of any one of Claims 1-4 provided with the hydrogen production apparatus which reforms the raw material for reforming, and manufactures the hydrogen for said stationary fuel cells. is there.

請求項に記載の発明は、前記再生ガスが、前記改質用原料または前記燃料電池自動車用水素である請求項1〜のいずれか1項に記載の水素ステーションである。 The invention according to claim 6 is the hydrogen station according to any one of claims 1 to 5 , wherein the regeneration gas is the reforming raw material or hydrogen for the fuel cell vehicle.

請求項に記載の発明は、前記CO吸着剤を再生する際に前記CO除去器から排出されたオフガスを、前記水素製造装置の加熱用燃料として利用する請求項1〜のいずれか1項に記載の水素ステーションである。 Invention of claim 7, the off-gas discharged from the CO remover when reproducing the CO adsorbent, any one of claims 1 to 6, used as fuel for heating of the hydrogen generating device The hydrogen station described in 1.

本発明によれば、定置形燃料電池に適した純度の水素を貯蔵し、定置形燃料電池へはそのままの純度で水素を供給するとともに、燃料電池自動車へは、CO除去器でさらに水素の純度を高めてから供給することができる。したがって、燃料電池自動車に水素を供給する場合に限って必要量だけ高純度化することで水素製造コストを大幅に低減できるので、経済性および技術的安定性を確保しつつ、定置形燃料電池および燃料電池自動車のいずれの水素仕様にも対応して、いずれへの水素供給をも可能とする水素ステーションが実現できる。   According to the present invention, hydrogen having a purity suitable for a stationary fuel cell is stored, hydrogen is supplied to the stationary fuel cell as it is, and the hydrogen purity of the fuel cell vehicle is further increased by a CO remover. Can be supplied after raising. Therefore, the hydrogen production cost can be greatly reduced by purifying only the necessary amount only when supplying hydrogen to the fuel cell vehicle, so that the stationary fuel cell and the A hydrogen station that can supply hydrogen to any of the hydrogen specifications of a fuel cell vehicle can be realized.

〔実施形態〕
実施形態の一例を図1の概略フロー図に基づいて詳細に説明する。本実施形態は水素製造装置を水素ステーション内に保有する例を示すものである。
Embodiment
An example of the embodiment will be described in detail based on the schematic flowchart of FIG. This embodiment shows an example in which a hydrogen production apparatus is held in a hydrogen station.

すなわち、本実施形態に係る水素ステーション1は、同図に示すように、改質原料から定置形燃料電池用水素を製造する水素製造装置2と、この水素製造装置2で製造された定置形燃料電池用水素を貯蔵する水素貯蔵タンク3と、この水素貯蔵タンク3から、住居(家庭)およびオフィスの燃料電池(定置形燃料電池)に水素を供給する定置形燃料電池用水素供給ライン4と、燃料電池自動車に水素を供給する燃料電池自動車用水素供給ライン5と、この燃料電池自動車用水素供給ライン5の途中に設けられた不純物ガス除去器6とで構成されている。   That is, the hydrogen station 1 according to the present embodiment includes a hydrogen production device 2 that produces hydrogen for a stationary fuel cell from a reforming raw material, and a stationary fuel produced by the hydrogen production device 2, as shown in FIG. A hydrogen storage tank 3 for storing battery hydrogen, a hydrogen fuel supply line 4 for stationary fuel cells for supplying hydrogen from the hydrogen storage tank 3 to fuel cells (stationary fuel cells) in residences (homes) and offices; The fuel cell vehicle includes a hydrogen supply line 5 for supplying hydrogen to the fuel cell vehicle and an impurity gas remover 6 provided in the middle of the hydrogen supply line 5 for the fuel cell vehicle.

水素製造装置2は、タンクローリで天然ガス等の改質用原料を定期的に受入れいったん貯蔵する原料ホルダ21と、この改質用原料を改質・変成して水素リッチな改質ガスを生成する改質器22と、この改質ガスを精製して定置形燃料電池に適した仕様の水素(定置形燃料電池用水素)を得る精製機23と、この定置形燃料電池用水素を水素貯蔵タンク3に貯蔵するために圧縮・昇圧する圧縮機24とで構成されている。   The hydrogen production apparatus 2 receives a raw material for reforming such as natural gas by a tank truck periodically and temporarily stores it, and reforms and transforms the reforming raw material to generate a hydrogen-rich reformed gas. A reformer 22, a purifier 23 for purifying the reformed gas to obtain hydrogen having specifications suitable for stationary fuel cells (hydrogen for stationary fuel cells), and hydrogen for the stationary fuel cells as a hydrogen storage tank 3 and a compressor 24 that compresses and boosts the pressure for storage.

以下、水素ステーション1に改質原料を受け入れて水素を製造し、定置形燃料電池および燃料電池自動車へ水素を供給するまでの工程について順を追って説明する。   Hereinafter, steps from receiving the reforming raw material to the hydrogen station 1 to produce hydrogen and supplying hydrogen to the stationary fuel cell and the fuel cell vehicle will be described in order.

まず、タンクローリで定期的に補充して原料ホルダ21に天然ガス等の改質用原料Aを貯蔵しておく。そして、この原料ホルダ21から改質用原料Aを改質器22に供給し、例えば水蒸気で改質してHおよびCOを主成分とするガスとした後、このガスにさらに水蒸気を添加し変成してHを主成分とし、CO含有量を1000ppm〜1%程度に低減した水素リッチな改質ガスBを製造する。さらに、この改質ガスBを例えば通常用いられる水素PSA装置、選択酸化触媒塔などの精製機23を流通させてCO,CO、CH、HOなどの不純物ガスを粗く吸着除去しCO濃度10ppm以下の定置形燃料電池用水素Cを得る。精製機2に水素PSA装置を用いた場合は、通常CO以外の成分が除去された99.999%以上の高純度水素となっているが、選択酸化触媒塔を用いた場合は、COおよびHOを依然%オーダーで含んでいる。そして、この定置形燃料電池用水素Cを圧縮機24にて、現段階における燃料電池自動車の水素容器の充填圧力である35MPa(将来的には70MPa)以上に圧縮・昇圧して水素貯蔵タンク3に貯蔵する。定置形燃料電池用水素CにHOが含まれている場合は、圧縮機24で昇圧された際に凝縮水としてHOを除去でき、ドレインとして排出される。 First, the raw material for reforming A such as natural gas is stored in the raw material holder 21 by periodically replenishing with a tank truck. Then, the reforming raw material A is supplied from the raw material holder 21 to the reformer 22 and reformed with, for example, steam to form a gas mainly composed of H 2 and CO, and then steam is further added to the gas. modified to of H 2 as a main component, to produce a reduced hydrogen-rich reformed gas B a CO content to about 1000ppm~1%. Further, the reformed gas B is circulated through a purifier 23 such as a commonly used hydrogen PSA apparatus or a selective oxidation catalyst tower to roughly remove impurities gases such as CO, CO 2 , CH 4 , H 2 O, etc. Hydrogen C for stationary fuel cells having a concentration of 10 ppm or less is obtained. When a hydrogen PSA apparatus is used for the purifier 2, the purity is usually 99.999% or more from which components other than CO have been removed. However, when a selective oxidation catalyst tower is used, CO 2 and H 2 O is still included in% order. The hydrogen C for the stationary fuel cell is compressed and increased by the compressor 24 to 35 MPa (70 MPa in the future), which is the filling pressure of the hydrogen container of the fuel cell vehicle at the present stage, or higher. Store in. If it contains H 2 O to the hydrogen C for stationary fuel cells, as condensed water when it is pressurized by the compressor 24 H 2 O can removed is discharged as a drain.

そして、住居(家庭)およびオフィスの定置形燃料電池に水素を供給する場合は、水素貯蔵タンク3から直接、定置形燃料電池用水素供給ライン4を介して各供給先に供給する。   When hydrogen is supplied to the stationary fuel cells in the house (home) and the office, the hydrogen is supplied from the hydrogen storage tank 3 directly to each supply destination via the hydrogen supply line 4 for the stationary fuel cell.

一方、燃料電池自動車に超高純度水素(燃料電池自動車用水素)Dを供給する場合は、燃料電池自動車用水素供給ライン5の途中に設けた不純物ガス除去器6で精製する。不純物ガス除去器6は、COを除去するCO除去器を必須の構成要素とし、必要な場合にはCOおよびHOを除去する吸着器を追加の構成要素として構成されている。水素貯蔵タンク3の水素中の不純物ガスがすでにCO以外除去されている場合は、COおよびHOを除去する吸着器は不要であり、CO除去器でCOを例えば0.2ppm以下まで除去してから供給する。CO除去器には、COを選択的に吸着するCO吸着剤を充填し、CO吸着剤としては、COに対する吸着選択性に優れ、かつ吸着容量が大きい、シリカ、アルミナ、活性炭、グラファイトおよびポリスチレン系樹脂よりなる群から選択される1種以上の担体に、ハロゲン化銅(I)および/もしくはハロゲン化銅(II)を担持させた材料、またはこの材料を還元処理したものを用いるのが特に推奨される。さらに、CO吸着剤の吸着容量は吸着対象ガスであるCOの分圧にほぼ比例して増加するので、CO除去器は水素貯蔵タンク3から、燃料電池自動車の燃料タンクに水素を供給するためのディスペンサ(図示せず)までの間の高圧部に設置するのが好ましい。CO除去器は、上記CO吸着特性に優れたCO吸着剤を高圧下で使用することでCO吸着剤の充填量が大幅に節減でき小型化できるので、CO吸着剤の交換作業等の便宜を考慮して例えば上記ディスペンサに付設ないし内蔵するとよい。水素貯蔵タンク3の水素中の不純物ガスとしてCO以外にCOおよびHOを含んでいる場合は、それらの除去を目的とした吸着器と、CO除去器とを直列に接続した不純物ガス除去器6の構成とする。 On the other hand, when supplying ultra-high purity hydrogen (hydrogen for fuel cell vehicles) D to the fuel cell vehicle, it is purified by an impurity gas remover 6 provided in the middle of the hydrogen supply line 5 for the fuel cell vehicle. The impurity gas remover 6 includes a CO remover that removes CO as an essential component, and an adsorber that removes CO 2 and H 2 O as an additional component when necessary. If the impurity gas in the hydrogen of the hydrogen storage tank 3 has already been removed except for CO, an adsorber that removes CO 2 and H 2 O is unnecessary, and CO is removed to, for example, 0.2 ppm or less with the CO remover. Then supply. The CO remover is filled with a CO adsorbent that selectively adsorbs CO. As the CO adsorbent, silica, alumina, activated carbon, graphite, and polystyrene are excellent in adsorption selectivity for CO and have a large adsorption capacity. It is particularly recommended to use a material in which copper (I) halide and / or copper (II) halide is supported on one or more carriers selected from the group consisting of resins, or a material obtained by reducing this material. Is done. Further, since the adsorption capacity of the CO adsorbent increases almost in proportion to the partial pressure of CO as the adsorption target gas, the CO remover is used for supplying hydrogen from the hydrogen storage tank 3 to the fuel tank of the fuel cell vehicle. It is preferable to install in a high-pressure part between a dispenser (not shown). The CO adsorber can be reduced in size by using a CO adsorbent with excellent CO adsorption characteristics under high pressure, so the CO adsorbent can be saved and reduced in size. For example, it may be attached to or built in the dispenser. In the case where CO 2 and H 2 O other than CO are contained as impurity gas in hydrogen of the hydrogen storage tank 3, the impurity gas removal in which an adsorber for removing them and a CO remover are connected in series The configuration of the vessel 6 is used.

燃料電池自動車に供給する超高純度水素(燃料自動車用水素)Dの純度を確保するため、定期的にCO吸着剤ならびに必要な場合COおよびHO吸着剤(以下、「CO吸着剤等」といい、CO吸着剤等に吸着したガスを「CO等」という。)を再生してその吸着性能を維持しておく必要がある。CO吸着剤等の再生は、吸着サイトに吸着したCO等を脱離洗浄する必要があるため、不純物ガス除去器6に再生ガス供給ライン(図示せず)を設けておき、再生ガスとしてCOを実質的に含まないガスをこの再生ガス供給ラインを介して不純物ガス除去器6に流通させつつ行う。また、CO等の脱離反応は温度が高いほど促進されるため、CO吸着剤等は例えばヒータで40〜150℃に加熱した状態で再生を行うことが望ましい。上記再生ガスとして用いるCOを実質的に含まないガスとしては、改質用原料Aまたは燃料電池自動車用水素Dの一部を用いるとよい。CO吸着剤等を再生すべき時期は、不純物ガス除去器6に充填するCO吸着剤等の量や燃料電池自動車への水素供給量(すなわち、CO吸着剤等通過ガス量)などの条件によって変化するが、燃料電池自動車へ水素を供給中に不純物ガス除去器6からCOが漏れ出して水素純度が低下してしまう危険を回避するため、例えば燃料電池自動車への水素供給が終了するたびごとに必ず再生するようにするのが望ましい。 In order to ensure the purity of ultra-high purity hydrogen (fuel vehicle hydrogen) D supplied to fuel cell vehicles, CO adsorbents and CO 2 and H 2 O adsorbents (hereinafter referred to as “CO adsorbents etc. The gas adsorbed on the CO adsorbent or the like is referred to as “CO etc.”), and it is necessary to maintain its adsorption performance. Since regeneration of CO adsorbent and the like requires desorption and cleaning of CO adsorbed on the adsorption site, a regeneration gas supply line (not shown) is provided in the impurity gas remover 6 so that CO can be used as regeneration gas. Gas that is substantially not contained is circulated through the regeneration gas supply line to the impurity gas remover 6. Further, since the desorption reaction of CO or the like is promoted as the temperature increases, it is desirable to regenerate the CO adsorbent or the like while being heated to 40 to 150 ° C. with a heater, for example. As the gas substantially free of CO used as the regeneration gas, a part of the reforming raw material A or hydrogen D for a fuel cell vehicle may be used. The time to regenerate the CO adsorbent and the like varies depending on conditions such as the amount of the CO adsorbent filled in the impurity gas remover 6 and the amount of hydrogen supplied to the fuel cell vehicle (that is, the amount of passing gas such as the CO adsorbent) However, in order to avoid the risk of CO leaking out from the impurity gas remover 6 and reducing the hydrogen purity during the supply of hydrogen to the fuel cell vehicle, for example, every time the hydrogen supply to the fuel cell vehicle is terminated. It is desirable to play it.

再生ガスとして改質用原料Aまたは燃料電池自動車用水素Dを用いる場合、CO吸着剤を再生した後の、不純物ガス除去器6を構成するCO除去器から排出されるオフガスは、改質用原料Aまたは燃料電池自動車用水素Dに、CO吸着剤から脱着されたCOが加わったものであるので、このオフガスを回収して水素製造装置1(本実施形態では改質器22)の加熱用燃料として有効利用するとよい。
(変形例)
上記実施形態では、水素ステーション内に水素製造装置を保有してオンサイトで定置形燃料電池用水素を製造する例を示したが、これに代えて、専用の水素製造工場で一括して製造(オフサイト製造)し、これを水素貯蔵タンク以降の装置のみを保有する水素ステーションに配給し、水素ステーションでは超高純度水素(燃料電池自動車用水素)への精製のみを行うようにしてもよい。
When the reforming material A or the fuel cell vehicle hydrogen D is used as the regeneration gas, the off-gas discharged from the CO remover constituting the impurity gas remover 6 after regeneration of the CO adsorbent is the reforming material. Since A or hydrogen D for fuel cell vehicles is added with CO desorbed from the CO adsorbent, this off-gas is recovered and fuel for heating the hydrogen production apparatus 1 (the reformer 22 in this embodiment). It is good to use it effectively.
(Modification)
In the above-described embodiment, an example is shown in which a hydrogen production apparatus is held in a hydrogen station and hydrogen for stationary fuel cells is produced on-site, but instead, it is produced collectively at a dedicated hydrogen production plant ( Off-site manufacturing), and this may be distributed to a hydrogen station that has only a device after the hydrogen storage tank, and the hydrogen station may only perform purification to ultra-high purity hydrogen (hydrogen for fuel cell vehicles).

あるいは、水素製造工場では改質ガスまで製造し、これを精製機以降の装置のみを保有する水素ステーションに配給し、水素ステーションでは定置形燃料電池用水素および超高純度水素(燃料電池自動車用水素)への精製のみを行うようにしてもよい。   Alternatively, the hydrogen production plant produces reformed gas and distributes it to the hydrogen station that has only the refiner and subsequent equipment. The hydrogen station uses hydrogen for stationary fuel cells and ultra-high purity hydrogen (hydrogen for fuel cell vehicles). You may make it perform only the refinement | purification to.

また、上記実施形態では、水素供給ラインは定置形燃料電池および燃料電池自動車へそれぞれ1系統ずつの合計2系統の場合を例示したが、複数の異なる水素仕様の定置形燃料電池に水素を供給するような場合は、異なる水素仕様ごとに別個の水素供給ラインを設け、他の定置形燃料電池よりも高い純度の水素仕様の水素供給ラインに精製機を設けるようにしてもよい。   In the above embodiment, the hydrogen supply line is exemplified by a total of two systems, one each for stationary fuel cells and fuel cell vehicles. However, hydrogen is supplied to a plurality of stationary fuel cells having different hydrogen specifications. In such a case, a separate hydrogen supply line may be provided for each different hydrogen specification, and the purifier may be provided in a hydrogen supply line having a higher purity than that of other stationary fuel cells.

また、上記実施形態では、改質用原料として天然ガスを例示したが、都市ガス、LPG、ナフサ、ガソリン、灯油、メタノール、DME、GTLなどを用いてもよい。   In the above embodiment, natural gas is exemplified as the reforming raw material, but city gas, LPG, naphtha, gasoline, kerosene, methanol, DME, GTL, or the like may be used.

また、上記実施形態では、水素リッチな改質ガスの製造を水蒸気改質+変成反応により行う例を示したが、水蒸気改質に代えて部分酸化を用いてもよく、さらには変成反応に代えてセラミックフィルタ等の粗製分離膜を流通させてH濃度を高める手段を用いてもよい。 In the above-described embodiment, an example in which the production of hydrogen-rich reformed gas is performed by steam reforming + shift reaction, but partial oxidation may be used instead of steam reforming, and further, instead of shift reaction. A means for increasing the H 2 concentration by circulating a rough separation membrane such as a ceramic filter may be used.

また、上記実施形態では、精製機として水素PSA装置と選択酸化触媒塔を例示したが、水素選択透過膜分離装置を用いてもよい。   Moreover, in the said embodiment, although the hydrogen PSA apparatus and the selective oxidation catalyst tower were illustrated as a refiner, you may use a hydrogen selective permeable membrane separation apparatus.

まず、本発明の技術的な適用性を確認するため、定置形燃料電池仕様の高純度水素からCO吸着剤を充填したCO除去器にてCOを除去して燃料電池自動車仕様の超高純度水素を得ることを想定し、超高純度水素を得るのに必要なCO除去器のSV値を計算により推定した。
(計算の前提条件)
(1)CO吸着剤としては塩化銅(I)担持アルミナを対象とし、実験により求めた吸着性能の値(図2参照)を用いる。
First, in order to confirm the technical applicability of the present invention, CO is removed from high-purity hydrogen of a stationary fuel cell specification by a CO remover filled with a CO adsorbent, and ultra-high purity hydrogen of a fuel cell vehicle specification. As a result, the SV value of the CO remover necessary for obtaining ultra-high purity hydrogen was estimated by calculation.
(Prerequisites for calculation)
(1) As a CO adsorbent, copper (I) -supported alumina is used as an object, and an adsorption performance value obtained by experiment (see FIG. 2) is used.

(2)燃料電池自動車への水素補給量は、その走行可能距離等を考慮して1回あたりせいぜい50〜60Nm程度とする。 (2) The amount of hydrogen replenished to the fuel cell vehicle is at most about 50 to 60 Nm 3 per time in consideration of the travelable distance and the like.

(3)燃料電池自動車に搭載する水素容器への充填圧力は現段階では35MPa(将来的には70MPa)とされているので、上記水素容器への押し込み圧を考慮してCO除去器を通過する水素の実容積は150〜160リットル(将来的には70〜80リットル)程度とする。   (3) Since the filling pressure of the hydrogen container mounted on the fuel cell vehicle is 35 MPa (70 MPa in the future) at the present stage, it passes through the CO remover in consideration of the pushing pressure to the hydrogen container. The actual volume of hydrogen is about 150 to 160 liters (70 to 80 liters in the future).

(4)定置形燃料電池仕様の水素のCO濃度を3500〜7000ppm(0.35〜0.7%)程度とし、これからCOをほぼ完全に(0.2ppm以下に)除去して燃料電池自動車仕様の超高純度水素を得る。   (4) The hydrogen CO concentration in the stationary fuel cell specification is set to about 3500 to 7000 ppm (0.35 to 0.7%), and from this, the CO is almost completely removed (to 0.2 ppm or less), and the fuel cell vehicle specification. To obtain ultra-high purity hydrogen.

(5) 燃料電池自動車への水素補給時間を30分、CO除去器への吸着剤充填量を5リットルとする。
(計算結果)
CO除去器のSV値は500h−1程度で十分であり、技術的に問題なく適用できる範囲である。
(5) The hydrogen supply time to the fuel cell vehicle is set to 30 minutes, and the adsorbent filling amount to the CO remover is set to 5 liters.
(Calculation result)
The SV value of the CO eliminator is about 500 h −1 , which is a range that can be applied without technical problems.

つぎに、上記実施形態で説明した図1の構成からなる水素ステーションを用いた、コミュニティによる水素外販事業の済性の評価を行った。なお、CO吸着剤は上記実施例1と同じものとした。
(計算の前提条件)
(1) 水素製造コスト :40円/Nm
(2) 住居またはオフィスの消費電力
・ 1戸あたりの定格電力 :1kW
・ 1戸あたりの平均消費電力量 :20kWh/日
(3) 燃料電池自動車の燃費
・燃料補給ごとの走行距離 :500km
・ 1回あたりの燃料補給量 :5kg(56Nm
(4) 販売価格
・電力料金 :20円/kWh
・燃料自動車用水素(水素外販) :90円/Nm
(5) 販売量
・住居およびオフィスの戸数 :200戸
・ 燃料自動車の台数 :100台/日
(6) 設備導入コスト :3億円
(計算結果)
下記の表1に示すように、設備導入コスト3億円に対し、年間約0.9億円の利益が得られることから、初期投資を4年で回収できることとなり、本発明に係る水素ステーションを用いたコミュニティの水素外販事業はフィージブルであるとの結果が得られた。
Next, evaluation of the feasibility of the hydrogen external sales business by the community using the hydrogen station having the configuration of FIG. 1 described in the above embodiment was performed. The CO adsorbent was the same as in Example 1 above.
(Prerequisites for calculation)
(1) Hydrogen production cost: 40 yen / Nm 3
(2) Residential or office power consumption-Rated power per unit: 1 kW
-Average power consumption per unit: 20 kWh / day (3) Fuel consumption of fuel cell vehicles-Travel distance per refueling: 500 km
・ Refueling amount per time: 5 kg (56 Nm 3 )
(4) Sales price ・ Electricity fee: 20 yen / kWh
・ Hydrogen for fuel vehicles (hydrogen sales): 90 yen / Nm 3
(5) Sales volume ・ Number of residences and offices: 200 ・ Number of fuel vehicles: 100 units / day (6) Equipment installation cost: ¥ 300 million (calculation results)
As shown in Table 1 below, an annual investment of 300 million yen can be obtained for 300 million yen of equipment installation cost, so the initial investment can be recovered in 4 years. The results showed that the community hydrogen sales business used was feasible.

Figure 0004886229
Figure 0004886229

実施形態に係る水素ステーションの概略を示すフロー図である。It is a flowchart which shows the outline of the hydrogen station which concerns on embodiment. CO吸着剤の吸着性能を示すグラフ図であり、(a)はCO破過挙動を、(b)はCO分圧とCO飽和吸着量との関係をそれぞれ示す。It is a graph which shows the adsorption | suction performance of CO adsorption agent, (a) shows CO breakthrough behavior, (b) shows the relationship between CO partial pressure and CO saturated adsorption amount, respectively.

符号の説明Explanation of symbols

1…水素ステーション
2…水素製造装置
3…水素貯蔵タンク
4…定置形燃料電池用水素供給ライン
5…燃料電池自動車用水素供給ライン
6…不純物ガス除去器
21…原料ホルダ
22…改質器
23…精製機
24…圧縮機
A…改質用原料
B…改質ガス
C…定置形燃料電池用水素
D…超高純度水素(燃料電池自動車用水素)
DESCRIPTION OF SYMBOLS 1 ... Hydrogen station 2 ... Hydrogen production apparatus 3 ... Hydrogen storage tank 4 ... Hydrogen supply line 5 for stationary fuel cells ... Hydrogen supply line 6 for fuel cell vehicles ... Impurity gas remover 21 ... Raw material holder 22 ... Reformer 23 ... Refining machine 24 ... Compressor A ... Reforming raw material B ... Reformed gas C ... Stationary fuel cell hydrogen D ... Ultra high purity hydrogen (hydrogen for fuel cell vehicles)

Claims (7)

定置形燃料電池および燃料電池自動車のいずれへの水素供給をも可能とする水素ステーションであって、
定置形燃料電池に適した純度の水素(以下、「定置形燃料電池用水素」という。)を貯蔵する水素貯蔵タンクと、この水素貯蔵タンクから前記定置形燃料電池用水素を定置形燃料電池および燃料電池自動車へ別個に供給する少なくとも2系統の水素供給ラインと、を備え、
前記燃料電池自動車への水素供給ラインには、燃料電池自動車に適した純度の水素(以下、「燃料電池自動車用水素」という。)となるように、前記貯蔵された水素からCOを除去するCO除去器を備え
前記定置形燃料電池用水素のCO濃度を10ppm以下とし、前記燃料電池自動車用水素のCO濃度を0.2ppm以下、水素純度を99.999容量%以上とすることを特徴とする水素ステーション。
A hydrogen station that can supply hydrogen to both stationary fuel cells and fuel cell vehicles,
A hydrogen storage tank for storing hydrogen of a purity suitable for a stationary fuel cell (hereinafter referred to as “hydrogen for stationary fuel cell”), and the hydrogen for the stationary fuel cell from the hydrogen storage tank; And at least two systems of hydrogen supply lines that supply fuel cell vehicles separately,
The hydrogen supply line to the fuel cell vehicle is a CO that removes CO from the stored hydrogen so that the hydrogen has a purity suitable for the fuel cell vehicle (hereinafter referred to as “hydrogen for a fuel cell vehicle”). Equipped with a remover ,
A hydrogen station , wherein the hydrogen concentration for hydrogen for the stationary fuel cell is 10 ppm or less, the CO concentration for hydrogen for the fuel cell vehicle is 0.2 ppm or less, and the hydrogen purity is 99.999% by volume or more .
前記燃料電池自動車への水素供給ラインに、COおよびHOを除去する吸着器をさらに備えたことを特徴とする請求項1に記載の水素ステーション。 The hydrogen station according to claim 1, further comprising an adsorber for removing CO 2 and H 2 O in a hydrogen supply line to the fuel cell vehicle. 前記CO除去器がCO吸着剤を充填してなるものであって、このCO吸着剤が、シリカ、アルミナ、活性炭、グラファイトおよびポリスチレン系樹脂よりなる群から選択される1種以上の担体に、ハロゲン化銅(I)および/もしくはハロゲン化銅(II)を担持させた材料、またはこの材料を還元処理したものである請求項1または2に記載の水素ステーション。 The CO remover is filled with a CO adsorbent, which is adsorbed on one or more carriers selected from the group consisting of silica, alumina, activated carbon, graphite, and polystyrene resin. The hydrogen station according to claim 1 or 2 , wherein the material carrying copper (I) halide and / or copper (II) halide or a reduction treatment of the material is carried out. 燃料電池自動車への前記燃料電池自動車用水素の供給時に前記定置形燃料電池用水素から除去したCOが吸着して吸着能力が低下した前記CO吸着剤を再生するために、COを実質的に含まないガスを再生ガスとして前記CO除去器に供給する再生ガス供給ラインを備えた請求項1〜のいずれか1項に記載の水素ステーション。 CO is substantially included to regenerate the CO adsorbent whose adsorption capacity is reduced by adsorption of CO removed from the hydrogen for stationary fuel cells when supplying the fuel cell vehicle hydrogen to the fuel cell vehicle The hydrogen station of any one of Claims 1-3 provided with the regeneration gas supply line which supplies the gas which does not exist to the said CO removal device as regeneration gas. 改質用原料を改質して前記定置形燃料電池用水素を製造する水素製造装置を備えた請求項1〜のいずれか1項に記載の水素ステーション。 The hydrogen station of any one of Claims 1-4 provided with the hydrogen production apparatus which reforms the raw material for a reforming, and manufactures the hydrogen for the said stationary fuel cell. 前記再生ガスが、前記改質用原料または前記燃料電池自動車用水素である請求項1〜のいずれか1項に記載の水素ステーション。 The hydrogen station according to any one of claims 1 to 5 , wherein the regeneration gas is the reforming raw material or hydrogen for the fuel cell vehicle. 前記CO吸着剤を再生する際に前記CO除去器から排出されたオフガスを、前記水素製造装置の加熱用燃料として利用する請求項1〜のいずれか1項に記載の水素ステーション。 The hydrogen station according to any one of claims 1 to 6 , wherein off-gas discharged from the CO remover when the CO adsorbent is regenerated is used as a heating fuel for the hydrogen production apparatus.
JP2005201972A 2005-07-11 2005-07-11 Hydrogen station Expired - Fee Related JP4886229B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005201972A JP4886229B2 (en) 2005-07-11 2005-07-11 Hydrogen station

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005201972A JP4886229B2 (en) 2005-07-11 2005-07-11 Hydrogen station

Publications (2)

Publication Number Publication Date
JP2007016975A JP2007016975A (en) 2007-01-25
JP4886229B2 true JP4886229B2 (en) 2012-02-29

Family

ID=37754298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005201972A Expired - Fee Related JP4886229B2 (en) 2005-07-11 2005-07-11 Hydrogen station

Country Status (1)

Country Link
JP (1) JP4886229B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100818310B1 (en) 2007-04-09 2008-04-02 (주)덕양에너젠 Alternating system for reformer of hydrogen station
JP5276300B2 (en) * 2007-10-22 2013-08-28 株式会社神戸製鋼所 Method for producing hydrogen gas for fuel cell
JP5098073B2 (en) * 2007-12-12 2012-12-12 コスモ石油株式会社 Energy station
JP5399161B2 (en) * 2009-07-30 2014-01-29 Jx日鉱日石エネルギー株式会社 Hydrogen storage and supply station
JP2011032128A (en) * 2009-07-31 2011-02-17 Jx Nippon Oil & Energy Corp Refining method of hydrogen, shipping equipment of hydrogen, and hydrogen station
KR101134386B1 (en) 2010-11-12 2012-04-09 현대자동차주식회사 System for preventing contaminated hydrogen filling of fuel cell vehicle
JP5970076B2 (en) 2011-11-21 2016-08-17 サウジ アラビアン オイル カンパニー Method and system for combined hydrogen and electricity production using petroleum fuels
FR3008473B1 (en) * 2013-07-11 2015-07-17 Air Liquide METHOD AND STATION FOR FILLING GAS
FR3034836B1 (en) 2015-04-10 2017-12-01 Air Liquide STATION AND METHOD FOR FILLING A TANK WITH A FUEL GAS
CN108350728B (en) 2015-11-05 2021-02-19 沙特阿拉伯石油公司 Method and equipment for performing space-oriented chemically-induced pulse fracturing in reservoir
JP6660610B2 (en) * 2015-11-09 2020-03-11 パナソニックIpマネジメント株式会社 Hydrogen supply system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6770390B2 (en) * 2000-11-13 2004-08-03 Air Products And Chemicals, Inc. Carbon monoxide/water removal from fuel cell feed gas
JP2002372199A (en) * 2001-06-18 2002-12-26 Tokyo Gas Co Ltd Hydrogen supply system
JP4248182B2 (en) * 2002-01-31 2009-04-02 トヨタ自動車株式会社 Fuel cell power generation system and fuel cell purging method
JP2004079262A (en) * 2002-08-13 2004-03-11 Mitsubishi Heavy Ind Ltd Hydrogen-supply system and mobile hydrogen production equipment
JP4187569B2 (en) * 2003-03-31 2008-11-26 大阪瓦斯株式会社 Hydrogen production equipment

Also Published As

Publication number Publication date
JP2007016975A (en) 2007-01-25

Similar Documents

Publication Publication Date Title
JP4886229B2 (en) Hydrogen station
JP2015507813A (en) Method and system for combined hydrogen and electricity production using petroleum fuels
JP5036969B2 (en) Energy station
You et al. Economic, environmental, and social impacts of the hydrogen supply system combining wind power and natural gas
JP2006342014A (en) Method for producing high purity hydrogen
JP4676690B2 (en) METAL ION EXCHANGE ZEOLITE, PROCESS FOR PRODUCING THE SAME, AND SOLUTION COMPOUND ADSORBENT CONTAINING THE METAL ION EXCHANGE ZEOLITE
JP6068176B2 (en) Hydrogen production equipment
US20210155859A1 (en) Fuel processing system and method for sulfur bearing fuels
JP3671040B2 (en) Hydrogen-based infrastructure system
JP2006036616A (en) Method for manufacturing zeolite and adsorbent containing the zeolite for removing sulfur compound
JP4745557B2 (en) Desulfurization agent for removing sulfur compounds in fuel gas, fuel cell power generation system using this desulfurization agent
JP5357465B2 (en) High purity hydrogen production method
JP4728837B2 (en) Hydrogen supply system
JP5098073B2 (en) Energy station
JP2003095612A (en) Hydrogen producing plant
JP4961102B2 (en) Method for producing zeolite and adsorbent for removing sulfur compound containing the zeolite
JP2015227257A (en) Hydrogen supply system
JP4728846B2 (en) Electrolysis cell and hydrogen supply system
US20220285712A1 (en) Integrated production of hydrogen, electricity, and heat
JP5255896B2 (en) Hydrogen production method
JP5276300B2 (en) Method for producing hydrogen gas for fuel cell
JP5324073B2 (en) Fuel cell system
JP2005093214A (en) Method of supplying liquefied petroleum gas to hydrogen production system for fuel cell
Thijs et al. hydrogen, fueling the future: Introduction to hydrogen production and storage techniques
JP2005256708A (en) Fuel supply system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110510

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110527

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110728

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111206

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111209

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4886229

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees