JP2010006653A - Method for producing hydrogen - Google Patents

Method for producing hydrogen Download PDF

Info

Publication number
JP2010006653A
JP2010006653A JP2008169025A JP2008169025A JP2010006653A JP 2010006653 A JP2010006653 A JP 2010006653A JP 2008169025 A JP2008169025 A JP 2008169025A JP 2008169025 A JP2008169025 A JP 2008169025A JP 2010006653 A JP2010006653 A JP 2010006653A
Authority
JP
Japan
Prior art keywords
hydrogen
dehydrogenation
temperature
separation membrane
dehydrogenation reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008169025A
Other languages
Japanese (ja)
Other versions
JP5215057B2 (en
Inventor
Ryutaro Koide
隆太郎 小出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Japan Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corp filed Critical Japan Energy Corp
Priority to JP2008169025A priority Critical patent/JP5215057B2/en
Publication of JP2010006653A publication Critical patent/JP2010006653A/en
Application granted granted Critical
Publication of JP5215057B2 publication Critical patent/JP5215057B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing hydrogen where the recovering rate of hydrogen can be significantly enhanced comparing with a conventional technique by increasing the separating efficiency of hydrogen while attaining high inversion rate of a dehydrogenation reaction under a low pressure condition. <P>SOLUTION: The method for producing hydrogen where the dehydrogenation reaction of the hydride of an aromatic hydrocarbon is performed in a dehydrogenation reactor 2 with a catalyst layer and where hydrogen is separated from a product by the dehydrogenation reaction in a hydrogen separating device 3 with a hydrogen separating membrane is characterized by that the temperature of the hydrogen separating membrane in the hydrogen separating device 3 is higher than the average temperature of the catalyst layer in the dehydrogenation reactor 2 by 10-100°C. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、水素製造方法、特には、従来よりも水素回収率を向上させた水素製造方法に関するものである。   The present invention relates to a hydrogen production method, and more particularly, to a hydrogen production method with an improved hydrogen recovery rate than in the past.

近年、環境問題やエネルギー問題から、新しいエネルギー源として水素が有望視されており、例えば、水素を直接燃料として用いる水素自動車、あるいは水素を用いる燃料電池などの開発が進められている。該燃料電池は、小型でも高い発電効率を有しており、加えて騒音や振動も発生せず、さらには廃熱を利用することができるなどの優れた利点を有している。   In recent years, hydrogen has been considered promising as a new energy source due to environmental problems and energy problems. For example, development of hydrogen automobiles using hydrogen directly as fuel or fuel cells using hydrogen has been promoted. Although the fuel cell is small, it has high power generation efficiency. In addition, the fuel cell does not generate noise and vibration, and has excellent advantages such as the ability to use waste heat.

一方、水素をエネルギー源として利用するに当っては、燃料となる水素を安全にかつ安定的に供給することが欠かせない。これに対し、圧縮水素や液体水素として直接供給する方法、水素吸蔵合金やカーボンナノチューブなどの水素吸蔵材料を利用して水素を貯蔵及び供給する方法、メタノールや炭化水素を水蒸気改質して水素を供給する方法など、種々の方法が提案されている。   On the other hand, in using hydrogen as an energy source, it is essential to supply hydrogen as a fuel safely and stably. In contrast, a method of supplying hydrogen directly as compressed hydrogen or liquid hydrogen, a method of storing and supplying hydrogen using hydrogen storage materials such as hydrogen storage alloys and carbon nanotubes, and steam reforming methanol and hydrocarbons to generate hydrogen. Various methods such as a supplying method have been proposed.

また、これらに並ぶ水素の供給方法として、近年、水素吸蔵率が高く、水素吸蔵と水素供給を繰返し行い再利用が可能であるとの理由から、芳香族炭化水素の水素化物の脱水素反応により水素を供給する方法が注目されている。   As a hydrogen supply method similar to these, in recent years, the hydrogen storage rate is high, and it is possible to reuse by repeatedly storing and supplying hydrogen. A method for supplying hydrogen has attracted attention.

このような芳香族炭化水素の水素化物を用いた脱水素反応による水素の製造方法においては、通常、脱水素反応後の反応混合物には、水素ガスの他に、未反応の芳香族炭化水素の水素化物、脱水素反応により生成した芳香族炭化水素及び副生成物等が含まれている。そのため、脱水素反応後の反応混合物から気液分離により水素ガスを分離した後、更に水素の純度を上げるために、プレッシャースイング吸着(PSA)を用いて水素ガスの精製を行う方法が提案されている。しかしながら、PSAを利用した場合、水素回収率が70〜85%程度と低いという問題がある。この問題に対して、高い水素回収率を達成するために、水素分離膜を用いて脱水素反応後の反応混合物から水素を回収する方法が各種提案されている。   In such a method for producing hydrogen by a dehydrogenation reaction using a hydride of an aromatic hydrocarbon, the reaction mixture after the dehydrogenation reaction usually contains unreacted aromatic hydrocarbons in addition to hydrogen gas. This includes hydrides, aromatic hydrocarbons produced by dehydrogenation, and by-products. Therefore, after separating hydrogen gas from the reaction mixture after the dehydrogenation reaction by gas-liquid separation, a method of purifying the hydrogen gas using pressure swing adsorption (PSA) has been proposed in order to further increase the purity of hydrogen. Yes. However, when PSA is used, there is a problem that the hydrogen recovery rate is as low as about 70 to 85%. In order to achieve a high hydrogen recovery rate, various methods for recovering hydrogen from the reaction mixture after the dehydrogenation reaction using a hydrogen separation membrane have been proposed.

例えば、特開2006−232607号公報(特許文献1)には、脱水素反応直後の気相を、水素分離膜を用いた水素の精製手段により高純度水素とし、更に該高純度水素の一部を脱水素反応器へリサイクルすることで、高い水素回収率で高純度水素を製造する方法が開示されている。   For example, Japanese Patent Laid-Open No. 2006-232607 (Patent Document 1) discloses that a gas phase immediately after a dehydrogenation reaction is made high-purity hydrogen by means of hydrogen purification using a hydrogen separation membrane, and a part of the high-purity hydrogen. A method for producing high-purity hydrogen with a high hydrogen recovery rate by recycling to a dehydrogenation reactor is disclosed.

また、特開2007−099528号公報(特許文献2)には、水素分離膜を150℃以上350℃未満の第一の温度で運転し、水素分離膜の運転停止に際して、水素分離膜を300℃以上であって且つ前記第一の温度より高い第二の温度に加温処理した後に水素分離膜の運転を停止したり、水素分離膜を150℃以上350℃未満の第一の温度で運転し、水素分離膜における水素回収率が低下した際に水素分離膜の温度を300℃以上であって且つ前記第一の温度より高い第二の温度に昇温し、その後、該水素分離膜の温度を150℃以上350℃未満の第一の温度に降温して運転を継続することで、高い水素回収率を維持しつつ連続的あるいは断続的に高純度水素を製造する方法が開示されている。   Japanese Patent Laid-Open No. 2007-099528 (Patent Document 2) describes that a hydrogen separation membrane is operated at a first temperature of 150 ° C. or higher and lower than 350 ° C., and when the hydrogen separation membrane is stopped, the hydrogen separation membrane is set to 300 ° C. The operation of the hydrogen separation membrane is stopped after the heating treatment to a second temperature higher than the first temperature, or the hydrogen separation membrane is operated at a first temperature of 150 ° C. or higher and lower than 350 ° C. When the hydrogen recovery rate in the hydrogen separation membrane decreases, the temperature of the hydrogen separation membrane is raised to a second temperature that is 300 ° C. or higher and higher than the first temperature, and then the temperature of the hydrogen separation membrane A method for producing high-purity hydrogen continuously or intermittently while maintaining a high hydrogen recovery rate by lowering the temperature to a first temperature of 150 ° C. or higher and lower than 350 ° C. and continuing the operation is disclosed.

更に、特開2005−035842号公報(特許文献3)には、シクロヘキサン環を有する炭化水素を原料とし、そのシクロヘキサン環を脱水素して芳香族環とする反応により水素を発生させる水素発生反応器と、水素中に含まれる炭化水素を、セラミック膜を用いた膜分離により除去する水素膜分離器とを具え、高いエネルギー効率で高純度水素を製造することが可能な水素製造システムが開示されている。   Furthermore, Japanese Patent Application Laid-Open No. 2005-035842 (Patent Document 3) discloses a hydrogen generation reactor in which a hydrocarbon having a cyclohexane ring is used as a raw material, and hydrogen is generated by a reaction in which the cyclohexane ring is dehydrogenated to an aromatic ring. And a hydrogen membrane separator for removing hydrocarbons contained in hydrogen by membrane separation using a ceramic membrane, and a hydrogen production system capable of producing high-purity hydrogen with high energy efficiency is disclosed. Yes.

特開2006−232607号公報JP 2006-232607 A 特開2007−099528号公報JP 2007-099528 A 特開2005−035842号公報Japanese Patent Laid-Open No. 2005-035842

しかしながら、上記従来技術では、脱水素反応器からの生成ガスの熱容量を活かして、水素分離膜によって水素を分離回収する方法を採用していたため、必然的に、脱水素反応器の温度が水素分離膜の温度よりも高くなっていた。ここで、一般に脱水素反応には貴金属触媒が用いられ、高温で長期間運転すると、貴金属の凝集等により触媒活性の劣化が見られる。   However, in the above prior art, the method of separating and recovering hydrogen with a hydrogen separation membrane by utilizing the heat capacity of the product gas from the dehydrogenation reactor is adopted, so the temperature of the dehydrogenation reactor is inevitably set to the hydrogen separation temperature. It was higher than the temperature of the film. Here, a noble metal catalyst is generally used for the dehydrogenation reaction, and when it is operated for a long time at a high temperature, the catalytic activity is deteriorated due to aggregation of the noble metal.

これに対し、一般に触媒の劣化を抑えるために、脱水素反応器の温度を低く抑える等の方策が採られている。しかしながら、従来の水素製造方法においては、水素分離膜の温度よりも脱水素反応器の温度が高いため、本来高温で分離効率が優れる水素分離膜を低温で運転しなければならず、低温での分離によって水素回収率が低下するという欠点があった。   On the other hand, generally, measures such as keeping the temperature of the dehydrogenation reactor low are taken in order to suppress the deterioration of the catalyst. However, in the conventional hydrogen production method, since the temperature of the dehydrogenation reactor is higher than the temperature of the hydrogen separation membrane, it is necessary to operate a hydrogen separation membrane that is inherently high temperature and excellent in separation efficiency at a low temperature. There was a drawback that the hydrogen recovery rate was lowered by the separation.

また、この低下した分離効率を向上させるために、圧力を上げて運転する方法も試みられたが、圧力を上げると脱水素反応の転化率が低下して、水素発生量が低下するという問題があった。   In addition, in order to improve the reduced separation efficiency, a method of operating at an increased pressure has been tried. However, when the pressure is increased, the conversion rate of the dehydrogenation reaction decreases, and the amount of hydrogen generation decreases. there were.

そこで、本発明の目的は、上記従来技術の問題を解決し、低圧条件下で高い脱水素反応転化率を達成しつつ、水素の分離効率を向上させて、従来技術に比べて水素回収率を大幅に向上させることが可能な水素製造方法を提供することにある。   Therefore, the object of the present invention is to solve the above-mentioned problems of the prior art, achieve a high dehydrogenation conversion rate under low pressure conditions, improve the hydrogen separation efficiency, and increase the hydrogen recovery rate compared to the prior art. An object of the present invention is to provide a hydrogen production method that can be greatly improved.

本発明者は、上記目的を達成するために鋭意検討した結果、触媒層を具える脱水素反応器中で芳香族炭化水素の水素化物の脱水素反応を行い、水素分離膜を具える水素分離装置により脱水素反応生成物から水素を分離する水素の製造方法において、水素分離装置中の水素分離膜の温度を、脱水素反応器中の触媒層の平均温度よりも10〜100℃高くすることで、水素回収率が向上することを見出し、本発明を完成させるに至った。   As a result of intensive investigations to achieve the above object, the present inventor conducted a dehydrogenation reaction of a hydride of an aromatic hydrocarbon in a dehydrogenation reactor having a catalyst layer, and a hydrogen separation having a hydrogen separation membrane. In the hydrogen production method in which hydrogen is separated from the dehydrogenation reaction product by the apparatus, the temperature of the hydrogen separation membrane in the hydrogen separation apparatus is made 10 to 100 ° C. higher than the average temperature of the catalyst layer in the dehydrogenation reactor. Thus, the inventors have found that the hydrogen recovery rate is improved, and have completed the present invention.

即ち、本発明の水素製造方法は、触媒層を具える脱水素反応器中で芳香族炭化水素の水素化物の脱水素反応を行い、水素分離膜を具える水素分離装置により該脱水素反応生成物から水素を分離する水素製造方法において、
前記水素分離装置中の水素分離膜の温度が、前記脱水素反応器中の触媒層の平均温度よりも10〜100℃高いことを特徴とする。
That is, the hydrogen production method of the present invention performs a dehydrogenation reaction of an aromatic hydrocarbon hydride in a dehydrogenation reactor including a catalyst layer, and generates the dehydrogenation reaction by a hydrogen separation device including a hydrogen separation membrane. In a hydrogen production method for separating hydrogen from a product,
The temperature of the hydrogen separation membrane in the hydrogen separator is 10 to 100 ° C. higher than the average temperature of the catalyst layer in the dehydrogenation reactor.

なお、本発明において、触媒層の平均温度とは、触媒層を芳香族炭化水素水素化物の流れ方向に3等分に分割し、各部分の中心の温度を測定し、平均した温度をいう。   In the present invention, the average temperature of the catalyst layer means an average temperature obtained by dividing the catalyst layer into three equal parts in the flow direction of the aromatic hydrocarbon hydride and measuring the temperature at the center of each part.

本発明の水素製造方法の好適例においては、前記脱水素反応器及び前記水素分離装置を加熱するための熱媒体を、前記水素分離装置を通過させた後に前記脱水素反応器を通過させる。ここで、更に、前記脱水素反応器から排出された熱媒体を再加熱して、前記水素分離装置に供給することが好ましい。   In a preferred embodiment of the hydrogen production method of the present invention, a heat medium for heating the dehydrogenation reactor and the hydrogen separation device is passed through the dehydrogenation reactor after passing through the hydrogen separation device. Here, it is further preferable that the heat medium discharged from the dehydrogenation reactor is reheated and supplied to the hydrogen separator.

本発明によれば、水素分離装置中の水素分離膜の温度を、脱水素反応器中の触媒層の平均温度よりも10〜100℃高くすることで、高い脱水素反応転化率を達成しつつ、水素の分離効率が向上し、その結果として、水素回収率を向上させることができる。   According to the present invention, while the temperature of the hydrogen separation membrane in the hydrogen separator is 10 to 100 ° C. higher than the average temperature of the catalyst layer in the dehydrogenation reactor, a high dehydrogenation conversion rate is achieved. The hydrogen separation efficiency is improved, and as a result, the hydrogen recovery rate can be improved.

以下に、本発明の好適な実施の形態を、図1に基づいて具体的に説明する。但し、本発明は、図1に示す形態に限定されるものではない。   A preferred embodiment of the present invention will be specifically described below with reference to FIG. However, the present invention is not limited to the form shown in FIG.

本発明の水素製造方法においては、例えば、原料となる芳香族炭化水素水素化物を貯蔵するタンク1から芳香族炭化水素水素化物をポンプ等でくみ上げ、予熱後、脱水素反応器2に供給して、脱水素反応を行う。ここで、芳香族炭化水素水素化物の予熱は、熱交換器(図示せず)で行うことが好ましく、その熱源としては、燃料をバーナー等の加熱手段で燃焼させて発生させた熱等を用いることができる。   In the hydrogen production method of the present invention, for example, the aromatic hydrocarbon hydride is pumped from a tank 1 for storing the aromatic hydrocarbon hydride as a raw material with a pump or the like, preheated, and then supplied to the dehydrogenation reactor 2. , Dehydrogenation reaction is performed. Here, the preheating of the aromatic hydrocarbon hydride is preferably performed by a heat exchanger (not shown), and the heat source uses heat generated by burning the fuel with a heating means such as a burner. be able to.

本発明に用いる芳香族炭化水素の水素化物としては、シクロヘキサン類、デカリン類が挙げられるが、脱水素反応後に生成する芳香族炭化水素の安全性及び取り扱い易さの観点から、置換基を持つものが好ましく、メチルシクロヘキサン、エチルシクロヘキサン、ジメチルシクロヘキサン、ジエチルシクロヘキサン、トリメチルシクロヘキサンなどのアルキルシクロヘキサン、メチルデカリン、エチルデカリン、ジメチルデカリン、ジエチルデカリンなどのアルキルデカリン、およびこれらの混合物を用いることが好ましい。   Examples of hydrides of aromatic hydrocarbons used in the present invention include cyclohexanes and decalins, but those having substituents from the viewpoint of safety and ease of handling of aromatic hydrocarbons produced after dehydrogenation reaction. It is preferable to use alkylcyclohexane such as methylcyclohexane, ethylcyclohexane, dimethylcyclohexane, diethylcyclohexane and trimethylcyclohexane, alkyldecalin such as methyldecalin, ethyldecalin, dimethyldecalin and diethyldecalin, and mixtures thereof.

本発明に用いる脱水素反応器2には触媒を充填し、芳香族炭化水素水素化物を供給して脱水素反応を行わせる。ここで、脱水素反応器2への供給方式としては、芳香族炭化水素水素化物を液体で供給する方式、および予熱して気体で供給する方式のいずれをとることも出来るが、特には、固定床式反応器に気体で供給することが好ましい。   The dehydrogenation reactor 2 used in the present invention is filled with a catalyst, and an aromatic hydrocarbon hydride is supplied to cause a dehydrogenation reaction. Here, as a supply method to the dehydrogenation reactor 2, either a method of supplying an aromatic hydrocarbon hydride as a liquid or a method of supplying it as a preheated gas can be used. It is preferable to supply the gas to the bed reactor.

また、脱水素反応器2に充填する脱水素反応触媒としては、白金、ルテニウム、パラジウム、ロジウム、スズ、レニウム、及びゲルマニウムよりなる群から選択される少なくとも1種の金属を多孔質担体に担持したものが好ましく、脱水素反応器2に供給する芳香族炭化水素水素化物の種類により、平均細孔径を適宜選択することが好ましい。すなわち、1環のシクロヘキサン類を用いる場合には、特に40〜80Åの平均細孔径を持つ触媒が好ましく、2環のデカリン類を用いる場合には、特に65〜130Åの平均細孔径を持つ触媒を選択することが好ましく、いずれも好ましい細孔径をもつ細孔の容量が全細孔容量の50%以上であることが好ましい。   In addition, as a dehydrogenation reaction catalyst charged in the dehydrogenation reactor 2, at least one metal selected from the group consisting of platinum, ruthenium, palladium, rhodium, tin, rhenium, and germanium is supported on a porous carrier. The average pore diameter is preferably selected as appropriate depending on the type of the aromatic hydrocarbon hydride supplied to the dehydrogenation reactor 2. That is, a catalyst having an average pore diameter of 40 to 80 mm is particularly preferred when using one-ring cyclohexanes, and a catalyst having an average pore diameter of 65 to 130 mm is particularly preferred when using two-ring decalins. It is preferable to select them, and it is preferable that the volume of pores having a preferable pore diameter is 50% or more of the total pore volume.

脱水素反応触媒の平均細孔径および細孔容量の比率を制御するには、触媒の担体としてAl23あるいはSiO2を用いることが好ましく、それぞれ単独で用いてもよいし、適当な割合で両者を組み合わせて用いてもよい。芳香族炭化水素水素化物が1環と2環の混合物である場合は、その組成により、好ましい平均細孔径をもつ触媒を混合して用いても良い。 In order to control the average pore diameter and pore volume ratio of the dehydrogenation reaction catalyst, it is preferable to use Al 2 O 3 or SiO 2 as the catalyst support, and each may be used alone or at an appropriate ratio. You may use combining both. When the aromatic hydrocarbon hydride is a mixture of one ring and two rings, a catalyst having a preferable average pore diameter may be mixed and used depending on the composition.

また、脱水素反応触媒における金属担持率は、0.001〜10質量%の範囲が好ましく、0.01〜5質量%の範囲が更に好ましい。金属担持率が0.001質量%未満では、十分に脱水素反応を進行させることができず、一方、10質量%を超えて金属を担持しても、金属の増量に見合う効果が得られない。   Further, the metal loading in the dehydrogenation reaction catalyst is preferably in the range of 0.001 to 10% by mass, and more preferably in the range of 0.01 to 5% by mass. If the metal loading is less than 0.001% by mass, the dehydrogenation reaction cannot be sufficiently progressed. On the other hand, even if the metal is loaded exceeding 10% by mass, an effect commensurate with the increase in the amount of metal cannot be obtained. .

本発明で行う脱水素反応は、例えば、上記脱水素反応用触媒の存在下、LHSVが0.5〜4hr-1、反応温度が100〜450℃、好ましくは250℃〜450℃、反応圧力が常圧〜2MPaG、好ましくは常圧〜0.4MPaGで、水素を流通することにより実施する。なお、本発明の水素製造方法において、脱水素反応の反応温度、即ち、脱水素触媒層の平均温度は、後述する水素分離膜の温度に応じて適宜選択される。また、水素流通量は、水素/芳香族炭化水素水素化物のモル比で0.01〜10の範囲が好ましい。水素を流通させて脱水素反応を行うと、水素を流通させない場合に比べ、副反応を抑えることが出来、水素を効率的に製造できるだけでなく、脱水素反応後に回収される油を再度水素化して芳香族炭化水素水素化物として再利用する際に含まれる不純物を少なくすることが出来る。さらに、水素を効率的に製造するには、転化率85%以上になるように反応条件を選択することが好ましい。 In the dehydrogenation reaction carried out in the present invention, for example, in the presence of the catalyst for dehydrogenation reaction, LHSV is 0.5 to 4 hr −1 , reaction temperature is 100 to 450 ° C., preferably 250 ° C. to 450 ° C., reaction pressure is It is carried out by circulating hydrogen at normal pressure to 2 MPaG, preferably normal pressure to 0.4 MPaG. In the hydrogen production method of the present invention, the reaction temperature of the dehydrogenation reaction, that is, the average temperature of the dehydrogenation catalyst layer is appropriately selected according to the temperature of the hydrogen separation membrane described later. The hydrogen flow rate is preferably in the range of 0.01 to 10 in terms of a hydrogen / aromatic hydrocarbon hydride molar ratio. When hydrogen is circulated and the dehydrogenation reaction is performed, side reactions can be suppressed compared to when hydrogen is not circulated, and not only hydrogen can be produced efficiently, but also the oil recovered after the dehydrogenation reaction is hydrogenated again. Thus, impurities contained in the reuse as an aromatic hydrocarbon hydride can be reduced. Furthermore, in order to produce hydrogen efficiently, it is preferable to select reaction conditions so that the conversion rate is 85% or more.

脱水素反応により生成するガスは、水素を主成分とするが、その他に、未反応の芳香族炭化水素水素化物、脱水素反応により生成する芳香族炭化水素、副反応により生じるメタン、エタン等の低級炭化水素、副反応により生じるアルキルシクロペンタンなどを含むことがある。しかしながら、都市ガス、灯油、ナフサ等の改質反応により水素を製造する場合に反応生成ガス中に含まれる一酸化炭素は、芳香族炭化水素水素化物の脱水素反応生成ガス中には含まれない。   The gas produced by the dehydrogenation reaction is mainly composed of hydrogen, but in addition to this, unreacted aromatic hydrocarbon hydride, aromatic hydrocarbons produced by the dehydrogenation reaction, methane, ethane produced by side reactions, etc. It may contain lower hydrocarbons, alkylcyclopentane produced by side reactions, and the like. However, carbon monoxide contained in the reaction product gas when hydrogen is produced by a reforming reaction of city gas, kerosene, naphtha, etc. is not included in the dehydrogenation reaction product gas of the aromatic hydrocarbon hydride. .

本発明の水素製造方法では、脱水素反応生成物を、水素分離膜を具える水素分離装置3に供給し、水素分離膜を利用して、高純度水素を得る。ここで、脱水素反応直後の反応生成物を気液分離することなく、水素分離膜を用いて精製することが好ましく、この場合、脱水素反応生成ガスの冷却と再加熱を要していた従来技術に比べて、エネルギー効率を向上させることができる。   In the hydrogen production method of the present invention, the dehydrogenation reaction product is supplied to a hydrogen separation device 3 having a hydrogen separation membrane, and high-purity hydrogen is obtained using the hydrogen separation membrane. Here, it is preferable to purify the reaction product immediately after the dehydrogenation reaction using a hydrogen separation membrane without gas-liquid separation. In this case, cooling and reheating of the dehydrogenation reaction product gas have been required. Compared to technology, energy efficiency can be improved.

本発明に用いる水素分離装置3は、水素分離膜を具える限り特に限定されるものではない。また、該水素分離装置3に用いる水素分離膜としては、金属膜、ゼオライト膜、セラミック膜、高分子膜等を例示できるが、脱水素反応器2の温度、圧力、流体に含まれる成分から作動できるものとして、Pd合金膜を用いることが好ましい。該Pd合金膜としては、Pd−Ag膜、Pd−Cu膜等を例示できるが、特には、圧延膜として薄膜化が可能であり、水素脆化の少ないPd−Cu膜が好ましい。該Pd−Cu膜は、たとえば、米国特許第3,439,474号に記載の方法により作製することが出来る。   The hydrogen separator 3 used in the present invention is not particularly limited as long as it includes a hydrogen separation membrane. Examples of the hydrogen separation membrane used in the hydrogen separation device 3 include metal membranes, zeolite membranes, ceramic membranes, polymer membranes, etc., which operate from the components contained in the temperature, pressure, and fluid of the dehydrogenation reactor 2. It is preferable to use a Pd alloy film as possible. Examples of the Pd alloy film include a Pd—Ag film and a Pd—Cu film, and a Pd—Cu film that can be thinned as a rolled film and has little hydrogen embrittlement is particularly preferable. The Pd—Cu film can be produced, for example, by the method described in US Pat. No. 3,439,474.

ここで、本発明の水素製造方法では、脱水素反応による生成ガスから、上記水素分離膜を通して高い水素回収率で高純度水素を得るために、水素分離装置3中の水素分離膜の温度を脱水素反応器2中の触媒層の平均温度よりも10〜100℃高くすることを要し、好ましくは20〜50℃高くする。水素分離膜に対する水素の透過速度は高温ほど向上する一方、脱水素反応触媒は高温ほど活性金属が凝集し易いため、水素分離膜の温度を触媒層の平均温度よりも高くすることで、水素の透過速度を向上させつつ、脱水素反応触媒の劣化を防止できる。そして、水素分離膜の温度を触媒層の平均温度よりも10℃以上高くすることで、水素分離膜に対する水素の透過速度が更に向上して、水素回収率が向上する。なお、水素分離膜の温度が触媒層の平均温度よりも100℃を超えて高い場合は、脱水素反応が十分に進行するように触媒層の平均温度を設定すると、水素分離膜の温度が高くなり過ぎ、水素分離膜の結晶形態が変わって、水素の透過速度が低下し、一方、水素が十分に透過するように水素分離膜の温度を設定すると、触媒層の平均温度が低くなり過ぎ、脱水素反応の反応速度が低下する。   Here, in the hydrogen production method of the present invention, the temperature of the hydrogen separation membrane in the hydrogen separation device 3 is dehydrated in order to obtain high-purity hydrogen from the gas produced by the dehydrogenation reaction through the hydrogen separation membrane with a high hydrogen recovery rate. The average temperature of the catalyst layer in the elementary reactor 2 needs to be 10 to 100 ° C. higher, preferably 20 to 50 ° C. higher. While the hydrogen permeation rate through the hydrogen separation membrane increases as the temperature rises, the dehydrogenation reaction catalyst tends to aggregate active metals at higher temperatures. Therefore, by increasing the temperature of the hydrogen separation membrane above the average temperature of the catalyst layer, Deterioration of the dehydrogenation reaction catalyst can be prevented while improving the permeation rate. And by making the temperature of a hydrogen separation membrane 10 degreeC or more higher than the average temperature of a catalyst layer, the permeation | transmission rate of hydrogen with respect to a hydrogen separation membrane further improves, and a hydrogen recovery rate improves. When the temperature of the hydrogen separation membrane is higher than the average temperature of the catalyst layer by more than 100 ° C., setting the average temperature of the catalyst layer so that the dehydrogenation reaction proceeds sufficiently will increase the temperature of the hydrogen separation membrane. If the temperature of the hydrogen separation membrane is set so that hydrogen permeates sufficiently, the average temperature of the catalyst layer becomes too low. The reaction rate of the dehydrogenation reaction decreases.

なお、水素分離装置3中の水素分離膜の温度は、300〜400℃の範囲が好ましい。水素分離膜の温度が300℃未満では、水素の透過速度が低下して、水素回収率が低下し、一方、水素分離膜の温度が400℃を超えると、水素分離膜の結晶形態が変化して、水素の透過速度が低下して、水素回収率が低下する。   The temperature of the hydrogen separation membrane in the hydrogen separation device 3 is preferably in the range of 300 to 400 ° C. When the temperature of the hydrogen separation membrane is less than 300 ° C., the hydrogen permeation rate is lowered and the hydrogen recovery rate is lowered. On the other hand, when the temperature of the hydrogen separation membrane exceeds 400 ° C., the crystal form of the hydrogen separation membrane is changed. As a result, the hydrogen permeation rate decreases, and the hydrogen recovery rate decreases.

本発明の水素製造方法において、脱水素反応の反応圧力及び水素分離膜の圧力は、0.4MPaG以下であることが好ましい。この場合、脱水素反応の転化率が向上して、水素の生成量を向上させることができる。なお、効率的に水素を製造するには、水素分離膜を透過して回収される水素が脱水素反応生成ガス中の水素の85%以上となるように、差圧と温度をコントロールすることが好ましい。   In the hydrogen production method of the present invention, the reaction pressure of the dehydrogenation reaction and the pressure of the hydrogen separation membrane are preferably 0.4 MPaG or less. In this case, the conversion rate of the dehydrogenation reaction is improved, and the amount of hydrogen produced can be improved. In order to efficiently produce hydrogen, it is necessary to control the differential pressure and temperature so that the hydrogen recovered through the hydrogen separation membrane is 85% or more of the hydrogen in the dehydrogenation reaction product gas. preferable.

本発明の水素製造方法において、水素分離装置3中の水素分離膜の温度を脱水素反応器2中の触媒層の平均温度よりも10〜100℃高くするには、例えば、図1に示すように、加熱手段4で加熱した熱媒体を、水素分離装置3を通過させた後に脱水素反応器2を通過させることが好ましい。ここで、加熱手段4としては、バーナー等が挙げられ、例えば、燃料をバーナー等の加熱手段で燃焼させて発生させた熱風を、水素分離装置3を通過させた後に脱水素反応器2を通過させることができる。また、エネルギー効率を向上させる観点から、図1に示すように、脱水素反応器2から排出された熱媒体を加熱手段4で再加熱して、水素分離装置3に供給することが好ましい。   In the hydrogen production method of the present invention, in order to make the temperature of the hydrogen separation membrane in the hydrogen separator 3 10 to 100 ° C. higher than the average temperature of the catalyst layer in the dehydrogenation reactor 2, for example, as shown in FIG. Furthermore, it is preferable that the heat medium heated by the heating means 4 is passed through the dehydrogenation reactor 2 after passing through the hydrogen separator 3. Here, examples of the heating unit 4 include a burner. For example, hot air generated by burning fuel with a heating unit such as a burner passes through the hydrogen separator 3 and then passes through the dehydrogenation reactor 2. Can be made. From the viewpoint of improving energy efficiency, it is preferable to reheat the heat medium discharged from the dehydrogenation reactor 2 by the heating means 4 and supply it to the hydrogen separator 3 as shown in FIG.

本発明に従い水素分離膜を通して製造した高純度水素は、燃料電池自動車あるいは定置用燃料電池等の燃料電池向け燃料として用いることができる。また、該高純度水素の一部を脱水素反応器2にリサイクルし、脱水素反応に必要な流通水素として用いてもよい。脱水素反応に用いる流通水素としては、外部から導入される水素、脱水素反応器2から出る反応生成ガスの未精製ガス中に含まれる水素、水素分離膜を透過しなかったガスに含まれる水素を用いることも出来るが、水素純度が低いと、リサイクルしているうちに水素以外のガスの濃度が高くなってしまい、水素流通下で脱水素反応を行うことの利点が十分に得られないため、水素分離膜を透過させて得た高純度水素を脱水素反応器2にリサイクルすることが好ましい。   The high-purity hydrogen produced through the hydrogen separation membrane according to the present invention can be used as a fuel for fuel cells such as fuel cell vehicles or stationary fuel cells. Further, a part of the high-purity hydrogen may be recycled to the dehydrogenation reactor 2 and used as circulating hydrogen necessary for the dehydrogenation reaction. The circulating hydrogen used for the dehydrogenation reaction includes hydrogen introduced from the outside, hydrogen contained in the unpurified gas of the reaction product gas exiting from the dehydrogenation reactor 2, and hydrogen contained in the gas that did not permeate the hydrogen separation membrane. However, if the hydrogen purity is low, the concentration of gases other than hydrogen will increase during recycling, and the advantage of performing the dehydrogenation reaction under hydrogen flow will not be sufficiently obtained. The high-purity hydrogen obtained by permeating the hydrogen separation membrane is preferably recycled to the dehydrogenation reactor 2.

本発明において、脱水素反応生成ガスから水素分離膜を通らずに回収されたガスは、例えば、気液分離装置5に導入され、未反応の芳香族炭化水素水素化物、脱水素反応で生成した芳香族炭化水素および副反応により発生したアルキルシクロペンタンなどの液分と、水素およびその他のガスとに分離されることが好ましい。ガス分中のその他のガスには、副反応により発生した低級炭化水素、分離しきれなかった液分のベーパーが含まれる。ここで、水素およびその他のガスは、たとえば、水素分離装置3及び脱水素反応器2の加熱のために、他の燃料と共にバーナー等の加熱手段4で燃焼させるなどして、熱源の原料として用いることができる。一方、未反応の芳香族炭化水素水素化物、脱水素反応で生成した芳香族炭化水素および副反応により発生したアルキルシクロペンタンなどを含む液分は、回収油タンク6に回収され、再度水素化して芳香族炭化水素水素化物として再利用することができる。   In the present invention, the gas recovered from the dehydrogenation reaction product gas without passing through the hydrogen separation membrane is introduced into, for example, the gas-liquid separation device 5, and is generated by an unreacted aromatic hydrocarbon hydride and dehydrogenation reaction. It is preferable to separate into liquid components such as aromatic hydrocarbons and alkylcyclopentane generated by side reactions, and hydrogen and other gases. Other gases in the gas component include lower hydrocarbons generated by side reactions and liquid vapor that could not be separated. Here, hydrogen and other gases are used as a heat source raw material, for example, by being burned by a heating means 4 such as a burner together with other fuel for heating the hydrogen separator 3 and the dehydrogenation reactor 2. be able to. On the other hand, a liquid containing unreacted aromatic hydrocarbon hydride, aromatic hydrocarbon generated by dehydrogenation reaction, alkylcyclopentane generated by side reaction, etc. is recovered in the recovered oil tank 6 and hydrogenated again. It can be reused as an aromatic hydrocarbon hydride.

以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明は下記の実施例に何ら限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples.

(実施例1)
図1に示すように、熱風(熱媒体)を、水素分離装置3を通過させた後、脱水素反応器2を通過させて、脱水素反応及び水素分離を行った。脱水素反応器2として固定床流通式反応装置を、また、脱水素触媒として0.5%Pt/Al23触媒(平均細孔径72.9Å、全細孔容量に占める40〜80Åの細孔容量の割合60%)を使用し、該触媒を固定床流通式反応装置に充填した。ここで、触媒層の容積は10cm3とした。芳香族炭化水素水素化物としてメチルシクロヘキサン(MCH)を用い、反応圧力0.5MPaG、液空間速度(LHSV)=2.0hr-1、水素/オイル比(H2/Oil)=1.0mol/molの条件下で脱水素反応を行い、脱水素反応器2からの出口ガスを、水素分離膜を具える水素分離装置3に通して水素を選択透過させた。なお、水素分離装置3の入口ゲージ圧力は、脱水素反応の反応圧力と同じ0.5MPaGであり、一方、出口ゲージ圧力は、0.0MPaGである。また、水素分離膜としては、Pd−Cu膜を使用した。450℃の熱風を、水素分離装置3を通過させた後、脱水素反応器2を通過させたところ、水素分離装置3中の水素分離膜の温度は350℃で、脱水素反応器2中の触媒層の平均温度は327.6℃となった。水素分離膜の透過ガスの流量及び該透過ガスの水素濃度、水素分離膜の非透過ガスを気液分離装置5により気液分離した後のガス分の流量(非透過ガス流量)及び該ガス分の水素濃度、水素回収率を表1に示す。
Example 1
As shown in FIG. 1, hot air (heat medium) was passed through the hydrogen separator 3 and then passed through the dehydrogenation reactor 2 to perform dehydrogenation reaction and hydrogen separation. A fixed bed flow reactor is used as the dehydrogenation reactor 2, and a 0.5% Pt / Al 2 O 3 catalyst (average pore diameter is 72.9 kg, 40-80 kg of the total pore volume is used as the dehydrogenation catalyst. The catalyst was charged into a fixed bed flow reactor using a pore volume ratio of 60%). Here, the volume of the catalyst layer was 10 cm 3 . Methylcyclohexane (MCH) is used as the aromatic hydrocarbon hydride, the reaction pressure is 0.5 MPaG, the liquid space velocity (LHSV) is 2.0 hr −1 , and the hydrogen / oil ratio (H 2 / Oil) is 1.0 mol / mol. The dehydrogenation reaction was performed under the conditions described above, and the outlet gas from the dehydrogenation reactor 2 was passed through a hydrogen separation device 3 having a hydrogen separation membrane to selectively permeate hydrogen. In addition, the inlet gauge pressure of the hydrogen separator 3 is 0.5 MPaG which is the same as the reaction pressure of the dehydrogenation reaction, while the outlet gauge pressure is 0.0 MPaG. In addition, a Pd—Cu membrane was used as the hydrogen separation membrane. When hot air of 450 ° C. was passed through the hydrogen separator 3 and then passed through the dehydrogenation reactor 2, the temperature of the hydrogen separation membrane in the hydrogen separator 3 was 350 ° C. The average temperature of the catalyst layer was 327.6 ° C. The flow rate of the permeate gas of the hydrogen separation membrane, the hydrogen concentration of the permeate gas, the flow rate of the gas after the non-permeate gas of the hydrogen separation membrane is gas-liquid separated by the gas-liquid separation device 5 (non-permeate gas flow rate), and the gas content Table 1 shows the hydrogen concentration and hydrogen recovery rate.

(実施例2〜4)
脱水素反応の反応圧力及び水素分離装置3の入口ゲージ圧力を表1に示す圧力にする以外は、実施例1と同様にして、脱水素反応及び水素分離を行った。結果を表1に示す。
(Examples 2 to 4)
A dehydrogenation reaction and hydrogen separation were performed in the same manner as in Example 1 except that the reaction pressure of the dehydrogenation reaction and the inlet gauge pressure of the hydrogen separator 3 were changed to the pressures shown in Table 1. The results are shown in Table 1.

(比較例1)
図2に示すように、熱風(熱媒体)を、脱水素反応器2を通過させた後、水素分離装置3を通過させて、脱水素反応及び水素分離を行う以外は、実施例1と同様にして、脱水素反応及び水素分離を行った。結果を表1に示す。
(Comparative Example 1)
As shown in FIG. 2, the hot air (heat medium) is passed through the dehydrogenation reactor 2 and then passed through the hydrogen separator 3 to perform the dehydrogenation reaction and hydrogen separation, as in Example 1. Then, dehydrogenation reaction and hydrogen separation were performed. The results are shown in Table 1.

(比較例2〜4)
脱水素反応の反応圧力及び水素分離装置の入口ゲージ圧力を表1に示す圧力にする以外は、比較例1と同様にして、脱水素反応及び水素分離を行った。結果を表1に示す。
(Comparative Examples 2 to 4)
A dehydrogenation reaction and hydrogen separation were performed in the same manner as in Comparative Example 1 except that the reaction pressure of the dehydrogenation reaction and the inlet gauge pressure of the hydrogen separation apparatus were changed to the pressures shown in Table 1. The results are shown in Table 1.

Figure 2010006653
Figure 2010006653

表1から、水素分離膜の温度を脱水素反応器中の触媒層の平均温度よりも10〜100℃、好ましくは20〜50℃高くすることで、水素回収率が向上することが分かる。一方、比較例の結果から、水素分離膜の温度が脱水素反応器中の触媒層の平均温度よりも低いと、同一圧力の実施例に比べて、水素回収率が大幅に低下することが分かる。   From Table 1, it can be seen that the hydrogen recovery rate is improved by raising the temperature of the hydrogen separation membrane by 10 to 100 ° C., preferably 20 to 50 ° C., higher than the average temperature of the catalyst layer in the dehydrogenation reactor. On the other hand, it can be seen from the results of the comparative example that when the temperature of the hydrogen separation membrane is lower than the average temperature of the catalyst layer in the dehydrogenation reactor, the hydrogen recovery rate is significantly reduced compared to the example of the same pressure. .

本発明の水素製造方法の一態様を示す模式図である。It is a schematic diagram which shows one aspect | mode of the hydrogen manufacturing method of this invention. 比較例の水素製造方法を示す模式図である。It is a schematic diagram which shows the hydrogen manufacturing method of a comparative example.

符号の説明Explanation of symbols

1 芳香族炭化水素水素化物タンク
2 脱水素反応器
3 水素分離装置
4 加熱手段
5 気液分離装置
6 回収油タンク
DESCRIPTION OF SYMBOLS 1 Aromatic hydrocarbon hydride tank 2 Dehydrogenation reactor 3 Hydrogen separator 4 Heating means 5 Gas-liquid separator 6 Recovery oil tank

Claims (3)

触媒層を具える脱水素反応器中で芳香族炭化水素の水素化物の脱水素反応を行い、水素分離膜を具える水素分離装置により該脱水素反応生成物から水素を分離する水素製造方法において、
前記水素分離装置中の水素分離膜の温度が、前記脱水素反応器中の触媒層の平均温度よりも10〜100℃高いことを特徴とする水素製造方法。
In a hydrogen production method in which a dehydrogenation reaction of an aromatic hydrocarbon hydride is carried out in a dehydrogenation reactor comprising a catalyst layer, and hydrogen is separated from the dehydrogenation reaction product by a hydrogen separation device comprising a hydrogen separation membrane. ,
The method for producing hydrogen, wherein the temperature of the hydrogen separation membrane in the hydrogen separator is higher by 10 to 100 ° C than the average temperature of the catalyst layer in the dehydrogenation reactor.
前記脱水素反応器及び前記水素分離装置を加熱するための熱媒体を、前記水素分離装置を通過させた後に前記脱水素反応器を通過させることを特徴とする請求項1に記載の水素製造方法。   2. The hydrogen production method according to claim 1, wherein a heat medium for heating the dehydrogenation reactor and the hydrogen separation device is passed through the dehydrogenation reactor after passing through the hydrogen separation device. . 更に、前記脱水素反応器から排出された熱媒体を再加熱して、前記水素分離装置に供給することを特徴とする請求項2に記載の水素製造方法。   Furthermore, the heating medium discharged | emitted from the said dehydrogenation reactor is reheated, and it supplies to the said hydrogen separator, The hydrogen production method of Claim 2 characterized by the above-mentioned.
JP2008169025A 2008-06-27 2008-06-27 Hydrogen production method Active JP5215057B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008169025A JP5215057B2 (en) 2008-06-27 2008-06-27 Hydrogen production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008169025A JP5215057B2 (en) 2008-06-27 2008-06-27 Hydrogen production method

Publications (2)

Publication Number Publication Date
JP2010006653A true JP2010006653A (en) 2010-01-14
JP5215057B2 JP5215057B2 (en) 2013-06-19

Family

ID=41587571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008169025A Active JP5215057B2 (en) 2008-06-27 2008-06-27 Hydrogen production method

Country Status (1)

Country Link
JP (1) JP5215057B2 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112010000808T5 (en) 2009-02-02 2012-06-06 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Profile measuring device
JP2013519622A (en) * 2010-02-13 2013-05-30 マクアリスター テクノロジーズ エルエルシー Chemical processes and reactors for efficiently producing hydrogen fuel and structural materials, and related systems and methods
US8624072B2 (en) 2010-02-13 2014-01-07 Mcalister Technologies, Llc Chemical reactors with annularly positioned delivery and removal devices, and associated systems and methods
US8669014B2 (en) 2011-08-12 2014-03-11 Mcalister Technologies, Llc Fuel-cell systems operable in multiple modes for variable processing of feedstock materials and associated devices, systems, and methods
US8671870B2 (en) 2011-08-12 2014-03-18 Mcalister Technologies, Llc Systems and methods for extracting and processing gases from submerged sources
US8673509B2 (en) 2011-08-12 2014-03-18 Mcalister Technologies, Llc Fuel-cell systems operable in multiple modes for variable processing of feedstock materials and associated devices, systems, and methods
US8734546B2 (en) 2011-08-12 2014-05-27 Mcalister Technologies, Llc Geothermal energization of a non-combustion chemical reactor and associated systems and methods
US8771636B2 (en) 2008-01-07 2014-07-08 Mcalister Technologies, Llc Chemical processes and reactors for efficiently producing hydrogen fuels and structural materials, and associated systems and methods
US8821602B2 (en) 2011-08-12 2014-09-02 Mcalister Technologies, Llc Systems and methods for providing supplemental aqueous thermal energy
US8826657B2 (en) 2011-08-12 2014-09-09 Mcallister Technologies, Llc Systems and methods for providing supplemental aqueous thermal energy
US8888408B2 (en) 2011-08-12 2014-11-18 Mcalister Technologies, Llc Systems and methods for collecting and processing permafrost gases, and for cooling permafrost
WO2014192562A1 (en) * 2013-05-29 2014-12-04 Jx日鉱日石エネルギー株式会社 Hydrogen production method and hydrogen production system
US8911703B2 (en) 2011-08-12 2014-12-16 Mcalister Technologies, Llc Reducing and/or harvesting drag energy from transport vehicles, including for chemical reactors, and associated systems and methods
US8926719B2 (en) 2013-03-14 2015-01-06 Mcalister Technologies, Llc Method and apparatus for generating hydrogen from metal
US9188086B2 (en) 2008-01-07 2015-11-17 Mcalister Technologies, Llc Coupled thermochemical reactors and engines, and associated systems and methods
US9206045B2 (en) 2010-02-13 2015-12-08 Mcalister Technologies, Llc Reactor vessels with transmissive surfaces for producing hydrogen-based fuels and structural elements, and associated systems and methods
JP2015224180A (en) * 2014-05-30 2015-12-14 Jx日鉱日石エネルギー株式会社 Hydrogen supply system
US9302681B2 (en) 2011-08-12 2016-04-05 Mcalister Technologies, Llc Mobile transport platforms for producing hydrogen and structural materials, and associated systems and methods
US9522379B2 (en) 2011-08-12 2016-12-20 Mcalister Technologies, Llc Reducing and/or harvesting drag energy from transport vehicles, including for chemical reactors, and associated systems and methods
JP2017001914A (en) * 2015-06-11 2017-01-05 富士電機株式会社 Equipment and process for producing hydrogen

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08339816A (en) * 1995-06-09 1996-12-24 Aqueous Res:Kk Power generation device for automobile
JP2004059336A (en) * 2002-07-25 2004-02-26 Kansai Electric Power Co Inc:The Process for producing hydrogen gas
JP2004131306A (en) * 2002-10-08 2004-04-30 Honda Motor Co Ltd Apparatus and method of producing hydrogen and apparatus and method of recovering hydrogen
JP2004197705A (en) * 2002-12-20 2004-07-15 Chiyoda Corp High pressure hydrogen supply system
JP2005035842A (en) * 2003-07-15 2005-02-10 Nippon Oil Corp Hydrogen production system
JP2005213087A (en) * 2004-01-29 2005-08-11 Nippon Oil Corp Method for producing high purity hydrogen
JP2006232607A (en) * 2005-02-24 2006-09-07 Japan Energy Corp Hydrogen production method
JP2006265065A (en) * 2005-03-25 2006-10-05 Ngk Insulators Ltd Method for abstracting hydrogen
JP2007076982A (en) * 2005-09-16 2007-03-29 Nippon Oil Corp Hydrogen production system and power generation system
JP2007099528A (en) * 2005-09-30 2007-04-19 Japan Energy Corp Method for producing high purity hydrogen
JP2007131500A (en) * 2005-11-14 2007-05-31 Mitsubishi Gas Chem Co Inc Hydrogen production apparatus
JP2007153726A (en) * 2005-11-09 2007-06-21 Epsilon Co Ltd Method and apparatus for recovering hydrogen gas from mixed gas
JP2007229616A (en) * 2006-02-28 2007-09-13 National Institute Of Advanced Industrial & Technology Hydrogen separation complex and its manufacturing method
JP2008132482A (en) * 2006-11-01 2008-06-12 Mitsubishi Chemicals Corp Method for separation of gas
JP2008290927A (en) * 2007-05-24 2008-12-04 Epsilon Co Ltd Method and apparatus for refining hydrogen by using organic hydride

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08339816A (en) * 1995-06-09 1996-12-24 Aqueous Res:Kk Power generation device for automobile
JP2004059336A (en) * 2002-07-25 2004-02-26 Kansai Electric Power Co Inc:The Process for producing hydrogen gas
JP2004131306A (en) * 2002-10-08 2004-04-30 Honda Motor Co Ltd Apparatus and method of producing hydrogen and apparatus and method of recovering hydrogen
JP2004197705A (en) * 2002-12-20 2004-07-15 Chiyoda Corp High pressure hydrogen supply system
JP2005035842A (en) * 2003-07-15 2005-02-10 Nippon Oil Corp Hydrogen production system
JP2005213087A (en) * 2004-01-29 2005-08-11 Nippon Oil Corp Method for producing high purity hydrogen
JP2006232607A (en) * 2005-02-24 2006-09-07 Japan Energy Corp Hydrogen production method
JP2006265065A (en) * 2005-03-25 2006-10-05 Ngk Insulators Ltd Method for abstracting hydrogen
JP2007076982A (en) * 2005-09-16 2007-03-29 Nippon Oil Corp Hydrogen production system and power generation system
JP2007099528A (en) * 2005-09-30 2007-04-19 Japan Energy Corp Method for producing high purity hydrogen
JP2007153726A (en) * 2005-11-09 2007-06-21 Epsilon Co Ltd Method and apparatus for recovering hydrogen gas from mixed gas
JP2007131500A (en) * 2005-11-14 2007-05-31 Mitsubishi Gas Chem Co Inc Hydrogen production apparatus
JP2007229616A (en) * 2006-02-28 2007-09-13 National Institute Of Advanced Industrial & Technology Hydrogen separation complex and its manufacturing method
JP2008132482A (en) * 2006-11-01 2008-06-12 Mitsubishi Chemicals Corp Method for separation of gas
JP2008290927A (en) * 2007-05-24 2008-12-04 Epsilon Co Ltd Method and apparatus for refining hydrogen by using organic hydride

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9188086B2 (en) 2008-01-07 2015-11-17 Mcalister Technologies, Llc Coupled thermochemical reactors and engines, and associated systems and methods
US8771636B2 (en) 2008-01-07 2014-07-08 Mcalister Technologies, Llc Chemical processes and reactors for efficiently producing hydrogen fuels and structural materials, and associated systems and methods
DE112010000808T5 (en) 2009-02-02 2012-06-06 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Profile measuring device
JP2013519622A (en) * 2010-02-13 2013-05-30 マクアリスター テクノロジーズ エルエルシー Chemical processes and reactors for efficiently producing hydrogen fuel and structural materials, and related systems and methods
US8624072B2 (en) 2010-02-13 2014-01-07 Mcalister Technologies, Llc Chemical reactors with annularly positioned delivery and removal devices, and associated systems and methods
US9541284B2 (en) 2010-02-13 2017-01-10 Mcalister Technologies, Llc Chemical reactors with annularly positioned delivery and removal devices, and associated systems and methods
US9206045B2 (en) 2010-02-13 2015-12-08 Mcalister Technologies, Llc Reactor vessels with transmissive surfaces for producing hydrogen-based fuels and structural elements, and associated systems and methods
US8673220B2 (en) 2010-02-13 2014-03-18 Mcalister Technologies, Llc Reactors for conducting thermochemical processes with solar heat input, and associated systems and methods
US9103548B2 (en) 2010-02-13 2015-08-11 Mcalister Technologies, Llc Reactors for conducting thermochemical processes with solar heat input, and associated systems and methods
US8926908B2 (en) 2010-02-13 2015-01-06 Mcalister Technologies, Llc Reactor vessels with pressure and heat transfer features for producing hydrogen-based fuels and structural elements, and associated systems and methods
US8911703B2 (en) 2011-08-12 2014-12-16 Mcalister Technologies, Llc Reducing and/or harvesting drag energy from transport vehicles, including for chemical reactors, and associated systems and methods
US9309473B2 (en) 2011-08-12 2016-04-12 Mcalister Technologies, Llc Systems and methods for extracting and processing gases from submerged sources
US9617983B2 (en) 2011-08-12 2017-04-11 Mcalister Technologies, Llc Systems and methods for providing supplemental aqueous thermal energy
US8669014B2 (en) 2011-08-12 2014-03-11 Mcalister Technologies, Llc Fuel-cell systems operable in multiple modes for variable processing of feedstock materials and associated devices, systems, and methods
US8826657B2 (en) 2011-08-12 2014-09-09 Mcallister Technologies, Llc Systems and methods for providing supplemental aqueous thermal energy
US9522379B2 (en) 2011-08-12 2016-12-20 Mcalister Technologies, Llc Reducing and/or harvesting drag energy from transport vehicles, including for chemical reactors, and associated systems and methods
US8821602B2 (en) 2011-08-12 2014-09-02 Mcalister Technologies, Llc Systems and methods for providing supplemental aqueous thermal energy
US8734546B2 (en) 2011-08-12 2014-05-27 Mcalister Technologies, Llc Geothermal energization of a non-combustion chemical reactor and associated systems and methods
US8673509B2 (en) 2011-08-12 2014-03-18 Mcalister Technologies, Llc Fuel-cell systems operable in multiple modes for variable processing of feedstock materials and associated devices, systems, and methods
US8671870B2 (en) 2011-08-12 2014-03-18 Mcalister Technologies, Llc Systems and methods for extracting and processing gases from submerged sources
US8888408B2 (en) 2011-08-12 2014-11-18 Mcalister Technologies, Llc Systems and methods for collecting and processing permafrost gases, and for cooling permafrost
US9222704B2 (en) 2011-08-12 2015-12-29 Mcalister Technologies, Llc Geothermal energization of a non-combustion chemical reactor and associated systems and methods
US9302681B2 (en) 2011-08-12 2016-04-05 Mcalister Technologies, Llc Mobile transport platforms for producing hydrogen and structural materials, and associated systems and methods
US8926719B2 (en) 2013-03-14 2015-01-06 Mcalister Technologies, Llc Method and apparatus for generating hydrogen from metal
JP2014231461A (en) * 2013-05-29 2014-12-11 Jx日鉱日石エネルギー株式会社 Hydrogen production method and hydrogen production system
WO2014192562A1 (en) * 2013-05-29 2014-12-04 Jx日鉱日石エネルギー株式会社 Hydrogen production method and hydrogen production system
JP2015224180A (en) * 2014-05-30 2015-12-14 Jx日鉱日石エネルギー株式会社 Hydrogen supply system
JP2017001914A (en) * 2015-06-11 2017-01-05 富士電機株式会社 Equipment and process for producing hydrogen

Also Published As

Publication number Publication date
JP5215057B2 (en) 2013-06-19

Similar Documents

Publication Publication Date Title
JP5215057B2 (en) Hydrogen production method
JP4684069B2 (en) Production method of high purity hydrogen
JP4801359B2 (en) Hydrogen production method
US20160214858A1 (en) Multi-zone dehydrogenation reactor and ballasting system for storage and delivery of hydrogen
JP5611627B2 (en) Membrane separation type reactor, membrane separation type hydrogen production apparatus and hydrogen production method
JP5036969B2 (en) Energy station
JP2008518870A5 (en)
JP5288840B2 (en) Hydrogen production system
JP4849775B2 (en) Hydrogen supply system for fuel cell operating chassis
JP2005035842A (en) Hydrogen production system
JP5243859B2 (en) Hydrogen production apparatus and hydrogen production method
JP2008081385A (en) Method for producing hydrogen and reaction tube for it
JP5102932B2 (en) High purity hydrogen production method
JP4835967B2 (en) Hydrogen production system
JP5242233B2 (en) Membrane separation type hydrogen production apparatus and hydrogen production method using the same
JP2007076982A (en) Hydrogen production system and power generation system
JP2010006652A (en) Method for producing hydrogen
JP2005203266A (en) Hydrogen production method and hydrogen production system
JP5215058B2 (en) Hydrogen production equipment
JP2008290927A (en) Method and apparatus for refining hydrogen by using organic hydride
JP2011195393A (en) Membrane separation type reactor, membrane separation type hydrogen production apparatus and method for producing hydrogen
JP2007084378A (en) Method for producing hydrogen and apparatus used in the same
JP2005289652A (en) Method for producing hydrogen and reaction tube
JP2004059336A (en) Process for producing hydrogen gas
JP5127516B2 (en) Raw material composition for hydrogen generation and method for producing hydrogen

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100831

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130228

R150 Certificate of patent or registration of utility model

Ref document number: 5215057

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160308

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250