JP4801359B2 - Hydrogen production method - Google Patents

Hydrogen production method Download PDF

Info

Publication number
JP4801359B2
JP4801359B2 JP2005049017A JP2005049017A JP4801359B2 JP 4801359 B2 JP4801359 B2 JP 4801359B2 JP 2005049017 A JP2005049017 A JP 2005049017A JP 2005049017 A JP2005049017 A JP 2005049017A JP 4801359 B2 JP4801359 B2 JP 4801359B2
Authority
JP
Japan
Prior art keywords
hydrogen
dehydrogenation
separation membrane
reaction
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005049017A
Other languages
Japanese (ja)
Other versions
JP2006232607A (en
Inventor
隆彦 松田
順子 松井
博幸 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
JXTG Nippon Oil and Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JXTG Nippon Oil and Energy Corp filed Critical JXTG Nippon Oil and Energy Corp
Priority to JP2005049017A priority Critical patent/JP4801359B2/en
Publication of JP2006232607A publication Critical patent/JP2006232607A/en
Application granted granted Critical
Publication of JP4801359B2 publication Critical patent/JP4801359B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Description

本発明は、芳香族炭化水素の水素化物を脱水素反応して高純度水素を製造する方法に関し、特に、小型の設備で、高い水素回収率で高純度の水素を得ることができる水素製造方法に関するものである。   The present invention relates to a method for producing high-purity hydrogen by dehydrogenating an aromatic hydrocarbon hydride, and in particular, a hydrogen production method capable of obtaining high-purity hydrogen with a high hydrogen recovery rate with a small facility. It is about.

近年、環境問題やエネルギー問題から、新しいエネルギー源として水素が有望視されており、例えば、水素を直接燃料として用いる水素自動車、あるいは水素を用いる燃料電池などの開発が進められている。該燃料電池は、小型でも高い発電効率を有しており、加えて騒音や振動も発生せず、さらには廃熱を利用することができるなどの優れた利点を有している。   In recent years, hydrogen has been considered promising as a new energy source due to environmental problems and energy problems. For example, development of hydrogen automobiles using hydrogen directly as fuel or fuel cells using hydrogen has been promoted. Although the fuel cell is small, it has high power generation efficiency. In addition, the fuel cell does not generate noise and vibration, and has excellent advantages such as the ability to use waste heat.

一方、水素をエネルギー源として利用するに当っては、燃料となる水素を安全にかつ安定的に供給することが欠かせない。これに対し、圧縮水素や液体水素として直接供給する方法、水素吸蔵合金やカーボンナノチューブなどの水素吸蔵材料を利用して水素を貯蔵及び供給する方法、メタノールや炭化水素を水蒸気改質して水素を供給する方法など、種々の方法が提案されている。   On the other hand, in using hydrogen as an energy source, it is essential to supply hydrogen as a fuel safely and stably. In contrast, a method of supplying hydrogen directly as compressed hydrogen or liquid hydrogen, a method of storing and supplying hydrogen using hydrogen storage materials such as hydrogen storage alloys and carbon nanotubes, and steam reforming methanol and hydrocarbons to generate hydrogen. Various methods such as a supplying method have been proposed.

また、これらに並ぶ水素の供給方法として、近年、水素吸蔵率が高く、水素吸蔵と水素供給を繰返し行い再利用が可能であるとの理由から、芳香族炭化水素の水素化物の脱水素反応により水素を供給する方法が注目されている。   As a hydrogen supply method similar to these, in recent years, the hydrogen storage rate is high, and it is possible to reuse by repeatedly storing and supplying hydrogen. A method for supplying hydrogen has attracted attention.

このような芳香族炭化水素の水素化物を用いた脱水素反応による水素の製造方法においては、通常、脱水素反応後の反応混合物には、水素ガスの他に、未反応の芳香族炭化水素の水素化物、脱水素反応により生成した芳香族炭化水素及び副生成物等が含まれているため、脱水素反応後に、反応混合物から気液分離により水素ガスを分離した後、更に水素の純度を上げるために、プレッシャースイング吸着(PSA)や水素分離膜を用いて水素ガスの精製を行う方法が提案されている(特許文献1、特許文献2参照)。   In such a method for producing hydrogen by a dehydrogenation reaction using a hydride of an aromatic hydrocarbon, the reaction mixture after the dehydrogenation reaction usually contains unreacted aromatic hydrocarbons in addition to hydrogen gas. Since hydrides, aromatic hydrocarbons generated by dehydrogenation reaction, and by-products are included, hydrogen gas is separated from the reaction mixture by gas-liquid separation after the dehydrogenation reaction, and the purity of hydrogen is further increased. Therefore, a method for purifying hydrogen gas using pressure swing adsorption (PSA) or a hydrogen separation membrane has been proposed (see Patent Document 1 and Patent Document 2).

更に、脱水素反応後の気相をそのまま水素分離膜に通して高純度水素を得る方法として、メンブレンリアクター方式の脱水素反応器を用いる方法が提案されている。これらは比較的低温で脱水素反応を行うことを目的としており、例えば、窒素ガスを共存させて水素分圧を下げ脱水素反応を起こりやすくする方法(特許文献3参照)、あるいは水素分離膜からの出口側を減圧にして水素回収の効率を上げる方法(非特許文献1参照)等が提案されている。   Furthermore, a method using a membrane reactor type dehydrogenation reactor has been proposed as a method for obtaining high purity hydrogen by directly passing the gas phase after the dehydrogenation reaction through a hydrogen separation membrane. These are intended to perform a dehydrogenation reaction at a relatively low temperature. For example, from a method in which nitrogen gas coexists to lower the hydrogen partial pressure to facilitate the dehydrogenation reaction (see Patent Document 3) or from a hydrogen separation membrane. A method of increasing the efficiency of hydrogen recovery by reducing the pressure on the outlet side (see Non-Patent Document 1) has been proposed.

特開2004−197705号公報JP 2004-197705 A 特開2004−39351号公報JP 2004-39351 A 特開2004−59336号公報JP 2004-59336 A Catal Today, Vol.82, No.1, 119-125 (2003)Catal Today, Vol.82, No.1, 119-125 (2003)

しかしながら、脱水素反応後の反応混合物を気液分離した後に、PSAや水素分離膜等の精製装置を設置する場合は、装置全体を小型化するのに限界がある。その上、PSAは確立された技術であるが、装置が比較的大型になる上、水素回収率が70%程度であるため、水素の使用目的によっては必ずしも純度が十分ではないという問題もある。   However, when a purification apparatus such as PSA or a hydrogen separation membrane is installed after gas-liquid separation of the reaction mixture after the dehydrogenation reaction, there is a limit to downsizing the entire apparatus. In addition, although PSA is an established technique, there are problems that the apparatus becomes relatively large and the hydrogen recovery rate is about 70%, so that the purity is not always sufficient depending on the purpose of use of hydrogen.

また、水素分離膜を用いる精製においては、上記のように、気液分離後に水素分離膜を適用した場合、気液分離のために一旦ガスを冷却しているので、そのまま水素分離膜で処理した場合は、温度が低いために水素の透過率が低く、水素の透過率を上げるために水素分離膜の性能が十分発揮される条件まで再度水素を含むガスを加熱したり、昇圧する必要が生じる。   In the purification using a hydrogen separation membrane, as described above, when the hydrogen separation membrane was applied after gas-liquid separation, the gas was once cooled for gas-liquid separation, so that it was directly treated with the hydrogen separation membrane. In such a case, the hydrogen permeability is low due to the low temperature, and it is necessary to heat or increase the pressure of the hydrogen-containing gas again to a condition where the performance of the hydrogen separation membrane is sufficiently exhibited in order to increase the hydrogen permeability. .

一方、メンブランリアクター方式の方法では、窒素ガスタンクや減圧ポンプなどの付帯設備が必要であり、装置全体を小型化することが難しいという問題があった。   On the other hand, the membrane reactor method requires ancillary facilities such as a nitrogen gas tank and a decompression pump, and there is a problem that it is difficult to downsize the entire apparatus.

そこで、本発明の目的は、上記従来技術の問題を解決し、小型の設備で、高い水素回収率で高純度の水素を得ることが可能な水素の製造方法を提供することにある。   Accordingly, an object of the present invention is to solve the above-described problems of the prior art and provide a method for producing hydrogen capable of obtaining high-purity hydrogen with a high hydrogen recovery rate with a small facility.

本発明者等は、芳香族炭化水素の水素化物の脱水素反応により製造される水素の精製方法において、装置全体の小型化に着目して誠意検討した結果、水素分離膜を脱水素反応器と一体型でなく、脱水素反応後の気相を処理するための装置として、気液分離器の前に設置し、反応温度を上げることにより、PSA、窒素タンク、減圧ポンプなどの付帯設備をなくした簡素な設備を用いて、高純度の水素を製造できることを見出し、さらには、水素分離膜を経た後の高純度水素の一部を脱水素反応器に供給することにより、脱水素反応の副反応を抑制できることを見出し、本発明を完成するに至った。すなわち、本発明は、下記1〜6に示す水素製造方法に関するものである。   The inventors of the present invention conducted a sincere study focusing on downsizing the entire apparatus in a method for purifying hydrogen produced by a dehydrogenation reaction of an aromatic hydrocarbon hydride. As a device for treating the gas phase after the dehydrogenation reaction instead of an integrated type, it is installed in front of the gas-liquid separator and the reaction temperature is increased, thereby eliminating auxiliary equipment such as PSA, nitrogen tank, and vacuum pump. It was found that high-purity hydrogen can be produced using a simple facility, and a part of the high-purity hydrogen after passing through the hydrogen separation membrane is supplied to the dehydrogenation reactor. It has been found that the reaction can be suppressed, and the present invention has been completed. That is, this invention relates to the hydrogen production method shown in the following 1-6.

1.脱水素反応器中での芳香族炭化水素の水素化物の脱水素反応により高純度水素を製造する方法において、
脱水素反応直後の気相を水素分離膜を用いた水素の精製手段により純度99.99%以上の高純度水素とし、更に該高純度水素の一部を前記脱水素反応器へリサイクルし、
前記水素の精製手段における水素分離膜の温度が200℃以上で、該水素分離膜の入出差圧が2kg/cm 2 以上であり、水素回収率が85%以上となる条件で脱水素反応直後の気相を精製処理する
ことを特徴とする水素製造方法。
1. In a method for producing high-purity hydrogen by dehydrogenation of an aromatic hydrocarbon hydride in a dehydrogenation reactor,
The gas phase immediately after the dehydrogenation reaction is converted to high purity hydrogen having a purity of 99.99% or more by means of hydrogen purification using a hydrogen separation membrane, and a part of the high purity hydrogen is recycled to the dehydrogenation reactor.
The hydrogen separation membrane in the hydrogen purification means has a temperature of 200 ° C. or higher, an input / output differential pressure of the hydrogen separation membrane of 2 kg / cm 2 or higher, and a hydrogen recovery rate of 85% or higher. A method for producing hydrogen, comprising purifying a gas phase .

2.前記脱水素反応器が固定床流通式反応器であることを特徴とする上記1に記載の水素製造方法。 2. 2. The method for producing hydrogen according to 1 above, wherein the dehydrogenation reactor is a fixed bed flow reactor.

3.前記水素分離膜がPd合金膜であることを特徴とする上記1又は2に記載の水素製造方法。 3. 3. The method for producing hydrogen according to 1 or 2 above, wherein the hydrogen separation membrane is a Pd alloy membrane.

4.前記水素分離膜がPd−Cu合金膜であることを特徴とする上記3に記載の水素製造方法。 4). 4. The method for producing hydrogen according to 3 above, wherein the hydrogen separation membrane is a Pd—Cu alloy membrane.

5.前記芳香族炭化水素の水素化物の脱水素反応に用いる脱水素反応触媒が、白金、ルテニウム、パラジウム、ロジウム、スズ、レニウム、及びゲルマニウムよりなる群から選択される少なくとも1種の金属を多孔質担体に担持してなり、平均細孔径が40〜130Åの範囲であることを特徴とする上記1から4のいずれかに記載の水素製造方法。 5. The dehydrogenation reaction catalyst used for the dehydrogenation reaction of the hydride of the aromatic hydrocarbon is a porous carrier containing at least one metal selected from the group consisting of platinum, ruthenium, palladium, rhodium, tin, rhenium, and germanium. 5. The method for producing hydrogen according to any one of 1 to 4 above, wherein the average pore diameter is in the range of 40 to 130 mm.

6.前記脱水素反応を、LHSVが0.5〜4、反応温度が100℃〜450℃、反応圧力が常圧〜2MPa、水素/芳香族炭化水素水素化物のモル比が0.01〜10の範囲で、かつ転化率が85%以上となる条件で行うことを特徴とする上記1から5のいずれかに記載の水素製造方法。 6). In the dehydrogenation reaction, the LHSV is 0.5 to 4, the reaction temperature is 100 ° C. to 450 ° C., the reaction pressure is normal pressure to 2 MPa, and the hydrogen / aromatic hydrocarbon hydride molar ratio is 0.01 to 10. And the hydrogen production method as described in any one of 1 to 5 above, which is carried out under the condition that the conversion rate is 85% or more.

本発明の水素分離膜を用いた水素製造方法によれば、付帯設備を少なくした簡素な設備により、芳香族炭化水素水素化物の脱水素反応を利用して、純度99.99%以上の高純度の水素を製造することができ、また、水素分離膜に通した後の高純度水素の一部を脱水素反応器に供給することにより、脱水素反応の副反応を抑制することができ、小型の装置で効率的に高純度水素を製造することができる。   According to the hydrogen production method using the hydrogen separation membrane of the present invention, a high-purity with a purity of 99.99% or more is obtained by using a dehydrogenation reaction of an aromatic hydrocarbon hydride by a simple facility with a small number of incidental facilities. In addition, by supplying a part of the high-purity hydrogen after passing through the hydrogen separation membrane to the dehydrogenation reactor, side reactions of the dehydrogenation reaction can be suppressed, and a small size High-purity hydrogen can be efficiently produced with this apparatus.

以下に、本発明の好適な実施の形態を、図1に基づいて具体的に説明する。しかしながら、本発明は、図1に示す形態に限定されるものではない。   A preferred embodiment of the present invention will be specifically described below with reference to FIG. However, the present invention is not limited to the form shown in FIG.

本発明の水素製造方法においては、原料となる芳香族炭化水素水素化物を貯蔵するタンク1から芳香族炭化水素水素化物をポンプ等でくみ上げ、予熱後、脱水素反応器2に供給して、脱水素反応を行うことが好ましい。ここで、芳香族炭化水素水素化物の予熱は、熱交換器3で行うことが好ましく、その熱源としては、燃料をバーナー4で燃焼して発生させた熱等を用いることができ、また、芳香族炭化水素水素化物の予熱には、図示しないが、水素分離膜5を透過しリサイクル用水素を抜き出した後の高純度水素や、水素分離膜5を透過せずに気液分離器6へ流れていくガス等を熱源として用いることもできる。なお、芳香族炭化水素水素化物の予熱は、上記した熱源の2つ又は3つを組み合わせて行ってもよく、この場合、複数の熱交換器を組み合わせて用いてもよい。   In the hydrogen production method of the present invention, the aromatic hydrocarbon hydride is pumped up from a tank 1 for storing the aromatic hydrocarbon hydride as a raw material with a pump or the like, preheated and then supplied to the dehydrogenation reactor 2 for dehydration. It is preferable to perform an elementary reaction. Here, the preheating of the aromatic hydrocarbon hydride is preferably performed by the heat exchanger 3, and the heat generated by burning the fuel with the burner 4 can be used as the heat source. Although not shown, preheating of the hydrocarbon hydrocarbon hydride flows to the gas-liquid separator 6 without passing through the hydrogen separation membrane 5 or through the hydrogen separation membrane 5 without passing through the hydrogen separation membrane 5 and through the hydrogen separation membrane 5. It is also possible to use a gas or the like as a heat source. In addition, the preheating of the aromatic hydrocarbon hydride may be performed by combining two or three of the heat sources described above, and in this case, a plurality of heat exchangers may be used in combination.

本発明に用いる芳香族炭化水素の水素化物としては、シクロヘキサン類、デカリン類が挙げられるが、脱水素反応後生じる芳香族炭化水素の安全性、取り扱いやすさから、置換基を持つものが好ましく、メチルシクロヘキサン、エチルシクロヘキサン、ジメチルシクロヘキサン、ジエチルシクロヘキサン、トリメチルシクロヘキサンなどのアルキルシクロヘキサン、メチルデカリン、エチルデカリン、ジメチルデカリン、ジエチルデカリンなどのアルキルデカリン、およびこれらの混合物を用いることが好ましい。   Examples of hydrides of aromatic hydrocarbons used in the present invention include cyclohexanes and decalins, but those having substituents are preferred from the viewpoint of safety and ease of handling of aromatic hydrocarbons generated after dehydrogenation reaction, It is preferable to use alkylcyclohexane such as methylcyclohexane, ethylcyclohexane, dimethylcyclohexane, diethylcyclohexane and trimethylcyclohexane, alkyldecalin such as methyldecalin, ethyldecalin, dimethyldecalin and diethyldecalin, and mixtures thereof.

本発明に用いる脱水素反応器2には触媒を充填し、芳香族炭化水素水素化物を供給して脱水素反応を行わせる。ここで、脱水素反応器2への供給方式としては、芳香族炭化水素水素化物を液体で供給する方式、および予熱して気体で供給する方式のいずれをとることも出来るが、特には、固定床式反応器に気体で供給することが好ましい。   The dehydrogenation reactor 2 used in the present invention is filled with a catalyst, and an aromatic hydrocarbon hydride is supplied to cause a dehydrogenation reaction. Here, as a supply method to the dehydrogenation reactor 2, either a method of supplying an aromatic hydrocarbon hydride as a liquid or a method of supplying it as a preheated gas can be used. It is preferable to supply the gas to the bed reactor.

また、脱水素反応器2に充填する脱水素反応触媒としては、白金、ルテニウム、パラジウム、ロジウム、スズ、レニウム、及びゲルマニウムよりなる群から選択される少なくとも1種の金属を多孔質担体に担持したものが好ましく、脱水素反応器2に供給する芳香族炭化水素水素化物の種類により、平均細孔径を適宜選択することが好ましい。すなわち、1環のシクロヘキサン類を用いる場合には、特に40〜80Åの平均細孔径を持つ触媒が好ましく、2環のデカリン類を用いる場合には、特に65〜130Åの平均細孔径を持つ触媒を選択することが好ましく、いずれも好ましい細孔径をもつ細孔の容量が全細孔容量の50%以上であることが好ましい。   In addition, as a dehydrogenation reaction catalyst charged in the dehydrogenation reactor 2, at least one metal selected from the group consisting of platinum, ruthenium, palladium, rhodium, tin, rhenium, and germanium is supported on a porous carrier. The average pore diameter is preferably selected as appropriate depending on the type of the aromatic hydrocarbon hydride supplied to the dehydrogenation reactor 2. That is, a catalyst having an average pore diameter of 40 to 80 mm is particularly preferred when using one-ring cyclohexanes, and a catalyst having an average pore diameter of 65 to 130 mm is particularly preferred when using two-ring decalins. It is preferable to select them, and it is preferable that the volume of pores having a preferable pore diameter is 50% or more of the total pore volume.

脱水素反応触媒の平均細孔径および細孔容量の比率を制御するには、触媒の担体としてAl23あるいはSiO2を用いることが好ましく、それぞれ単独で用いてもよいし、適当な割合で両者を組み合わせて用いてもよい。芳香族炭化水素水素化物が1環と2環の混合物である場合は、その組成により、好ましい平均細孔径をもつ触媒を混合して用いても良い。 In order to control the average pore diameter and pore volume ratio of the dehydrogenation reaction catalyst, it is preferable to use Al 2 O 3 or SiO 2 as the catalyst support, and each may be used alone or at an appropriate ratio. You may use combining both. When the aromatic hydrocarbon hydride is a mixture of one ring and two rings, a catalyst having a preferable average pore diameter may be mixed and used depending on the composition.

また、脱水素反応触媒における金属担持率は、0.001〜10質量%の範囲が好ましく、0.01〜5質量%の範囲が更に好ましい。金属担持率が0.001質量%未満では、十分に脱水素反応を進行させることができず、一方、10質量%を超えて金属を担持しても、金属の増量に見合う効果が得られない。   Further, the metal loading in the dehydrogenation reaction catalyst is preferably in the range of 0.001 to 10% by mass, and more preferably in the range of 0.01 to 5% by mass. If the metal loading is less than 0.001% by mass, the dehydrogenation reaction cannot be sufficiently progressed. On the other hand, even if the metal is loaded exceeding 10% by mass, an effect commensurate with the increase in the amount of metal cannot be obtained. .

本発明で行う脱水素反応は、上記脱水素反応用触媒の存在下、LHSV:0.5〜4、反応温度:100〜450℃、好ましくは250℃〜450℃、反応圧力:常圧〜2MPaで、水素を流通することにより実施される。水素流通量は、水素/芳香族炭化水素水素化物のモル比で0.01〜10の範囲が好ましい。水素を流通させて脱水素反応を行うと、水素を流通させない場合に比べ、副反応を抑えることが出来、水素を効率的に製造できるだけでなく、脱水素反応後回収される油を再度水素化して芳香族炭化水素水素化物として再利用する際に含まれる不純物を少なくすることが出来る。さらに、水素を効率的に製造するには、転化率85%以上になるように反応条件を選択することが好ましい。   The dehydrogenation reaction carried out in the present invention is carried out in the presence of the above-mentioned catalyst for dehydrogenation reaction, LHSV: 0.5-4, reaction temperature: 100-450 ° C, preferably 250 ° C-450 ° C, reaction pressure: normal pressure-2MPa. Then, it is implemented by circulating hydrogen. The hydrogen flow rate is preferably in the range of 0.01 to 10 in terms of hydrogen / aromatic hydrocarbon hydride molar ratio. When hydrogen is circulated and the dehydrogenation reaction is performed, side reactions can be suppressed compared to when hydrogen is not circulated, and not only hydrogen can be produced efficiently, but also the oil recovered after the dehydrogenation reaction is hydrogenated again. Thus, impurities contained in the reuse as an aromatic hydrocarbon hydride can be reduced. Furthermore, in order to produce hydrogen efficiently, it is preferable to select reaction conditions so that the conversion rate is 85% or more.

脱水素反応により生成するガスは、水素を主成分とするが、その他に、未反応の芳香族炭化水素水素化物、脱水素反応により生成する芳香族炭化水素、副反応により生じるメタン、エタン等の低級炭化水素、副反応により生じるアルキルシクロペンタンなどを含むことがある。しかしながら、都市ガス、灯油、ナフサ等の改質反応により水素を製造する場合に反応生成ガス中に含まれる一酸化炭素は、芳香族炭化水素水素化物の脱水素反応生成ガス中には含まれない。   The gas produced by the dehydrogenation reaction is mainly composed of hydrogen, but in addition to this, unreacted aromatic hydrocarbon hydride, aromatic hydrocarbons produced by the dehydrogenation reaction, methane, ethane produced by side reactions, etc. It may contain lower hydrocarbons, alkylcyclopentane produced by side reactions, and the like. However, carbon monoxide contained in the reaction product gas when hydrogen is produced by a reforming reaction of city gas, kerosene, naphtha, etc. is not included in the dehydrogenation reaction product gas of the aromatic hydrocarbon hydride. .

本発明の水素製造方法では、脱水素反応直後の気相を水素分離膜5を用いて、純度99.99%以上の高純度水素とする。本発明の水素製造方法では、脱水素反応直後の気相を、気液分離することなく、水素分離膜5を用いて精製するため、脱水素反応生成ガスの冷却と再加熱を要していた従来技術に比べて、エネルギー効率が高い。   In the hydrogen production method of the present invention, the gas phase immediately after the dehydrogenation reaction is made high purity hydrogen having a purity of 99.99% or more using the hydrogen separation membrane 5. In the hydrogen production method of the present invention, since the gas phase immediately after the dehydrogenation reaction is purified using the hydrogen separation membrane 5 without gas-liquid separation, the dehydrogenation reaction product gas needs to be cooled and reheated. Compared to conventional technology, energy efficiency is high.

本発明に用いる水素分離膜5としては、金属膜、ゼオライト膜、セラミック膜、高分子膜等を例示できるが、脱水素反応器2の温度、圧力、流体に含まれる成分から作動できるものとして、Pd合金膜を用いることが好ましい。該Pd合金膜としては、Pd−Ag膜、Pd−Cu膜等を例示できるが、特には、圧延膜として薄膜化が可能であり、水素脆化の少ないPd−Cu膜が好ましい。該Pd−Cu膜は、たとえば、米国特許第3,439,474号に記載の方法により作製することが出来る。   Examples of the hydrogen separation membrane 5 used in the present invention include metal membranes, zeolite membranes, ceramic membranes, polymer membranes, etc., but can be operated from the components contained in the temperature, pressure, and fluid of the dehydrogenation reactor 2, It is preferable to use a Pd alloy film. Examples of the Pd alloy film include a Pd—Ag film and a Pd—Cu film, and a Pd—Cu film that can be thinned as a rolled film and has little hydrogen embrittlement is particularly preferable. The Pd—Cu film can be produced, for example, by the method described in US Pat. No. 3,439,474.

脱水素反応による生成ガスから、上記の水素分離膜5を通して純度99.99%以上の高純度水素を製造するために水素分離膜5の温度を200℃以上、水素分離膜5の入出差圧を2kg/cm2以上とする。また、効率的に水素を製造するには、水素分離膜を透過して回収される水素が脱水素反応生成ガス中の水素の85%以上となるように、差圧と温度をコントロールすることが好ましい。 In order to produce high-purity hydrogen having a purity of 99.99% or higher from the gas produced by the dehydrogenation reaction through the hydrogen separation membrane 5, the temperature of the hydrogen separation membrane 5 is 200 ° C. or higher, and the input / output differential pressure of the hydrogen separation membrane 5 It is referred to as 2kg / cm 2 or more. In order to produce hydrogen efficiently, the differential pressure and temperature should be controlled so that the hydrogen recovered through the hydrogen separation membrane is 85% or more of the hydrogen in the dehydrogenation reaction product gas. preferable.

本発明により水素分離膜5を通して製造した純度99.99%以上の高純度水素は、燃料電池自動車あるいは定置用燃料電池等の燃料電池向け燃料として用いることができるが、その一部を脱水素反応器2にリサイクルし、脱水素反応に必要な流通水素として用いる。なお、高純度水素は、脱水素反応器2に導入する前に、予め熱交換器3を通して予熱しておくことが好ましい。   High purity hydrogen having a purity of 99.99% or more produced through the hydrogen separation membrane 5 according to the present invention can be used as a fuel for fuel cells such as a fuel cell vehicle or a stationary fuel cell, a part of which is dehydrogenated. It is recycled to the vessel 2 and used as circulating hydrogen necessary for the dehydrogenation reaction. The high-purity hydrogen is preferably preheated through the heat exchanger 3 before being introduced into the dehydrogenation reactor 2.

脱水素反応に必要な流通水素としては、外部から導入される水素、脱水素反応器2から出る反応生成ガスの未精製ガス中に含まれる水素、水素分離膜5を透過しなかったガスに含まれる水素を用いることも出来るが、水素純度が低いと、リサイクルしているうちに水素以外のガスの濃度が高くなってしまい、水素流通下で脱水素反応を行うことの利点が十分に得られないので、水素分離膜5を透過させて得た純度99.99%以上の高純度水素を脱水素反応器2にリサイクルする。   The circulating hydrogen necessary for the dehydrogenation reaction includes hydrogen introduced from the outside, hydrogen contained in the unpurified gas of the reaction product gas exiting from the dehydrogenation reactor 2, and gas not permeated through the hydrogen separation membrane 5. However, if the purity of the hydrogen is low, the concentration of gases other than hydrogen will increase during recycling, and the advantages of performing the dehydrogenation reaction under hydrogen flow will be fully obtained. Therefore, the high-purity hydrogen having a purity of 99.99% or more obtained through the hydrogen separation membrane 5 is recycled to the dehydrogenation reactor 2.

本発明において、脱水素反応生成ガスから水素分離膜5を通らずに回収されたガスは、気液分離器6に導入され、未反応の芳香族炭化水素水素化物、脱水素反応で生成した芳香族炭化水素および副反応により発生したアルキルシクロペンタンなどの液体と、水素およびその他のガスとに分離されることが好ましい。ガス中のその他のガスには、副反応により発生した低級炭化水素、分離しきれなかった液体のベーパーが含まれる。ここで、水素およびその他のガスは、たとえば脱水素反応器2の加熱のために、他の燃料と共にバーナー4で燃焼させるなどして、熱源の原料として用いることができる。一方、未反応の芳香族炭化水素水素化物、脱水素反応で生成した芳香族炭化水素および副反応により発生したアルキルシクロペンタンなどを含む液体は、回収油タンク7に回収され、再度水素化して芳香族炭化水素水素化物として再利用することができる。   In the present invention, the gas recovered from the dehydrogenation reaction product gas without passing through the hydrogen separation membrane 5 is introduced into the gas-liquid separator 6, and the unreacted aromatic hydrocarbon hydride and the fragrance produced by the dehydrogenation reaction. It is preferably separated into a liquid such as a group hydrocarbon and an alkylcyclopentane generated by a side reaction, and hydrogen and other gases. Other gases in the gas include lower hydrocarbons generated by side reactions and liquid vapor that could not be separated. Here, hydrogen and other gas can be used as a raw material of the heat source by, for example, burning the dehydrogenation reactor 2 together with other fuel in the burner 4. On the other hand, the liquid containing unreacted aromatic hydrocarbon hydride, aromatic hydrocarbon generated by the dehydrogenation reaction and alkylcyclopentane generated by the side reaction is recovered in the recovered oil tank 7 and hydrogenated again to produce the aromatic. It can be reused as a group hydrocarbon hydride.

以下、実施例に基づいて本発明をより詳細に説明するが、本発明は、かかる実施例によってなんら制限されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated in detail based on an Example, this invention is not restrict | limited at all by this Example.

(参考例)
脱水素触媒として0.5%Pt/Al23触媒(平均細孔径72.9Å、全細孔容量に占める40〜80Åの細孔容量の割合60%)10cm3を固定床流通式反応装置に充填した。芳香族炭化水素の水素化物としてメチルシクロヘキサン(MCHX)を用い、触媒層温度380℃、反応圧力0.9MPa、液空間速度(LHSV)=2hr-1、水素/オイル比(H2/Oil)=3mol/molの条件下で脱水素反応を行った。反応装置からの出口ガスを気液分離し、生成ガスと回収油の組成をガスクロにより分析したところ、脱水素反応転化率93%、補正計算後(反応装置に導入した純水素ガスの量を差し引いた)発生ガス中の水素99.983%、メタン0.01%であった。
(Reference example)
As a dehydrogenation catalyst, 0.5% Pt / Al 2 O 3 catalyst (average pore diameter 72.9 kg, ratio of pore volume of 40 to 80 kg in the total pore volume 60 cm) 10 cm 3 was fixed bed flow reactor Filled. Methylcyclohexane (MCHX) is used as a hydride of aromatic hydrocarbon, catalyst layer temperature is 380 ° C., reaction pressure is 0.9 MPa, liquid space velocity (LHSV) = 2 hr −1 , hydrogen / oil ratio (H 2 / Oil) = The dehydrogenation reaction was performed under the condition of 3 mol / mol. The outlet gas from the reactor was gas-liquid separated, and the composition of the product gas and recovered oil was analyzed by gas chromatography. After the dehydrogenation reaction conversion rate of 93%, after correction calculation (the amount of pure hydrogen gas introduced into the reactor was subtracted) E) Hydrogen in the evolved gas was 99.983% and methane was 0.01%.

(実施例1)
参考例と同様の触媒25cm3を固定床流通式反応装置に充填し、触媒層温度350℃、反応器入口ゲージ圧力0.75MPa、液空間速度(LHSV)=1hr-1、水素/オイル比(H2/Oil)=1.35mol/molの条件下でメチルシクロヘキサン(MCHX)を脱水素反応したところ、反応装置からの出口ガスは水素:トルエン(TOL):MCHX:TOL及びMCHX以外の炭化水素=80.06:17.94:1.77:0.23(vol%)であり、転化率は91%であった。このガスを300℃の膜厚15μmのPd−40Cu膜に、透過膜入口ゲージ圧力0.75MPa、透過膜出口ゲージ圧力0.0MPaで通して選択透過させたところ、水素純度は99.999%以上、水素回収率は97%であった。
Example 1
25 cm 3 of the same catalyst as in the reference example was charged into a fixed bed flow type reactor, the catalyst bed temperature was 350 ° C., the reactor inlet gauge pressure was 0.75 MPa, the liquid space velocity (LHSV) = 1 hr −1 , the hydrogen / oil ratio ( When methylcyclohexane (MCHX) was dehydrogenated under the condition of H 2 /Oil)=1.35 mol / mol, the outlet gas from the reactor was hydrogen: toluene (TOL): MCHX: TOL and hydrocarbons other than MCHX = 80.06: 17.94: 1.77: 0.23 (vol%), and the conversion rate was 91%. When this gas was selectively permeated through a Pd-40Cu film having a film thickness of 15 μm at 300 ° C. at a permeable membrane inlet gauge pressure of 0.75 MPa and a permeable membrane outlet gauge pressure of 0.0 MPa, the hydrogen purity was 99.999% or more. The hydrogen recovery rate was 97%.

(実施例2)
参考例と同様の触媒25cm3を固定床流通式反応装置に充填し、触媒層温度316℃、反応器入口ゲージ圧力0.30MPa、液空間速度(LHSV)=1hr-1、水素/オイル比(H2/Oil)=1.35mol/molの条件下でメチルシクロヘキサン(MCHX)を脱水素反応したところ、反応装置からの出口ガスは水素:トルエン(TOL):MCHX:TOL及びMCHX以外の炭化水素=80.54:17.02:2.42:0.02(vol%)であり、転化率は88%であった。このガスを300℃の膜厚15μmのPd−40Cu膜に、透過膜入口ゲージ圧力0.3MPa、透過膜出口ゲージ圧力0.0MPaで通して選択透過させたところ、水素純度は99.999%以上、水素回収率は89%であった。
(Example 2)
25 cm 3 of the same catalyst as in the reference example was charged into a fixed bed flow type reactor, the catalyst layer temperature was 316 ° C., the reactor inlet gauge pressure was 0.30 MPa, the liquid space velocity (LHSV) = 1 hr −1 , the hydrogen / oil ratio ( When methylcyclohexane (MCHX) was dehydrogenated under the condition of H 2 /Oil)=1.35 mol / mol, the outlet gas from the reactor was hydrogen: toluene (TOL): MCHX: TOL and hydrocarbons other than MCHX = 80.54: 17.02: 2.42: 0.02 (vol%), and the conversion rate was 88%. When this gas was selectively permeated through a Pd-40Cu film having a film thickness of 15 μm at 300 ° C. with a permeable membrane inlet gauge pressure of 0.3 MPa and a permeable membrane outlet gauge pressure of 0.0 MPa, the hydrogen purity was 99.999% or more. The hydrogen recovery rate was 89%.

(比較例1)
参考例と同様の触媒4cm3を固定床流通式反応装置に充填し、触媒層温度370℃、反応圧力0.9MPa、液空間速度(LHSV)=2hr-1、窒素/オイル比(N2/Oil)=0.007mol/molの条件下でメチルシクロヘキサン(MCHX)を脱水素反応した。反応装置からの出口ガスを気液分離し、生成ガスと回収油の組成をガスクロにより分析したところ、脱水素反応転化率93%、補正計算後(反応装置に導入した純水素ガスの量を差し引いた)発生ガス中の水素99.90%、メタン0.09%であった。水素流通下の参考例1に比べると発生ガス中の水素純度が低く、副反応にともなうメタンの含有量が多くなった。
(Comparative Example 1)
4 cm 3 of the same catalyst as in the reference example was packed in a fixed bed flow reactor, the catalyst layer temperature was 370 ° C., the reaction pressure was 0.9 MPa, the liquid space velocity (LHSV) = 2 hr −1 , the nitrogen / oil ratio (N 2 / Oil) = methylcyclohexane (MCHX) was dehydrogenated under the condition of 0.007 mol / mol. The outlet gas from the reactor was gas-liquid separated, and the composition of the product gas and recovered oil was analyzed by gas chromatography. After the dehydrogenation reaction conversion rate of 93%, after correction calculation (the amount of pure hydrogen gas introduced into the reactor was subtracted) E) 99.90% of hydrogen in the generated gas and 0.09% of methane. Compared to Reference Example 1 under hydrogen flow, the hydrogen purity in the generated gas was low, and the content of methane accompanying the side reaction increased.

本発明の水素製造方法の一態様を示す模式図である。It is a schematic diagram which shows one aspect | mode of the hydrogen manufacturing method of this invention.

符号の説明Explanation of symbols

1 芳香族炭化水素水素化物タンク
2 脱水素反応器
3 熱交換器
4 バーナー
5 水素分離膜
6 気液分離器
7 回収油タンク
DESCRIPTION OF SYMBOLS 1 Aromatic hydrocarbon hydride tank 2 Dehydrogenation reactor 3 Heat exchanger 4 Burner 5 Hydrogen separation membrane 6 Gas-liquid separator 7 Recovery oil tank

Claims (6)

脱水素反応器中での芳香族炭化水素の水素化物の脱水素反応により高純度水素を製造する方法において、
脱水素反応直後の気相を水素分離膜を用いた水素の精製手段により純度99.99%以上の高純度水素とし、更に該高純度水素の一部を前記脱水素反応器へリサイクルし、
前記水素の精製手段における水素分離膜の温度が200℃以上で、該水素分離膜の入出差圧が2kg/cm 2 以上であり、水素回収率が85%以上となる条件で脱水素反応直後の気相を精製処理する
ことを特徴とする水素製造方法。
In a method for producing high-purity hydrogen by dehydrogenation of an aromatic hydrocarbon hydride in a dehydrogenation reactor,
The gas phase immediately after the dehydrogenation reaction is converted to high purity hydrogen having a purity of 99.99% or more by means of hydrogen purification using a hydrogen separation membrane, and a part of the high purity hydrogen is recycled to the dehydrogenation reactor.
The hydrogen separation membrane in the hydrogen purification means has a temperature of 200 ° C. or higher, an input / output differential pressure of the hydrogen separation membrane of 2 kg / cm 2 or higher, and a hydrogen recovery rate of 85% or higher. A method for producing hydrogen, comprising purifying a gas phase .
前記脱水素反応器が固定床流通式反応器であることを特徴とする請求項1に記載の水素製造方法。   The hydrogen production method according to claim 1, wherein the dehydrogenation reactor is a fixed bed flow reactor. 前記水素分離膜がPd合金膜であることを特徴とする請求項1又は2に記載の水素製造方法。   The hydrogen production method according to claim 1, wherein the hydrogen separation membrane is a Pd alloy membrane. 前記水素分離膜がPd−Cu合金膜であることを特徴とする請求項3に記載の水素製造方法。   The hydrogen production method according to claim 3, wherein the hydrogen separation membrane is a Pd—Cu alloy membrane. 前記芳香族炭化水素の水素化物の脱水素反応に用いる脱水素反応触媒が、白金、ルテニウム、パラジウム、ロジウム、スズ、レニウム、及びゲルマニウムよりなる群から選択される少なくとも1種の金属を多孔質担体に担持してなり、平均細孔径が40〜130Åの範囲であることを特徴とする請求項1から4のいずれかに記載の水素製造方法。   The dehydrogenation reaction catalyst used for the dehydrogenation reaction of the hydride of the aromatic hydrocarbon is a porous carrier containing at least one metal selected from the group consisting of platinum, ruthenium, palladium, rhodium, tin, rhenium, and germanium. The method for producing hydrogen according to any one of claims 1 to 4, wherein the average pore diameter is in the range of 40 to 130 mm. 前記脱水素反応を、LHSVが0.5〜4、反応温度が100℃〜450℃、反応圧力が常圧〜2MPa、水素/芳香族炭化水素水素化物のモル比が0.01〜10の範囲で、かつ転化率が85%以上となる条件で行うことを特徴とする請求項1から5のいずれかに記載の水素製造方法。 In the dehydrogenation reaction, the LHSV is 0.5 to 4, the reaction temperature is 100 ° C. to 450 ° C., the reaction pressure is normal pressure to 2 MPa, and the hydrogen / aromatic hydrocarbon hydride molar ratio is 0.01 to 10. And the hydrogen production method according to any one of claims 1 to 5, wherein the conversion is performed under a condition that the conversion rate is 85% or more.
JP2005049017A 2005-02-24 2005-02-24 Hydrogen production method Active JP4801359B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005049017A JP4801359B2 (en) 2005-02-24 2005-02-24 Hydrogen production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005049017A JP4801359B2 (en) 2005-02-24 2005-02-24 Hydrogen production method

Publications (2)

Publication Number Publication Date
JP2006232607A JP2006232607A (en) 2006-09-07
JP4801359B2 true JP4801359B2 (en) 2011-10-26

Family

ID=37040670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005049017A Active JP4801359B2 (en) 2005-02-24 2005-02-24 Hydrogen production method

Country Status (1)

Country Link
JP (1) JP4801359B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5215057B2 (en) * 2008-06-27 2013-06-19 Jx日鉱日石エネルギー株式会社 Hydrogen production method
JP5215058B2 (en) * 2008-06-27 2013-06-19 Jx日鉱日石エネルギー株式会社 Hydrogen production equipment
JP5375293B2 (en) 2009-04-09 2013-12-25 トヨタ自動車株式会社 Carbon nanotube manufacturing method and carbon nanotube manufacturing apparatus
US8961891B2 (en) * 2010-08-20 2015-02-24 Lockheed Martin Corporation Catalytic alcohol dehydrogenation heat sink for mobile application
JP5864393B2 (en) 2012-10-03 2016-02-17 Jx日鉱日石エネルギー株式会社 Hydrogen supply system
JP2016000679A (en) * 2014-06-12 2016-01-07 Jx日鉱日石エネルギー株式会社 Hydrogen production apparatus and hydrogen production method
JP6376999B2 (en) * 2015-03-18 2018-08-22 富士電機株式会社 Hydrogen production apparatus and hydrogen production method
JP6792550B2 (en) * 2015-03-27 2020-11-25 Eneos株式会社 Dehydrogenation catalyst for hydrocarbons, hydrogen production system and hydrogen production method
JP2021155273A (en) 2020-03-27 2021-10-07 Eneos株式会社 Hydrogen supply system
JP2021155313A (en) 2020-03-30 2021-10-07 Eneos株式会社 Hydrogen supply system
JP7479897B2 (en) 2020-03-30 2024-05-09 Eneos株式会社 Management system, transportation method, and management device
JP2021157750A (en) 2020-03-30 2021-10-07 Eneos株式会社 Operation management system
JP7544499B2 (en) 2020-03-31 2024-09-03 Eneos株式会社 Hydrogen supply system and hydrogen production method
JP2022088922A (en) 2020-12-03 2022-06-15 Eneos株式会社 Hydrogen supply system

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59141404A (en) * 1983-02-02 1984-08-14 Mitsubishi Heavy Ind Ltd Production of liquid hydrogen
JPS63295402A (en) * 1987-05-27 1988-12-01 Ise Kagaku Kogyo Kk Production of hydrogen
JP2572612B2 (en) * 1987-11-30 1997-01-16 日本パイオニクス株式会社 Hydrogen purification method
JP2002226867A (en) * 2001-01-31 2002-08-14 Mitsubishi Kakoki Kaisha Ltd Apparatus for producing hydrogen
JP2004057858A (en) * 2002-07-25 2004-02-26 Kansai Electric Power Co Inc:The Catalyst for manufacturing hydrogen gas and manufacturing method of hydrogen gas
JP2005035842A (en) * 2003-07-15 2005-02-10 Nippon Oil Corp Hydrogen production system
JP5036969B2 (en) * 2005-02-08 2012-09-26 Jx日鉱日石エネルギー株式会社 Energy station

Also Published As

Publication number Publication date
JP2006232607A (en) 2006-09-07

Similar Documents

Publication Publication Date Title
JP4801359B2 (en) Hydrogen production method
JP5215057B2 (en) Hydrogen production method
JP4684069B2 (en) Production method of high purity hydrogen
US20160214858A1 (en) Multi-zone dehydrogenation reactor and ballasting system for storage and delivery of hydrogen
JP5039408B2 (en) Hydrogen production and carbon dioxide recovery method and apparatus
JP5039407B2 (en) Hydrogen production and carbon dioxide recovery method and apparatus
JP5288840B2 (en) Hydrogen production system
JP5036969B2 (en) Energy station
JP2011195387A (en) Membrane separation type reactor, membrane separation type hydrogen production apparatus and method for producing hydrogen
JP2008273802A (en) Method of hydrogen production and carbon dioxide recovery
JP4835967B2 (en) Hydrogen production system
JP5102932B2 (en) High purity hydrogen production method
JP5243859B2 (en) Hydrogen production apparatus and hydrogen production method
JP2007076982A (en) Hydrogen production system and power generation system
JP2008290927A (en) Method and apparatus for refining hydrogen by using organic hydride
JP2009263183A (en) Membrane separation type hydrogen manufacturing apparatus and manufacturing method of hydrogen using it
JP5357465B2 (en) High purity hydrogen production method
JP5215058B2 (en) Hydrogen production equipment
JP2002321904A (en) Method for producing hydrogen
JP2021155272A (en) Hydrogen supply system
US20230135291A1 (en) Hydrogen supply system
JP2002166122A (en) Method for refining and storing hydrogen
JP2006143507A (en) Method for selectively recovering hydrogen from hydrogen-containing mixed gas
JP2017043552A (en) Manufacturing method of hydrogen carrier and manufacturing system of hydrogen carrier
JP2021155312A (en) Hydrogen supply system

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060609

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100817

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101008

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110802

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110805

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4801359

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250