JP4684069B2 - Production method of high purity hydrogen - Google Patents

Production method of high purity hydrogen Download PDF

Info

Publication number
JP4684069B2
JP4684069B2 JP2005287602A JP2005287602A JP4684069B2 JP 4684069 B2 JP4684069 B2 JP 4684069B2 JP 2005287602 A JP2005287602 A JP 2005287602A JP 2005287602 A JP2005287602 A JP 2005287602A JP 4684069 B2 JP4684069 B2 JP 4684069B2
Authority
JP
Japan
Prior art keywords
hydrogen
temperature
separation membrane
hydrogen separation
purity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005287602A
Other languages
Japanese (ja)
Other versions
JP2007099528A (en
Inventor
博幸 中村
エドランド ディヴィッド
ジジュン シュ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
JX Nippon Oil and Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Oil and Energy Corp filed Critical JX Nippon Oil and Energy Corp
Priority to JP2005287602A priority Critical patent/JP4684069B2/en
Publication of JP2007099528A publication Critical patent/JP2007099528A/en
Application granted granted Critical
Publication of JP4684069B2 publication Critical patent/JP4684069B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、芳香族炭化水素の水素化物を脱水素反応し、該脱水素反応で得られる生成ガスを水素分離膜を用いて精製して高純度水素を製造する方法に関し、特に、小型の設備で、長時間にわたり高い水素回収率で高純度の水素を得ることが可能な高純度水素の製造方法に関するものである。   The present invention relates to a method for producing high-purity hydrogen by dehydrogenating an aromatic hydrocarbon hydride and purifying a product gas obtained by the dehydrogenation reaction using a hydrogen separation membrane. Thus, the present invention relates to a method for producing high-purity hydrogen capable of obtaining high-purity hydrogen with a high hydrogen recovery rate over a long period of time.

近年、環境問題やエネルギー問題から、新しいエネルギー源として水素が有望視されており、例えば、水素を直接燃料として用いる水素自動車、あるいは水素を用いる燃料電池などの開発が進められている。該燃料電池は、小型でも高い発電効率を有しており、加えて騒音や振動も発生せず、さらには廃熱を利用することができるなどの優れた利点を有している。   In recent years, hydrogen has been considered promising as a new energy source due to environmental problems and energy problems. For example, development of hydrogen automobiles using hydrogen directly as fuel or fuel cells using hydrogen has been promoted. Although the fuel cell is small, it has high power generation efficiency. In addition, the fuel cell does not generate noise and vibration, and has excellent advantages such as the ability to use waste heat.

一方、水素をエネルギー源として利用するに当っては、燃料となる水素を安全にかつ安定的に供給することが欠かせない。これに対し、圧縮水素や液体水素として直接供給する方法、水素吸蔵合金やカーボンナノチューブなどの水素吸蔵材料を利用して水素を貯蔵及び供給する方法、メタノールや炭化水素を水蒸気改質して水素を供給する方法など、種々の方法が提案されている。   On the other hand, in using hydrogen as an energy source, it is essential to supply hydrogen as a fuel safely and stably. In contrast, a method of supplying hydrogen directly as compressed hydrogen or liquid hydrogen, a method of storing and supplying hydrogen using hydrogen storage materials such as hydrogen storage alloys and carbon nanotubes, and steam reforming methanol and hydrocarbons to generate hydrogen. Various methods such as a supplying method have been proposed.

また、これらに並ぶ水素の供給方法として、近年、水素吸蔵率が高く、水素吸蔵と水素供給を繰返し行い再利用が可能であるとの理由から、芳香族炭化水素の水素化物の脱水素反応により水素を供給する方法が注目されている。   As a hydrogen supply method similar to these, in recent years, the hydrogen storage rate is high, and it is possible to reuse by repeatedly storing and supplying hydrogen. A method for supplying hydrogen has attracted attention.

このような芳香族炭化水素の水素化物を用いた脱水素反応による水素の製造方法においては、通常、脱水素反応後の反応混合物には、水素ガスの他に、未反応の芳香族炭化水素の水素化物、脱水素反応により生成した芳香族炭化水素及び副生成物等が含まれているため、脱水素反応後に、反応混合物から気液分離により水素ガスを分離した後、更に水素の純度を上げるために、プレッシャースイング吸着(PSA)や水素分離膜を用いて水素ガスの精製を行う方法が提案されている(特許文献1、特許文献2参照)。   In such a method for producing hydrogen by a dehydrogenation reaction using a hydride of an aromatic hydrocarbon, the reaction mixture after the dehydrogenation reaction usually contains unreacted aromatic hydrocarbons in addition to hydrogen gas. Since hydrides, aromatic hydrocarbons generated by dehydrogenation reaction, and by-products are included, hydrogen gas is separated from the reaction mixture by gas-liquid separation after the dehydrogenation reaction, and the purity of hydrogen is further increased. Therefore, a method for purifying hydrogen gas using pressure swing adsorption (PSA) or a hydrogen separation membrane has been proposed (see Patent Document 1 and Patent Document 2).

更に、脱水素反応後の気相をそのまま水素分離膜に通して高純度水素を得る方法として、メンブレンリアクター方式の脱水素反応器を用いる方法が提案されている。これらは比較的低温で脱水素反応を行うことを目的としており、例えば、窒素ガスを共存させて水素分圧を下げ脱水素反応を起こりやすくする方法(特許文献3参照)、あるいは水素分離膜からの出口側を減圧にして水素回収の効率を上げる方法(非特許文献1参照)等が提案されている。   Furthermore, a method using a membrane reactor type dehydrogenation reactor has been proposed as a method for obtaining high purity hydrogen by directly passing the gas phase after the dehydrogenation reaction through a hydrogen separation membrane. These are intended to perform a dehydrogenation reaction at a relatively low temperature. For example, from a method in which nitrogen gas coexists to lower the hydrogen partial pressure to facilitate the dehydrogenation reaction (see Patent Document 3) or from a hydrogen separation membrane. A method of increasing the efficiency of hydrogen recovery by reducing the pressure on the outlet side (see Non-Patent Document 1) has been proposed.

また更に、本発明者らも、水素分離膜を備えた反応装置を用いて、PSAによる既存技術(水素回収率70−85%)と比較して高い水素回収率で高純度の水素を製造することに成功しており、具体的には、反応生成物の熱及び反応圧力を利用して効率よく且つ95%以上の高い水素回収率で99.999%以上の高純度な水素の製造に成功している(特願2005−49017号参照)。   Furthermore, the present inventors also produce high-purity hydrogen with a high hydrogen recovery rate compared with the existing technology (hydrogen recovery rate 70-85%) by PSA using a reactor equipped with a hydrogen separation membrane. Specifically, it succeeded in producing high-purity hydrogen of 99.999% or more efficiently by utilizing the heat and reaction pressure of the reaction product and with a high hydrogen recovery rate of 95% or more. (See Japanese Patent Application No. 2005-49017).

特開2004−197705号公報JP 2004-197705 A 特開2004−39351号公報JP 2004-39351 A 特開2004−59336号公報JP 2004-59336 A Catal Today, Vol.82, No.1, 119-125 (2003)Catal Today, Vol.82, No.1, 119-125 (2003)

ところで、高純度水素の製造におけるエネルギー効率を高めるには、水素分離膜をなるべく低い温度で運転する事が好ましい。また、水素分離膜に使用される合金においては、使用温度が高いほど再結晶化による粒子成長が発生しやすく、膜強度の低下や水素透過性能の劣化などが起こるため、できるだけ低い温度で水素分離膜の運転を行う必要がある。しかしながら、長期間にわたり低い温度で水素分離膜の運転を行うと、水素分離膜における水素の回収率が運転中に徐々に低下したり、単純な運転停止方法では、次回起動した際の水素回収率が低下したりする問題がある。   By the way, in order to increase energy efficiency in the production of high purity hydrogen, it is preferable to operate the hydrogen separation membrane at a temperature as low as possible. Also, in alloys used for hydrogen separation membranes, the higher the operating temperature, the more likely the particle growth due to recrystallization occurs, and the membrane strength decreases and the hydrogen permeation performance deteriorates. It is necessary to operate the membrane. However, if the hydrogen separation membrane is operated at a low temperature for a long period of time, the hydrogen recovery rate in the hydrogen separation membrane gradually decreases during operation, or the hydrogen recovery rate at the next start-up can be reduced with a simple shutdown method. There is a problem that decreases.

そこで、本発明の目的は、エネルギー効率が高く、長時間にわたり高い水素回収率で高純度の水素を得ることが可能な高純度水素の新規製造方法を提供することにある。   Accordingly, an object of the present invention is to provide a novel method for producing high-purity hydrogen, which is high in energy efficiency and capable of obtaining high-purity hydrogen with a high hydrogen recovery rate over a long period of time.

本発明者らは、芳香族炭化水素の水素化物の脱水素反応により製造される水素を主成分とする生成ガスの精製方法において、特に装置の運転条件に関して誠意検討を行った結果、水素分離膜の温度を350℃未満の低温度(第一の温度)で作動させる場合は、運転中あるいは運転終了時に当該膜を300℃以上であって且つ上記第一の温度より高い第二の温度に加熱処理することにより、運転中の加熱処理後あるいは次回起動時に再び高い回収率で高純度水素を製造できることを見出した。特に、水素分離膜の温度が150℃〜200℃の場合は、短時間で水素分離膜の水素透過性能が低下して水素回収率が低下するが、本発明の方法によれば、高い水素回収率を維持することができ、効率の良い運転が可能となる。さらには、当該膜に対し、運転終了時に水素雰囲気下において300℃以上であって且つ上記第一の温度よりも高い第二の温度で熱処理を加えることで、特段の後処理無しに、高い水素回収率で運転を継続できることを見出し、本発明を完成するに至った。すなわち、本発明は、下記1〜7に示す高純度水素の製造方法に関するものである。   The inventors of the present invention conducted a sincere study on the operating conditions of the apparatus in the method for purifying a product gas mainly composed of hydrogen produced by the dehydrogenation reaction of an aromatic hydrocarbon hydride. When operating at a low temperature (first temperature) of less than 350 ° C., the film is heated to a second temperature that is 300 ° C. or higher and higher than the first temperature during operation or at the end of operation. It has been found that high-purity hydrogen can be produced at a high recovery rate after heat treatment during operation or at the next start-up. In particular, when the temperature of the hydrogen separation membrane is 150 ° C. to 200 ° C., the hydrogen permeation performance of the hydrogen separation membrane decreases and the hydrogen recovery rate decreases in a short time, but according to the method of the present invention, high hydrogen recovery is achieved. The rate can be maintained, and efficient operation becomes possible. Furthermore, the film is subjected to a heat treatment at a second temperature that is 300 ° C. or higher and higher than the first temperature in a hydrogen atmosphere at the end of the operation, so that a high hydrogen content can be obtained without special post-treatment. It has been found that the operation can be continued with a recovery rate, and the present invention has been completed. That is, this invention relates to the manufacturing method of the high purity hydrogen shown to following 1-7.

1.脱水素反応器中で芳香族炭化水素の水素化物の脱水素反応を行い、該脱水素反応により生成したガスをPd−Cuを主成分とする水素分離膜を用いて精製する高純度水素の製造方法において、
前記水素分離膜を150℃以上350℃未満の第一の温度で運転し、
前記水素分離膜の運転停止に際して、前記水素分離膜を300℃以上であって且つ前記第一の温度より高い第二の温度に加温処理した後に前記水素分離膜の運転を停止することを特徴とする高純度水素の製造方法。
1. Production of high-purity hydrogen in which dehydrogenation of aromatic hydrocarbon hydride is performed in a dehydrogenation reactor, and the gas produced by the dehydrogenation reaction is purified using a hydrogen separation membrane containing Pd-Cu as a main component In the method
Operating the hydrogen separation membrane at a first temperature of 150 ° C. or higher and lower than 350 ° C .;
When stopping the operation of the hydrogen separation membrane, the hydrogen separation membrane is heated to a second temperature higher than 300 ° C. and higher than the first temperature, and then the operation of the hydrogen separation membrane is stopped. A method for producing high purity hydrogen.

2.前記第一の温度が150℃以上300℃未満であることを特徴とする上記1に記載の高純度水素の製造方法。 2. Said 1st temperature is 150 degreeC or more and less than 300 degreeC, The manufacturing method of the high purity hydrogen of said 1 characterized by the above-mentioned.

3.前記第二の温度が300℃以上450℃以下であることを特徴とする上記1に記載の高純度水素の製造方法。 3. Said 2nd temperature is 300 degreeC or more and 450 degrees C or less, The manufacturing method of the high purity hydrogen of said 1 characterized by the above-mentioned.

4.脱水素反応器中で芳香族炭化水素の水素化物の脱水素反応を行い、該脱水素反応により生成したガスをPd−Cuを主成分とする水素分離膜を用いて精製する高純度水素の製造方法において、
前記水素分離膜を150℃以上350℃未満の第一の温度で運転し、
前記水素分離膜における水素回収率が低下した際に前記水素分離膜の温度を300℃以上であって且つ前記第一の温度より高い第二の温度に昇温し、その後、該水素分離膜の温度を150℃以上350℃未満の第一の温度に降温して運転を継続することを特徴とする高純度水素の製造方法。
4). Production of high-purity hydrogen in which dehydrogenation of aromatic hydrocarbon hydride is performed in a dehydrogenation reactor, and the gas produced by the dehydrogenation reaction is purified using a hydrogen separation membrane containing Pd-Cu as a main component In the method
Operating the hydrogen separation membrane at a first temperature of 150 ° C. or higher and lower than 350 ° C .;
When the hydrogen recovery rate in the hydrogen separation membrane decreases, the temperature of the hydrogen separation membrane is raised to a second temperature that is 300 ° C. or higher and higher than the first temperature, and then the hydrogen separation membrane A method for producing high-purity hydrogen, wherein the temperature is lowered to a first temperature of 150 ° C. or higher and lower than 350 ° C. and the operation is continued.

5.前記水素分離膜における水素回収率が85%未満に低下した際に前記水素分離膜の温度を300℃以上であって且つ前記第一の温度より高い第二の温度に昇温することを特徴とする上記4に記載の高純度水素の製造方法。 5. When the hydrogen recovery rate in the hydrogen separation membrane decreases to less than 85%, the temperature of the hydrogen separation membrane is raised to a second temperature that is 300 ° C. or higher and higher than the first temperature. 5. The method for producing high-purity hydrogen as described in 4 above.

6.前記第一の温度が150℃以上300℃未満であることを特徴とする上記4に記載の高純度水素の製造方法。 6). 5. The method for producing high-purity hydrogen according to 4 above, wherein the first temperature is 150 ° C. or higher and lower than 300 ° C.

7.前記第二の温度が300℃以上450℃以下であることを特徴とする上記4に記載の高純度水素の製造方法。 7). 5. The method for producing high-purity hydrogen according to 4 above, wherein the second temperature is 300 ° C. or higher and 450 ° C. or lower.

本発明の水素分離膜を用いた高純度水素の製造方法によれば、付帯設備を少なくした簡素な設備により、芳香族炭化水素の水素化物の脱水素反応を利用して、150℃以上350℃未満の低い水素分離膜温度(第一の温度)で純度99.99%以上の高純度水素を85%以上の高い水素回収率を維持しつつ連続的あるいは断続的に製造することができる。また、運転を停止する際に水素雰囲気下300℃以上であって且つ上記第一の温度よりも高い第二の温度で水素分離膜を熱処理する事により、次回起動する際に水素回収率が低下することなく、純度99.99%以上の水素を安定して継続的に製造することができる。   According to the method for producing high-purity hydrogen using the hydrogen separation membrane of the present invention, 150 ° C. or higher and 350 ° C. is obtained by utilizing the dehydrogenation reaction of the hydride of aromatic hydrocarbons with a simple facility with fewer incidental facilities. High purity hydrogen having a purity of 99.99% or more can be produced continuously or intermittently while maintaining a high hydrogen recovery rate of 85% or more at a low hydrogen separation membrane temperature (first temperature) of less than 1%. In addition, when the operation is stopped, the hydrogen recovery rate is reduced at the next start-up by heat-treating the hydrogen separation membrane at a second temperature higher than 300 ° C. and higher than the first temperature in a hydrogen atmosphere. Therefore, hydrogen having a purity of 99.99% or more can be produced stably and continuously.

以下に、本発明の好適な実施の形態を、図1に基づいて具体的に説明する。しかしながら、本発明は、図1に示す形態に限定されるものではない。   A preferred embodiment of the present invention will be specifically described below with reference to FIG. However, the present invention is not limited to the form shown in FIG.

本発明の高純度水素の製造方法においては、原料となる芳香族炭化水素水素化物を貯蔵するタンク1から芳香族炭化水素水素化物をポンプ等でくみ上げ、予熱後、脱水素反応器2に供給して、脱水素反応を行うことが好ましい。ここで、芳香族炭化水素水素化物の予熱は、熱交換器3で行うことが好ましく、その熱源としては、燃料をバーナー4で燃焼して発生させた熱等を用いることができる。また、芳香族炭化水素水素化物の予熱には、図示しないが、水素分離膜5を透過しリサイクル用水素を抜き出した後の高純度水素や、水素分離膜5を透過せずに気液分離器6へ流れていくガス等を熱源として用いることもできる。なお、芳香族炭化水素水素化物の予熱は、上記した熱源の2つ又は3つを組み合わせて行ってもよく、この場合、複数の熱交換器を組み合わせて用いてもよい。   In the method for producing high-purity hydrogen according to the present invention, the aromatic hydrocarbon hydride is pumped up from a tank 1 for storing the aromatic hydrocarbon hydride as a raw material by a pump or the like, and is supplied to the dehydrogenation reactor 2 after preheating. Thus, it is preferable to perform a dehydrogenation reaction. Here, the preheating of the aromatic hydrocarbon hydride is preferably performed by the heat exchanger 3, and the heat generated by burning the fuel with the burner 4 can be used as the heat source. In addition, although not shown in the figure, pre-heating of the aromatic hydrocarbon hydride is high-purity hydrogen after permeating the hydrogen separation membrane 5 and extracting the hydrogen for recycling, or a gas-liquid separator without permeating the hydrogen separation membrane 5 A gas flowing to 6 can also be used as a heat source. In addition, the preheating of the aromatic hydrocarbon hydride may be performed by combining two or three of the heat sources described above, and in this case, a plurality of heat exchangers may be used in combination.

また、水素製造設備の起動時に熱交換器3で十分な熱交換ができない場合は、バーナー4等の出力を調整して、脱水素反応器2及び水素分離膜5の温度をそれぞれ脱水素反応及び膜分離に十分な温度にすることにより、起動時間を短縮できる。起動の際には、触媒寿命を長くするために、図示しないが、別途畜圧器などに補充した水素をリサイクル用水素の流量が十分になるまで、脱水素反応器2に供給する事が望ましい。なお、運転を開始してリサイクル用水素の流量が十分になってからは、水素分離膜5出口の水素を脱水素反応器2入口に循環させても構わない。   If sufficient heat exchange cannot be performed by the heat exchanger 3 at the time of starting the hydrogen production facility, the output of the burner 4 or the like is adjusted, and the temperatures of the dehydrogenation reactor 2 and the hydrogen separation membrane 5 are set to dehydrogenation reaction and By making the temperature sufficient for membrane separation, the start-up time can be shortened. At the time of startup, in order to prolong the catalyst life, it is desirable to supply hydrogen supplemented separately to the animal pressure device or the like to the dehydrogenation reactor 2 until the flow rate of hydrogen for recycling becomes sufficient, although not shown. Note that after the operation is started and the flow rate of hydrogen for recycling becomes sufficient, the hydrogen at the outlet of the hydrogen separation membrane 5 may be circulated to the inlet of the dehydrogenation reactor 2.

本発明に用いる芳香族炭化水素の水素化物としては、シクロヘキサン類、デカリン類が挙げられるが、脱水素反応後生じる芳香族炭化水素の安全性、取り扱いやすさから、置換基を持つものが好ましく、メチルシクロヘキサン、エチルシクロヘキサン、ジメチルシクロヘキサン、ジエチルシクロヘキサン、トリメチルシクロヘキサンなどのアルキルシクロヘキサン、メチルデカリン、エチルデカリン、ジメチルデカリン、ジエチルデカリンなどのアルキルデカリン、およびこれらの混合物を用いることが好ましい。なお、脱水素反応器2及び水素分離膜5の温度は、取り扱う芳香族炭化水素の沸点以上であることが望ましい。   Examples of hydrides of aromatic hydrocarbons used in the present invention include cyclohexanes and decalins, but those having substituents are preferred from the viewpoint of safety and ease of handling of aromatic hydrocarbons generated after dehydrogenation reaction, It is preferable to use alkylcyclohexane such as methylcyclohexane, ethylcyclohexane, dimethylcyclohexane, diethylcyclohexane and trimethylcyclohexane, alkyldecalin such as methyldecalin, ethyldecalin, dimethyldecalin and diethyldecalin, and mixtures thereof. Note that the temperatures of the dehydrogenation reactor 2 and the hydrogen separation membrane 5 are desirably equal to or higher than the boiling point of the aromatic hydrocarbon to be handled.

本発明に用いる脱水素反応器2には触媒を充填し、芳香族炭化水素水素化物を供給して脱水素反応を行わせる。ここで、脱水素反応器2への供給方式としては、芳香族炭化水素水素化物を液体で供給する方式、および予熱して気体で供給する方式のいずれをとることも出来るが、特には、固定床式反応器に気体で供給することが好ましい。   The dehydrogenation reactor 2 used in the present invention is filled with a catalyst, and an aromatic hydrocarbon hydride is supplied to cause a dehydrogenation reaction. Here, as a supply method to the dehydrogenation reactor 2, either a method of supplying an aromatic hydrocarbon hydride as a liquid or a method of supplying it as a preheated gas can be used. It is preferable to supply the gas to the bed reactor.

また、脱水素反応器2に充填する脱水素反応触媒としては、白金、ルテニウム、パラジウム、ロジウム、スズ、レニウム、及びゲルマニウムよりなる群から選択される少なくとも1種の金属を多孔質担体に担持したものが好ましく、脱水素反応器2に供給する芳香族炭化水素水素化物の種類により、平均細孔径を適宜選択することが好ましい。すなわち、1環のシクロヘキサン類を用いる場合には、特に40〜80Åの平均細孔径を持つ触媒が好ましく、2環のデカリン類を用いる場合には、特に65〜130Åの平均細孔径を持つ触媒を選択することが好ましく、いずれも好ましい細孔径をもつ細孔の容量が全細孔容量の50%以上であることが好ましい。   In addition, as a dehydrogenation reaction catalyst charged in the dehydrogenation reactor 2, at least one metal selected from the group consisting of platinum, ruthenium, palladium, rhodium, tin, rhenium, and germanium is supported on a porous carrier. The average pore diameter is preferably selected as appropriate depending on the type of the aromatic hydrocarbon hydride supplied to the dehydrogenation reactor 2. That is, a catalyst having an average pore diameter of 40 to 80 mm is particularly preferred when using one-ring cyclohexanes, and a catalyst having an average pore diameter of 65 to 130 mm is particularly preferred when using two-ring decalins. It is preferable to select them, and it is preferable that the volume of pores having a preferable pore diameter is 50% or more of the total pore volume.

脱水素反応触媒の平均細孔径および細孔容量の比率を制御するには、触媒の担体としてAl23あるいはSiO2を用いることが好ましく、それぞれ単独で用いてもよいし、適当な割合で両者を組み合わせて用いてもよい。芳香族炭化水素水素化物が1環と2環の混合物である場合は、その組成により、好ましい平均細孔径をもつ触媒を混合して用いても良い。 In order to control the average pore diameter and pore volume ratio of the dehydrogenation reaction catalyst, it is preferable to use Al 2 O 3 or SiO 2 as the catalyst support, and each may be used alone or at an appropriate ratio. You may use combining both. When the aromatic hydrocarbon hydride is a mixture of one ring and two rings, a catalyst having a preferable average pore diameter may be mixed and used depending on the composition.

また、脱水素反応触媒における金属担持率は、0.001〜10質量%の範囲が好ましく、0.01〜5質量%の範囲が更に好ましい。金属担持率が0.001質量%未満では、十分に脱水素反応を進行させることができず、一方、10質量%を超えて金属を担持しても、金属の増量に見合う効果が得られない。   Further, the metal loading in the dehydrogenation reaction catalyst is preferably in the range of 0.001 to 10% by mass, and more preferably in the range of 0.01 to 5% by mass. If the metal loading is less than 0.001% by mass, the dehydrogenation reaction cannot be sufficiently progressed. On the other hand, even if the metal is loaded exceeding 10% by mass, an effect commensurate with the increase in the amount of metal cannot be obtained. .

本発明で行う脱水素反応は、上記脱水素反応用触媒の存在下、LHSV:0.5〜4hr-1、反応温度:100〜500℃、好ましくは250℃〜450℃、反応圧力:常圧〜2MPaで、水素を流通させることにより実施される。水素流通量は、水素/芳香族炭化水素水素化物のモル比で0.01〜10の範囲が好ましい。水素を流通させて脱水素反応を行うと、水素を流通させない場合に比べ、副反応を抑えることが出来、水素を効率的に製造できるだけでなく、脱水素反応後回収される油を再度水素化して芳香族炭化水素水素化物として再利用する際に含まれる不純物を少なくすることが出来る。さらに、水素を効率的に製造するには、転化率85%以上になるように反応条件を選択することが好ましい。 The dehydrogenation reaction carried out in the present invention is carried out in the presence of the above-mentioned catalyst for dehydrogenation reaction, LHSV: 0.5-4 hr −1 , reaction temperature: 100-500 ° C., preferably 250 ° C.-450 ° C., reaction pressure: normal pressure It is carried out by circulating hydrogen at ˜2 MPa. The hydrogen flow rate is preferably in the range of 0.01 to 10 in terms of hydrogen / aromatic hydrocarbon hydride molar ratio. When hydrogen is circulated and the dehydrogenation reaction is performed, side reactions can be suppressed compared to when hydrogen is not circulated, and not only hydrogen can be produced efficiently, but also the oil recovered after the dehydrogenation reaction is hydrogenated again. Thus, impurities contained in the reuse as an aromatic hydrocarbon hydride can be reduced. Furthermore, in order to produce hydrogen efficiently, it is preferable to select reaction conditions so that the conversion rate is 85% or more.

脱水素反応により生成するガスは、水素を主成分とするが、その他に、未反応の芳香族炭化水素水素化物、脱水素反応により生成する芳香族炭化水素、副反応により生じるメタン、エタン等の低級炭化水素、副反応により生じるアルキルシクロペンタンなどを含むことがある。しかしながら、都市ガス、灯油、ナフサ等の改質反応により水素を製造する場合に反応生成ガス中に含まれる一酸化炭素は、芳香族炭化水素水素化物の脱水素反応生成ガス中には含まれない。   The gas produced by the dehydrogenation reaction is mainly composed of hydrogen, but in addition to this, unreacted aromatic hydrocarbon hydride, aromatic hydrocarbons produced by the dehydrogenation reaction, methane, ethane produced by side reactions, etc. It may contain lower hydrocarbons, alkylcyclopentane produced by side reactions, and the like. However, carbon monoxide contained in the reaction product gas when hydrogen is produced by a reforming reaction of city gas, kerosene, naphtha, etc. is not included in the dehydrogenation reaction product gas of the aromatic hydrocarbon hydride. .

本発明の高純度水素の製造方法では、脱水素反応直後の気相を150℃以上350℃未満、好ましくは150℃以上300℃未満の比較的低い温度(第一の温度)に加熱された水素分離膜5を用いて、純度99.99%以上の高純度水素とする。本発明の高純度水素の製造方法では、脱水素反応直後の気相からの熱エネルギーによって150℃以上350℃未満に加熱された水素分離膜5を用いて、気液分離することなく精製するため、脱水素反応生成ガスの冷却と再加熱を要していた従来技術や高い温度で水素分離膜5の運転を行う方法に比べて、エネルギー効率が高い。   In the method for producing high-purity hydrogen according to the present invention, hydrogen heated immediately after the dehydrogenation reaction to a relatively low temperature (first temperature) of 150 ° C. or higher and lower than 350 ° C., preferably 150 ° C. or higher and lower than 300 ° C. The separation membrane 5 is used to obtain high-purity hydrogen having a purity of 99.99% or higher. In the method for producing high-purity hydrogen according to the present invention, purification is performed without gas-liquid separation using the hydrogen separation membrane 5 heated to 150 ° C. or higher and lower than 350 ° C. by heat energy from the gas phase immediately after the dehydrogenation reaction. The energy efficiency is higher than that of the conventional technique that requires cooling and reheating of the dehydrogenation reaction product gas and the method of operating the hydrogen separation membrane 5 at a high temperature.

一般に、水素分離膜5の温度が低いほど、水素分離膜5の水素透過性能が低下して水素回収率が低くなるが、圧力を上昇させることで150℃程度でも85%以上の水素回収率を維持する事ができる。既存技術で利用されているメタノール改質や水蒸気改質では、発生ガスに一酸化炭素が含まれ、該一酸化炭素が水素分離膜の表面に強く吸着して、水素透過性能が著しく低下するため、水素分離膜の温度を350℃以上にする必要があったが、本発明の方法では、発生ガスには水素と原料となる芳香族炭化水素の水素化物と脱水素反応により生成した芳香族炭化水素と副反応により生成した炭化水素類のみが含まれるため、水素分離膜5の温度が150℃以上350℃未満であっても、水素分離膜5が高い水素透過性能を示す。   In general, the lower the temperature of the hydrogen separation membrane 5, the lower the hydrogen permeation performance of the hydrogen separation membrane 5 and the lower the hydrogen recovery rate. However, by increasing the pressure, a hydrogen recovery rate of 85% or more can be achieved even at about 150 ° C. Can be maintained. In methanol reforming and steam reforming that are used in existing technologies, the generated gas contains carbon monoxide, which is strongly adsorbed on the surface of the hydrogen separation membrane, and the hydrogen permeation performance is significantly reduced. However, in the method of the present invention, it was necessary to set the temperature of the hydrogen separation membrane to 350 ° C. or more. In the method of the present invention, hydrogen and aromatic hydrocarbon hydride as a raw material and aromatic carbon produced by dehydrogenation reaction were used as the generated gas. Since only hydrocarbons generated by hydrogen and side reactions are included, even when the temperature of the hydrogen separation membrane 5 is 150 ° C. or higher and lower than 350 ° C., the hydrogen separation membrane 5 exhibits high hydrogen permeation performance.

本発明に用いる水素分離膜(水素透過膜)5は、Pd−Cuを主成分とする膜である。該Pd−Cu膜は、たとえば、米国特許第3,439,474号に記載の方法により作製することが出来る。   The hydrogen separation membrane (hydrogen permeable membrane) 5 used in the present invention is a membrane containing Pd—Cu as a main component. The Pd—Cu film can be produced, for example, by the method described in US Pat. No. 3,439,474.

脱水素反応による生成ガスから、上記の水素分離膜5を通して純度99.99%以上の高純度水素を製造するに際して、水素分離膜5の温度が低い場合は高い入出差圧で、一方、水素分離膜5の温度が高い場合は低い入出差圧で、85%以上の高い回収率で水素を分離できる。例えば、水素分離膜5の温度が150℃の場合は、水素分離膜5の入出差圧を0.5MPa以上とすることで、85%以上の水素回収率を確保することができる。なお、水素分離膜5の温度が高いほど水素回収率が高まるが、350℃以上では、Pd−Cu膜表面の金属粒子の再結晶化が促進され、表面に大きな粒界が生じ易くなり、水素分離膜5の入出差圧を高くすると破断する可能性があり、また、450℃を超えると、Pd−Cu膜が長時間の加熱により劣化して機械的な強度が低下したり、反応生成物が膜表面で分解して炭素析出を起こし、その結果として水素回収率の大幅な低下を引き起こすことがあるため、できる限り低い温度で水素分離膜5を運転する事が望ましい。   When producing high-purity hydrogen having a purity of 99.99% or more from the gas produced by the dehydrogenation reaction through the hydrogen separation membrane 5 described above, if the temperature of the hydrogen separation membrane 5 is low, a high input / output differential pressure is obtained. When the temperature of the membrane 5 is high, hydrogen can be separated at a high recovery rate of 85% or more with a low input / output differential pressure. For example, when the temperature of the hydrogen separation membrane 5 is 150 ° C., the hydrogen recovery rate of 85% or more can be secured by setting the input / output differential pressure of the hydrogen separation membrane 5 to 0.5 MPa or more. Note that the higher the temperature of the hydrogen separation membrane 5, the higher the hydrogen recovery rate. However, at 350 ° C. or higher, recrystallization of metal particles on the surface of the Pd—Cu film is promoted, and large grain boundaries are likely to be generated on the surface. If the inlet / outlet differential pressure of the separation membrane 5 is increased, it may break, and if it exceeds 450 ° C., the Pd—Cu membrane is deteriorated by heating for a long time, resulting in a decrease in mechanical strength or a reaction product. May decompose on the membrane surface and cause carbon deposition, resulting in a significant decrease in the hydrogen recovery rate. Therefore, it is desirable to operate the hydrogen separation membrane 5 at the lowest possible temperature.

ただし、系内の圧力にもよるが、水素分離膜5の温度が150℃未満では、原料となる炭化水素類が液相となり、水素分離膜の表面を液体の皮膜が覆い、その結果、気相である水素が金属表面に吸着できず、極端に水素透過性能が低下することがあり、また、炭化水素類が気相として存在できる場合でも、水素分離膜5の温度が低すぎると十分な水素透過性能を示さず、差圧を高くしても目標値となる85%の水素回収率を保持できなくなる。そのため、効率的に水素を製造するには、水素分離膜を透過して回収される水素が脱水素反応生成ガス中の水素の85%以上となるように、膜の差圧と温度をコントロールすることが好ましい。   However, depending on the pressure in the system, when the temperature of the hydrogen separation membrane 5 is less than 150 ° C., the hydrocarbons used as a raw material are in a liquid phase, and the surface of the hydrogen separation membrane is covered with a liquid film. Hydrogen, which is a phase, cannot be adsorbed on the metal surface, resulting in extremely low hydrogen permeation performance. Even when hydrocarbons can exist in the gas phase, it is sufficient if the temperature of the hydrogen separation membrane 5 is too low. The hydrogen permeation performance is not exhibited, and even if the differential pressure is increased, the target hydrogen recovery rate of 85% cannot be maintained. Therefore, to efficiently produce hydrogen, the pressure difference and temperature of the membrane are controlled so that the hydrogen recovered through the hydrogen separation membrane is 85% or more of the hydrogen in the dehydrogenation reaction product gas. It is preferable.

本発明の高純度水素の製造方法において、水素分離膜5を150℃以上350℃未満、好ましくは150℃以上300℃未満の第一の温度で運転し、運転を終了する際には、タンク1からの原料の供給を停止した後、水素分離膜5の温度をバーナー4等の熱源を調整して300℃以上、好ましくは300℃から450℃であって且つ上記第一の温度よりも高い第二の温度に加温した後に、バーナー4等を停止して運転を終了する。加温停止からの冷却時間は外気温や断熱材の量などにより大きく変わるが、10分から30分程度の時間で水素分離膜5の表面温度が100℃未満となる。   In the method for producing high-purity hydrogen according to the present invention, the hydrogen separation membrane 5 is operated at a first temperature of 150 ° C. or higher and lower than 350 ° C., preferably 150 ° C. or higher and lower than 300 ° C. After the supply of the raw material from is stopped, the temperature of the hydrogen separation membrane 5 is adjusted to a heat source such as the burner 4 to 300 ° C. or higher, preferably 300 ° C. to 450 ° C. and higher than the first temperature. After heating to the second temperature, the burner 4 and the like are stopped and the operation is terminated. Although the cooling time from the heating stop varies greatly depending on the outside air temperature and the amount of the heat insulating material, the surface temperature of the hydrogen separation membrane 5 becomes less than 100 ° C. in about 10 to 30 minutes.

運転停止に際しては、図示しないが、系内を安全のために窒素パージしたり、触媒や水素分離膜を十分に乾燥するために、図示しないが、畜圧器などに補充した水素を循環させたりすることも可能である。なお、本発明の方法では、Pd単一組成の水素分離膜などを使用した場合と異なり、300℃以上の高温度から常温まで水素雰囲気下で降温してもPdの水素脆化が起こらないため、複雑な手順を踏まず直ちに、系内に水素ガスが存在するまま降温することが可能である。Pd単一組成の水素分離膜の場合は、窒素パージを行わないまま水素分離膜の温度を低下させると、水素がPd金属の内部に入り込み、短期間で水素分離膜の機械的な強度が低下する。   When shutting down the operation, although not shown, the inside of the system is purged with nitrogen for safety, or in order to sufficiently dry the catalyst and the hydrogen separation membrane, although not shown, replenished hydrogen is circulated to the animal pressure device or the like. It is also possible. In the method of the present invention, unlike the case of using a hydrogen separation membrane having a single Pd composition, hydrogen embrittlement of Pd does not occur even when the temperature is lowered from a high temperature of 300 ° C. or higher to a normal temperature in a hydrogen atmosphere. Immediately without going through complicated procedures, the temperature can be lowered while hydrogen gas is present in the system. In the case of a hydrogen separation membrane having a single Pd composition, if the temperature of the hydrogen separation membrane is lowered without performing a nitrogen purge, hydrogen enters the inside of the Pd metal, and the mechanical strength of the hydrogen separation membrane decreases in a short period of time. To do.

また、水素分離膜5の温度を150℃以上350℃未満、好ましくは150℃以上300℃未満の第一の温度にして長期間の運転を継続する際は、水素回収率をモニターする、あるいは、予め調べた水素透過性能が低下する時間ごとに膜温度が一時的に300℃以上、好ましくは300℃から450℃であって且つ上記第一の温度よりも高い第二の温度となるように、脱水素反応の反応温度を上昇させるか、あるいは単純に膜温度が300℃以上、好ましくは300℃から450℃であって且つ上記第一の温度よりも高い第二の温度となるようにバーナー4等の出力を調整して、所定の水素回収率に回復した事を確認するか、予め調べた回復可能な時間だけ膜温度を上昇させた後に、元のより低い膜温度(第一の温度)での運転条件に戻すことにより、運転を継続する事が可能となる。一般に、水素透過率は、水素分離膜の温度及び差圧に比例して上昇する。ただし、水素分離膜を350℃以上の温度にさらすと、先に述べたように水素分離膜の再結晶化が促進され、徐々にではあるが水素分離膜5での水素回収率が低くなり、150℃以上350℃未満の低温での運転が困難になる。その場合は、水素分離膜の寿命を勘案しながら、高い水素回収率を保持できる350℃以上の温度で運転を行い、経済的に運転が成り立つ水素回収率及びエネルギー効率を満たさなくなった時が水素分離膜5の寿命と判断される。   When the temperature of the hydrogen separation membrane 5 is set to a first temperature of 150 ° C. or higher and lower than 350 ° C., preferably 150 ° C. or higher and lower than 300 ° C., and the operation is continued for a long time, the hydrogen recovery rate is monitored, or The membrane temperature is temporarily 300 ° C. or higher, preferably 300 ° C. to 450 ° C., and a second temperature higher than the first temperature every time when the hydrogen permeation performance examined in advance decreases. The reaction temperature of the dehydrogenation reaction is increased, or the burner 4 is simply set so that the film temperature is 300 ° C. or higher, preferably 300 ° C. to 450 ° C. and higher than the first temperature. After adjusting the output, etc., and confirming that the recovery to the predetermined hydrogen recovery rate has been made, or after increasing the film temperature for a recoverable time examined in advance, the original lower film temperature (first temperature) Return to the operating conditions at By, it is possible to continue the operation. In general, the hydrogen permeability increases in proportion to the temperature and differential pressure of the hydrogen separation membrane. However, when the hydrogen separation membrane is exposed to a temperature of 350 ° C. or higher, the recrystallization of the hydrogen separation membrane is promoted as described above, and the hydrogen recovery rate in the hydrogen separation membrane 5 gradually decreases, Operation at a low temperature of 150 ° C. or higher and lower than 350 ° C. becomes difficult. In that case, while taking into account the life of the hydrogen separation membrane, operation is performed at a temperature of 350 ° C. or higher that can maintain a high hydrogen recovery rate. The lifetime of the separation membrane 5 is determined.

一般に水素分離膜5は、脱水素反応に供する原料により最適な運転温度が異なる。ここで、最適な運転温度とは、透過性能と膜温度とが比例関係を維持する水素透過量最大の温度を示すが、多くの場合、水素回収率が90〜95%程度となる最低の膜温度を示す。この最適な膜運転温度は、水素分離膜への脱水素により生じる芳香族分が膜に吸着する温度並びに生成油及び原料油の沸点に関連するものと推察される。例えば、一環芳香族化合物の中では、置換基が無いベンゼン(原料はシクロヘキサン)が同一温度では最も膜表面への吸着力が強く、置換基が増えるほど、また置換基の側鎖が長いほど膜表面への吸着力が弱まり、より低い膜温度での長時間運転が可能になる。また、既に述べたように、高い圧力で運転する場合に液相となるような条件では、膜表面が液膜で覆われて水素回収率が大幅に低下する。従って、第一の温度と第二の温度は、脱水素反応に供する原料の種類により異なり、反応圧力において、原料及び生成物の沸点以上であることが好ましく、さらに沸点以外の条件としては、原料の種類と経済性やエネルギー効率などを勘案して決められる水素回収率以上となる運転条件が望まれ、第一の温度は150℃以上350℃未満であり、第二の温度は300℃以上であり、第一の温度と第二の温度とは通常50℃から100℃程度の差がある。膜表面への吸着力が弱い芳香族化合物が生成する場合は、第二の温度を300℃程度とすることで十分に膜性能を回復させることができ、この場合、第一の温度を150〜200℃程度とすることで十分な水素回収率を得ることができる。ただし、第二の温度が450℃を超える場合には、長時間高温度で処理するとPd−Cu合金の機械的な強度が低下し、また、膜と接触する炭化水素類が膜表面で反応を起こし炭化物を膜表面に生成して透過を阻害する可能性があるため、450℃以下が好ましいが、短時間でかつ原料油を流通させない状況であれば特に問題は無く、運転圧力を常圧付近とすれば機械的な強度の問題も回避可能である。   In general, the optimum operating temperature of the hydrogen separation membrane 5 differs depending on the raw material used for the dehydrogenation reaction. Here, the optimum operating temperature is the maximum hydrogen permeation temperature at which the permeation performance and the membrane temperature maintain a proportional relationship, but in many cases, the lowest membrane with a hydrogen recovery rate of about 90 to 95%. Indicates temperature. This optimum membrane operating temperature is presumed to be related to the temperature at which the aromatic component generated by dehydrogenation to the hydrogen separation membrane is adsorbed to the membrane and the boiling point of the product oil and feedstock. For example, among the aromatic compounds, benzene without a substituent (cyclohexane as the raw material) has the strongest adsorption power to the film surface at the same temperature, and the more the substituents and the longer the side chain of the substituent, the more the membrane The adsorption power to the surface is weakened, and it is possible to operate for a long time at a lower film temperature. In addition, as already described, under the condition that the liquid phase is obtained when operating at a high pressure, the membrane surface is covered with the liquid film, and the hydrogen recovery rate is greatly reduced. Accordingly, the first temperature and the second temperature vary depending on the type of raw material to be subjected to the dehydrogenation reaction, and are preferably equal to or higher than the boiling points of the raw material and the product at the reaction pressure. The operating conditions that exceed the hydrogen recovery rate determined in consideration of the type, economic efficiency, energy efficiency, etc. are desired. The first temperature is 150 ° C. or higher and lower than 350 ° C., and the second temperature is 300 ° C. or higher. The first temperature and the second temperature usually have a difference of about 50 ° C. to 100 ° C. When an aromatic compound having a weak adsorption force to the membrane surface is produced, the membrane performance can be sufficiently recovered by setting the second temperature to about 300 ° C. In this case, the first temperature is set to 150 to By setting the temperature to about 200 ° C., a sufficient hydrogen recovery rate can be obtained. However, when the second temperature is higher than 450 ° C., the mechanical strength of the Pd—Cu alloy is lowered when treated at a high temperature for a long time, and the hydrocarbons in contact with the film react on the film surface. 450 ° C or lower is preferable because it may cause wake-up carbides on the membrane surface and impede permeation, but there is no particular problem as long as the feedstock oil is not circulated in a short time, and the operating pressure is around normal pressure. If so, the problem of mechanical strength can also be avoided.

水素分離膜5を通して製造した純度99.99%以上の高純度水素は、燃料電池自動車あるいは定置用燃料電池等の燃料電池向け燃料として用いることができるが、定常運転においてはその一部を脱水素反応器2にリサイクルし、脱水素反応に必要な流通水素として用いることが望ましい。なお、高純度水素は、脱水素反応器2に導入する前に、予め熱交換器3を通して予熱しておくことが好ましい。   High-purity hydrogen having a purity of 99.99% or more produced through the hydrogen separation membrane 5 can be used as a fuel for fuel cells such as a fuel cell vehicle or a stationary fuel cell. It is desirable to recycle to the reactor 2 and use it as circulating hydrogen necessary for the dehydrogenation reaction. The high-purity hydrogen is preferably preheated through the heat exchanger 3 before being introduced into the dehydrogenation reactor 2.

脱水素反応に必要な流通水素としては、外部から導入される水素、脱水素反応器2から出る反応生成ガスの未精製ガス中に含まれる水素、水素分離膜5を透過しなかったガスに含まれる水素を用いることも出来るが、水素純度が低いと、リサイクルしているうちに水素以外のガスの濃度が高くなってしまい、水素流通下で脱水素反応を行うことの利点が十分に得られないので、水素分離膜5を透過させて得た純度99.99%以上の高純度水素を脱水素反応器2にリサイクルすることが好ましい。   The circulating hydrogen necessary for the dehydrogenation reaction includes hydrogen introduced from the outside, hydrogen contained in the unpurified gas of the reaction product gas exiting from the dehydrogenation reactor 2, and gas not permeated through the hydrogen separation membrane 5. However, if the purity of the hydrogen is low, the concentration of gases other than hydrogen will increase during recycling, and the advantages of performing the dehydrogenation reaction under hydrogen flow will be fully obtained. Therefore, it is preferable to recycle high-purity hydrogen having a purity of 99.99% or more obtained through the hydrogen separation membrane 5 to the dehydrogenation reactor 2.

本発明において、脱水素反応生成ガスから水素分離膜5を通らずに回収されたガスは、気液分離器6に導入され、未反応の芳香族炭化水素水素化物、脱水素反応で生成した芳香族炭化水素および副反応により発生したアルキルシクロペンタンなどの液体と、水素およびその他のガスとに分離されることが好ましい。ガス中のその他のガスには、副反応により発生した低級炭化水素、分離しきれなかった液体のベーパーが含まれる。ここで、水素およびその他のガスは、たとえば脱水素反応器2の加熱のために、他の燃料と共にバーナー4で燃焼させるなどして、熱源の原料として用いることができる。一方、未反応の芳香族炭化水素水素化物、脱水素反応で生成した芳香族炭化水素および副反応により発生したアルキルシクロペンタンなどを含む液体は、回収油タンク7に回収され、再度水素化して芳香族炭化水素水素化物として再利用することができる。   In the present invention, the gas recovered from the dehydrogenation reaction product gas without passing through the hydrogen separation membrane 5 is introduced into the gas-liquid separator 6, and the unreacted aromatic hydrocarbon hydride and the fragrance produced by the dehydrogenation reaction. It is preferably separated into a liquid such as a group hydrocarbon and an alkylcyclopentane generated by a side reaction, and hydrogen and other gases. Other gases in the gas include lower hydrocarbons generated by side reactions and liquid vapor that could not be separated. Here, hydrogen and other gas can be used as a raw material of the heat source by, for example, burning the dehydrogenation reactor 2 together with other fuel in the burner 4. On the other hand, the liquid containing unreacted aromatic hydrocarbon hydride, aromatic hydrocarbon generated by the dehydrogenation reaction and alkylcyclopentane generated by the side reaction is recovered in the recovered oil tank 7 and hydrogenated again to produce the aromatic. It can be reused as a group hydrocarbon hydride.

以下、実施例に基づいて本発明をより詳細に説明するが、本発明は、かかる実施例によってなんら制限されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated in detail based on an Example, this invention is not restrict | limited at all by this Example.

(参考例1)
脱水素触媒として0.5%Pt/Al23触媒(平均細孔径72.9Å、全細孔容量に占める40〜80Åの細孔容量の割合60%)10cm3を固定床流通式反応装置に充填した。芳香族炭化水素の水素化物として99.99%のメチルシクロヘキサン(MCHX)を用い、触媒層温度380℃、反応圧力0.9MPa、液空間速度(LHSV)=2hr-1、水素/オイル比(H2/Oil)=3mol/molの条件下で脱水素反応を行った。反応装置からの出口ガスを気液分離し、生成ガスと回収油の組成をガスクロにより分析したところ、脱水素反応転化率93%、補正計算後(反応装置に導入した純水素ガスの量を差し引いた)発生ガス中の水素99.983%、メタン0.01%であった。
(Reference Example 1)
As a dehydrogenation catalyst, 0.5% Pt / Al 2 O 3 catalyst (average pore diameter 72.9 kg, ratio of pore volume of 40 to 80 kg in the total pore volume 60 cm) 10 cm 3 was fixed bed flow reactor Filled. 99.99% methylcyclohexane (MCHX) was used as the hydride of the aromatic hydrocarbon, the catalyst layer temperature was 380 ° C., the reaction pressure was 0.9 MPa, the liquid space velocity (LHSV) = 2 hr −1 , the hydrogen / oil ratio (H The dehydrogenation reaction was carried out under the conditions of 2 / Oil) = 3 mol / mol. The outlet gas from the reactor was gas-liquid separated, and the composition of the product gas and recovered oil was analyzed by gas chromatography. After the dehydrogenation reaction conversion rate of 93%, after correction calculation (the amount of pure hydrogen gas introduced into the reactor was subtracted) E) Hydrogen in the evolved gas was 99.983% and methane was 0.01%.

(参考例2)
参考例1と同様の触媒25cm3を固定床流通式反応装置に充填し、高純度水素(99.999%)を流通させながら反応器を390℃まで電気炉で加熱し、原料油として参考例1と同様のMCHXを液空間速度(LHSV)=1hr-1、水素/オイル比(H2/Oil)=1.35mol/molの条件下で流通させ、反応器入口ゲージ圧力0.75MPaとなるように圧力を調整した。発生する水素の量が一定となり安定した状態の触媒層の温度は352℃であり、その時の反応装置からの出口ガスの組成は水素:トルエン(TOL):MCHX:TOL及びMCHX以外の炭化水素=80.06:17.94:1.77:0.23(vol%)であり、転化率は91%であった。このガスを350℃の膜厚25μmのPd−40Cu膜(水素分離膜)に、分離膜入口ゲージ圧力0.75MPa、分離膜出口ゲージ圧力0.0MPaで通して選択透過させたところ、運転開始1時間後において、水素純度は99.999%以上、水素回収率は95.8%であった。なお、以下の実施例1及び2並びに比較例1において水素分離膜により回収された水素の純度は全て99.999%以上であり、水素以外の物質は検出されなかった。また、運転開始6時間後の水素回収率は96.5%であった。反応終了に当たり、内部を窒素置換や乾燥処理することなく、原料となるMCHXの流通を停止し、直ちに反応炉の熱源を止めて反応器並びに膜温度を低下させて終了させた(RUN1-1)。
(Reference Example 2)
25 cm 3 of the same catalyst as in Reference Example 1 was charged into a fixed bed flow reactor, and the reactor was heated to 390 ° C. in an electric furnace while flowing high-purity hydrogen (99.999%). 1 is flowed under the conditions of liquid hourly space velocity (LHSV) = 1 hr −1 , hydrogen / oil ratio (H 2 /Oil)=1.35 mol / mol, and the reactor inlet gauge pressure becomes 0.75 MPa. The pressure was adjusted as follows. The temperature of the catalyst layer in a stable state with a constant amount of generated hydrogen is 352 ° C., and the composition of the outlet gas from the reactor at that time is hydrogen: toluene (TOL): MCHX: hydrocarbons other than TOL and MCHX = It was 80.06: 17.94: 1.77: 0.23 (vol%), and the conversion rate was 91%. This gas was selectively permeated through a Pd-40Cu membrane (hydrogen separation membrane) with a film thickness of 25 μm at 350 ° C. at a separation membrane inlet gauge pressure of 0.75 MPa and a separation membrane outlet gauge pressure of 0.0 MPa. After the time, the hydrogen purity was 99.999% or more, and the hydrogen recovery rate was 95.8%. In Examples 1 and 2 and Comparative Example 1 below, the purity of hydrogen recovered by the hydrogen separation membrane was 99.999% or higher, and no substance other than hydrogen was detected. The hydrogen recovery rate after 6 hours from the start of operation was 96.5%. Upon completion of the reaction, without replacing the inside with nitrogen or drying treatment, the flow of MCHX as a raw material was stopped, and the heat source of the reactor was immediately stopped to terminate the reactor and the film temperature (RUN 1-1). .

引き続き翌日にRUN1-1と同様に上記装置を起動(RUN1-2)したところ、運転開始1時間後の水素回収率は96.5%であり、運転開始6時間後の水素回収率は96.0%であった。次に、RUN1-1と同様に停止操作を行い、RUN1-2を終了した。同様に翌日同一条件で上記装置を起動(RUN1-3)したところ、運転開始1時間後の水素回収率は96.2%、6時間後の水素回収率は96.5%であり、一連の起動停止運転において、水素回収率は±0.5%以内で変動するだけであり、起動停止並びに連続運転中に水素回収率の低下は観察されなかった。   Subsequently, when the above apparatus was started (RUN1-2) in the same manner as RUN1-1 on the next day, the hydrogen recovery rate after 1 hour of operation was 96.5%, and the hydrogen recovery rate after 6 hours of operation was 96. 0%. Next, a stop operation was performed in the same manner as RUN1-1, and RUN1-2 was terminated. Similarly, when the above apparatus was started (RUN1-3) under the same conditions the next day, the hydrogen recovery rate after 1 hour of operation was 96.2% and the hydrogen recovery rate after 6 hours was 96.5%. In the start / stop operation, the hydrogen recovery rate only fluctuates within ± 0.5%, and no decrease in the hydrogen recovery rate was observed during start / stop and continuous operation.

(比較例1)
参考例1と同様の触媒25cm3を固定床流通式反応装置に充填し、触媒層温度352℃、反応器入口ゲージ圧力0.75MPa、液空間速度(LHSV)=1hr-1、水素/オイル比(H2/Oil)=1.35mol/molの条件下でMCHXを脱水素反応したところ、転化率は91%であり、反応器出口ガス組成は参考例2とほぼ同一であった。このガスを250℃の膜厚25μmのPd−40Cu膜に、分離膜入口ゲージ圧力0.75MPa、分離膜出口ゲージ圧力0.0MPaで通して選択透過させたところ、運転開始1時間後の水素回収率は89.0%、運転開始6時間後の水素回収率は88.0%であった(RUN2-1)。反応終了に当たり原料供給を絶ち、反応器出口から液体分が出なくなる60分の間、水素流通下で膜温度を250℃に保持したまま系内を乾燥させて、さらに膜温度を250℃に保ちさらに60分間十分に水素雰囲気下で乾燥処理して終了した後に、膜の温度を常温までゆっくりと降下させて装置を停止した。
(Comparative Example 1)
25 cm 3 of the same catalyst as in Reference Example 1 was charged into a fixed bed flow reactor, the catalyst bed temperature was 352 ° C., the reactor inlet gauge pressure was 0.75 MPa, the liquid space velocity (LHSV) = 1 hr −1 , the hydrogen / oil ratio. When MCHX was dehydrogenated under the conditions of (H 2 /Oil)=1.35 mol / mol, the conversion was 91% and the reactor outlet gas composition was almost the same as in Reference Example 2. This gas was selectively permeated through a Pd-40Cu membrane having a film thickness of 25 μm at 250 ° C. with a separation membrane inlet gauge pressure of 0.75 MPa and a separation membrane outlet gauge pressure of 0.0 MPa. As a result, hydrogen was recovered one hour after the start of operation. The rate was 89.0%, and the hydrogen recovery rate 6 hours after the start of operation was 88.0% (RUN2-1). At the end of the reaction, the raw material supply was cut off, and the system was dried while maintaining the membrane temperature at 250 ° C under a hydrogen flow for 60 minutes when no liquid was discharged from the reactor outlet, and the membrane temperature was further maintained at 250 ° C. Further, after the completion of the drying treatment in a hydrogen atmosphere for 60 minutes, the temperature of the film was slowly lowered to room temperature to stop the apparatus.

引き続き、翌日同一条件で上記装置を起動した(RUN2-2)ところ、運転開始1時間後の水素回収率は88.0%、6時間後は85.1%であった。RUN2-1と同様な方法で装置を停止して終了し、翌日同一条件で上記装置を起動(RUN2-3)したところ、運転開始1時間後の水素回収率は83.0%、6時間後の水素回収率は78.5%であった。さらに、翌日RUN2-1と同一条件で上記装置を起動したところ、運転開始1時間後の水素回収率は78.0%であり、6時間後の水素回収率は73.5%まで低下していた(RUN2-4)。   Subsequently, the above apparatus was started up under the same conditions the next day (RUN2-2). The hydrogen recovery rate after 1 hour of operation was 88.0%, and after 6 hours, it was 85.1%. When the system was stopped and terminated in the same manner as RUN2-1 and the above system was started up under the same conditions (RUN2-3) the next day, the hydrogen recovery rate after 1 hour of operation was 83.0%, 6 hours later The hydrogen recovery rate was 78.5%. Further, when the above apparatus was started up under the same conditions as RUN2-1 on the next day, the hydrogen recovery rate after 1 hour of operation was 78.0%, and the hydrogen recovery rate after 6 hours had decreased to 73.5%. (RUN2-4).

(実施例1)
参考例1と同様の触媒25cm3を固定床流通式反応装置に充填し、参考例2と同様に起動して、触媒層温度352℃、反応器入口ゲージ圧力0.75MPa、液空間速度(LHSV)=1hr-1、水素/オイル比(H2/Oil)=1.35mol/molの条件下でメチルシクロヘキサン(MCHX)を脱水素反応した。反応転化率は参考例2の4回の実験と同一の91%であり、反応器出口ガス組成は参考例2とほぼ同一であった。このガスを250℃の膜厚25μmのPd−40Cu膜に、分離膜入口ゲージ圧力0.75MPa、分離膜出口ゲージ圧力0.0MPaで通して選択透過させたところ、運転開始1時間後の水素回収率は92.5%、運転開始6時間後の水素回収率は87.5%であった(RUN3-1)。RUN3-1の終了に当たり、水素分離膜の温度を水素流通下で300℃まで昇温した後に、直ちに冷却して運転を停止した。翌日、RUN3-1と同様に上記装置を起動し、同一条件で運転を行ったところ、運転開始1hr後の水素回収率は89.0%に回復しており、また、運転開始6hr後の水素回収率も88.0%であった(RUN3-2)。
Example 1
25 cm 3 of the same catalyst as in Reference Example 1 was charged into a fixed bed flow type reactor, and started in the same manner as in Reference Example 2. The catalyst layer temperature was 352 ° C., the reactor inlet gauge pressure was 0.75 MPa, the liquid space velocity (LHSV ) = 1 hr −1 , hydrogen / oil ratio (H 2 /Oil)=1.35 mol / mol, methylcyclohexane (MCHX) was dehydrogenated. The reaction conversion rate was 91%, which was the same as in the four experiments of Reference Example 2, and the reactor outlet gas composition was almost the same as in Reference Example 2. This gas was selectively permeated through a Pd-40Cu membrane having a film thickness of 25 μm at 250 ° C. with a separation membrane inlet gauge pressure of 0.75 MPa and a separation membrane outlet gauge pressure of 0.0 MPa. As a result, hydrogen was recovered one hour after the start of operation. The rate was 92.5%, and the hydrogen recovery rate 6 hours after the start of operation was 87.5% (RUN3-1). At the end of RUN3-1, the temperature of the hydrogen separation membrane was raised to 300 ° C. under a flow of hydrogen, and then immediately cooled to stop the operation. The next day, when the above apparatus was started up and operated under the same conditions as in RUN3-1, the hydrogen recovery rate after 1 hour of operation was restored to 89.0%, and hydrogen after 6 hours of operation was started. The recovery rate was also 88.0% (RUN3-2).

以上の参考例2、比較例1、実施例1の起動停止実験結果を表1にまとめる。   Table 1 summarizes the results of the start and stop experiments of Reference Example 2, Comparative Example 1, and Example 1.

Figure 0004684069
Figure 0004684069

(実施例2)
参考例1と同様の触媒25cm3を固定床流通式反応装置に充填し、参考例2と同様に起動して、参考例2の反応条件でMCHXを脱水素したところ、反応装置からの出口ガスは参考例2と同一の組成であり、転化率は91%であった。このガスを250℃の膜厚25μmのPd−40Cu膜に、分離膜入口ゲージ圧力0.75MPa、分離膜出口ゲージ圧力0.0MPaで通して選択透過させたところ、1時間後の水素純度は99.999%以上、水素回収率は89.3%であった。膜温度を250℃として運転を6時間続けたところ、水素回収率は82.5%まで低下した。運転開始6時間後の水素回収率測定後すぐに膜温度を50℃/30分で昇温して300℃とし、300℃になると同時に直ちに膜の温度を250℃に設定したところ、15分後に膜温度は250℃に戻った。運転開始から7時間後の水素回収率を再び測定したところ、水素回収率は89.5%まで回復していた。
(Example 2)
When 25 cm 3 of the same catalyst as in Reference Example 1 was charged into a fixed bed flow type reactor and started in the same manner as in Reference Example 2 and MCHX was dehydrogenated under the reaction conditions of Reference Example 2, the outlet gas from the reactor was The composition was the same as in Reference Example 2, and the conversion was 91%. When this gas was selectively permeated through a Pd-40Cu membrane having a film thickness of 25 μm at 250 ° C. with a separation membrane inlet gauge pressure of 0.75 MPa and a separation membrane outlet gauge pressure of 0.0 MPa, the hydrogen purity after 1 hour was 99 More than .999%, the hydrogen recovery rate was 89.3%. When the operation was continued for 6 hours at a membrane temperature of 250 ° C., the hydrogen recovery rate decreased to 82.5%. Immediately after measurement of the hydrogen recovery rate 6 hours after the start of operation, the membrane temperature was increased to 300 ° C. at 50 ° C./30 minutes, and immediately after reaching 300 ° C., the membrane temperature was immediately set to 250 ° C. The membrane temperature returned to 250 ° C. When the hydrogen recovery rate after 7 hours from the start of operation was measured again, the hydrogen recovery rate was recovered to 89.5%.

以上の結果から、運転停止に際して水素分離膜の温度を300℃以上であって且つ第一の温度よりも高い第二の温度にするか、運転中に水素回収率が低下した際に水素分離膜の温度を300℃以上であって且つ第一の温度よりも高い第二の温度にすることで、水素分離膜における水素の回収率を回復させられることが分る。また、この方法であれば、定常運転では、水素分離膜の温度が350℃未満であるので、Pd−Cu膜表面の金属粒子の再結晶が促進されることがなく、水素分離膜の寿命を延ばすことができる。   From the above results, when the operation is stopped, the temperature of the hydrogen separation membrane is set to a second temperature that is 300 ° C. or higher and higher than the first temperature, or when the hydrogen recovery rate decreases during operation, the hydrogen separation membrane It can be seen that the recovery rate of hydrogen in the hydrogen separation membrane can be recovered by setting the temperature of the second temperature to 300 ° C. or higher and higher than the first temperature. Also, with this method, in steady operation, the temperature of the hydrogen separation membrane is less than 350 ° C., so that recrystallization of metal particles on the surface of the Pd—Cu membrane is not promoted, and the life of the hydrogen separation membrane is increased. Can be extended.

本発明の高純度水素の製造方法に好適な製造装置の一例を示す模式図である。It is a schematic diagram which shows an example of the manufacturing apparatus suitable for the manufacturing method of the high purity hydrogen of this invention.

符号の説明Explanation of symbols

1 芳香族炭化水素水素化物タンク
2 脱水素反応器
3 熱交換器
4 バーナー
5 水素分離膜
6 気液分離器
7 回収油タンク
DESCRIPTION OF SYMBOLS 1 Aromatic hydrocarbon hydride tank 2 Dehydrogenation reactor 3 Heat exchanger 4 Burner 5 Hydrogen separation membrane 6 Gas-liquid separator 7 Recovery oil tank

Claims (7)

脱水素反応器中で芳香族炭化水素の水素化物の脱水素反応を行い、該脱水素反応により生成したガスをPd−Cuを主成分とする水素分離膜を用いて精製する高純度水素の製造方法において、
前記水素分離膜を150℃以上350℃未満の第一の温度で運転し、
前記水素分離膜の運転停止に際して、前記水素分離膜を300℃以上であって且つ前記第一の温度より高い第二の温度に加温処理した後に前記水素分離膜の運転を停止することを特徴とする高純度水素の製造方法。
Production of high-purity hydrogen in which dehydrogenation of aromatic hydrocarbon hydride is performed in a dehydrogenation reactor, and the gas produced by the dehydrogenation reaction is purified using a hydrogen separation membrane containing Pd-Cu as a main component In the method
Operating the hydrogen separation membrane at a first temperature of 150 ° C. or higher and lower than 350 ° C .;
When stopping the operation of the hydrogen separation membrane, the hydrogen separation membrane is heated to a second temperature higher than 300 ° C. and higher than the first temperature, and then the operation of the hydrogen separation membrane is stopped. A method for producing high purity hydrogen.
前記第一の温度が150℃以上300℃未満であることを特徴とする請求項1に記載の高純度水素の製造方法。   The method for producing high-purity hydrogen according to claim 1, wherein the first temperature is 150 ° C or higher and lower than 300 ° C. 前記第二の温度が300℃以上450℃以下であることを特徴とする請求項1に記載の高純度水素の製造方法。   The method for producing high-purity hydrogen according to claim 1, wherein the second temperature is 300 ° C. or higher and 450 ° C. or lower. 脱水素反応器中で芳香族炭化水素の水素化物の脱水素反応を行い、該脱水素反応により生成したガスをPd−Cuを主成分とする水素分離膜を用いて精製する高純度水素の製造方法において、
前記水素分離膜を150℃以上350℃未満の第一の温度で運転し、
前記水素分離膜における水素回収率が低下した際に前記水素分離膜の温度を300℃以上であって且つ前記第一の温度より高い第二の温度に昇温し、その後、該水素分離膜の温度を150℃以上350℃未満の第一の温度に降温して運転を継続することを特徴とする高純度水素の製造方法。
Production of high-purity hydrogen in which dehydrogenation of aromatic hydrocarbon hydride is performed in a dehydrogenation reactor, and the gas produced by the dehydrogenation reaction is purified using a hydrogen separation membrane containing Pd-Cu as a main component In the method
Operating the hydrogen separation membrane at a first temperature of 150 ° C. or higher and lower than 350 ° C .;
When the hydrogen recovery rate in the hydrogen separation membrane decreases, the temperature of the hydrogen separation membrane is raised to a second temperature that is 300 ° C. or higher and higher than the first temperature, and then the hydrogen separation membrane A method for producing high-purity hydrogen, wherein the temperature is lowered to a first temperature of 150 ° C. or higher and lower than 350 ° C. and the operation is continued.
前記水素分離膜における水素回収率が85%未満に低下した際に前記水素分離膜の温度を300℃以上であって且つ前記第一の温度より高い第二の温度に昇温することを特徴とする請求項4に記載の高純度水素の製造方法。   When the hydrogen recovery rate in the hydrogen separation membrane decreases to less than 85%, the temperature of the hydrogen separation membrane is raised to a second temperature that is 300 ° C. or higher and higher than the first temperature. The method for producing high-purity hydrogen according to claim 4. 前記第一の温度が150℃以上300℃未満であることを特徴とする請求項4に記載の高純度水素の製造方法。   The method for producing high-purity hydrogen according to claim 4, wherein the first temperature is 150 ° C or higher and lower than 300 ° C. 前記第二の温度が300℃以上450℃以下であることを特徴とする請求項4に記載の高純度水素の製造方法。

The method for producing high-purity hydrogen according to claim 4, wherein the second temperature is 300 ° C or higher and 450 ° C or lower.

JP2005287602A 2005-09-30 2005-09-30 Production method of high purity hydrogen Active JP4684069B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005287602A JP4684069B2 (en) 2005-09-30 2005-09-30 Production method of high purity hydrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005287602A JP4684069B2 (en) 2005-09-30 2005-09-30 Production method of high purity hydrogen

Publications (2)

Publication Number Publication Date
JP2007099528A JP2007099528A (en) 2007-04-19
JP4684069B2 true JP4684069B2 (en) 2011-05-18

Family

ID=38026828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005287602A Active JP4684069B2 (en) 2005-09-30 2005-09-30 Production method of high purity hydrogen

Country Status (1)

Country Link
JP (1) JP4684069B2 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4968526B2 (en) * 2007-06-21 2012-07-04 石油コンビナート高度統合運営技術研究組合 Method for separating hydrogen-containing gas
JP4915805B2 (en) * 2007-06-21 2012-04-11 石油コンビナート高度統合運営技術研究組合 Method for separating hydrogen-containing gas
JP5215057B2 (en) * 2008-06-27 2013-06-19 Jx日鉱日石エネルギー株式会社 Hydrogen production method
JP5243860B2 (en) * 2008-06-27 2013-07-24 Jx日鉱日石エネルギー株式会社 Hydrogen production method
JP5215058B2 (en) * 2008-06-27 2013-06-19 Jx日鉱日石エネルギー株式会社 Hydrogen production equipment
PL2417059T3 (en) * 2009-04-06 2015-05-29 Basf Se Method for reacting natural gas to aromatics while electrochemically removing hydrogen
PT2451769E (en) * 2009-07-10 2015-02-10 Basf Se Process for direct amination of hydrocarbons to amino hydrocarbons with electrochemical separation of hydrogen
US8961627B2 (en) 2011-07-07 2015-02-24 David J Edlund Hydrogen generation assemblies and hydrogen purification devices
JP6011538B2 (en) * 2011-09-13 2016-10-19 日立金属株式会社 Hydrogen separator and method for operating the same
US10717040B2 (en) 2012-08-30 2020-07-21 Element 1 Corp. Hydrogen purification devices
US9187324B2 (en) 2012-08-30 2015-11-17 Element 1 Corp. Hydrogen generation assemblies and hydrogen purification devices
US11738305B2 (en) 2012-08-30 2023-08-29 Element 1 Corp Hydrogen purification devices
US20140065020A1 (en) 2012-08-30 2014-03-06 David J. Edlund Hydrogen generation assemblies
JP6106128B2 (en) * 2014-05-30 2017-03-29 Jxエネルギー株式会社 Hydrogen supply system
US9605224B2 (en) 2014-11-12 2017-03-28 Element 1 Corp. Refining assemblies and refining methods for rich natural gas
US9828561B2 (en) 2014-11-12 2017-11-28 Element 1 Corp. Refining assemblies and refining methods for rich natural gas
US9777237B2 (en) 2014-11-12 2017-10-03 Element 1 Corp. Refining assemblies and refining methods for rich natural gas
JP2016190775A (en) * 2015-03-31 2016-11-10 Jxエネルギー株式会社 Hydrogen production system
US10870810B2 (en) 2017-07-20 2020-12-22 Proteum Energy, Llc Method and system for converting associated gas

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01262924A (en) * 1988-04-12 1989-10-19 Natl Res Inst For Metals Hydrogen separating membrane
JPH05317708A (en) * 1992-05-27 1993-12-03 Mitsubishi Heavy Ind Ltd Membrane reactor for dehydrogenation reaction
JP2000140584A (en) * 1998-11-16 2000-05-23 Mitsubishi Kakoki Kaisha Ltd Restoration of hydrogen permeability of hydrogen separation membrane
JP2003277020A (en) * 2002-03-25 2003-10-02 Ngk Insulators Ltd Apparatus and method for separating hydrogen and membrane reactor
JP2004181412A (en) * 2002-12-05 2004-07-02 Nok Corp Post-treatment method after hydrogen gas separation
JP2004338976A (en) * 2003-05-13 2004-12-02 Denso Corp Hydrogen producing apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01262924A (en) * 1988-04-12 1989-10-19 Natl Res Inst For Metals Hydrogen separating membrane
JPH05317708A (en) * 1992-05-27 1993-12-03 Mitsubishi Heavy Ind Ltd Membrane reactor for dehydrogenation reaction
JP2000140584A (en) * 1998-11-16 2000-05-23 Mitsubishi Kakoki Kaisha Ltd Restoration of hydrogen permeability of hydrogen separation membrane
JP2003277020A (en) * 2002-03-25 2003-10-02 Ngk Insulators Ltd Apparatus and method for separating hydrogen and membrane reactor
JP2004181412A (en) * 2002-12-05 2004-07-02 Nok Corp Post-treatment method after hydrogen gas separation
JP2004338976A (en) * 2003-05-13 2004-12-02 Denso Corp Hydrogen producing apparatus

Also Published As

Publication number Publication date
JP2007099528A (en) 2007-04-19

Similar Documents

Publication Publication Date Title
JP4684069B2 (en) Production method of high purity hydrogen
JP5215057B2 (en) Hydrogen production method
JP4801359B2 (en) Hydrogen production method
US20160214858A1 (en) Multi-zone dehydrogenation reactor and ballasting system for storage and delivery of hydrogen
Durán et al. Pure hydrogen from biogas: Intensified methane dry reforming in a two-zone fluidized bed reactor using permselective membranes
JP5288840B2 (en) Hydrogen production system
JP4849775B2 (en) Hydrogen supply system for fuel cell operating chassis
JP5036969B2 (en) Energy station
JP2005035842A (en) Hydrogen production system
WO2015151992A1 (en) System for manufacturing aromatic compound and method for manufacturing same
JP2004256336A (en) System and method for hydrogen generation
KR102357603B1 (en) Process for Storing and Releasing Hydrogen Using Liquid Organic Hydrogen Carriers
JP5102932B2 (en) High purity hydrogen production method
JP5243860B2 (en) Hydrogen production method
JP5243859B2 (en) Hydrogen production apparatus and hydrogen production method
JP2007076982A (en) Hydrogen production system and power generation system
JP5215058B2 (en) Hydrogen production equipment
JP2007076992A (en) Apparatus for producing hydrogen and fuel cell system using the same
JP5127516B2 (en) Raw material composition for hydrogen generation and method for producing hydrogen
WO2014157133A1 (en) Method for operating hydrogen supply system, hydrogen supply equipment, and hydrogen supply system
JP5243861B2 (en) Hydrogen storage device and hydrogen storage method
US20230135291A1 (en) Hydrogen supply system
JP2007131500A (en) Hydrogen production apparatus
JP6646526B2 (en) Hydrogen gas production method and hydrogen gas production device
JP2006143507A (en) Method for selectively recovering hydrogen from hydrogen-containing mixed gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080526

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110208

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4684069

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250