WO2014157133A1 - Method for operating hydrogen supply system, hydrogen supply equipment, and hydrogen supply system - Google Patents

Method for operating hydrogen supply system, hydrogen supply equipment, and hydrogen supply system Download PDF

Info

Publication number
WO2014157133A1
WO2014157133A1 PCT/JP2014/058177 JP2014058177W WO2014157133A1 WO 2014157133 A1 WO2014157133 A1 WO 2014157133A1 JP 2014058177 W JP2014058177 W JP 2014058177W WO 2014157133 A1 WO2014157133 A1 WO 2014157133A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
reactor
dehydrogenation
hydrogen supply
supply system
Prior art date
Application number
PCT/JP2014/058177
Other languages
French (fr)
Japanese (ja)
Inventor
菜々子 小畠
智史 古田
小林 幸雄
Original Assignee
Jx日鉱日石エネルギー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石エネルギー株式会社 filed Critical Jx日鉱日石エネルギー株式会社
Priority to JP2015508509A priority Critical patent/JP6086976B2/en
Publication of WO2014157133A1 publication Critical patent/WO2014157133A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/22Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0266Processes for making hydrogen or synthesis gas containing a decomposition step
    • C01B2203/0277Processes for making hydrogen or synthesis gas containing a decomposition step containing a catalytic decomposition step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/066Integration with other chemical processes with fuel cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1005Arrangement or shape of catalyst
    • C01B2203/1011Packed bed of catalytic structures, e.g. particles, packing elements
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas

Definitions

  • Various aspects and embodiments of the present invention relate to a method for operating a hydrogen supply system, a hydrogen supply facility, and a hydrogen supply system.
  • Patent Document 1 As a conventional hydrogen supply system, a system that generates and supplies hydrogen from a raw material by a catalytic reaction is known (see, for example, Patent Document 1).
  • the hydrogen supply system of Patent Document 1 includes a tank for storing a raw material aromatic hydrocarbon hydride, and a reactor for obtaining hydrogen by supplying the raw material supplied from the tank to a dehydrogenation catalyst and performing a dehydrogenation reaction. ing.
  • the present inventor has found that the organic compound produced during the dehydrogenation treatment remains in the reactor even after the dehydrogenation treatment, thereby deteriorating the dehydrogenation catalyst, and has led to the present invention.
  • the operation method according to one aspect of the present invention is an operation method of the hydrogen supply system.
  • the hydrogen supply system has a reactor in which a catalyst is accommodated, and supplies hydrogen by supplying a raw material containing a hydride of an organic compound to the reactor and performing a dehydrogenation reaction with a dehydrogenation catalyst.
  • the method includes a dehydrogenation reaction start step and a dehydrogenation reaction end step.
  • the dehydrogenation reaction start step the supply of the raw material to the reactor is started.
  • the dehydrogenation completion step the supply of the raw material to the reactor is stopped.
  • the method further includes a hydrogen supply step of supplying hydrogen to the reactor at least one before the dehydrogenation reaction start step and after the dehydrogenation reaction end step.
  • an organic compound generated during the dehydrogenation process may remain inside the reactor even after the dehydrogenation process.
  • the remaining organic compound reacts with the dehydrogenation catalyst, coke is deposited on the surface of the dehydrogenation catalyst, and the dehydrogenation catalyst may be deteriorated.
  • hydrogen is supplied to the reactor at least before and after the dehydrogenation reaction process performed by supplying the raw material. For this reason, the inside of the reactor is in a state filled with hydrogen at least before and after the dehydrogenation reaction treatment.
  • hydrogen obtained by dehydrogenation reaction in a reactor may be used.
  • a separate gas such as nitrogen as a purge gas for the reactor. Deterioration can be suppressed.
  • the dehydrogenation reaction start step and the dehydrogenation reaction end step may be repeatedly executed. Then, when the hydrogen supply step is executed before the dehydrogenation reaction start step, the dehydrogenation reaction end step may be executed at least once. Even in such a case, deterioration of the dehydrogenation catalyst can be suppressed.
  • the reactor may not be opened to the atmosphere after the dehydrogenation reaction end step and before the dehydrogenation reaction start step.
  • the dehydrogenation catalyst has pores formed on the surface, and in the hydrogen supply step, a value obtained by dividing the volume of hydrogen present in the reactor by the volume of the pores is 0.9 or more. As such, hydrogen may be supplied to the reactor. By supplying hydrogen so that it may become the said value, deterioration of a dehydrogenation catalyst can be suppressed with the minimum amount of hydrogen required.
  • the pressure inside the reactor may be higher than atmospheric pressure.
  • a hydrogen supply facility is a hydrogen supply facility using the above-described operation method of the hydrogen supply system. This hydrogen supply facility has the same effect as the operation method described above.
  • a hydrogen supply system supplies hydrogen.
  • the hydrogen supply system includes a reactor, a raw material supply unit, a hydrogen supply unit, and a control unit.
  • the reactor contains a dehydrogenation catalyst and generates hydrogen by dehydrogenating a raw material containing a hydride of an organic compound.
  • the raw material supply unit supplies the raw material to the reactor.
  • the hydrogen supply unit supplies hydrogen generated by the reactor to the reactor.
  • the control unit controls operations of the raw material supply unit and the hydrogen supply unit.
  • the control unit operates the raw material supply unit before starting the supply of the raw material to the reactor, and at least one after operating the raw material supply unit to stop the supply of the raw material to the reactor,
  • the hydrogen supply unit is operated to supply hydrogen to the reactor.
  • this hydrogen supply system includes a control unit that executes the above-described operation method, the same effect as the above-described operation method can be obtained.
  • a hydrogen supply facility is a hydrogen supply facility including the above-described hydrogen supply system. This hydrogen supply facility has the same effect as the operation method described above.
  • a method for operating a hydrogen supply system and a hydrogen supply system that can suppress degradation of a dehydrogenation catalyst are provided.
  • FIG. 1 is a block diagram illustrating a configuration of a hydrogen supply system according to an embodiment.
  • the hydrogen supply system 100 uses a hydride of an organic compound as a raw material.
  • the hydride of an organic compound is a liquid at room temperature, for example.
  • Examples of hydrides of organic compounds include organic hydrides.
  • An organic hydride is an organic compound that reversibly releases hydrogen through a catalytic reaction, for example, a saturated condensed ring hydrocarbon such as cyclohexane or decalin, for example, an aromatic hydrocarbon that is produced in large quantities in a refinery. Is a hydride reacted with.
  • the organic hydride is not limited to an aromatic hydrogenated compound, and may be a 2-propanol system.
  • the organic hydride can be transported to the hydrogen supply system 100 as a liquid fuel by a tank lorry as in the case of gasoline.
  • methylcyclohexane hereinafter referred to as MCH
  • hydrides of aromatic hydrocarbons such as cyclohexane, dimethylcyclohexane, ethylcyclohexane, decalin, methyldecalin, dimethyldecalin, and ethyldecalin can be used as the organic hydride.
  • the hydrogen supply system 100 can supply hydrogen to a fuel cell vehicle or a hydrogen engine vehicle.
  • a dehydrogenated product obtained by dehydrogenating a hydride of an organic compound as a raw material is removed.
  • the dehydrogenation product is, for example, an organic compound that is liquid at room temperature.
  • MCH molecular hydrogen
  • the dehydrogenation product removed in the process of hydrogen purification is toluene
  • the dehydrogenation product may contain not only toluene but also unreacted MCH and a small amount of by-products, but when mixed with toluene, it exhibits the same behavior as toluene. Therefore, in the following description, what is referred to as “toluene” includes unreacted MCH and by-products.
  • a hydrogen supply system 100 includes an MCH tank 1, a vaporizer 2, a temperature raising device 3, a dehydrogenation reactor (reactor) 4, a gas-liquid separator 5, a toluene tank ( A raw material supply unit) 6, a refrigerator 7, a hydrogen purifier (hydrogen supply unit) 8, and a control unit 11. Further, the hydrogen supply system 100 includes transfer lines PL1 to PL11 and a pump 9.
  • the transport lines PL1 to PL11 are lines through which MCH, toluene, hydrogen-containing gas, or high-purity purified hydrogen gas passes.
  • the transfer line PL1 connects the MCH tank 1 and the vaporizer 2.
  • the transport line PL2 connects the vaporizer 2 and the temperature riser 3.
  • the transfer line PL3 connects the temperature raising device 3 and the dehydrogenation reactor 4.
  • the transfer line PL4 connects the dehydrogenation reactor 4 and the gas-liquid separator 5.
  • the conveyance line PL9 connects the gas-liquid separator 5 and the toluene tank 6.
  • the conveyance lines PL10 and PL11 connect the gas-liquid separator 5 and the refrigerator 7.
  • the transfer lines PL5 and PL6 connect the gas-liquid separator 5 and the hydrogen purifier 8 with each other.
  • the transfer line PL7 connects the hydrogen purifier 8 to an external hydrogen consumption device or a hydrogen supply device (not shown).
  • the transfer line PL8 connects the hydrogen purifier 8 and the vaporizer 2.
  • a pump 9 is provided in the transport line PL1.
  • the transport line PL8 is provided with a pump 12 for circulating hydrogen from the hydrogen purifier 8 to the vaporizer 2.
  • the pump 12 may be provided between the connection part of the conveyance line PL1 and the conveyance line PL8, and the vaporizer
  • the MCH tank 1 is a tank that stores MCH as a raw material. MCH transported from outside by a tank lorry or the like is stored in the MCH tank 1. The MCH stored in the MCH tank 1 is supplied to the vaporizer 2 by the pump 9 via the transport line PL1.
  • the vaporizer 2 is a device that vaporizes a liquid.
  • the vaporizer 2 is supplied with liquid MCH from the MCH tank 1 via an injector or the like. Further, the vaporizer 2 may be supplied with liquid or gaseous hydrogen from the hydrogen purifier 8 via the transfer line PL8 as necessary.
  • the supply of MCH and hydrogen to the vaporizer 2 can be controlled by electromagnetic valves (not shown) or the like provided in the transport line PL1 and the transport line PL8. Details of the supply control will be described later.
  • the vaporizer 2 may be supplied with only hydrogen when only MCH is supplied, or when MCH and hydrogen are supplied. For example, when MCH and hydrogen are supplied to the vaporizer 2, the vaporized MCH and hydrogen are supplied to the temperature raising device 3 via the transport line PL2.
  • the heater 3 is a device that heats the gas passing through the transport line PL2 and raises the temperature of the gas.
  • the gas heated by the temperature raising device 3 is supplied to the dehydrogenation reactor 4 through the transport line PL3.
  • the dehydrogenation reactor 4 is a device that obtains hydrogen by dehydrogenating MCH.
  • the dehydrogenation reactor 4 defines a space inside, and a dehydrogenation catalyst is accommodated in the space.
  • the dehydrogenation reactor 4 is a device that extracts hydrogen from MCH by a dehydrogenation reaction using the dehydrogenation catalyst.
  • valves and the like are arranged at the gas inlet and outlet of the dehydrogenation reactor 4 so as to be hermetically sealed.
  • the dehydrogenation catalyst for example, a catalyst in which platinum, ruthenium, palladium, rhodium, tin, rhenium, germanium or the like is supported on a porous carrier in which pores such as alumina are formed is used.
  • the dehydrogenation catalyst may be a plate-type catalyst or a cylindrical pellet catalyst.
  • the dehydrogenation catalyst may cause coking depending on its use and the performance may be reduced.
  • the dehydrogenation catalyst can be used repeatedly by performing a recovery process to restore the original performance by calcination in the presence of oxygen.
  • the organic hydride reaction is a reversible reaction and is subject to chemical equilibrium constraints, so the direction of the reaction changes depending on reaction conditions such as temperature or pressure.
  • the dehydrogenation reaction is a reaction in which the number of molecules always increases by an endothermic reaction. Therefore, high temperature and low pressure conditions are advantageous. Therefore, a compressor for setting the dehydrogenation reactor 4 to a high pressure is not necessary.
  • the dehydrogenation reactor 4 is supplied with heat from a heat source (not shown) via a high temperature gas for heating.
  • the dehydrogenation reactor 4 has a mechanism capable of exchanging heat between the MCH flowing in the dehydrogenation catalyst and the hot gas for heating from the heat source.
  • the hydrogen-containing gas taken out by the dehydrogenation reactor 4 is supplied to the gas-liquid separator 5 through the transport line PL4.
  • the hydrogen-containing gas flowing through the transfer line PL4 is supplied to the gas-liquid separator 5 in a state where the liquid toluene is contained as a mixture.
  • the gas-liquid separator 5 is a tank that separates toluene from the hydrogen-containing gas.
  • the gas-liquid separator 5 stores a hydrogen-containing gas containing toluene as a mixture.
  • the hydrogen-containing gas is transported in the order of the transport line PL11, the refrigerator 7 and PL10, is cooled by circulating through the refrigerator 7, and is gas-liquid into hydrogen as a gas and toluene as a liquid in the gas-liquid separator 5.
  • the toluene separated by the gas-liquid separator 5 is supplied to the toluene tank 6 via the transport line PL9.
  • the toluene tank 6 is a tank for storing liquid toluene separated by the gas-liquid separator 5.
  • the toluene stored in the toluene tank 6 can be recovered and used.
  • the hydrogen-containing gas separated by the gas-liquid separator 5 is supplied to the hydrogen purifier 8 through the transport line PL5.
  • the hydrogen purifier 8 removes toluene, which is a dehydrogenation product, from the hydrogen-containing gas separated by the gas-liquid separator 5 by membrane separation. As a result, the hydrogen purifier 8 purifies the hydrogen-containing gas to obtain high-purity purified hydrogen gas.
  • the hydrogen purifier 8 allows a hydrogen-containing gas pressurized to a predetermined pressure to pass through a membrane heated to a predetermined temperature, thereby removing a dehydrogenation product and obtaining a high-purity purified hydrogen gas. .
  • the hydrogen recovery rate of the hydrogen purifier 8 by membrane separation is 85 to 95%.
  • the separation factor of “hydrogen / toluene” of the membrane used in the hydrogen purifier 8 is preferably 1000 or more, and more preferably 10,000 or more. When the separation factor of “hydrogen / toluene” is 10,000 or more, the separation factor of “hydrogen / methane” of the membrane is 1000 or more.
  • the high purity hydrogen gas obtained by passing through the membrane is supplied
  • the type of membrane applied to the hydrogen purifier 8 is not particularly limited, and a porous membrane or a non-porous membrane can be applied.
  • the porous membrane may be, for example, one that is separated by molecular flow, one that is separated by surface diffusion flow, one that is separated by capillary condensation, or one that is separated by molecular sieving.
  • a membrane applied to the hydrogen purifier 8 for example, a metal membrane, a zeolite membrane, an inorganic membrane, or a polymer membrane can be employed.
  • the metal film for example, a PbAg-based, PdCu-based, or Nb-based metal is used.
  • the inorganic film for example, a silica film or a carbon film is used.
  • a polyimide film is used as the polymer film.
  • the pressure of the gas (purified hydrogen gas) that has passed through the membrane of the hydrogen purifier 8 is reduced, and the pressure of the non-permeated gas that has not passed through the membrane is not reduced.
  • the non-permeate gas that has not permeated the membrane of the hydrogen purifier 8 is supplied to the transport line PL8 or the transport line PL6 as an off-gas containing hydrogen and a dehydrogenated product.
  • the transfer line PL 8 causes a part or all of the off-gas from the hydrogen purifier 8 to undergo a dehydrogenation reaction via the vaporizer 2 and the heater 3. Supply to vessel 4.
  • the off gas When supplying all of the off gas to the dehydrogenation reactor 4, the off gas does not flow to the transfer line PL6. On the other hand, when a part of the off gas is supplied to the dehydrogenation reactor 4, the surplus off gas is supplied to the gas-liquid separator 5 through the transfer line PL6.
  • the hydrogen supply system 100 includes pressure regulating means such as a pressure regulating valve and flow rate control means such as a flow rate control valve as necessary.
  • pressure regulating means such as a pressure regulating valve and flow rate control means such as a flow rate control valve as necessary.
  • the reaction pressure of the dehydrogenation reactor 4 and the pressure of the membrane of the hydrogen purifier 8 can be controlled.
  • pressure regulating means and flow rate control means may be provided between the hydrogen purifier 8 and the vaporizer 2 or the dehydrogenation reactor 4.
  • it may be provided on the transport line PL8.
  • the control unit 11 is a general computer unit that includes a CPU, a memory, a storage medium, a display device, and the like, and is connected to the components of the hydrogen supply system 100 described above and configured to be able to control each component. .
  • FIG. 2 is a flowchart showing the operation of the hydrogen supply system 100 according to the present embodiment.
  • the control process shown in FIG. 2 can be executed by the control unit 11.
  • a case where the hydrogen supply system 100 is operated in an operation that repeats system start and system stop will be described as an example.
  • the operation of the hydrogen supply system 100 will be described with reference to the temperature profile of the dehydrogenation reactor 4 shown in FIG.
  • the horizontal axis represents the elapsed time based on the start timing of the flowchart shown in FIG. 2 (0 min), and the vertical axis represents the temperature of the dehydrogenation reactor 4.
  • the hydrogen supply system 100 is first started (S10).
  • the control part 11 performs the starting process of each component so that it can be operate
  • S12 determines the process of S12.
  • the control unit 11 determines whether or not the activation of the hydrogen supply system 100 is the first activation.
  • the first activation refers to activation at a timing when a dehydrogenation catalyst is newly introduced or activation immediately after a dehydrogenation catalyst recovery process is performed.
  • the process of S12 when it is determined that it is not the first activation, the process proceeds to a hydrogen supply process (S14).
  • the control unit 11 supplies hydrogen to the dehydrogenation reactor 4 (hydrogen supply step). Since the system is not fully activated at this timing, the hydrogen-containing gas cannot be supplied from the hydrogen purifier 8, so a tank (not shown) for storing purified hydrogen, a separately installed hydrogen cylinder, etc. Hydrogen is supplied to the dehydrogenation reactor 4 as a raw material supply unit. Thereby, the inside of the dehydrogenation reactor 4 can be filled with hydrogen when the dehydrogenation reactor 4 is started after the dehydrogenation reaction treatment is performed once.
  • the control unit 11 controls the hydrogen supply system 100 to start a steady operation of the dehydrogenation process (dehydrogenation reaction start step).
  • the steady operation is started from the timing when MCH is supplied to the dehydrogenation reactor 4.
  • MCH is supplied from the MCH tank 1 to the dehydrogenation reactor 4 via the vaporizer 2 and the temperature raising device 3.
  • the hydrogen-containing gas obtained from the dehydrogenation reactor 4 is separated in the gas-liquid separator 5 and purified by the hydrogen purifier 8.
  • hydrogen is supplied to the dehydrogenation reactor 4 using a tank (not shown) for storing purified hydrogen, a separately attached hydrogen cylinder or the like as a raw material supply unit.
  • the off-gas containing hydrogen from the hydrogen purifier 8 is returned to the dehydrogenation reactor 4.
  • the dehydrogenation reaction is performed while supplying MCH and hydrogen into the dehydrogenation reactor 4.
  • the supply of MCH and hydrogen is indicated by arrows.
  • the control unit 11 ends the steady operation (S20: dehydrogenation reaction end step).
  • the steady operation ends at the timing when the supply of MCH to the dehydrogenation reactor 4 is stopped. At this time, the supply of hydrogen to the dehydrogenation reactor 4 is also stopped (see FIG. 3).
  • the control unit 11 starts the process of stopping the system when the steady operation ends (S22).
  • the process of lowering the temperature of the dehydrogenation reactor 4 to a predetermined temperature for example, normal temperature
  • a predetermined temperature for example, normal temperature
  • supply of heat from a heat source (not shown) to the dehydrogenation reactor 4 is stopped.
  • the controller 11 supplies hydrogen to the dehydrogenation reactor 4 and depressurizes it (S24: hydrogen supply step).
  • Hydrogen may be supplied to the off-gas remaining in the hydrogen purifier 8, or a tank (not shown) for storing purified hydrogen, a separately attached hydrogen cylinder or the like is used as a raw material supply unit, and hydrogen is supplied to the dehydrogenation reactor 4. You may supply. Thereafter, the gas inlet / outlet valve of the dehydrogenation reactor 4 is closed and sealed. Thereby, the dehydrogenation reactor 4 is filled with hydrogen. That is, the dehydrogenation reactor 4 is not released to the atmosphere until the next system startup. When the temperature of the dehydrogenation reactor 4 decreases to a predetermined temperature (for example, room temperature), the system stop is finished (S26).
  • a predetermined temperature for example, room temperature
  • control unit 11 is configured so that the value obtained by dividing the volume of hydrogen present in the dehydrogenation reactor 4 by the volume of the pores of the dehydrogenation catalyst is 0.9 or more.
  • Hydrogen may be supplied to the dehydrogenation reactor 4. Details will be described below. As described above, it is considered that toluene remaining in the dehydrogenation reactor 4 causes coking of the dehydrogenation catalyst.
  • the pore volume of the dehydrogenation catalyst is assumed to be the volume of toluene, and the void volume in the internal space of the dehydrogenation reactor 4 is assumed to be the volume of hydrogen.
  • the ratio between the minimum amount of hydrogen to be supplied to the dehydrogenation reactor 4 after the end of the steady operation and the amount of remaining toluene can be calculated.
  • the value of hydrogen amount / toluene amount was 10.
  • the value of hydrogen amount / toluene amount was 0.9.
  • hydrogen is supplied to the dehydrogenation reactor 4 so that the value obtained by dividing the volume of hydrogen present in the dehydrogenation reactor 4 by the volume of the pores of the dehydrogenation catalyst becomes 0.9 or more. Therefore, the dehydrogenation catalyst can be most effectively prevented from deteriorating.
  • hydrogen is supplied to the dehydrogenation reactor 4 at least before and after the dehydrogenation reaction process performed by supplying MCH. Is done. For this reason, the inside of the dehydrogenation reactor 4 is in a state filled with hydrogen at least one before and after the dehydrogenation reaction treatment. Therefore, even when the organic compound remains in the dehydrogenation reactor 4 after the dehydrogenation reaction treatment, the supplied hydrogen and the remaining organic compound are prevented from reacting to generate carbon from the organic compound. Therefore, it can be avoided that coke is deposited on the surface of the dehydrogenation catalyst. Therefore, it is possible to suppress the deterioration of the dehydrogenation catalyst.
  • purging of the dehydrogenation reactor 4 is performed with an inert gas.
  • the hydrogen supply system 100 and the operation method of the hydrogen supply system 100 according to the present embodiment the hydrogen supply system 100 Since it can purge with the produced
  • the present invention is not limited to the above-described embodiment.
  • an example has been described in which hydrogen is supplied from the hydrogen purifier 8 to the vaporizer 2 via the transfer line PL8.
  • the embodiment is not limited to the above configuration, and for example, a hydrogen cylinder or the like is vaporized. 2, or purified hydrogen may be supplied to the vaporizer 2, or hydrogen may be directly supplied from the hydrogen purifier 8 to the dehydrogenation reactor 4.
  • the example has been described in which hydrogen is supplied both before and after the dehydrogenation reaction process performed by supplying MCH.
  • the hydrogen supply step is performed after starting the system, before starting the steady operation, and after finishing the steady operation and before stopping the system has been described. It may be before and after the reaction process. For example, it may be before the start of the system start or after the end of the system stop.
  • the supply of hydrogen may be stopped before the process of S24 is reached.
  • the depressurization process shown in S24 may be performed in parallel with the process of stopping the system shown in S22 by keeping the supply of hydrogen. Even when hydrogen is continuously supplied, the end of the steady operation is determined at the timing when the supply of MCH to the dehydrogenation reactor 4 is stopped.
  • the dehydrogenation reactor 4 may be maintained in a state where the internal pressure is at least higher than the atmospheric pressure regardless of whether or not the depressurization process of S24 is performed.
  • the internal pressure of the dehydrogenation reactor 4 is always maintained at least higher than the atmospheric pressure, so that the dehydrogenation reaction is performed as compared with the case where the internal pressure of the dehydrogenation reactor 4 is the atmospheric pressure.
  • the device 4 can be activated quickly. By quickly starting the dehydrogenation reactor 4, the amount of hydrogen supplied at the time of starting can be reduced. Furthermore, since repetition of pressurization and depressurization can be avoided, the load applied to the piping and the like can be reduced, and as a result, durability can be improved.
  • the hydrogen purifier 8 is not limited to an apparatus for removing by membrane separation, and various apparatuses can be adopted.
  • a hydrogen separation apparatus including a hydrogen separation membrane is used, and impurities are adsorbed when using a PSA (Pressure swinging adsorption) method or a TSA (Temperature swinging adsorption) method.
  • PSA Pressure swinging adsorption
  • TSA Temporal swinging adsorption
  • part or all of the off-gas of the hydrogen purifier 8 is supplied to the dehydrogenation reactor 4 via the vaporizer 2 and the temperature raising device 3 .
  • the method of supplying hydrogen to 4 is not limited to the above embodiment.
  • part or all of the off-gas of the hydrogen purifier 8 may be supplied to the dehydrogenation reactor 4 without passing through at least one of the vaporizer 2 and the temperature raising device 3 as indicated by the dotted line in FIG.
  • hydrogen may be supplied from another hydrogen cylinder 13.
  • the hydrogen supply system may be used for any purpose, and may be applied to, for example, a hydrogen supply facility.
  • the hydrogen supply facility is various facilities for supplying hydrogen, and includes, for example, a hydrogen station.
  • a hydrogen supply device compressor, cooler, or storage tank
  • a hydrogen supply system may be used as a hydrogen station.
  • hydrogen may be directly supplied to the hydrogen consuming device by connecting a hydrogen consuming device (such as a power generation device) downstream of the hydrogen purifier.
  • a hydrogen supply system for a distributed power source (for example, a household power source or an emergency power source).
  • Example 1 (Confirmation of deterioration suppression effect of hydrogen dehydrogenation catalyst) (Example 1)
  • the hydrogen supply system 100 was operated by the operation method described in FIG. That is, before the steady operation (before the start of MCH supply), hydrogen was supplied to the dehydrogenation reactor 4, and then the steady operation was started. Hydrogen was supplied to the dehydrogenation reactor 4 after completion of steady operation (after completion of MCH supply).
  • a plate-type catalyst was used as the dehydrogenation catalyst.
  • the amount of hydrogen supplied to the dehydrogenation reactor 4 was 10 times the pore volume of the dehydrogenation catalyst.
  • the dehydrogenation reactor 4 was not opened to the atmosphere between the end of the steady operation and before the start of the steady operation.
  • Example 2 Nitrogen was supplied to the dehydrogenation reactor 4 before steady operation (before the start of MCH supply). Others were the same as Example 1.
  • Example 3 After steady operation (after completion of MCH supply), nitrogen was supplied to the dehydrogenation reactor 4. Others were the same as Example 1.
  • Comparative Example 1 Before steady operation (before the start of MCH supply), nitrogen was supplied to the dehydrogenation reactor 4, and then steady operation was started. Nitrogen was supplied to the dehydrogenation reactor 4 after completion of steady operation (after completion of MCH supply). The dehydrogenation reactor 4 was not opened to the atmosphere between the end of the steady operation and before the start of the steady operation.
  • the control process shown in FIG. 2 was defined as one cycle, and the cycle was repeated to evaluate the deterioration of the dehydrogenation catalyst.
  • the deterioration of the dehydrogenation catalyst was evaluated by the MCH conversion rate.
  • operation and measurement were repeated 6 times by the method of the comparative example.
  • the recovery process of the dehydrogenation catalyst was performed.
  • the operation and measurement were repeated 6 times by the method of Example 1.
  • the operation and measurement were repeated three times by the method of Example 2.
  • operation and measurement were repeated twice by the method of Example 3.
  • the results are shown in FIG.
  • the horizontal axis represents the number of repetitions
  • the vertical axis represents the MCH conversion rate.
  • the straight line shown in the figure is the result of linear fitting of plot points. As shown in FIG.
  • Example 4 A cylindrical pellet catalyst was used as the dehydrogenation catalyst. The amount of hydrogen supplied to the dehydrogenation reactor 4 was 0.9 times the volume of the pores of the dehydrogenation catalyst (lower limit of the theoretical value). Other operating conditions were the same as in Example 1. (Comparative Example 2) A cylindrical pellet catalyst was used as the dehydrogenation catalyst. The same amount of nitrogen as in Example 4 was supplied to the dehydrogenation reactor 4. Other operating conditions were the same as those in Comparative Example 1.
  • Example 4 the control process shown in FIG. 2 was performed twice to evaluate the deterioration of the dehydrogenation catalyst.
  • the deterioration of the dehydrogenation catalyst was evaluated by the MCH conversion rate with an evaluation time of 3 hours. And the fall rate of the MCH conversion rate between the 1st time and the 2nd time was computed.
  • the results are shown in Table 1.
  • the reduction rate of Example 4 was 4%
  • the reduction rate of Comparative Example 2 was 21%. Therefore, even if the amount of hydrogen supplied to the dehydrogenation reactor 4 is 0.9 times the volume of the pores of the dehydrogenation catalyst (lower limit of the theoretical value), the degradation of the dehydrogenation catalyst is suppressed. It was confirmed that

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

A method for operating a hydrogen supply system which includes a reactor that contains a dehydrogenation catalyst and in which a feed material comprising a hydrogenated organic compound is supplied to the reactor and dehydrogenated with the catalyst to obtain hydrogen. The method includes a dehydrogenation initiation step and a dehydrogenation termination step. The method further includes a hydrogen supply step in which hydrogen is supplied to the reactor before the dehydrogenation initiation step and/or after the dehydrogenation termination step.

Description

水素供給システムの運転方法、水素供給設備及び水素供給システムOperation method of hydrogen supply system, hydrogen supply equipment and hydrogen supply system
 本発明の種々の側面及び実施形態は、水素供給システムの運転方法、水素供給設備及び水素供給システムに関するものである。 Various aspects and embodiments of the present invention relate to a method for operating a hydrogen supply system, a hydrogen supply facility, and a hydrogen supply system.
 従来の水素供給システムとして、触媒反応によって原料から水素を生成して供給するシステムが知られている(例えば特許文献1参照。)。特許文献1の水素供給システムは、原料の芳香族炭化水素の水素化物を貯蔵するタンク、当該タンクから供給された原料を脱水素触媒へ供給し脱水素反応させることによって水素を得る反応器を備えている。 As a conventional hydrogen supply system, a system that generates and supplies hydrogen from a raw material by a catalytic reaction is known (see, for example, Patent Document 1). The hydrogen supply system of Patent Document 1 includes a tank for storing a raw material aromatic hydrocarbon hydride, and a reactor for obtaining hydrogen by supplying the raw material supplied from the tank to a dehydrogenation catalyst and performing a dehydrogenation reaction. ing.
特開2006-232607号公報JP 2006-232607 A
 特許文献1記載のガス処理システムのように、脱水素触媒を用いて水素を得るシステムにあっては、脱水素触媒が劣化すると原料から水素への転化率が低下するため、脱水素触媒の劣化を防止することが重要となる。これに対して、脱水素反応処理前後において、反応器の内部を窒素ガス等の不活性ガスによって充填し、脱水素触媒を外気に晒すことなく保持することも考えられるが、脱水素触媒の劣化を適切に防止するためには改善の余地がある。本技術分野では、脱水素触媒の劣化を抑制することができる水素供給システムの運転方法、水素供給設備及び水素供給システムが望まれている。 In a system that obtains hydrogen using a dehydrogenation catalyst, such as the gas treatment system described in Patent Document 1, when the dehydrogenation catalyst deteriorates, the conversion rate from the raw material to hydrogen decreases. It is important to prevent this. On the other hand, before and after the dehydrogenation reaction treatment, the inside of the reactor may be filled with an inert gas such as nitrogen gas, and the dehydrogenation catalyst may be maintained without being exposed to the outside air. There is room for improvement in order to properly prevent this. In this technical field, an operation method of a hydrogen supply system, a hydrogen supply facility, and a hydrogen supply system that can suppress the deterioration of the dehydrogenation catalyst are desired.
 本発明者は、脱水素反応処理時に生じた有機化合物が、脱水素反応処理後においても反応器内部に残存することによって脱水素触媒を劣化させることを見出し、本発明をするに至った。 The present inventor has found that the organic compound produced during the dehydrogenation treatment remains in the reactor even after the dehydrogenation treatment, thereby deteriorating the dehydrogenation catalyst, and has led to the present invention.
 すなわち、本発明の一側面に係る運転方法は、水素供給システムの運転方法である。該水素供給システムは、内部に触媒が収容された反応器を有し、該反応器へ有機化合物の水素化物を含む原料を供給して脱水素触媒により脱水素反応させることによって水素を得る。該方法は、脱水素反応開始ステップ及び脱水素反応終了ステップを備える。脱水素反応開始ステップでは、反応器への原料の供給を開始する。脱水素反応終了ステップでは、反応器への原料の供給を停止する。ここで、該方法は、脱水素反応開始ステップの前及び脱水素反応終了ステップの後の少なくとも一方において、反応器へ水素を供給する水素供給ステップをさらに備える。 That is, the operation method according to one aspect of the present invention is an operation method of the hydrogen supply system. The hydrogen supply system has a reactor in which a catalyst is accommodated, and supplies hydrogen by supplying a raw material containing a hydride of an organic compound to the reactor and performing a dehydrogenation reaction with a dehydrogenation catalyst. The method includes a dehydrogenation reaction start step and a dehydrogenation reaction end step. In the dehydrogenation reaction start step, the supply of the raw material to the reactor is started. In the dehydrogenation completion step, the supply of the raw material to the reactor is stopped. Here, the method further includes a hydrogen supply step of supplying hydrogen to the reactor at least one before the dehydrogenation reaction start step and after the dehydrogenation reaction end step.
 反応器を用いて脱水素反応処理を行った場合には、脱水素反応処理時に生じた有機化合物が脱水素反応処理後においても反応器内部に残存する場合がある。この場合、残存した有機化合物が脱水素触媒と反応し、脱水素触媒の表面にコークが析出して、脱水素触媒が劣化するおそれがある。この水素供給システムの運転方法では、原料を供給して行う脱水素反応処理の前後の少なくとも一方において、反応器に水素が供給される。このため、反応器の内部は、脱水素反応処理の前後の少なくとも一方において水素が充填された状態となる。従って、脱水素反応処理後に有機化合物が反応器内に残存した場合であっても、供給された水素と残存した有機化合物とが反応し有機化合物から炭素が生成されることを抑制するため、コークが脱水素触媒の表面に析出することを回避することができる。よって、脱水素触媒の劣化を抑制することが可能となる。 When a dehydrogenation process is performed using a reactor, an organic compound generated during the dehydrogenation process may remain inside the reactor even after the dehydrogenation process. In this case, the remaining organic compound reacts with the dehydrogenation catalyst, coke is deposited on the surface of the dehydrogenation catalyst, and the dehydrogenation catalyst may be deteriorated. In this operation method of the hydrogen supply system, hydrogen is supplied to the reactor at least before and after the dehydrogenation reaction process performed by supplying the raw material. For this reason, the inside of the reactor is in a state filled with hydrogen at least before and after the dehydrogenation reaction treatment. Therefore, even if the organic compound remains in the reactor after the dehydrogenation reaction treatment, in order to suppress the reaction between the supplied hydrogen and the remaining organic compound to generate carbon from the organic compound, coke Can be prevented from depositing on the surface of the dehydrogenation catalyst. Therefore, it is possible to suppress the deterioration of the dehydrogenation catalyst.
 一実施形態において、水素供給ステップでは、反応器にて脱水素反応させることによって得られた水素を用いてもよい。このように構成することで、水素の供給源を別途設ける必要がなく、さらには、反応器のパージガスとして例えば窒素等の別途のガスを用意する必要がないため、簡易な構成で脱水素触媒の劣化を抑制することができる。 In one embodiment, in the hydrogen supply step, hydrogen obtained by dehydrogenation reaction in a reactor may be used. With this configuration, it is not necessary to separately provide a hydrogen supply source, and it is not necessary to prepare a separate gas such as nitrogen as a purge gas for the reactor. Deterioration can be suppressed.
 一実施形態では、脱水素反応開始ステップ及び脱水素反応終了ステップが繰り返し実行されてもよい。そして、脱水素反応開始ステップの前に水素供給ステップを実行する場合には、脱水素反応終了ステップが少なくとも1回実行されていてもよい。このような場合であっても、脱水素触媒の劣化を抑制することができる。 In one embodiment, the dehydrogenation reaction start step and the dehydrogenation reaction end step may be repeatedly executed. Then, when the hydrogen supply step is executed before the dehydrogenation reaction start step, the dehydrogenation reaction end step may be executed at least once. Even in such a case, deterioration of the dehydrogenation catalyst can be suppressed.
 一実施形態では、脱水素反応終了ステップの後及び脱水素反応開始ステップの前において、反応器は大気開放されなくてもよい。 In one embodiment, the reactor may not be opened to the atmosphere after the dehydrogenation reaction end step and before the dehydrogenation reaction start step.
 一実施形態では、脱水素触媒は、表面に細孔が形成されており、水素供給ステップでは、反応器の内部に存在する水素の体積を細孔の容積で除算した値が0.9以上となるように、反応器へ水素を供給してもよい。上記値となるように水素を供給することで、必要最低限の水素量で脱水素触媒の劣化を抑制することができる。 In one embodiment, the dehydrogenation catalyst has pores formed on the surface, and in the hydrogen supply step, a value obtained by dividing the volume of hydrogen present in the reactor by the volume of the pores is 0.9 or more. As such, hydrogen may be supplied to the reactor. By supplying hydrogen so that it may become the said value, deterioration of a dehydrogenation catalyst can be suppressed with the minimum amount of hydrogen required.
 一実施形態では、反応器の内部の圧力は、大気圧より高い圧力であってもよい。このように構成することで、反応器の起動を迅速に行うことができる。 In one embodiment, the pressure inside the reactor may be higher than atmospheric pressure. By comprising in this way, a reactor can be started up rapidly.
 本発明の他の側面に係る水素供給設備は、上述した水素供給システムの運転方法を用いた水素供給設備である。この水素供給設備は、上述した運転方法と同様の効果を奏する。 A hydrogen supply facility according to another aspect of the present invention is a hydrogen supply facility using the above-described operation method of the hydrogen supply system. This hydrogen supply facility has the same effect as the operation method described above.
 本発明の他の側面に係る水素供給システムは、水素の供給を行う。該水素供給システムは、反応器、原料供給部、水素供給部及び制御部を備える。反応器は、内部に脱水素触媒が収容され、有機化合物の水素化物を含む原料を脱水素反応させることによって水素を生成する。原料供給部は、反応器へ原料を供給する。水素供給部は、反応器によって生成された水素を反応器へ供給する。制御部は、原料供給部及び水素供給部の動作を制御する。そして、制御部は、原料供給部を動作させて反応器への原料の供給を開始させる前、及び、原料供給部を動作させて反応器への原料の供給を停止する後の少なくとも一方において、水素供給部を動作させて反応器へ水素を供給する。 A hydrogen supply system according to another aspect of the present invention supplies hydrogen. The hydrogen supply system includes a reactor, a raw material supply unit, a hydrogen supply unit, and a control unit. The reactor contains a dehydrogenation catalyst and generates hydrogen by dehydrogenating a raw material containing a hydride of an organic compound. The raw material supply unit supplies the raw material to the reactor. The hydrogen supply unit supplies hydrogen generated by the reactor to the reactor. The control unit controls operations of the raw material supply unit and the hydrogen supply unit. The control unit operates the raw material supply unit before starting the supply of the raw material to the reactor, and at least one after operating the raw material supply unit to stop the supply of the raw material to the reactor, The hydrogen supply unit is operated to supply hydrogen to the reactor.
 この水素供給システムは、上述した運転方法を実行する制御部を備えるため、上述した運転方法と同様の効果を奏する。 Since this hydrogen supply system includes a control unit that executes the above-described operation method, the same effect as the above-described operation method can be obtained.
 本発明の他の側面に係る水素供給設備は、上述した水素供給システムを備える水素供給設備である。この水素供給設備は、上述した運転方法と同様の効果を奏する。 A hydrogen supply facility according to another aspect of the present invention is a hydrogen supply facility including the above-described hydrogen supply system. This hydrogen supply facility has the same effect as the operation method described above.
 以上説明したように、本発明の種々の側面及び実施形態によれば、脱水素触媒の劣化を抑制することができる水素供給システムの運転方法及び水素供給システムが提供される。 As described above, according to various aspects and embodiments of the present invention, a method for operating a hydrogen supply system and a hydrogen supply system that can suppress degradation of a dehydrogenation catalyst are provided.
一実施形態に係る水素供給システムの構成を示すブロック図である。It is a block diagram which shows the structure of the hydrogen supply system which concerns on one Embodiment. 一実施形態に係る水素供給システムの動作を示すフローチャートである。It is a flowchart which shows operation | movement of the hydrogen supply system which concerns on one Embodiment. 一実施形態に係る水素供給システムにおける反応器の温度プロファイルである。It is a temperature profile of the reactor in the hydrogen supply system concerning one embodiment. 実施例及び比較例におけるMCH転化率の繰り返し回数依存性を示すグラフである。It is a graph which shows the repetition frequency dependence of the MCH conversion rate in an Example and a comparative example.
 以下、図面を参照しながら、実施形態について詳細に説明する。 Hereinafter, embodiments will be described in detail with reference to the drawings.
 図1は、一実施形態に係る水素供給システムの構成を示すブロック図である。一実施形態に係る水素供給システム100は、有機化合物の水素化物を原料とするものである。有機化合物の水素化物は、例えば常温で液体である。有機化合物の水素化物として、例えば、有機ハイドライドが挙げられる。有機ハイドライドは、触媒反応を介して水素を可逆的に放出する有機化合物、例えばシクロヘキサンやデカリンなどの飽和縮合環炭化水素であって、例えば製油所で大量に生産されている水素を芳香族炭化水素と反応させた水素化物である。有機ハイドライドは、芳香族の水素化化合物に限られず、2-プロパノール系であってもよい。この場合、水素とアセトンが生成される。有機ハイドライドは、ガソリン等と同様に液体燃料としてタンクローリーなどによって水素供給システム100へ輸送することができる。本実施形態では有機ハイドライドとして、メチルシクロヘキサン(以下、MCHと称する)を用いる。その他、有機ハイドライドとしてシクロヘキサン、ジメチルシクロヘキサン、エチルシクロヘキサン、デカリン、メチルデカリン、ジメチルデカリン、エチルデカリンなど芳香物炭化水素の水素化物を適用することができる。水素供給システム100は、燃料電池自動車や水素エンジン車に水素を供給することができる。水素精製の過程では、原料である有機化合物の水素化物を脱水素した、脱水素生成物が除去される。脱水素生成物は、例えば、常温で液体の有機化合物である。なお、以下では、本実施形態では、原料としてMCHを採用し、水素精製の過程で除去される脱水素生成物がトルエンである場合を一例として説明する。また、脱水素生成物は、トルエンのみならず、未反応のMCHと少量の副生成物も含み得るが、トルエンに混じって当該トルエンと同じ挙動を示す。従って、以下の説明において、「トルエン」と称して説明するものには、未反応のMCHや副生成物も含むものとする。 FIG. 1 is a block diagram illustrating a configuration of a hydrogen supply system according to an embodiment. The hydrogen supply system 100 according to an embodiment uses a hydride of an organic compound as a raw material. The hydride of an organic compound is a liquid at room temperature, for example. Examples of hydrides of organic compounds include organic hydrides. An organic hydride is an organic compound that reversibly releases hydrogen through a catalytic reaction, for example, a saturated condensed ring hydrocarbon such as cyclohexane or decalin, for example, an aromatic hydrocarbon that is produced in large quantities in a refinery. Is a hydride reacted with. The organic hydride is not limited to an aromatic hydrogenated compound, and may be a 2-propanol system. In this case, hydrogen and acetone are produced. The organic hydride can be transported to the hydrogen supply system 100 as a liquid fuel by a tank lorry as in the case of gasoline. In this embodiment, methylcyclohexane (hereinafter referred to as MCH) is used as the organic hydride. In addition, hydrides of aromatic hydrocarbons such as cyclohexane, dimethylcyclohexane, ethylcyclohexane, decalin, methyldecalin, dimethyldecalin, and ethyldecalin can be used as the organic hydride. The hydrogen supply system 100 can supply hydrogen to a fuel cell vehicle or a hydrogen engine vehicle. In the process of hydrogen purification, a dehydrogenated product obtained by dehydrogenating a hydride of an organic compound as a raw material is removed. The dehydrogenation product is, for example, an organic compound that is liquid at room temperature. In the following, in this embodiment, a case where MCH is employed as a raw material and the dehydrogenation product removed in the process of hydrogen purification is toluene will be described as an example. Further, the dehydrogenation product may contain not only toluene but also unreacted MCH and a small amount of by-products, but when mixed with toluene, it exhibits the same behavior as toluene. Therefore, in the following description, what is referred to as “toluene” includes unreacted MCH and by-products.
 図1に示すように、本実施形態に係る水素供給システム100は、MCHタンク1、気化器2、昇温器3、脱水素反応器(反応器)4、気液分離器5、トルエンタンク(原料供給部)6、冷凍機7、水素精製器(水素供給部)8及び制御部11を備えている。また、水素供給システム100は、搬送ラインPL1~PL11及びポンプ9を備えている。 As shown in FIG. 1, a hydrogen supply system 100 according to this embodiment includes an MCH tank 1, a vaporizer 2, a temperature raising device 3, a dehydrogenation reactor (reactor) 4, a gas-liquid separator 5, a toluene tank ( A raw material supply unit) 6, a refrigerator 7, a hydrogen purifier (hydrogen supply unit) 8, and a control unit 11. Further, the hydrogen supply system 100 includes transfer lines PL1 to PL11 and a pump 9.
 搬送ラインPL1~PL11は、MCH、トルエン、水素含有ガス、または高純度の精製水素ガスが通過するラインである。搬送ラインPL1は、MCHタンク1と気化器2とを接続する。搬送ラインPL2は、気化器2と昇温器3とを接続する。搬送ラインPL3は、昇温器3と脱水素反応器4とを接続する。搬送ラインPL4は、脱水素反応器4と気液分離器5とを接続する。搬送ラインPL9は、気液分離器5とトルエンタンク6とを接続する。搬送ラインPL10,PL11は、気液分離器5と冷凍機7とを接続する。搬送ラインPL5,PL6は、気液分離器5と水素精製器8とを接続する。搬送ラインPL7は、水素精製器8と外部の水素消費装置または水素供給装置(不図示)とを接続する。搬送ラインPL8は、水素精製器8と気化器2とを接続する。搬送ラインPL1には、ポンプ9が設けられている。搬送ラインPL8には、水素精製器8から気化器2へ水素を循環させるためのポンプ12が設けられている。なお、ポンプ12は、搬送ラインPL1と搬送ラインPL8との接続部分と、気化器2と、の間に設けられていてもよい。 The transport lines PL1 to PL11 are lines through which MCH, toluene, hydrogen-containing gas, or high-purity purified hydrogen gas passes. The transfer line PL1 connects the MCH tank 1 and the vaporizer 2. The transport line PL2 connects the vaporizer 2 and the temperature riser 3. The transfer line PL3 connects the temperature raising device 3 and the dehydrogenation reactor 4. The transfer line PL4 connects the dehydrogenation reactor 4 and the gas-liquid separator 5. The conveyance line PL9 connects the gas-liquid separator 5 and the toluene tank 6. The conveyance lines PL10 and PL11 connect the gas-liquid separator 5 and the refrigerator 7. The transfer lines PL5 and PL6 connect the gas-liquid separator 5 and the hydrogen purifier 8 with each other. The transfer line PL7 connects the hydrogen purifier 8 to an external hydrogen consumption device or a hydrogen supply device (not shown). The transfer line PL8 connects the hydrogen purifier 8 and the vaporizer 2. A pump 9 is provided in the transport line PL1. The transport line PL8 is provided with a pump 12 for circulating hydrogen from the hydrogen purifier 8 to the vaporizer 2. In addition, the pump 12 may be provided between the connection part of the conveyance line PL1 and the conveyance line PL8, and the vaporizer | carburetor 2. FIG.
 MCHタンク1は、原料となるMCHを貯留するタンクである。外部からタンクローリーなどで輸送されたMCHは、MCHタンク1にて貯留される。MCHタンク1に貯留されているMCHは、ポンプ9によって搬送ラインPL1を介して気化器2へ供給される。 The MCH tank 1 is a tank that stores MCH as a raw material. MCH transported from outside by a tank lorry or the like is stored in the MCH tank 1. The MCH stored in the MCH tank 1 is supplied to the vaporizer 2 by the pump 9 via the transport line PL1.
 気化器2は、液体を気化する機器である。気化器2には、インジェクタなどを介してMCHタンク1から液体のMCHが供給される。また、気化器2には、必要に応じて水素精製器8から搬送ラインPL8を介して液体又は気体の水素が供給され得る。気化器2へのMCH及び水素の供給は、搬送ラインPL1及び搬送ラインPL8に設けられた電磁バルブ(不図示)等により制御され得る。なお、供給制御の詳細については後述する。気化器2には、MCHのみが供給される場合、MCH及び水素が供給される場合、水素のみが供給される場合がある。例えばMCH及び水素が気化器2へ供給された場合には、気化されたMCH及び水素が、搬送ラインPL2を介して昇温器3へ供給される。 The vaporizer 2 is a device that vaporizes a liquid. The vaporizer 2 is supplied with liquid MCH from the MCH tank 1 via an injector or the like. Further, the vaporizer 2 may be supplied with liquid or gaseous hydrogen from the hydrogen purifier 8 via the transfer line PL8 as necessary. The supply of MCH and hydrogen to the vaporizer 2 can be controlled by electromagnetic valves (not shown) or the like provided in the transport line PL1 and the transport line PL8. Details of the supply control will be described later. The vaporizer 2 may be supplied with only hydrogen when only MCH is supplied, or when MCH and hydrogen are supplied. For example, when MCH and hydrogen are supplied to the vaporizer 2, the vaporized MCH and hydrogen are supplied to the temperature raising device 3 via the transport line PL2.
 昇温器3は、搬送ラインPL2を通過する気体に熱を与え、気体の温度を上昇させる機器である。昇温器3によって昇温された気体が搬送ラインPL3を介して脱水素反応器4へ供給される。 The heater 3 is a device that heats the gas passing through the transport line PL2 and raises the temperature of the gas. The gas heated by the temperature raising device 3 is supplied to the dehydrogenation reactor 4 through the transport line PL3.
 脱水素反応器4は、MCHを脱水素反応させることによって水素を得る機器である。脱水素反応器4は、内部に空間を画成しており、該空間内に脱水素触媒を収容する。脱水素反応器4は、当該脱水素触媒を用いた脱水素反応によってMCHから水素を取り出す機器である。なお、脱水素反応器4のガスの入口及び出口にはバルブ等が配置され、密閉可能に構成されている。脱水素触媒としては、例えば白金、ルテニウム、パラジウム、ロジウム、スズ、レニウム又はゲルマニウム等が、アルミナ等の細孔が形成された多孔質担体に担持されたものが用いられる。脱水素触媒は、プレート型触媒であってもよいし、円柱型ペレット触媒であってもよい。脱水素触媒は、使用に応じてコーキングが発生して性能が低下する場合があるが、酸素存在下で焼成することにより当初の性能へ戻す回復処理を行うことで、繰り返し使用可能である。有機ハイドライドの反応は可逆反応であり、化学平衡の制約を受けるため、温度又は圧力等の反応条件によって反応の方向が変わる。一方、脱水素反応は、常に吸熱反応で分子数が増える反応である。従って、高温、低圧の条件が有利である。よって、脱水素反応器4を高圧とするための圧縮機が不要となっている。脱水素反応は吸熱反応であるため、脱水素反応器4は図示しない熱源から加熱用高温ガスを介して熱を供給される。脱水素反応器4は、脱水素触媒中を流れるMCHと熱源からの加熱用高温ガスとの間で熱交換可能な機構を有している。脱水素反応器4で取り出された水素含有ガスは、搬送ラインPL4を介して気液分離器5へ供給される。搬送ラインPL4を流通する水素含有ガスは、液体であるトルエンを混合物として含んだ状態で、気液分離器5へ供給される。 The dehydrogenation reactor 4 is a device that obtains hydrogen by dehydrogenating MCH. The dehydrogenation reactor 4 defines a space inside, and a dehydrogenation catalyst is accommodated in the space. The dehydrogenation reactor 4 is a device that extracts hydrogen from MCH by a dehydrogenation reaction using the dehydrogenation catalyst. In addition, valves and the like are arranged at the gas inlet and outlet of the dehydrogenation reactor 4 so as to be hermetically sealed. As the dehydrogenation catalyst, for example, a catalyst in which platinum, ruthenium, palladium, rhodium, tin, rhenium, germanium or the like is supported on a porous carrier in which pores such as alumina are formed is used. The dehydrogenation catalyst may be a plate-type catalyst or a cylindrical pellet catalyst. The dehydrogenation catalyst may cause coking depending on its use and the performance may be reduced. However, the dehydrogenation catalyst can be used repeatedly by performing a recovery process to restore the original performance by calcination in the presence of oxygen. The organic hydride reaction is a reversible reaction and is subject to chemical equilibrium constraints, so the direction of the reaction changes depending on reaction conditions such as temperature or pressure. On the other hand, the dehydrogenation reaction is a reaction in which the number of molecules always increases by an endothermic reaction. Therefore, high temperature and low pressure conditions are advantageous. Therefore, a compressor for setting the dehydrogenation reactor 4 to a high pressure is not necessary. Since the dehydrogenation reaction is an endothermic reaction, the dehydrogenation reactor 4 is supplied with heat from a heat source (not shown) via a high temperature gas for heating. The dehydrogenation reactor 4 has a mechanism capable of exchanging heat between the MCH flowing in the dehydrogenation catalyst and the hot gas for heating from the heat source. The hydrogen-containing gas taken out by the dehydrogenation reactor 4 is supplied to the gas-liquid separator 5 through the transport line PL4. The hydrogen-containing gas flowing through the transfer line PL4 is supplied to the gas-liquid separator 5 in a state where the liquid toluene is contained as a mixture.
 気液分離器5は、水素含有ガスからトルエンを分離するタンクである。気液分離器5は、混合物としてトルエンを含む水素含有ガスを貯留する。水素含有ガスは、搬送ラインPL11、冷凍機7及びPL10の順に搬送され、冷凍機7を循環することで冷却され、気液分離器5内で気体である水素と液体であるトルエンとに気液分離される。気液分離器5で分離されたトルエンは、搬送ラインPL9を介してトルエンタンク6へ供給される。トルエンタンク6は、気液分離器5で分離された液体のトルエンを貯留するタンクである。トルエンタンク6に貯留されたトルエンは、回収して利用することが可能である。気液分離器5で分離された水素含有ガスは、搬送ラインPL5を介して水素精製器8へ供給される。 The gas-liquid separator 5 is a tank that separates toluene from the hydrogen-containing gas. The gas-liquid separator 5 stores a hydrogen-containing gas containing toluene as a mixture. The hydrogen-containing gas is transported in the order of the transport line PL11, the refrigerator 7 and PL10, is cooled by circulating through the refrigerator 7, and is gas-liquid into hydrogen as a gas and toluene as a liquid in the gas-liquid separator 5. To be separated. The toluene separated by the gas-liquid separator 5 is supplied to the toluene tank 6 via the transport line PL9. The toluene tank 6 is a tank for storing liquid toluene separated by the gas-liquid separator 5. The toluene stored in the toluene tank 6 can be recovered and used. The hydrogen-containing gas separated by the gas-liquid separator 5 is supplied to the hydrogen purifier 8 through the transport line PL5.
 水素精製器8は、気液分離器5で気液分離された水素含有ガスから、脱水素生成物であるトルエンを膜分離によって除去する。これによって、水素精製器8は、当該水素含有ガスを精製して高純度の精製水素ガスを得る。水素精製器8は、所定温度に加熱された膜に、所定圧力に加圧された水素含有ガスを透過させることによって、脱水素生成物を除去し、高純度の精製水素ガスを得ることができる。膜分離による水素精製器8の水素回収率は、85~95%である。水素精製器8で用いられる膜の「水素/トルエン」の分離係数は、1000以上であることが好ましく、10000以上であることがより好ましい。なお、「水素/トルエン」の分離係数が10000以上の場合、膜の「水素/メタン」の分離係数は、1000以上となる。膜を透過することによって得られた高純度水素のガスは、搬送ラインPL7へ供給される。 The hydrogen purifier 8 removes toluene, which is a dehydrogenation product, from the hydrogen-containing gas separated by the gas-liquid separator 5 by membrane separation. As a result, the hydrogen purifier 8 purifies the hydrogen-containing gas to obtain high-purity purified hydrogen gas. The hydrogen purifier 8 allows a hydrogen-containing gas pressurized to a predetermined pressure to pass through a membrane heated to a predetermined temperature, thereby removing a dehydrogenation product and obtaining a high-purity purified hydrogen gas. . The hydrogen recovery rate of the hydrogen purifier 8 by membrane separation is 85 to 95%. The separation factor of “hydrogen / toluene” of the membrane used in the hydrogen purifier 8 is preferably 1000 or more, and more preferably 10,000 or more. When the separation factor of “hydrogen / toluene” is 10,000 or more, the separation factor of “hydrogen / methane” of the membrane is 1000 or more. The high purity hydrogen gas obtained by passing through the membrane is supplied to the transfer line PL7.
 水素精製器8に適用される膜の種類は特に限定されず、多孔質膜又は非多孔質膜を適用することができる。多孔質膜は、例えば分子流によって分離するもの、表面拡散流によって分離するもの、毛管凝縮作用によって分離するもの、分子ふるい作用によって分離するもの等であってもよい。水素精製器8に適用される膜として、例えば、金属膜、ゼオライト膜、無機膜、又は高分子膜を採用することができる。金属膜としては、例えばPbAg系、PdCu系又はNb系等の金属が用いられる。無機膜としては、例えばシリカ膜又はカーボン膜が用いられる。高分子膜としては、例えばポリイミド膜が用いられる。 The type of membrane applied to the hydrogen purifier 8 is not particularly limited, and a porous membrane or a non-porous membrane can be applied. The porous membrane may be, for example, one that is separated by molecular flow, one that is separated by surface diffusion flow, one that is separated by capillary condensation, or one that is separated by molecular sieving. As a membrane applied to the hydrogen purifier 8, for example, a metal membrane, a zeolite membrane, an inorganic membrane, or a polymer membrane can be employed. As the metal film, for example, a PbAg-based, PdCu-based, or Nb-based metal is used. As the inorganic film, for example, a silica film or a carbon film is used. For example, a polyimide film is used as the polymer film.
 水素精製器8の膜を透過したガス(精製水素ガス)の圧力は低下し、膜を透過しなかった非透過ガスの圧力は低下しない。水素精製器8の膜を透過しなかった非透過ガスは、水素及び脱水素生成物を含むオフガスとして、搬送ラインPL8または搬送ラインPL6へ供給される。脱水素反応器4にて必要とされる水素の量に応じて、搬送ラインPL8は、水素精製器8のオフガスの一部または全部を、気化器2及び昇温器3を介して脱水素反応器4へ供給する。オフガスの全部を脱水素反応器4へ供給する場合、搬送ラインPL6へはオフガスは流れない。一方、オフガスの一部を脱水素反応器4へ供給する場合、余りのオフガスは、搬送ラインPL6によって気液分離器5へ供給される。 The pressure of the gas (purified hydrogen gas) that has passed through the membrane of the hydrogen purifier 8 is reduced, and the pressure of the non-permeated gas that has not passed through the membrane is not reduced. The non-permeate gas that has not permeated the membrane of the hydrogen purifier 8 is supplied to the transport line PL8 or the transport line PL6 as an off-gas containing hydrogen and a dehydrogenated product. Depending on the amount of hydrogen required in the dehydrogenation reactor 4, the transfer line PL 8 causes a part or all of the off-gas from the hydrogen purifier 8 to undergo a dehydrogenation reaction via the vaporizer 2 and the heater 3. Supply to vessel 4. When supplying all of the off gas to the dehydrogenation reactor 4, the off gas does not flow to the transfer line PL6. On the other hand, when a part of the off gas is supplied to the dehydrogenation reactor 4, the surplus off gas is supplied to the gas-liquid separator 5 through the transfer line PL6.
 水素供給システム100は、必要に応じて調圧弁等の調圧手段、及び流量制御弁等の流量制御手段を備える。この場合、脱水素反応器4の反応圧と水素精製器8の膜の圧力コントロールが可能となる。例えば、水素精製器8と気化器2又は脱水素反応器4との間に調圧手段及び流量制御手段を設けてもよい。例えば、搬送ラインPL8上に設けてもよい。これにより、水素精製器8、脱水素反応器4の圧力、オフガスの流量を最適化、安定化することができる。 The hydrogen supply system 100 includes pressure regulating means such as a pressure regulating valve and flow rate control means such as a flow rate control valve as necessary. In this case, the reaction pressure of the dehydrogenation reactor 4 and the pressure of the membrane of the hydrogen purifier 8 can be controlled. For example, pressure regulating means and flow rate control means may be provided between the hydrogen purifier 8 and the vaporizer 2 or the dehydrogenation reactor 4. For example, it may be provided on the transport line PL8. Thereby, the pressure of the hydrogen purifier 8 and the dehydrogenation reactor 4 and the flow rate of the off gas can be optimized and stabilized.
 制御部11は、CPU、メモリ、記憶媒体、表示装置等を含む一般的なコンピュータユニットであって、上述した水素供給システム100の構成要素に接続され、各構成要素を制御可能に構成されている。 The control unit 11 is a general computer unit that includes a CPU, a memory, a storage medium, a display device, and the like, and is connected to the components of the hydrogen supply system 100 described above and configured to be able to control each component. .
 次に、本実施形態に係る水素供給システム100の動作について説明する。図2は、本実施形態に係る水素供給システム100の動作を示すフローチャートである。図2に示す制御処理は、制御部11によって実行され得る。なお、ここでは、システム起動及びシステム停止を繰り返す運転で水素供給システム100が運用されている場合を一例として説明する。また、説明理解の容易性を考慮し、図3に示す脱水素反応器4の温度プロファイルを参照しつつ、水素供給システム100の動作を説明する。図3において、横軸は図2に示すフローチャートの開始タイミングを基準(0min)とした経過時間であり、縦軸は脱水素反応器4の温度である。 Next, the operation of the hydrogen supply system 100 according to this embodiment will be described. FIG. 2 is a flowchart showing the operation of the hydrogen supply system 100 according to the present embodiment. The control process shown in FIG. 2 can be executed by the control unit 11. Here, a case where the hydrogen supply system 100 is operated in an operation that repeats system start and system stop will be described as an example. In consideration of ease of understanding, the operation of the hydrogen supply system 100 will be described with reference to the temperature profile of the dehydrogenation reactor 4 shown in FIG. In FIG. 3, the horizontal axis represents the elapsed time based on the start timing of the flowchart shown in FIG. 2 (0 min), and the vertical axis represents the temperature of the dehydrogenation reactor 4.
 図2に示すように、最初に水素供給システム100の起動を開始する(S10)。S10の処理では、制御部11が、脱水素処理の前処理として、動作が可能な状態となるように各構成要素の起動処理を行う。例えば、図示しない熱源から加熱用高温ガスを介して熱を脱水素反応器4へ供給することを開始する。このため、例えば図3に示すように、脱水素反応器4の温度が上昇し始める。S10の処理が終了すると、判定処理へ移行する(S12)。 As shown in FIG. 2, the hydrogen supply system 100 is first started (S10). In the process of S10, the control part 11 performs the starting process of each component so that it can be operate | moved as a pre-process of a dehydrogenation process. For example, supply of heat to the dehydrogenation reactor 4 via a heating high-temperature gas from a heat source (not shown) is started. For this reason, for example, as shown in FIG. 3, the temperature of the dehydrogenation reactor 4 starts to rise. When the process of S10 ends, the process proceeds to a determination process (S12).
 S12の処理では、制御部11が、水素供給システム100の起動が最初の起動であるか否かを判定する。最初の起動とは、脱水素触媒を新規で導入したタイミングでの起動又は脱水素触媒の回復処理をした直後のタイミングでの起動のことをいう。S12の処理において、最初の起動でないと判定した場合には、水素供給処理へ移行する(S14)。 In the process of S12, the control unit 11 determines whether or not the activation of the hydrogen supply system 100 is the first activation. The first activation refers to activation at a timing when a dehydrogenation catalyst is newly introduced or activation immediately after a dehydrogenation catalyst recovery process is performed. In the process of S12, when it is determined that it is not the first activation, the process proceeds to a hydrogen supply process (S14).
 S14の処理では、制御部11が、脱水素反応器4へ水素を供給する(水素供給ステップ)。なお、このタイミングではシステムが完全に起動していないため、水素含有ガスを水素精製器8から供給することができないことから、精製水素を貯留するタンク(不図示)や別途取り付けた水素ボンベ等を原料供給部とし、脱水素反応器4へ水素を供給する。これにより、脱水素反応処理を一度でも行った後の脱水素反応器4の起動時において、脱水素反応器4の内部を水素で充填することができる。システム起動時において、MCHが脱水素反応器4へ供給されておらず、かつ、トルエンが脱水素反応器4内に残存した状態で、脱水素反応器4の温度が上昇すると、トルエンからコークが発生して触媒表面を覆う場合があり、脱水素触媒が劣化するおそれがある。脱水素反応器4へ水素を供給することで、トルエンと水素とを反応させることができるため、コークの発生を抑制し、脱水素触媒の劣化を防止することができる。S14の処理終了後において、温度や圧力等の所定のシステム起動条件を満たした時点でシステム起動を終了する(S16)。例えば、図3の温度プロファイルにおいて、目標温度(350℃)となった場合に、システム起動を終了と判断する。S16の処理が終了すると、定常運転の開始処理へ移行する(S18)。 In the process of S14, the control unit 11 supplies hydrogen to the dehydrogenation reactor 4 (hydrogen supply step). Since the system is not fully activated at this timing, the hydrogen-containing gas cannot be supplied from the hydrogen purifier 8, so a tank (not shown) for storing purified hydrogen, a separately installed hydrogen cylinder, etc. Hydrogen is supplied to the dehydrogenation reactor 4 as a raw material supply unit. Thereby, the inside of the dehydrogenation reactor 4 can be filled with hydrogen when the dehydrogenation reactor 4 is started after the dehydrogenation reaction treatment is performed once. When the temperature of the dehydrogenation reactor 4 rises while MCH is not supplied to the dehydrogenation reactor 4 and toluene remains in the dehydrogenation reactor 4 at the time of system startup, coke is released from toluene. Occurring and covering the catalyst surface, the dehydrogenation catalyst may be deteriorated. By supplying hydrogen to the dehydrogenation reactor 4, toluene and hydrogen can be reacted, so that generation of coke can be suppressed and deterioration of the dehydrogenation catalyst can be prevented. After completion of the process of S14, the system activation is terminated when predetermined system activation conditions such as temperature and pressure are satisfied (S16). For example, when the target temperature (350 ° C.) is reached in the temperature profile of FIG. When the process of S16 ends, the process proceeds to a steady operation start process (S18).
 一方、S12の処理において、最初の起動であると判定した場合には、脱水素反応器4内にトルエンが残存していないため、温度や圧力等の所定のシステム起動条件を満たした時点でシステム起動を終了する(S16)。S16の処理が終了すると、定常運転の開始処理へ移行する(S18)。 On the other hand, in the process of S12, when it is determined that it is the first start-up, since no toluene remains in the dehydrogenation reactor 4, the system is satisfied when predetermined system start-up conditions such as temperature and pressure are satisfied. The activation is terminated (S16). When the process of S16 ends, the process proceeds to a steady operation start process (S18).
 S18の処理では、制御部11が、水素供給システム100を制御して脱水素処理の定常運転を開始する(脱水素反応開始ステップ)。定常運転は、脱水素反応器4へMCHが供給されたタイミングから開始される。定常運転時には、MCHが、MCHタンク1から気化器2及び昇温器3を介して脱水素反応器4へ供給される。そして、脱水素反応器4から得られた水素含有ガスが、気液分離器5において分離され、水素精製器8で精製される。このように、定常運転時において目的の精製水素が得られる。さらに、脱水素反応器4へ精製水素を貯留するタンク(不図示)や別途取り付けた水素ボンベ等を原料供給部として、水素が供給される。あるいは、水素精製器8の水素を含有するオフガスが脱水素反応器4へ戻される。このように、定常運転時において、脱水素反応器4内へMCH及び水素を供給しながら脱水素反応を行う。図3ではMCH及び水素の供給を矢印で示している。 In the process of S18, the control unit 11 controls the hydrogen supply system 100 to start a steady operation of the dehydrogenation process (dehydrogenation reaction start step). The steady operation is started from the timing when MCH is supplied to the dehydrogenation reactor 4. During steady operation, MCH is supplied from the MCH tank 1 to the dehydrogenation reactor 4 via the vaporizer 2 and the temperature raising device 3. Then, the hydrogen-containing gas obtained from the dehydrogenation reactor 4 is separated in the gas-liquid separator 5 and purified by the hydrogen purifier 8. Thus, the target purified hydrogen can be obtained during steady operation. Further, hydrogen is supplied to the dehydrogenation reactor 4 using a tank (not shown) for storing purified hydrogen, a separately attached hydrogen cylinder or the like as a raw material supply unit. Alternatively, the off-gas containing hydrogen from the hydrogen purifier 8 is returned to the dehydrogenation reactor 4. In this way, during steady operation, the dehydrogenation reaction is performed while supplying MCH and hydrogen into the dehydrogenation reactor 4. In FIG. 3, the supply of MCH and hydrogen is indicated by arrows.
 そして、所定期間経過後、あるいは目標量の水素を得た後に、制御部11は、定常運転を終了する(S20:脱水素反応終了ステップ)。定常運転は、脱水素反応器4へのMCHの供給を停止したタイミングで終了する。このとき、脱水素反応器4への水素の供給も停止する(図3参照)。 Then, after a predetermined period has elapsed or after obtaining a target amount of hydrogen, the control unit 11 ends the steady operation (S20: dehydrogenation reaction end step). The steady operation ends at the timing when the supply of MCH to the dehydrogenation reactor 4 is stopped. At this time, the supply of hydrogen to the dehydrogenation reactor 4 is also stopped (see FIG. 3).
 制御部11は、定常運転が終了すると、システムを停止する処理を開始する(S22)。ここでは、脱水素反応器4の温度を所定の温度(例えば常温)まで低下させる処理を開始する。例えば、図示しない熱源から熱を脱水素反応器4へ供給することを停止する。 The control unit 11 starts the process of stopping the system when the steady operation ends (S22). Here, the process of lowering the temperature of the dehydrogenation reactor 4 to a predetermined temperature (for example, normal temperature) is started. For example, supply of heat from a heat source (not shown) to the dehydrogenation reactor 4 is stopped.
 その後、制御部11は、図3に示すように、脱水素反応器4へ水素を供給して脱圧する(S24:水素供給ステップ)。水素は、水素精製器8に残存するオフガスを供給してもよいし、精製水素を貯留するタンク(不図示)や別途取り付けた水素ボンベ等を原料供給部とし、脱水素反応器4へ水素を供給してもよい。その後、脱水素反応器4のガスの出入口のバルブを閉として密閉する。これにより、脱水素反応器4が水素で充填される。すなわち、次回のシステム起動まで脱水素反応器4は大気開放されない状態となる。脱水素反応器4の温度が所定の温度(例えば常温)まで低下すると、システム停止が終了する(S26)。 Thereafter, as shown in FIG. 3, the controller 11 supplies hydrogen to the dehydrogenation reactor 4 and depressurizes it (S24: hydrogen supply step). Hydrogen may be supplied to the off-gas remaining in the hydrogen purifier 8, or a tank (not shown) for storing purified hydrogen, a separately attached hydrogen cylinder or the like is used as a raw material supply unit, and hydrogen is supplied to the dehydrogenation reactor 4. You may supply. Thereafter, the gas inlet / outlet valve of the dehydrogenation reactor 4 is closed and sealed. Thereby, the dehydrogenation reactor 4 is filled with hydrogen. That is, the dehydrogenation reactor 4 is not released to the atmosphere until the next system startup. When the temperature of the dehydrogenation reactor 4 decreases to a predetermined temperature (for example, room temperature), the system stop is finished (S26).
 以上で図2に示す制御処理を終了する。図2に示す制御処理を実行することにより、定常運転の後において、すなわちMCHの脱水素反応器4への供給が停止された後に、脱水素反応器4へ水素が供給され、脱水素反応器4に残存するトルエンと反応させることができる。したがって、残存トルエンからコークが発生することを回避することが可能となる。よって、脱水素触媒を劣化させることを回避することができる。また、最初の起動以外の起動時、すなわち、脱水素反応終了ステップが少なくとも1回実行されている場合には、脱水素反応器4にトルエンが残存している可能性がある。このため、最初の起動以外では定常運転の前において、すなわちMCHの脱水素反応器4への供給の前に、脱水素反応器4へ水素が供給され、脱水素反応器4に残存するトルエンと反応させることができる。したがって、残存トルエンからコークが発生することを回避することが可能となる。よって、脱水素触媒を劣化させることを回避することができる。 This completes the control process shown in FIG. By executing the control process shown in FIG. 2, hydrogen is supplied to the dehydrogenation reactor 4 after steady operation, that is, after the supply of MCH to the dehydrogenation reactor 4 is stopped, and the dehydrogenation reactor 4 can be reacted with the remaining toluene. Therefore, it is possible to avoid the generation of coke from the remaining toluene. Therefore, it is possible to avoid deteriorating the dehydrogenation catalyst. Further, at the start-up other than the first start-up, that is, when the dehydrogenation end step is executed at least once, there is a possibility that toluene remains in the dehydrogenation reactor 4. Therefore, except for the first start-up, hydrogen is supplied to the dehydrogenation reactor 4 before steady operation, that is, before the MCH is supplied to the dehydrogenation reactor 4, and the remaining toluene in the dehydrogenation reactor 4 Can be reacted. Therefore, it is possible to avoid the generation of coke from the remaining toluene. Therefore, it is possible to avoid deteriorating the dehydrogenation catalyst.
 なお、制御部11は、S24の水素供給ステップにおいて、脱水素反応器4の内部に存在する水素の体積を脱水素触媒の細孔の容積で除算した値が0.9以上となるように、脱水素反応器4へ水素を供給してもよい。以下詳細を説明する。上述したように、脱水素反応器4の内部にトルエンが残存することが脱水素触媒のコーキングの原因となると考えられる。脱水素触媒の細孔容積をトルエンの体積であると仮定し、脱水素反応器4の内部空間の空隙体積を水素の体積であると仮定する。これにより、定常運転が終了した後の脱水素反応器4へ最低限供給すべき水素量と、残存しているトルエンの量との比を算出することができる。プレート型触媒(マイクロリアクター)で測定した結果、水素量/トルエン量の値は10となった。一方、円柱型ペレット触媒(固定床リアクター)で測定した結果、水素量/トルエン量の値は0.9となった。このため、脱水素反応器4の内部に存在する水素の体積を脱水素触媒の細孔の容積で除算した値が0.9以上となるように、脱水素反応器4へ水素を供給することで、最も効率的に脱水素触媒の劣化を防止することができる。 In addition, in the hydrogen supply step of S24, the control unit 11 is configured so that the value obtained by dividing the volume of hydrogen present in the dehydrogenation reactor 4 by the volume of the pores of the dehydrogenation catalyst is 0.9 or more. Hydrogen may be supplied to the dehydrogenation reactor 4. Details will be described below. As described above, it is considered that toluene remaining in the dehydrogenation reactor 4 causes coking of the dehydrogenation catalyst. The pore volume of the dehydrogenation catalyst is assumed to be the volume of toluene, and the void volume in the internal space of the dehydrogenation reactor 4 is assumed to be the volume of hydrogen. Thereby, the ratio between the minimum amount of hydrogen to be supplied to the dehydrogenation reactor 4 after the end of the steady operation and the amount of remaining toluene can be calculated. As a result of measurement with a plate-type catalyst (microreactor), the value of hydrogen amount / toluene amount was 10. On the other hand, as a result of measurement with a cylindrical pellet catalyst (fixed bed reactor), the value of hydrogen amount / toluene amount was 0.9. For this reason, hydrogen is supplied to the dehydrogenation reactor 4 so that the value obtained by dividing the volume of hydrogen present in the dehydrogenation reactor 4 by the volume of the pores of the dehydrogenation catalyst becomes 0.9 or more. Therefore, the dehydrogenation catalyst can be most effectively prevented from deteriorating.
 以上、本実施形態に係る水素供給システム100及び該水素供給システム100の運転方法によれば、MCHを供給して行う脱水素反応処理の前後の少なくとも一方において、脱水素反応器4に水素が供給される。このため、脱水素反応器4の内部は、脱水素反応処理の前後の少なくとも一方において水素が充填された状態となる。従って、脱水素反応処理後に有機化合物が脱水素反応器4内に残存した場合であっても、供給された水素と残存した有機化合物とが反応し有機化合物から炭素が生成されることを抑制するため、コークが脱水素触媒の表面に析出することを回避することができる。よって、脱水素触媒の劣化を抑制することが可能となる。また、脱水素反応器4のパージは不活性ガスで行うことが一般的であるところ、本実施形態に係る水素供給システム100及び該水素供給システム100の運転方法によれば、水素供給システム100が生成した水素によってパージすることができるため、簡易な構成で脱水素触媒の劣化を抑制することができる。 As described above, according to the hydrogen supply system 100 and the operation method of the hydrogen supply system 100 according to the present embodiment, hydrogen is supplied to the dehydrogenation reactor 4 at least before and after the dehydrogenation reaction process performed by supplying MCH. Is done. For this reason, the inside of the dehydrogenation reactor 4 is in a state filled with hydrogen at least one before and after the dehydrogenation reaction treatment. Therefore, even when the organic compound remains in the dehydrogenation reactor 4 after the dehydrogenation reaction treatment, the supplied hydrogen and the remaining organic compound are prevented from reacting to generate carbon from the organic compound. Therefore, it can be avoided that coke is deposited on the surface of the dehydrogenation catalyst. Therefore, it is possible to suppress the deterioration of the dehydrogenation catalyst. In general, purging of the dehydrogenation reactor 4 is performed with an inert gas. According to the hydrogen supply system 100 and the operation method of the hydrogen supply system 100 according to the present embodiment, the hydrogen supply system 100 Since it can purge with the produced | generated hydrogen, degradation of a dehydrogenation catalyst can be suppressed with a simple structure.
 なお、本発明は、上述の実施形態に限定されるものではない。例えば、上述した実施形態では、水素精製器8から気化器2へ搬送ラインPL8を介して水素を供給する例を説明したが、上記構成に限定されるものではなく、例えば水素ボンベ等を気化器2へ接続してもよいし、精製水素を気化器2へ供給してもよいし、水素精製器8から脱水素反応器4へ水素を直接供給してもよい。また、図2に示す制御処理では、MCHを供給して行う脱水素反応処理の前後の両方に水素を供給する例を説明したが、何れか一方であってもよい。さらに、図2に示す制御処理では、システム起動開始後かつ定常運転開始前、定常運転終了後システム停止終了前に、水素供給ステップをそれぞれ実施する例を説明したが、水素供給ステップは、脱水素反応処理の前後であればよく、例えば、システム起動開始前でもよいし、システム停止終了後でもよい。 Note that the present invention is not limited to the above-described embodiment. For example, in the above-described embodiment, an example has been described in which hydrogen is supplied from the hydrogen purifier 8 to the vaporizer 2 via the transfer line PL8. However, the embodiment is not limited to the above configuration, and for example, a hydrogen cylinder or the like is vaporized. 2, or purified hydrogen may be supplied to the vaporizer 2, or hydrogen may be directly supplied from the hydrogen purifier 8 to the dehydrogenation reactor 4. In the control process shown in FIG. 2, the example has been described in which hydrogen is supplied both before and after the dehydrogenation reaction process performed by supplying MCH. Furthermore, in the control process shown in FIG. 2, the example in which the hydrogen supply step is performed after starting the system, before starting the steady operation, and after finishing the steady operation and before stopping the system has been described. It may be before and after the reaction process. For example, it may be before the start of the system start or after the end of the system stop.
 また、図2のS20の処理において脱水素反応器4への水素の供給を停止することは必ずしも必要ではない。例えば、S24の処理に至る前までに水素の供給を停止してもよい。あるいは、水素を供給し続けた状態とすることで、S24に示す脱圧の処理をS22に示すシステムを停止する処理と並行して行ってもよい。水素を供給し続ける場合であっても、定常運転の終了の判断は、脱水素反応器4へのMCHの供給を停止したタイミングとなる。 Also, it is not always necessary to stop the supply of hydrogen to the dehydrogenation reactor 4 in the process of S20 of FIG. For example, the supply of hydrogen may be stopped before the process of S24 is reached. Alternatively, the depressurization process shown in S24 may be performed in parallel with the process of stopping the system shown in S22 by keeping the supply of hydrogen. Even when hydrogen is continuously supplied, the end of the steady operation is determined at the timing when the supply of MCH to the dehydrogenation reactor 4 is stopped.
 また、脱水素反応器4は、S24の脱圧の処理の実行の有無に関わらず、内部の圧力が少なくとも大気圧より高い状態で維持してもよい。このように、脱水素反応器4の内部の圧力が常に少なくとも大気圧より高い状態で維持されることにより、脱水素反応器4の内部の圧力が大気圧である場合に比べて、脱水素反応器4の起動を迅速に行うことができる。脱水素反応器4の起動を迅速に行うことで、起動時に供給される水素の量を少なくすることができる。さらに、加圧及び脱圧の繰り返しを回避することができるので、配管等にかかる負荷を低減でき、結果、耐久性を向上させることができる。 Further, the dehydrogenation reactor 4 may be maintained in a state where the internal pressure is at least higher than the atmospheric pressure regardless of whether or not the depressurization process of S24 is performed. As described above, the internal pressure of the dehydrogenation reactor 4 is always maintained at least higher than the atmospheric pressure, so that the dehydrogenation reaction is performed as compared with the case where the internal pressure of the dehydrogenation reactor 4 is the atmospheric pressure. The device 4 can be activated quickly. By quickly starting the dehydrogenation reactor 4, the amount of hydrogen supplied at the time of starting can be reduced. Furthermore, since repetition of pressurization and depressurization can be avoided, the load applied to the piping and the like can be reduced, and as a result, durability can be improved.
 また、水素精製器8は、膜分離によって除去する装置に限定されず、種々の装置を採用することができる。例えば、水素精製方法として膜分離を用いる場合には、水素分離膜を備える水素分離装置であり、PSA(Pressure swing adsorption)法又はTSA(Temperature swing adsorption)法を用いる場合には、不純物を吸着する吸着材を格納する吸着塔を複数備えた吸着除去装置である。 Further, the hydrogen purifier 8 is not limited to an apparatus for removing by membrane separation, and various apparatuses can be adopted. For example, when membrane separation is used as a hydrogen purification method, a hydrogen separation apparatus including a hydrogen separation membrane is used, and impurities are adsorbed when using a PSA (Pressure swinging adsorption) method or a TSA (Temperature swinging adsorption) method. It is an adsorption removal apparatus provided with a plurality of adsorption towers for storing adsorbents.
 また、上記実施形態では、水素精製器8のオフガスの一部または全部が、気化器2及び昇温器3を介して脱水素反応器4へ供給される例を説明したが、脱水素反応器4への水素の供給手法は、上記実施形態に限定されるものではない。例えば、水素精製器8のオフガスの一部または全部が、図1の点線で示すように、気化器2及び昇温器3の少なくとも一方を介することなく脱水素反応器4へ供給されてもよいし、他の水素ボンベ13から水素が供給されてもよい。 In the above embodiment, an example in which part or all of the off-gas of the hydrogen purifier 8 is supplied to the dehydrogenation reactor 4 via the vaporizer 2 and the temperature raising device 3 has been described. The method of supplying hydrogen to 4 is not limited to the above embodiment. For example, part or all of the off-gas of the hydrogen purifier 8 may be supplied to the dehydrogenation reactor 4 without passing through at least one of the vaporizer 2 and the temperature raising device 3 as indicated by the dotted line in FIG. However, hydrogen may be supplied from another hydrogen cylinder 13.
 また、上述した実施形態に係る水素供給システムは、どのような用途に用いられてもよく、例えば、水素供給設備に適用してもよい。水素供給設備は、水素を供給する種々の設備であって、例えば水素ステーション等が含まれる。例えば、水素精製器よりも下流側に、水素を蓄積すると共に、外部の水素消費装置(燃料電池自動車や水素自動車など)に対して水素を供給する水素供給装置(圧縮部や冷却器や貯留タンクやディスペンサなどを含む)を接続することで、水素供給システムを水素ステーションとして利用してよい。その他、水素精製器よりも下流側に水素消費装置(電力発生装置など)を接続することで、直接的に水素消費装置に水素を供給してもよい。例えば、分散電源(例えば、家庭用電源や非常用電源など)のための水素供給システムとして利用してもよい。 Moreover, the hydrogen supply system according to the above-described embodiment may be used for any purpose, and may be applied to, for example, a hydrogen supply facility. The hydrogen supply facility is various facilities for supplying hydrogen, and includes, for example, a hydrogen station. For example, a hydrogen supply device (compressor, cooler, or storage tank) that stores hydrogen downstream of the hydrogen purifier and supplies hydrogen to an external hydrogen consuming device (fuel cell vehicle, hydrogen vehicle, etc.) A hydrogen supply system may be used as a hydrogen station. In addition, hydrogen may be directly supplied to the hydrogen consuming device by connecting a hydrogen consuming device (such as a power generation device) downstream of the hydrogen purifier. For example, it may be used as a hydrogen supply system for a distributed power source (for example, a household power source or an emergency power source).
[実施例]
 以下、上記効果を説明すべく本発明者が実施した実施例及び比較例について述べる。
(水素による脱水素触媒の劣化抑制効果の確認)
(実施例1)
 図2で説明した運転方法で水素供給システム100を運転した。すなわち、定常運転前(MCHの供給開始前)において、脱水素反応器4へ水素を供給し、その後、定常運転を開始した。定常運転終了後(MCHの供給終了後)において脱水素反応器4へ水素を供給した。脱水素触媒は、プレート型触媒を用いた。脱水素反応器4へ供給する水素量は、脱水素触媒の細孔の容積の10倍とした。定常運転終了後から定常運転開始前までの間は、脱水素反応器4を大気開放しない状態とした。
(実施例2)
 定常運転前(MCHの供給開始前)において、脱水素反応器4へ窒素を供給した。その他は実施例1と同一とした。
(実施例3)
 定常運転後(MCHの供給終了後)において、脱水素反応器4へ窒素を供給した。その他は実施例1と同一とした。
(比較例1)
 定常運転前(MCHの供給開始前)において、脱水素反応器4へ窒素を供給し、その後、定常運転を開始した。定常運転終了後(MCHの供給終了後)において脱水素反応器4へ窒素を供給した。定常運転終了後から定常運転開始前までの間は、脱水素反応器4を大気開放しない状態とした。
[Example]
Hereinafter, examples and comparative examples implemented by the present inventors will be described in order to explain the above effects.
(Confirmation of deterioration suppression effect of hydrogen dehydrogenation catalyst)
(Example 1)
The hydrogen supply system 100 was operated by the operation method described in FIG. That is, before the steady operation (before the start of MCH supply), hydrogen was supplied to the dehydrogenation reactor 4, and then the steady operation was started. Hydrogen was supplied to the dehydrogenation reactor 4 after completion of steady operation (after completion of MCH supply). A plate-type catalyst was used as the dehydrogenation catalyst. The amount of hydrogen supplied to the dehydrogenation reactor 4 was 10 times the pore volume of the dehydrogenation catalyst. The dehydrogenation reactor 4 was not opened to the atmosphere between the end of the steady operation and before the start of the steady operation.
(Example 2)
Nitrogen was supplied to the dehydrogenation reactor 4 before steady operation (before the start of MCH supply). Others were the same as Example 1.
(Example 3)
After steady operation (after completion of MCH supply), nitrogen was supplied to the dehydrogenation reactor 4. Others were the same as Example 1.
(Comparative Example 1)
Before steady operation (before the start of MCH supply), nitrogen was supplied to the dehydrogenation reactor 4, and then steady operation was started. Nitrogen was supplied to the dehydrogenation reactor 4 after completion of steady operation (after completion of MCH supply). The dehydrogenation reactor 4 was not opened to the atmosphere between the end of the steady operation and before the start of the steady operation.
 図2に示す制御処理を1サイクルとし、該サイクルを繰り返して脱水素触媒の劣化を評価した。脱水素触媒の劣化は、MCH転化率で評価した。最初に、比較例の手法で運転、測定を6回繰り返した。その後、脱水素触媒の回復処理を行った。そして、実施例1の手法で運転、測定を6回繰り返した。その後、実施例2の手法で運転、測定を3回繰り返した。その後、実施例3の手法で運転、測定を2回繰り返した。結果を図4に示す。横軸が繰り返し回数、縦軸がMCH転化率である。図中に示す直線は、プロット点を線形フィッティングした結果である。図4に示すように、比較例1の手法の場合には、プロット点を線形フィッティングすることで得られた傾きは、-0.9237となった。一方、実施例1の手法の場合には、プロット点を線形フィッティングすることで得られた傾きは、-0.0934となった。また、実施例2の手法の場合には、プロット点を線形フィッティングすることで得られた傾きは、-0.4507となった。また、実施例3の手法の場合には、プロット点を線形フィッティングすることで得られた傾きは、-0.3019となった。このように、実施例1~3は、比較例1に比べてMCH転化率の低下が抑制されていることが確認された。したがって、定常運転前(MCHの供給開始前)及び定常運転終了後(MCHの供給終了後)の少なくとも一方において、脱水素反応器4へ水素を供給することで、脱水素触媒の劣化が抑制されることが確認された。 The control process shown in FIG. 2 was defined as one cycle, and the cycle was repeated to evaluate the deterioration of the dehydrogenation catalyst. The deterioration of the dehydrogenation catalyst was evaluated by the MCH conversion rate. First, operation and measurement were repeated 6 times by the method of the comparative example. Then, the recovery process of the dehydrogenation catalyst was performed. Then, the operation and measurement were repeated 6 times by the method of Example 1. Thereafter, the operation and measurement were repeated three times by the method of Example 2. Thereafter, operation and measurement were repeated twice by the method of Example 3. The results are shown in FIG. The horizontal axis represents the number of repetitions, and the vertical axis represents the MCH conversion rate. The straight line shown in the figure is the result of linear fitting of plot points. As shown in FIG. 4, in the case of the method of Comparative Example 1, the slope obtained by linear fitting of the plot points was −0.9237. On the other hand, in the case of the method of Example 1, the slope obtained by linear fitting of the plot points was −0.0934. In the case of the method of Example 2, the slope obtained by linear fitting of the plot points was −0.4507. In the case of the method of Example 3, the slope obtained by linear fitting of the plot points was −0.3019. As described above, it was confirmed that Examples 1 to 3 suppressed the decrease in MCH conversion rate as compared with Comparative Example 1. Therefore, deterioration of the dehydrogenation catalyst is suppressed by supplying hydrogen to the dehydrogenation reactor 4 before at least one of the steady operation (before the start of MCH supply) and after the end of the steady operation (after the completion of MCH supply). It was confirmed that
(必要水素量の確認)
(実施例4)
 脱水素触媒は、円柱型ペレット触媒を用いた。脱水素反応器4へ供給する水素量は、脱水素触媒の細孔の容積の0.9倍(理論値の下限値)とした。その他の運転条件は実施例1と同一とした。
(比較例2)
 脱水素触媒は、円柱型ペレット触媒を用いた。実施例4と同一の窒素量を脱水素反応器4へ供給した。その他の運転条件は比較例1と同一とした。
(Confirmation of required hydrogen amount)
Example 4
A cylindrical pellet catalyst was used as the dehydrogenation catalyst. The amount of hydrogen supplied to the dehydrogenation reactor 4 was 0.9 times the volume of the pores of the dehydrogenation catalyst (lower limit of the theoretical value). Other operating conditions were the same as in Example 1.
(Comparative Example 2)
A cylindrical pellet catalyst was used as the dehydrogenation catalyst. The same amount of nitrogen as in Example 4 was supplied to the dehydrogenation reactor 4. Other operating conditions were the same as those in Comparative Example 1.
 実施例4及び比較例2について、図2に示す制御処理を2回行い、脱水素触媒の劣化を評価した。脱水素触媒の劣化は、評価時間3時間のMCH転化率で評価した。そして、1回目と2回目との間のMCH転化率の低下率を算出した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
表1に示すように、実施例4の低下率は4%であり、比較例2の低下率は21%であった。よって、脱水素反応器4へ供給する水素量を、脱水素触媒の細孔の容積の0.9倍(理論値の下限値)とした場合であっても、脱水素触媒の劣化が抑制されることが確認された。
For Example 4 and Comparative Example 2, the control process shown in FIG. 2 was performed twice to evaluate the deterioration of the dehydrogenation catalyst. The deterioration of the dehydrogenation catalyst was evaluated by the MCH conversion rate with an evaluation time of 3 hours. And the fall rate of the MCH conversion rate between the 1st time and the 2nd time was computed. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
As shown in Table 1, the reduction rate of Example 4 was 4%, and the reduction rate of Comparative Example 2 was 21%. Therefore, even if the amount of hydrogen supplied to the dehydrogenation reactor 4 is 0.9 times the volume of the pores of the dehydrogenation catalyst (lower limit of the theoretical value), the degradation of the dehydrogenation catalyst is suppressed. It was confirmed that
 1…MCHタンク(原料供給部)、2…気化器、3…昇温器、4…脱水素反応器(反応器)、5…気液分離器、6…トルエンタンク、7…冷凍機、8…水素精製器(水素供給部)、9…ポンプ、11…制御部、100…水素供給システム、PL1~PL11…搬送ライン。 DESCRIPTION OF SYMBOLS 1 ... MCH tank (raw material supply part), 2 ... Vaporizer, 3 ... Temperature rising device, 4 ... Dehydrogenation reactor (reactor), 5 ... Gas-liquid separator, 6 ... Toluene tank, 7 ... Refrigerator, 8 ... hydrogen purifier (hydrogen supply unit), 9 ... pump, 11 ... control unit, 100 ... hydrogen supply system, PL1-PL11 ... transfer line.

Claims (9)

  1.  内部に脱水素触媒が収容された反応器を有し、該反応器へ有機化合物の水素化物を含む原料を供給して前記脱水素触媒により脱水素反応させることによって水素を得る水素供給システムの運転方法であって、
     前記反応器への原料の供給を開始する脱水素反応開始ステップと、
     前記反応器への原料の供給を停止する脱水素反応終了ステップと、
    を備え、
     前記脱水素反応開始ステップの前及び前記脱水素反応終了ステップの後の少なくとも一方において、前記反応器へ水素を供給する水素供給ステップをさらに備える水素供給システムの運転方法。
    Operation of a hydrogen supply system having a reactor in which a dehydrogenation catalyst is housed and supplying a raw material containing a hydride of an organic compound to the reactor and dehydrogenating the dehydrogenation catalyst. A method,
    A dehydrogenation reaction start step for starting supply of raw materials to the reactor;
    A dehydrogenation end step for stopping the supply of the raw material to the reactor;
    With
    A method for operating a hydrogen supply system, further comprising a hydrogen supply step for supplying hydrogen to the reactor at least one before the dehydrogenation reaction start step and after the dehydrogenation reaction end step.
  2.  前記水素供給ステップでは、前記反応器にて脱水素反応させることによって得られた水素を用いる請求項1に記載の水素供給システムの運転方法。 The method for operating a hydrogen supply system according to claim 1, wherein in the hydrogen supply step, hydrogen obtained by performing a dehydrogenation reaction in the reactor is used.
  3.  前記脱水素反応開始ステップ及び前記脱水素反応終了ステップが繰り返し実行され、
     前記脱水素反応開始ステップの前に前記水素供給ステップを実行する場合には、前記脱水素反応終了ステップが少なくとも1回実行されている請求項1又は2に記載の水素供給システムの運転方法。
    The dehydrogenation reaction start step and the dehydrogenation reaction end step are repeatedly executed,
    The operation method of the hydrogen supply system according to claim 1 or 2, wherein when the hydrogen supply step is executed before the dehydrogenation reaction start step, the dehydrogenation reaction end step is executed at least once.
  4.  前記脱水素反応終了ステップの後及び前記脱水素反応開始ステップの前において、前記反応器は大気開放されない請求項1~3の何れか一項に記載の水素供給システムの運転方法。 The operation method of the hydrogen supply system according to any one of claims 1 to 3, wherein the reactor is not opened to the atmosphere after the dehydrogenation reaction end step and before the dehydrogenation reaction start step.
  5.  前記脱水素触媒は、表面に細孔が形成されており、
     前記水素供給ステップでは、前記反応器の内部に存在する水素の体積を前記細孔の容積で除算した値が0.9以上となるように、前記反応器へ水素を供給する請求項1~4の何れか一項に記載の水素供給システムの運転方法。
    The dehydrogenation catalyst has pores formed on the surface,
    In the hydrogen supply step, hydrogen is supplied to the reactor so that a value obtained by dividing the volume of hydrogen present in the reactor by the volume of the pores is 0.9 or more. The operation | movement method of the hydrogen supply system as described in any one of these.
  6.  前記反応器の内部の圧力は、大気圧より高い圧力である請求項1~5の何れか一項に記載の水素供給システムの運転方法。 The operation method of the hydrogen supply system according to any one of claims 1 to 5, wherein the pressure inside the reactor is higher than atmospheric pressure.
  7.  請求項1~6の何れか一項に記載の水素供給システムの運転方法を用いた水素供給設備。 A hydrogen supply facility using the operation method of the hydrogen supply system according to any one of claims 1 to 6.
  8.  水素の供給を行う水素供給システムであって、
     内部に脱水素触媒が収容され、有機化合物の水素化物を含む原料を脱水素反応させることによって水素を生成する反応器と、
     前記反応器へ原料を供給する原料供給部と、
     前記反応器によって生成された水素を前記反応器へ供給する水素供給部と、
     前記原料供給部及び前記水素供給部の動作を制御する制御部と、
    を備え、
     前記制御部は、
     前記原料供給部を動作させて前記反応器への原料の供給を開始させる前、及び、前記原料供給部を動作させて前記反応器への原料の供給を停止する後の少なくとも一方において、前記水素供給部を動作させて前記反応器へ水素を供給する、
    水素供給システム。
    A hydrogen supply system for supplying hydrogen,
    A reactor in which a dehydrogenation catalyst is housed and hydrogen is generated by dehydrogenating a raw material containing a hydride of an organic compound;
    A raw material supply unit for supplying the raw material to the reactor;
    A hydrogen supply unit for supplying hydrogen produced by the reactor to the reactor;
    A control unit for controlling operations of the raw material supply unit and the hydrogen supply unit;
    With
    The controller is
    The hydrogen before at least one of operating the raw material supply unit and starting the supply of the raw material to the reactor and after operating the raw material supply unit and stopping the supply of the raw material to the reactor. Operating the supply to supply hydrogen to the reactor;
    Hydrogen supply system.
  9.  請求項8に記載の水素供給システムを備える水素供給設備。 A hydrogen supply facility comprising the hydrogen supply system according to claim 8.
PCT/JP2014/058177 2013-03-25 2014-03-25 Method for operating hydrogen supply system, hydrogen supply equipment, and hydrogen supply system WO2014157133A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015508509A JP6086976B2 (en) 2013-03-25 2014-03-25 Operation method of hydrogen supply system, hydrogen supply equipment and hydrogen supply system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-061941 2013-03-25
JP2013061941 2013-03-25

Publications (1)

Publication Number Publication Date
WO2014157133A1 true WO2014157133A1 (en) 2014-10-02

Family

ID=51624104

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/058177 WO2014157133A1 (en) 2013-03-25 2014-03-25 Method for operating hydrogen supply system, hydrogen supply equipment, and hydrogen supply system

Country Status (2)

Country Link
JP (1) JP6086976B2 (en)
WO (1) WO2014157133A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016040218A (en) * 2014-08-13 2016-03-24 Jx日鉱日石エネルギー株式会社 Dehydrogenation system and operation method of dehydrogenation system
WO2022118636A1 (en) * 2020-12-03 2022-06-09 Eneos株式会社 Hydrogen supply system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005211845A (en) * 2004-01-30 2005-08-11 Chiyoda Corp Dehydrogenation catalyst for hydrogenated aromatic compounds and manufacturing method therefor
JP2010006660A (en) * 2008-06-27 2010-01-14 Japan Energy Corp Hydrogen storing apparatus and hydrogen storing method
JP2010006652A (en) * 2008-06-27 2010-01-14 Japan Energy Corp Method for producing hydrogen
JP2011140411A (en) * 2010-01-06 2011-07-21 Jx Nippon Oil & Energy Corp Organic compound dehydrogenation reactor and hydrogen production method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005179082A (en) * 2003-12-16 2005-07-07 Nippon Oil Corp Hydrogen producing apparatus, fuel cell system and method for driving the same
JP4779446B2 (en) * 2005-05-27 2011-09-28 トヨタ自動車株式会社 Catalyst regeneration method, hydrogen generator and fuel cell system
JP2007284265A (en) * 2006-04-13 2007-11-01 T Rad Co Ltd Method for stopping reforming system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005211845A (en) * 2004-01-30 2005-08-11 Chiyoda Corp Dehydrogenation catalyst for hydrogenated aromatic compounds and manufacturing method therefor
JP2010006660A (en) * 2008-06-27 2010-01-14 Japan Energy Corp Hydrogen storing apparatus and hydrogen storing method
JP2010006652A (en) * 2008-06-27 2010-01-14 Japan Energy Corp Method for producing hydrogen
JP2011140411A (en) * 2010-01-06 2011-07-21 Jx Nippon Oil & Energy Corp Organic compound dehydrogenation reactor and hydrogen production method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016040218A (en) * 2014-08-13 2016-03-24 Jx日鉱日石エネルギー株式会社 Dehydrogenation system and operation method of dehydrogenation system
WO2022118636A1 (en) * 2020-12-03 2022-06-09 Eneos株式会社 Hydrogen supply system

Also Published As

Publication number Publication date
JP6086976B2 (en) 2017-03-01
JPWO2014157133A1 (en) 2017-02-16

Similar Documents

Publication Publication Date Title
JP4684069B2 (en) Production method of high purity hydrogen
US20210047194A1 (en) Removal of gaseous nh3 from an nh3 reactor product stream
JP5864393B2 (en) Hydrogen supply system
JP2016084272A (en) Method for producing hydrogen gas and apparatus for producing hydrogen gas
Xia et al. Innovative steam methane reforming for coproducing CO‐free hydrogen and syngas in proton conducting membrane reactor
JP2014073922A (en) Hydrogen supply system
Ermilova et al. Ethane oxidative dehydrogenation to ethylene in a membrane reactor with asymmetric ceramic membranes
JP6086976B2 (en) Operation method of hydrogen supply system, hydrogen supply equipment and hydrogen supply system
JP2017206421A (en) Method and apparatus for producing hydrogen gas
JP2015227255A (en) Hydrogen supply system
JP2016040218A (en) Dehydrogenation system and operation method of dehydrogenation system
US20230111727A1 (en) Hydrogen supply system
JP2008290927A (en) Method and apparatus for refining hydrogen by using organic hydride
JP2008238043A (en) Regeneration method of reforming catalyst
JP2010006652A (en) Method for producing hydrogen
EP4129892A1 (en) Hydrogen supply system
JP2021155272A (en) Hydrogen supply system
JP2015227256A (en) Hydrogen supply system
JP6236354B2 (en) Hydrogen supply system
WO2021200727A1 (en) Hydrogen supply system
JP2013203576A (en) High-purity attaining method for liquefied carbonic acid
JP2000313605A (en) Method for controlling flow rate of offgas in pressure- swinging adsorption apparatus
JP2015224184A (en) Hydrogen supply system
JP6646526B2 (en) Hydrogen gas production method and hydrogen gas production device
CN116529197A (en) Hydrogen supply system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14774919

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015508509

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14774919

Country of ref document: EP

Kind code of ref document: A1