JP2008290927A - Method and apparatus for refining hydrogen by using organic hydride - Google Patents

Method and apparatus for refining hydrogen by using organic hydride Download PDF

Info

Publication number
JP2008290927A
JP2008290927A JP2007161879A JP2007161879A JP2008290927A JP 2008290927 A JP2008290927 A JP 2008290927A JP 2007161879 A JP2007161879 A JP 2007161879A JP 2007161879 A JP2007161879 A JP 2007161879A JP 2008290927 A JP2008290927 A JP 2008290927A
Authority
JP
Japan
Prior art keywords
hydrogen
gas
reaction
dehydrogenation
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007161879A
Other languages
Japanese (ja)
Inventor
Tsutomu Tanaka
田中  勉
Ichiro Minami
一郎 南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EPSILON CO Ltd
Original Assignee
EPSILON CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EPSILON CO Ltd filed Critical EPSILON CO Ltd
Priority to JP2007161879A priority Critical patent/JP2008290927A/en
Publication of JP2008290927A publication Critical patent/JP2008290927A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and an apparatus for removing a gas from hydrogenation products and performing a dehydrogenation reaction effectively when only hydrogen in a gaseous mixture is added selectively to a hydrogen-unsaturated aromatic compound in a hydrogenation catalyst reactor, high-purity hydrogen is separated from the produced hydrogen-saturated aromatic compound in a dehydrogenation catalyst reactor and the hydrogen-unsaturated aromatic compound produced simultaneously is circulated in the hydrogenation catalyst reactor to alternately perform hydrogenation and dehydrogenation reactions. <P>SOLUTION: The method and the apparatus for refining hydrogen from the gaseous mixture are characterized in that hydrogen is added beforehand to the aromatic compound to decrease the boiling point of the aromatic compound so that the dehydrogenation reaction is performed in a gas phase under conditions of high temperature and high pressure and the gas is removed effectively in a gas removal column. As a result, high-purity hydrogen having ≥99% purity can be obtained from a wide range of hydrogen-mixed gasses from biotechnology, COG, etc. at almost 100% recovery rate without performing special pretreatment to remove impurities. The pressure of a product can economically be made higher than that of a raw material without compressing the gas. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明はバイオマス、石油関連産業や鉄鋼関連産業で水素を効率的に高純度で製造および精製する方法並びに処理装置に関する。The present invention relates to a method and a processing apparatus for efficiently producing and purifying hydrogen with high purity in biomass, petroleum-related industries, and steel-related industries.

水素ガスは従来からアンモニア原料などとして主として化学工業に多く使われてきたが、近来、燃料電池などクリーンなエネルギーとしての需要が高まりつつある。この水素を如何に安く、かつ、高純度な品質で製造・精製ないしは回収して安定的に供給できるかが現在社会的に問われている課題である。Conventionally, hydrogen gas has been mainly used in the chemical industry mainly as an ammonia raw material, but recently, the demand for clean energy such as fuel cells is increasing. An issue that is currently being questioned by society is how cheaply this hydrogen can be produced, purified or recovered with high purity quality and stably supplied.

水素の製造法および使用先として工業的には、石油精製工場でのガソリン接触分解装置や製鉄所のコークスガスから得られる水素ガスの大半が自家消費となり、足りない分や外販用には石油精製工場や石油化学工場でナフサや天然ガスを原料とした水蒸気改質装置からの水素ガスが使用されている。Industrially, as a hydrogen production method and usage destination, most of the hydrogen gas obtained from gasoline catalytic cracking equipment at oil refineries and coke gas at steelworks is consumed in-house. Hydrogen gas from a steam reformer using naphtha or natural gas as a raw material is used in factories and petrochemical plants.

上記ガスはCH、COなどの混合物であり、これから水素を分離および精製する従来技術としては、深冷分離、膜分離、PSA(圧力スイング吸着)がある。どの方法もガス中の硫化物、酸化物やBTXなどの重合しやすい成分を除去しておく予備精製が不可欠である。深冷分離は、深冷状態において水素が凝縮液化しにくいことに着目して、液化する他の不純物を除去する方法であるが、深冷のための設備費、運転費ともに高価になるという問題点があった。膜分離は、種々の膜を用いて膜に対するガス透過速度の差を利用する分離法であるが、圧力消費が大きい問題がある。現在主流となっているのはPSAであるが、製品水素を用いた脱着パージ操作が必要なため、製品水素の回収率が80%程度に落ちてしまうという問題点がある。さらに原料ガスが低圧の場合あらかじめ原料ガスを圧縮機などで高圧化しておかなければ、高圧の製品水素が得られないばかりか、製品純度や回収率が確保できないという問題点もある。The gas is a mixture of CH 4 , CO 2, etc., and conventional techniques for separating and purifying hydrogen therefrom include cryogenic separation, membrane separation, and PSA (pressure swing adsorption). In any method, it is indispensable to perform preliminary purification in which easily polymerizable components such as sulfides, oxides and BTX in the gas are removed. Cryogenic separation is a method that removes other impurities that liquefy, focusing on the fact that hydrogen is difficult to condense and liquefy in a refrigerated state, but the problem is that both equipment costs and operating costs for chilling are expensive. There was a point. Membrane separation is a separation method using various membranes and utilizing the difference in gas permeation rate with respect to the membrane, but has a problem of large pressure consumption. Currently, PSA is the mainstream, but since a desorption purge operation using product hydrogen is required, there is a problem that the recovery rate of product hydrogen falls to about 80%. In addition, when the raw material gas is low pressure, unless the raw material gas is pre-pressurized with a compressor or the like, not only high-pressure product hydrogen can be obtained, but also product purity and recovery rate cannot be secured.

上記以外としては、自動車移動型燃料として公知である有機ハイドライド(水素不飽和芳香族化合物)の応用として水素不飽和芳香族化合物に水素を添加する操作と、該反応塔にて生成した反応組成物を脱水素するための操作を交互に行う“触媒を充填した反応装置”を用い、水素を含む混合ガスから水素を高純度で回収する方法が提案されている。(特開2005−200253、特開2005−200254)。しかしこれらは脱水素反応器において液相を前提として液相を保持することに特徴があった。Other than the above, an operation of adding hydrogen to a hydrogen unsaturated aromatic compound as an application of organic hydride (hydrogen unsaturated aromatic compound) known as an automobile mobile fuel, and a reaction composition produced in the reaction tower There has been proposed a method for recovering hydrogen with high purity from a mixed gas containing hydrogen using a “reactor filled with a catalyst” that alternately performs an operation for dehydrogenating hydrogen. (Unexamined-Japanese-Patent No. 2005-200253, Unexamined-Japanese-Patent No. 2005-200254). However, these are characterized in that the liquid phase is maintained on the premise of the liquid phase in the dehydrogenation reactor.

本発明は、従来技術としては公知の前記技術を踏まえて広範囲な濃度の水素を含む混合ガスから、不純物除去前処理なしに高圧水素を高純度かつ、ほぼ100%回収するためにいまだ工業的に実現していない脱水素反応器の原理、構造と水素添加装置および水素化芳香族化合物からのガス除去を行う処理装置を提供し、水素製造装置との結合により外部熱や圧縮動力の低減を図ることを目的とする。The present invention is still industrially applicable to recover high-pressure hydrogen with high purity and almost 100% from a mixed gas containing hydrogen in a wide range of concentrations without any impurity pretreatment, based on the above-mentioned conventional technology. Provided a dehydrogenation reactor principle, structure and hydrogenation device that has not been realized, and a treatment device that removes gas from hydrogenated aromatic compounds, and reduces external heat and compression power by combining with a hydrogen production device For the purpose.

前記課題を解決するための手段として、本発明に係る方法は、請求項2に記載するように、高温下で脱水素反応を行しめる際に、エダクターないし水素加圧装置を経た水素を反応塔に入る前の水素飽和芳香族化合物に加えて、沸点を50℃程度さげて脱水素反応器における気相反応を確実とすることを特徴としている。なお添加する水素量は水素飽和芳香族化合物の5重量%以内である。As a means for solving the above-mentioned problems, the method according to the present invention comprises, as described in claim 2, when hydrogen is passed through an eductor or a hydrogen pressurizing device when performing a dehydrogenation reaction at a high temperature. In addition to the hydrogen-saturated aromatic compound before entering, the boiling point is lowered by about 50 ° C. to ensure the gas phase reaction in the dehydrogenation reactor. The amount of hydrogen to be added is within 5% by weight of the hydrogen saturated aromatic compound.

さらに請求項3に記載のように脱水素反応器は、上部および下部からなる断熱型固定床として管内部に触媒充填を行い、下部で気相化と反応を行い、上部で気相反応をより進める構造となっている。また吸熱分は、反応管外部からの燃焼ガスなどの高温ガスで供給することを特徴としている。Further, as described in claim 3, the dehydrogenation reactor is a heat-insulated fixed bed composed of an upper part and a lower part. It has a structure to advance. The endothermic component is supplied by a high-temperature gas such as a combustion gas from the outside of the reaction tube.

また、請求項4に記載のように、水素飽和芳香族化合物に対する加温および水素以外の混合ガスの除去のために蒸留塔を設置することを特徴とする。Further, as described in claim 4, a distillation column is installed for heating the hydrogen saturated aromatic compound and removing a mixed gas other than hydrogen.

さらに請求項5および請求項6に記載のように、水素製造のための水蒸気改質法の原料として低温反応が可能なメタノールなどを用いることや、従来からよく用いられているナフサを用いて1MPa程度の低圧で行うことにより、外部熱や動力低減が期待でき結果として原単位の低い水素製造が可能となる。以上に記載した手段によって本課題を解決するに至ったものである。また、本発明に係る混合ガスからの水素回収方法は、請求項7に記載のように、水素不飽和芳香族化合物がナフタレンであり、かつ、反応生成した水素飽和芳香族化合物がテトラリンであることを特徴とする。Further, as described in claim 5 and claim 6, methanol capable of low-temperature reaction is used as a raw material for the steam reforming method for hydrogen production, or 1 MPa using naphtha which has been conventionally used. By carrying out at a low pressure of the order, external heat and power reduction can be expected, and as a result, hydrogen production with a low basic unit becomes possible. This problem has been solved by the means described above. Further, in the method for recovering hydrogen from the mixed gas according to the present invention, the hydrogen unsaturated aromatic compound is naphthalene and the hydrogen saturated aromatic compound produced by the reaction is tetralin as described in claim 7. It is characterized by.

ナフタリンを水素化により主としてテトラリンとし、このテトラリンを精製回収後ナフタリンと水素に分解し、その後水素を高純度で分離することにより、含水素混合ガスから高純度水素を回収する方法であるが、実用的な操作範囲にまたがる、ナフタリン−テトラリン−水素系の平衡関係は、文献)に紹介されている。
1)Jounal of Physical Chemistry Sept.Vol.62 1059〜1061Page、1958に掲載されたThomas P.Wilson等の研究“THE NAPHTHALEN−TETRALIN=HYDROGEN EQUILIBRRIUM AT ELEVATED TEMPERATURE AND PRESSURE”
前述のWilson等の論文では基本的反応は:C10+2H=C1012で示され、この反応は主として気相で起こるとしている。一方、以下に示されるようにナフタリン、テトラリンの臨界温度(Tc)、臨界圧力(Pc)は非常に近く、3MPaの圧力では沸点が430℃程度と今回想定したテトラリン脱水素反応温度よりわずかに高い。

Figure 2008290927
This method recovers high-purity hydrogen from a hydrogen-containing mixed gas by hydrogenating naphthalene into mainly tetralin, then refining and recovering this tetralin into naphthalene and hydrogen, and then separating the hydrogen with high purity. The equilibrium relation of naphthalene-tetralin-hydrogen system over a typical operating range is introduced in Reference 1 ).
1) Journal of Physical Chemistry Sept. Vol. 62 1059-1061 Pages, 1958, Thomas P. Wilson et al. “THE NAPHTHALEN-TETRALIN = HYDROGEN EQUILIBRIUM AT ELEVATED TEMPERATURE AND PRESSURE”
In the aforementioned Wilson et al. Paper, the basic reaction is shown as: C 10 H 8 + 2H 2 = C 10 H 12 and it is assumed that this reaction occurs mainly in the gas phase. On the other hand, as shown below, the critical temperature (Tc) and critical pressure (Pc) of naphthalene and tetralin are very close, and the boiling point is about 430 ° C. at a pressure of 3 MPa, which is slightly higher than the assumed tetralin dehydrogenation reaction temperature. .
Figure 2008290927

Wilson氏らの実験では以下のような式が導かれている。
10+2H=C1012−28.8±1.2(kcal/mol)
LnKp=16118.1/T−30.233
Kp:反応平衡常数(atm)T:反応温度(K)
Keq=(C1012/(C10*H*H))/(P*P)Keq:反応平衡状態数 C1012,C10,H:気相でのそれぞれの成分のモルフラクション P:は反応時の圧力(atm)
水素源発生装置よりの含水素ガスは70mol%程度の水素、24mol%のCO,その他CO,CH,HOなどを含んでいる。反応式:C10+2H=C1012によりナフタリンの水素添加が行われナフタリンはテトラリンに変わるので理論的には水素1molに対してナフタリンは0.5molあればよいのだが反応は可逆的におこり、上記した反応平衡状態数Keqで示される反応の移行状態は特定の反応温度では上記反応平衡常数Kp(反応温度Tの関数)で表される化学熱平衡状態以上には移行しない。C10/H=0.6程度とし反応温度を290℃とすると反応平衡常数Kp=0.2程度となり原料ガス中のHのほぼ90%がナフタリンと反応しテトラリン変わる。この反応は発熱反応であり断熱的に反応が進むとすると反応器入口での温度はほぼ275℃と推定される。

Figure 2008290927
反応器入口ではKeqはKpより小さいが、触媒に気相が触れることにより反応が進行し熱化学的に安定な反応器出口温度での反応平衡常数Kp=0.2=Keqとなり安定し気液平衡も安定なV/F=0.43へと変化する。反応器出口温度では入口に比べナフタリンは減少しテトラリンが増加するがHが大幅に減少するためV/Fは入口状態よりも小さい値となっている。In the experiment of Wilson et al., The following equation is derived.
C 10 H 8 + 2H 2 = C 10 H 12 -28.8 ± 1.2 (kcal / mol)
LnKp = 161118 / T-30.233
Kp: reaction equilibrium constant (atm) T: reaction temperature (K)
Keq = (C 10 H 12 / (C 10 H 8 * H 2 * H 2)) / (P * P) Keq: Reaction equilibrium number C 10 H 12, C 10 H 8, H 2: in the gas phase The molar fraction P of each component is the pressure during the reaction (atm)
The hydrogen-containing gas from the hydrogen source generator contains about 70 mol% of hydrogen, 24 mol% of CO 2 , other CO, CH 4 , H 2 O and the like. Reaction formula: C 10 H 8 + 2H 2 = C 10 H 12 is used to hydrogenate naphthalene, and naphthalene is changed to tetralin. Therefore, theoretically, 0.5 mol of naphthalene is sufficient for 1 mol of hydrogen, but the reaction is reversible. Therefore, the transition state of the reaction indicated by the reaction equilibrium number Keq does not shift beyond the chemical thermal equilibrium state represented by the reaction equilibrium constant Kp (a function of the reaction temperature T) at a specific reaction temperature. When C 10 H 8 / H 2 is about 0.6 and the reaction temperature is 290 ° C., the reaction equilibrium constant Kp is about 0.2, and almost 90% of H 2 in the raw material gas reacts with naphthalene and changes tetralin. This reaction is an exothermic reaction, and if the reaction proceeds adiabatically, the temperature at the reactor inlet is estimated to be approximately 275 ° C.
Figure 2008290927
Although Keq is smaller than Kp at the reactor inlet, the reaction proceeds when the gas phase contacts the catalyst, and the reaction equilibrium constant Kp = 0.2 = Keq at the thermochemically stable reactor outlet temperature becomes stable. The equilibrium also changes to stable V / F = 0.43. At the reactor outlet temperature, naphthalene decreases and tetralin increases compared to the inlet, but H 2 decreases significantly, so V / F is smaller than the inlet state.

水素化プロセスにてナフタリンを水素化しテトラリンとした生成物は生成したテトラリン、反応残のナフタリンのほか原料水素に含んでいたCO,CO,CH4,HO反応残のHを含んでいる。ナフタリン、テトラリン以外の軽質分は除去後加熱されテトラリンの脱水素のプロセスに送られる。ナフタリン、テトラリン混合物中のナフタリンの含有量を横軸にとり縦軸にその混合物の沸点、L/F=50%点、Dew pointを縦軸にとりプロットすると図1のグラフのように推算される。このグラフの値からテトラリンの脱水素反応が気相反応とすると430℃以下では脱水素反応は起こらないことになる。The product obtained by hydrogenating naphthalene into tetralin in the hydrogenation process contains the produced tetralin, the residual naphthalene, as well as CO 2 , CO, CH 4, H 2 O reaction residual H 2 contained in the raw material hydrogen. . Light components other than naphthalene and tetralin are heated after removal and sent to the process of dehydrogenating tetralin. When the content of naphthalene in the naphthalene / tetralin mixture is plotted on the horizontal axis, the boiling point of the mixture, L / F = 50% point, and the Dew point on the vertical axis, the results are estimated as shown in the graph of FIG. From the values in this graph, if the dehydrogenation reaction of tetralin is a gas phase reaction, the dehydrogenation reaction does not occur at 430 ° C. or lower.

ナフタリン、テトラリンの混合割合を10:90とし混合物中のHのmol%を横軸にとり、混合物の沸点、V/F=1.0%点、V/F=2.5%点、Dew pointを縦軸にとりプロットすると図2のグラフのようになる。この傾向はナフタリン、テトラリンの混合割合を変えても同様な傾向となる。以上のことから純度の高い製品Hを数%脱水素反応前のナフタリン、テトラリンの混合物に添加することにより400℃以下の温度でも気相反応が開始するようにすることが出来る。なお反応温度を400℃以下に下げるのは、テトラリンの熱分解による不純物発生を避けるためである。The mixing ratio of naphthalene and tetralin is 10:90 and the horizontal axis is mol% of H 2 in the mixture. The boiling point of the mixture, V / F = 1.0% point, V / F = 2.5% point, Dew point Is plotted on the vertical axis, and the result is as shown in the graph of FIG. This tendency is similar even when the mixing ratio of naphthalene and tetralin is changed. From the above, it is possible to start the gas phase reaction even at a temperature of 400 ° C. or lower by adding the high-purity product H 2 to the mixture of naphthalene and tetralin before the dehydrogenation reaction by several percent. The reason for lowering the reaction temperature to 400 ° C. or lower is to avoid generation of impurities due to thermal decomposition of tetralin.

ナフタリン、テトラリン以外の軽質分を除去後Hを添加された原料は390℃に加熱されテトラリンの脱水素のプロセスに送られる。

Figure 2008290927
反応は吸熱反応なので加熱されながら進行する。反応器入り口ではV/Fは上表のごとく0.02であり反応平衡状態数Keqは239、反応平衡常数Kpは0.003と大きく離れており、触媒に触れた気体はかなりの速い速度で熱化学平衡に移行してゆくだろう事は容易に推測できる。一方、反応後の気液状態を見ると全て気体となるわけでこの反応により液体から全気体への移行が起こる。あたかも「Dry up」のような状態を呈することになる。After removing light components other than naphthalene and tetralin, the raw material to which H 2 has been added is heated to 390 ° C. and sent to a process for dehydrogenating tetralin.
Figure 2008290927
Since the reaction is endothermic, it proceeds while being heated. At the reactor inlet, V / F is 0.02 as shown in the table above, the reaction equilibrium state number Keq is 239, and the reaction equilibrium constant Kp is very far from 0.003. It can be easily guessed that it will shift to thermochemical equilibrium. On the other hand, when the gas-liquid state after the reaction is viewed, all of the gas becomes gas, and this reaction causes a transition from liquid to total gas. It will appear as if “Dry up”.

芳香族水素化合物の脱水素反応は吸熱反応であり、一般に高温にしなければ反応が進行しない。従来からこの脱水素反応に関しては種々の方法が提唱されているが、その代表的のものを以下にあげる。
1.テトラリンからナフタレンへの脱水素反応を圧力2から4Mpa、温度80から160℃という熱力学的に液相を保持した条件で行う。(文献2)など)しかし転化率が低い問題がある。
2)Liquid−Phase Hydrogenation of Naphtalene and Tetralin on Ni/Al:Kinetic Modeling,Petri A.et al,Ind.Eng.,Chem.,Res.,2002,41,5966−5975
2.水素反応で生成した水素を耐熱性の選択的透過膜(多孔質ガラス、セラミックなど)を通して系外に除去すれば平衡は生成側に片寄り、転化率が向上する。一例として資料2)ではシクロヘキサンからベンゼンへの脱水素(触媒Pt−Al203)で、反応温度230℃で転化率80%が得られている。同一転化率での平衡温度は230℃なので、30℃だけ平衡を乗り越えている。水素製造改質反応と水素分離を同時に行うことにより、反応低温化を目指すメンブレンリアクターも同じ方向である。
3)新治修ほか、第46回触媒討論会(A)、4Q05、仙台、1980
3.上記1より高温の領域とするが液相反応を前提に、生成した水素を気泡として気相に逃がすと平衡の制約をうけず、高い転化率が期待できるという考え方がある。その際の問題点として脱水素する水素分が多いと急激な気泡化により液滴が同伴してしまい液相が消滅する「Dry Up」を生じるのでこれを避けるような構造が必要であるというものである。しかしオートクレーブ実験によると、水素抜き出しがフリーであったにもかかわらず反応平衡を乗越えた組成を得られなかったことおよび水素の張り込みなしでナフタレン、テトラリンのみで実験開始の場合反応が進行しなかったことからこの考え方は成り立たず、むしろ液相部分から触媒に接触しつつ気液平衡で蒸発した気相成分間で反応が行われると考えられる。吸熱により、気相化した成分が触媒周辺で反応する反応機構と考えることが合理的である。
The dehydrogenation reaction of an aromatic hydrogen compound is an endothermic reaction, and generally the reaction does not proceed unless the temperature is raised. Conventionally, various methods have been proposed for this dehydrogenation reaction, and typical ones are listed below.
1. The dehydrogenation reaction from tetralin to naphthalene is carried out under conditions of thermodynamically maintaining a liquid phase at a pressure of 2 to 4 Mpa and a temperature of 80 to 160 ° C. There are (Document 2), etc.) but the conversion rate is low problem.
2) Liquid-Phase Hydrogenation of Naphtalene and Tetralin on Ni / Al 2 O 3: Kinetic Modeling, Petri A. et al, Ind. Eng. , Chem. , Res. , 2002, 41, 5966-5975
2. If the hydrogen produced by the hydrogen reaction is removed from the system through a heat-resistant selective permeable membrane (porous glass, ceramic, etc.), the equilibrium is shifted to the production side and the conversion rate is improved. As an example, in Document 2) , dehydrogenation from cyclohexane to benzene (catalyst Pt—Al203), a conversion rate of 80% was obtained at a reaction temperature of 230 ° C. Since the equilibrium temperature at the same conversion is 230 ° C., the equilibrium is exceeded by 30 ° C. Membrane reactors aiming to lower the reaction temperature by performing hydrogen production reforming reaction and hydrogen separation simultaneously are in the same direction.
3) Osamu Shinji et al., 46th Catalytic Conference (A), 4Q05, Sendai, 1980
3. Although the temperature is higher than the above 1, there is a concept that if the generated hydrogen is released as bubbles in the gas phase on the premise of a liquid phase reaction, a high conversion rate can be expected without being restricted by equilibrium. As a problem at that time, if there is a large amount of hydrogen to be dehydrogenated, the droplets are accompanied by rapid bubble formation, resulting in “Dry Up” in which the liquid phase disappears, so a structure that avoids this is necessary. It is. However, according to the autoclave experiment, the composition exceeding the reaction equilibrium was not obtained even though the hydrogen extraction was free, and the reaction did not proceed when the experiment was started with only naphthalene and tetralin without hydrogen filling. Therefore, this idea does not hold, but rather it is considered that the reaction is carried out between gas phase components evaporated in vapor-liquid equilibrium while contacting the catalyst from the liquid phase portion. It is reasonable to consider this as a reaction mechanism in which the components vaporized due to endotherm react around the catalyst.

3〜4Mpa、300℃以上で行われるテトラリンからのナフタレンへの脱水素反応は、臨界領域近傍の反応となっている。(テトラリン、ナフタレンの臨界圧力、臨界温度が3.7MPa、447℃および4.1MPa、475℃)そこでは同一圧力、温度で準安定状態(液相に富む)、安定状態(気相に富む)が存在(純成分での逆行現象に対応)することそしてその領域間では微量の水素添加や温度変化により、準安定状態から安定状態に急減に転移し、見掛け上液相から気相に急変することが商用ソフトによるシミュレーションによって観察され、これがいわゆるDry up(ドライアップ)に相当すると判断される。The dehydrogenation reaction from tetralin to naphthalene performed at 3 to 4 Mpa and 300 ° C. or higher is a reaction in the vicinity of the critical region. (Critical pressure and critical temperature of tetralin and naphthalene are 3.7 MPa, 447 ° C. and 4.1 MPa, 475 ° C.) At the same pressure and temperature, metastable state (rich in liquid phase), stable state (rich in gas phase) Is present (corresponding to the retrograde phenomenon with a pure component), and between these regions, a slight amount of hydrogen addition or temperature change causes a sudden transition from a metastable state to a stable state, apparently suddenly changing from the liquid phase to the gas phase. This is observed by simulation using commercial software, and it is determined that this corresponds to so-called Dry up (dry up).

以下実施例に基づいて本発明をさらに具体的に説明するが、本発明はこの実施例に限定されるものではない。  Hereinafter, the present invention will be described more specifically based on examples, but the present invention is not limited to these examples.

図3の反応器へ374℃のテトラリン260kg/h、ナフタレン4/hを装入し最終的に390℃,3MPaの条件で30分Ni−Mo系触媒下で反応させ、ナフタレン190kg/h,テトラリン95kg/hと水素45Nm/hを得た。なお、発生水素ガス中には殆どナフタレンやテトラリンの蒸気は含まれない。The reactor of FIG. 3 was charged with 260 kg / h of tetralin at 374 ° C. and 4 / h of naphthalene, and finally reacted under the conditions of 390 ° C. and 3 MPa for 30 minutes under a Ni—Mo-based catalyst, 190 kg / h of naphthalene, tetralin 95 kg / h and hydrogen 45 Nm 3 / h were obtained. The generated hydrogen gas contains almost no naphthalene or tetralin vapor.

図4に示すフローで、水素73.6mol%、CO0.4mol%、CO23.5mol%、CH2mol%、水分0.5mol%の混合ガスを原料として下表に示す収支で99.99%の水素を回収率99%で得た。

Figure 2008290927
In the flow shown in FIG. 4, the balance shown in the table below is 99.99 using a mixed gas of hydrogen 73.6 mol%, CO 0.4 mol%, CO 2 23.5 mol%, CH 4 2 mol%, and moisture 0.5 mol% as a raw material. % Hydrogen was obtained with 99% recovery.
Figure 2008290927

水素化反応器と前述のごとき脱水素反応器とを組み合わせてテトラリンおよびナフタレン溶液を循環使用することにより、粗水素混合ガスからj純度の高い水素に精製できる。、これにより、特段のNH3,SO2,BTXなどの不純物除去前処理なしに広範囲の水素を含むガスから高純度の高圧水素をほぼ100%回収することが出来る。また粗水素中の水素濃度が高ければ、低圧でも水素精製が可能である。さらに動力を要するガス圧縮機を用いることなく、製品圧力を5MPaまでの高圧に昇圧することができる。By combining the hydrogenation reactor and the dehydrogenation reactor as described above and circulating the tetralin and naphthalene solution, the crude hydrogen mixed gas can be purified to j-purity hydrogen. As a result, almost 100% of high-purity high-pressure hydrogen can be recovered from a gas containing a wide range of hydrogen without a special pretreatment for removing impurities such as NH3, SO2, and BTX. Moreover, if the hydrogen concentration in the crude hydrogen is high, hydrogen purification is possible even at a low pressure. Further, the product pressure can be increased to a high pressure up to 5 MPa without using a gas compressor that requires power.

ナフタレン、テトラリンの沸点を示した図である。It is the figure which showed the boiling point of naphthalene and tetralin. ナフタレンーテトラリン混合物の沸点/露点温度が水素の存在によりどのように変わるかを示した図である。FIG. 4 is a diagram showing how the boiling point / dew point temperature of a naphthalene-tetralin mixture varies depending on the presence of hydrogen. 本発明の実施例1の脱水反応器を示した概要図である。胴側外部にある点線矢印は、加熱側高温ガスの流れを示している。It is the schematic which showed the dehydration reactor of Example 1 of this invention. A dotted arrow on the outside of the body side indicates the flow of the heating side hot gas. 本発明を用いる概略工程図の一例を示した図である。It is the figure which showed an example of the schematic process drawing using this invention.

符号の説明Explanation of symbols

1……………原料混合ガスの流れ
2……………循環ナフタレンの流れ
3……………水素化反応器への原料の流れ
4……………水素化反応器を出た製品の流れ
5……………オフガスの流れ
6……………脱水素反応器への原料の流れ
7……………製品水素の流れ
1 ………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………. Flow 5 …………… Off-gas flow 6 …………… Raw material flow 7 to the dehydrogenation reactor …………… Product hydrogen flow

Claims (7)

混合ガス中の水素を選択的に水素化反応塔にて触媒により水素不飽和芳香族化合物に添加する。そして生成した反応組成物から触媒を充填した脱水素反応装置で水素を高純度で分離して、同時に生成した水素不飽和芳香族化合物は水素化反応塔に循環させるという水素化および脱水素反応操作を交互に行う場合において、高圧・高温下で脱水素反応を行わしめる際に、反応が気相で行われるようにあらかじめ芳香族化合物に水素を添加して沸点を下げることを特徴とする、混合ガスからの水素精製を実施するための処理装置Hydrogen in the mixed gas is selectively added to the hydrogen unsaturated aromatic compound by a catalyst in a hydrogenation reaction tower. Then, the hydrogenation and dehydrogenation reaction operations in which hydrogen is separated with high purity from the produced reaction composition in a dehydrogenation reactor packed with a catalyst, and simultaneously the produced hydrogen unsaturated aromatic compound is circulated to the hydrogenation reaction tower. In the case where the dehydrogenation reaction is carried out alternately, when the dehydrogenation reaction is carried out at high pressure and high temperature, the boiling point is lowered by adding hydrogen to the aromatic compound in advance so that the reaction is carried out in the gas phase. Processing equipment for carrying out hydrogen purification from gas 前記の脱水素反応器において、その上流にエダクターを設置して液圧力により水素を吸引することにより原料液中に水素を添加するまたは加圧された水素を原料液中に混合するという原料液への水素の添加方法In the above dehydrogenation reactor, an eductor is installed upstream thereof, and hydrogen is sucked by liquid pressure to add hydrogen into the raw material liquid or to mix the pressurized hydrogen into the raw material liquid. How to add hydrogen 前記の脱水素反応器において、塔内部の多数の管内部のNi−MO、CO−MO、Ptなどの触媒を2段設置して、その中間に水素を含む水素化芳香族化合物を送入して下段で蒸発と脱水素反応をおこない、上段で気相反応をより進めさせ、その吸熱反応に必要な熱量は管外部の燃焼ガスなどの高温ガスから与える脱水素反応器の構造In the above-mentioned dehydrogenation reactor, two stages of catalysts such as Ni-MO, CO-MO, Pt, etc. inside a large number of tubes inside the tower are installed, and a hydrogenated aromatic compound containing hydrogen is sent between them. The structure of the dehydrogenation reactor, where evaporation and dehydrogenation reactions are performed in the lower stage, gas phase reactions are further advanced in the upper stage, and the amount of heat required for the endothermic reaction is given from high-temperature gas such as combustion gas outside the tube 前記の水素化反応器、脱水素反応器の水素化芳香族化合物循環系において、水素化反応器からの水素化芳香族化合物を原料とした蒸留塔を設置して、塔底のリボイラから熱を加えて塔頂より水素化反応器からの混合ガスを除去して、塔底から加温された脱水素反応器への原料を製造する方法In the hydrogenated aromatic compound circulation system of the hydrogenation reactor and dehydrogenation reactor, a distillation column made from the hydrogenated aromatic compound from the hydrogenation reactor is installed, and heat is supplied from the reboiler at the bottom of the column. In addition, the mixed gas from the hydrogenation reactor is removed from the top of the column, and the raw material for the dehydrogenation reactor heated from the bottom is produced. 前記の水素化反応器、脱水素反応器の上流に、メタノールなどOH基をもった炭化水素と水蒸気を原料として200℃から250℃程度で水素を製造する水蒸気改質反応器を設置して、当該水素化反応器から発生する300℃レベルの発生熱を上記の改質装置の熱源として有効に利用する方法In the upstream of the hydrogenation reactor and dehydrogenation reactor, a steam reforming reactor for producing hydrogen at about 200 ° C. to 250 ° C. using hydrocarbons having OH groups such as methanol and steam as raw materials is installed, A method of effectively utilizing the heat generated at 300 ° C. generated from the hydrogenation reactor as a heat source of the reformer 前記の水素化反応器、脱水素反応器の上流に、炭化水素と水蒸気とを原料として効率的な1Mpa程度の低圧で水素を製造する水蒸気改質反応器を設置して、当該装置においてガス昇圧なしで水素精製を行うことによりガス圧縮機を不要として動力削減を達成する方法。A steam reforming reactor that efficiently produces hydrogen at a low pressure of about 1 Mpa using hydrocarbons and steam as raw materials is installed upstream of the hydrogenation reactor and dehydrogenation reactor. A method that achieves power reduction by eliminating the need for a gas compressor by performing hydrogen purification without a gas. 前記の水素不飽和芳香族化合物がナフタレンであり、反応組成物がテトラリンであることを特徴とする、混合ガスからの水素回収方法The method for recovering hydrogen from a mixed gas, wherein the hydrogen unsaturated aromatic compound is naphthalene and the reaction composition is tetralin
JP2007161879A 2007-05-24 2007-05-24 Method and apparatus for refining hydrogen by using organic hydride Pending JP2008290927A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007161879A JP2008290927A (en) 2007-05-24 2007-05-24 Method and apparatus for refining hydrogen by using organic hydride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007161879A JP2008290927A (en) 2007-05-24 2007-05-24 Method and apparatus for refining hydrogen by using organic hydride

Publications (1)

Publication Number Publication Date
JP2008290927A true JP2008290927A (en) 2008-12-04

Family

ID=40166052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007161879A Pending JP2008290927A (en) 2007-05-24 2007-05-24 Method and apparatus for refining hydrogen by using organic hydride

Country Status (1)

Country Link
JP (1) JP2008290927A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010006659A (en) * 2008-06-27 2010-01-14 Japan Energy Corp Apparatus for producing hydrogen
JP2010006653A (en) * 2008-06-27 2010-01-14 Japan Energy Corp Method for producing hydrogen
WO2015019608A1 (en) * 2013-08-06 2015-02-12 千代田化工建設株式会社 Hydrogen supply system and hydrogen supply method
JP2015030652A (en) * 2013-08-06 2015-02-16 千代田化工建設株式会社 Hydrogen supply system
WO2021193767A1 (en) * 2020-03-27 2021-09-30 Eneos株式会社 Hydrogen supply system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010006659A (en) * 2008-06-27 2010-01-14 Japan Energy Corp Apparatus for producing hydrogen
JP2010006653A (en) * 2008-06-27 2010-01-14 Japan Energy Corp Method for producing hydrogen
WO2015019608A1 (en) * 2013-08-06 2015-02-12 千代田化工建設株式会社 Hydrogen supply system and hydrogen supply method
JP2015030652A (en) * 2013-08-06 2015-02-16 千代田化工建設株式会社 Hydrogen supply system
US10131593B2 (en) 2013-08-06 2018-11-20 Chiyoda Corporation Systems and methods for producing hydrogen from a hydrocarbon and using the produced hydrogen in a hydrogenation reaction
WO2021193767A1 (en) * 2020-03-27 2021-09-30 Eneos株式会社 Hydrogen supply system
CN115335321A (en) * 2020-03-27 2022-11-11 引能仕株式会社 Hydrogen supply system

Similar Documents

Publication Publication Date Title
RU2412226C2 (en) Method of producing and converting synthetic gas (versions)
US6929668B2 (en) Process for production of hydrogen by partial oxidation of hydrocarbons
US20090123364A1 (en) Process for Hydrogen Production
US7192569B2 (en) Hydrogen generation with efficient byproduct recycle
RU2012126748A (en) METHOD FOR PRODUCING HYDROGEN BASED ON LIQUID HYDROCARBONS, GAS-HYDROCARBON HYDROCARBONS AND / OR OXYGEN-CONTAINING COMPOUNDS, INCLUDING PRODUCED FROM BIOMASS
EA005956B1 (en) Process for liquefying natural gas and producing hydrocarbons
JP2023530357A (en) Hydrogen production using a membrane reformer
EP3098213A1 (en) Method for producing aromatic hydrocarbons from natural gas and installation for implementing same
EP2944606A1 (en) Process for generating hydrogen from a fischer-tropsch off-gas
CN115667132A (en) Method for producing hydrogen
JP2008290927A (en) Method and apparatus for refining hydrogen by using organic hydride
JP5138586B2 (en) Liquid fuel synthesis system
JP2006513128A (en) Improved shift conversion arrangement and method.
US8658705B2 (en) Carbon oxides removal
JP2002321904A (en) Method for producing hydrogen
JPH03242302A (en) Production of hydrogen and carbon monoxide
CN117460687A (en) Ammonia cracking for green hydrogen
EP2867188B1 (en) Converting carbon oxides in gas phase fluids
US4986978A (en) Process for reforming impure methanol
JP7122042B1 (en) Purge method and system
RU2729790C1 (en) Gas chemical production of hydrogen
RU2791358C1 (en) Hydrogen production method
WO2018037315A1 (en) Integrated method and system for hydrogen and ethylene production
CA3155106C (en) System and method for the production of synthetic fuels without fresh water
WO2023229491A2 (en) Method for producing hydrogen