JP5243859B2 - Hydrogen production apparatus and hydrogen production method - Google Patents

Hydrogen production apparatus and hydrogen production method Download PDF

Info

Publication number
JP5243859B2
JP5243859B2 JP2008168962A JP2008168962A JP5243859B2 JP 5243859 B2 JP5243859 B2 JP 5243859B2 JP 2008168962 A JP2008168962 A JP 2008168962A JP 2008168962 A JP2008168962 A JP 2008168962A JP 5243859 B2 JP5243859 B2 JP 5243859B2
Authority
JP
Japan
Prior art keywords
hydrogen
dehydrogenation
reaction
catalyst layer
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008168962A
Other languages
Japanese (ja)
Other versions
JP2010006651A (en
Inventor
隆太郎 小出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
JXTG Nippon Oil and Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JXTG Nippon Oil and Energy Corp filed Critical JXTG Nippon Oil and Energy Corp
Priority to JP2008168962A priority Critical patent/JP5243859B2/en
Publication of JP2010006651A publication Critical patent/JP2010006651A/en
Application granted granted Critical
Publication of JP5243859B2 publication Critical patent/JP5243859B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Description

本発明は、脱水素反応を用いた水素製造装置およびそれを用いた水素製造方法に関し、特には、従来よりも脱水素反応の転化率を向上させることが可能な水素製造装置および水素製造方法に関するものである。   The present invention relates to a hydrogen production apparatus using a dehydrogenation reaction and a hydrogen production method using the same, and more particularly to a hydrogen production apparatus and a hydrogen production method capable of improving the conversion rate of the dehydrogenation reaction as compared with the conventional one. Is.

炭化水素の脱水素反応は吸熱反応であるため、脱水素反応により水素化物から水素を製造する際に通常用いられているような、反応器内の触媒層に予め加熱した原料を投入することで脱水素反応を行う原料加熱型の断熱反応器では、反応の進行と共に原料(脱水素対象流体)温度および触媒層温度が低下し、反応器の出口側に向かうにしたがって反応速度が低下するという問題点があった。   Since hydrocarbon dehydrogenation is an endothermic reaction, it is possible to introduce a preheated raw material into the catalyst layer in the reactor, which is normally used when producing hydrogen from hydride by dehydrogenation. In a raw material heating type adiabatic reactor that performs a dehydrogenation reaction, the temperature of the raw material (fluid to be dehydrogenated) and the temperature of the catalyst layer decrease with the progress of the reaction, and the reaction rate decreases toward the outlet side of the reactor. There was a point.

この問題を解決するため、特許文献1には、多管式固定床脱水素反応器において、熱媒体として熱風を供給して触媒層全体を加熱することで、出口側での温度低下を補償し、水素を製造する方法が開示されている。
特開2007−326053号公報
In order to solve this problem, Patent Document 1 discloses that in a multi-tubular fixed bed dehydrogenation reactor, hot air is supplied as a heating medium to heat the entire catalyst layer to compensate for a temperature decrease on the outlet side. A method for producing hydrogen is disclosed.
JP 2007-326053 A

ここで、特許文献1に記載の熱交換型反応器等においては、原料の流れに対して並流となる方向で熱媒体を供給して触媒層を加熱しており、また、触媒層に充填されている触媒が、単一組成で構成され、且つ触媒層全体にほぼ均一に担持されているため、原料濃度が高い触媒層の入口側では、脱水素反応が進行して反応量(吸熱量)が多くなり触媒層の温度が低下する一方、触媒層の中間部から出口側では、原料濃度が低く、また、発生した水素により水素分圧が高まって逆反応である水素化反応も進行するので、脱水素反応が進行しにくく反応量が少なくなり触媒層の温度が殆ど低下しない。つまり、触媒層全体の触媒濃度が均一な従来技術にかかる熱交換型反応器では、触媒層入口側で脱水素反応が過剰に進行し、触媒層出口側では脱水素反応が緩慢となるため、触媒層全体の平均温度が低くなる。従って、従来技術に係る熱交換型反応器は、触媒層全体が脱水素反応に有効に寄与していないという点で改良の余地があった。   Here, in the heat exchange reactor described in Patent Document 1, the catalyst layer is heated by supplying a heat medium in a direction parallel to the raw material flow, and the catalyst layer is filled. Since the catalyst is composed of a single composition and is almost uniformly supported on the entire catalyst layer, the dehydrogenation reaction proceeds on the inlet side of the catalyst layer where the raw material concentration is high, and the reaction amount (endothermic amount) ) And the temperature of the catalyst layer decreases, while the concentration of the raw material is low from the middle part of the catalyst layer to the outlet side, and the hydrogen partial pressure is increased by the generated hydrogen, and the hydrogenation reaction which is a reverse reaction proceeds. Therefore, the dehydrogenation reaction is difficult to proceed, the reaction amount is reduced, and the temperature of the catalyst layer hardly decreases. That is, in the heat exchange reactor according to the prior art in which the catalyst concentration of the entire catalyst layer is uniform, the dehydrogenation reaction proceeds excessively on the catalyst layer inlet side, and the dehydrogenation reaction becomes slow on the catalyst layer outlet side. The average temperature of the entire catalyst layer is lowered. Therefore, the heat exchange reactor according to the prior art has room for improvement in that the entire catalyst layer does not contribute effectively to the dehydrogenation reaction.

この発明は、上記課題を有利に解決することを目的とするものであり、脱水素反応触媒が均一に設けられた触媒層と比較して触媒層入口側での反応量を低減し、触媒層中間部から出口側での反応量を増加することで、触媒層の平均温度を高めて触媒層全体の転化率を高めることが可能な水素製造装置および水素製造方法を提供するものである。   An object of the present invention is to advantageously solve the above-described problems, and the amount of reaction at the inlet side of the catalyst layer is reduced compared to a catalyst layer in which a dehydrogenation reaction catalyst is uniformly provided. The present invention provides a hydrogen production apparatus and a hydrogen production method capable of increasing the average temperature of the catalyst layer and increasing the conversion rate of the entire catalyst layer by increasing the reaction amount on the outlet side from the intermediate part.

本発明者は、上記目的を達成するために鋭意検討した結果、脱水素反応を行う触媒層の出口側の触媒濃度を入口側の触媒濃度より高くすることで、脱水素反応の転化率が向上することを見出し、本発明を完成させるに至った。   As a result of intensive studies to achieve the above object, the present inventor has improved the conversion rate of the dehydrogenation reaction by making the catalyst concentration on the outlet side of the catalyst layer for performing the dehydrogenation reaction higher than the catalyst concentration on the inlet side. As a result, the present invention has been completed.

すなわち、本発明の水素製造装置は、脱水素反応を用いて芳香族炭化水素の水素化物から水素を製造する装置であって、前記水素化物が流入する入口と、前記脱水素反応の生成物が流出する出口とを有し、内部に脱水素反応触媒の触媒層が設けられた脱水素反応器を備え、前記触媒層の入口側から1/3の部分の、単位体積当たりに存在する触媒活性を有する物質の量である平均触媒濃度が、該触媒層全体の、単位体積当たりに存在する触媒活性を有する物質の量である平均触媒濃度より低いことを特徴とする。このように、触媒層の入口側から1/3の部分の平均触媒濃度を、触媒層全体の平均触媒濃度より低くする、即ち触媒層の出口側から2/3の部分の平均触媒濃度より低くすれば、触媒層の入口付近で急激に脱水素反応が進行するのを抑制して触媒層全体を脱水素反応に有効に寄与させ得る。そして、転化率の高い水素製造装置を提供することができる。なお、平均触媒濃度とは、単位体積当たりに存在する触媒活性を有する物質の量であり、例えば担体に触媒活性を有する金属を担持させて触媒層を構成した場合には、単位体積当たりの金属量を指す。 That is, the hydrogen production apparatus of the present invention is an apparatus for producing hydrogen from a hydride of an aromatic hydrocarbon using a dehydrogenation reaction, wherein an inlet through which the hydride flows and a product of the dehydrogenation reaction are provided. A dehydrogenation reactor having a catalyst layer of a dehydrogenation reaction catalyst provided therein, and having a catalyst activity existing per unit volume in a portion of 1/3 from the inlet side of the catalyst layer The average catalyst concentration, which is the amount of the substance having a catalytic property, is lower than the average catalyst concentration, which is the amount of the substance having catalytic activity present per unit volume in the entire catalyst layer. In this way, the average catalyst concentration in the 1/3 portion from the inlet side of the catalyst layer is made lower than the average catalyst concentration in the entire catalyst layer, that is, lower than the average catalyst concentration in the 2/3 portion from the outlet side of the catalyst layer. By doing so, it is possible to suppress the rapid progress of the dehydrogenation in the vicinity of the inlet of the catalyst layer and to effectively contribute the entire catalyst layer to the dehydrogenation reaction. And a hydrogen production apparatus with a high conversion rate can be provided. The average catalyst concentration is the amount of a substance having catalytic activity per unit volume. For example, when a catalyst layer is formed by supporting a metal having catalytic activity on a carrier, the metal per unit volume Refers to the quantity.

なお、本発明の水素製造装置としては、熱交換型の脱水素反応器を備える装置が好ましく、特に、原料が触媒層内を流れる方向と同一の方向に熱媒体を流すことで触媒層および触媒層を流れる原料を加熱する、並流熱交換型の脱水素反応器を備える装置が好ましい。熱媒体を並流で流す反応器は、熱媒体を向流で流す反応器と比較して触媒層入口付近での脱水素反応量が多くなるため、本発明の効果が特に顕著となるからである。このような並流熱交換型の脱水素反応器としては、例えば、原料が流入する流入口と脱水素反応の生成物が流出する流出口とを備えて内側に脱水素反応触媒が充填された反応管と、該反応管の周囲に熱媒体を流通可能に設けられたジャケット部とを具え、該ジャケット部に反応管の流入口側から流出口側へと向かう方向へ熱媒体を流すものがある。   The hydrogen production apparatus of the present invention is preferably an apparatus equipped with a heat exchange type dehydrogenation reactor, and in particular, the catalyst layer and the catalyst can be obtained by flowing a heat medium in the same direction as the direction in which the raw material flows in the catalyst layer. An apparatus comprising a cocurrent heat exchange type dehydrogenation reactor for heating the raw material flowing through the bed is preferable. Since the reactor in which the heat medium flows in parallel flow has a larger amount of dehydrogenation reaction near the catalyst layer inlet than the reactor in which the heat medium flows in countercurrent, the effect of the present invention is particularly remarkable. is there. As such a co-current heat exchange type dehydrogenation reactor, for example, an inflow port through which raw materials flow in and an outflow port through which products of the dehydrogenation reaction flow out are packed inside with a dehydrogenation reaction catalyst. A reaction tube and a jacket portion provided around the reaction tube so as to allow a heat medium to flow therethrough, and the jacket portion flows a heat medium in a direction from the inlet side to the outlet side of the reaction tube. is there.

ここで、触媒層中の触媒の分布は、触媒層の入口側から1/3の部分の平均触媒濃度が、該触媒層全体の平均触媒濃度より低くなるものであれば良いが、例えば、入口側から出口側へ向けて次第に触媒濃度が増加するように段階的に変化(グラデーション)させることができる。また、その他にも、触媒層の入口を起点として触媒層の1/5以上であって1/2以下までの部分は第一の触媒濃度で均一に構成し、残りの部分を第一の触媒濃度より大きい第二の触媒濃度で均一に構成しても良い。   Here, the distribution of the catalyst in the catalyst layer may be any distribution as long as the average catalyst concentration in the 1/3 portion from the inlet side of the catalyst layer is lower than the average catalyst concentration of the entire catalyst layer. It is possible to change (gradate) stepwise so that the catalyst concentration gradually increases from the side toward the outlet side. In addition, the portion from 1/5 to 1/2 of the catalyst layer starting from the inlet of the catalyst layer is uniformly formed at the first catalyst concentration, and the remaining portion is the first catalyst. You may comprise uniformly with the 2nd catalyst density | concentration larger than a density | concentration.

本発明の水素製造装置は、前記触媒層の入口側から1/3の部分の平均触媒濃度が、前記触媒層全体の平均触媒濃度の0.3〜0.7倍であることが好ましい。触媒層の入口側から1/3の部分の平均触媒濃度が、触媒層全体の平均触媒濃度の0.3倍未満であると触媒層入口付近での反応量が低くなりすぎて全体としての転化率が低くなり、0.7倍を超えると触媒層入口付近での反応量が多くなりすぎて全体としての転化率が低くなるからである。   In the hydrogen production apparatus of the present invention, it is preferable that an average catalyst concentration in a third of the catalyst layer from the inlet side is 0.3 to 0.7 times the average catalyst concentration of the entire catalyst layer. If the average catalyst concentration in the 1/3 portion from the inlet side of the catalyst layer is less than 0.3 times the average catalyst concentration of the entire catalyst layer, the reaction amount near the catalyst layer inlet becomes too low and the conversion as a whole This is because if the rate decreases and exceeds 0.7, the amount of reaction in the vicinity of the catalyst layer inlet becomes too large and the overall conversion rate decreases.

また、本発明の水素製造方法は、脱水素反応を用いて芳香族炭化水素の水素化物から水素を製造する方法であって、脱水素反応器を備える水素製造装置に前記水素化物を含有する原料を供給する工程と、前記脱水素反応器内で前記水素化物の脱水素反応を行う工程と、少なくとも水素を含む前記脱水素反応の生成物を取り出す工程とを含み、前記水素製造装置が上述の水素製造装置であることを特徴とするものである。このような水素製造方法によれば、原料供給直後に触媒層の入口付近で急激に脱水素反応が進行するのを抑えて触媒層全体を脱水素反応に有効に寄与させ得る。そして、転化率の高い水素製造方法を提供することができる。   Further, the hydrogen production method of the present invention is a method for producing hydrogen from a hydride of an aromatic hydrocarbon using a dehydrogenation reaction, wherein the raw material contains the hydride in a hydrogen production apparatus provided with a dehydrogenation reactor. A step of performing a dehydrogenation reaction of the hydride in the dehydrogenation reactor, and a step of taking out a product of the dehydrogenation reaction containing at least hydrogen, wherein the hydrogen production apparatus is as described above. It is a hydrogen production apparatus. According to such a hydrogen production method, the entire catalyst layer can be effectively contributed to the dehydrogenation reaction by suppressing the abrupt dehydrogenation reaction in the vicinity of the inlet of the catalyst layer immediately after the raw material supply. And the hydrogen production method with a high conversion rate can be provided.

本発明によれば、高い脱水素反応転化率で脱水素反応を行い、芳香族炭化水素の水素化物から効率的に水素を製造することができる。   According to the present invention, hydrogen can be efficiently produced from a hydride of an aromatic hydrocarbon by performing a dehydrogenation reaction at a high dehydrogenation conversion rate.

以下に、本発明の好適な実施の形態を、図1に基づいて具体的に説明する。但し、本発明は、図1に示す形態に限定されるものではない。   A preferred embodiment of the present invention will be specifically described below with reference to FIG. However, the present invention is not limited to the form shown in FIG.

図1に示す、本発明の水素製造装置の一例の水素製造装置1では、原料となる芳香族炭化水素の水素化物を貯蔵するタンク2から芳香族炭化水素水素化物をポンプ3でくみ上げた後に流通水素と混合し、その流通水素と水素化物との混合物を1次気化器4および2次気化器5で予熱して気化した後に、脱水素反応器6に供給して脱水素反応を行う。そして、脱水素反応器6で脱水素反応を行った後の生成物は水素分離装置7に供給され、水素分離装置7に設けられた水素分離膜(図示せず)で生成物から水素ガスが分離・回収される。水素分離膜を通過しなかったガスは、1次気化器4の熱源として使用して廃熱を有効利用した後、凝縮器8で冷水を用いて冷却・凝縮され、気液分離装置9で、未反応の芳香族炭化水素水素化物、脱水素反応で生成した芳香族炭化水素および副反応により発生したアルキルシクロペンタンなどの液分と、水素およびその他のガスとに分離される。なお、分離されたその他のガスには、副反応により発生した低級炭化水素、分離しきれなかった液分のベーパーが含まれる。ここで、水素およびその他のガスは、例えば熱源の原料として用いることができる。一方、未反応の芳香族炭化水素水素化物、脱水素反応で生成した芳香族炭化水素および副反応により発生したアルキルシクロペンタンなどを含む液分は、回収油タンク10に回収し、図示しない水素化装置で再度水素化して芳香族炭化水素水素化物として再利用することができる。   In the hydrogen production apparatus 1 as an example of the hydrogen production apparatus of the present invention shown in FIG. 1, the aromatic hydrocarbon hydride is pumped up from the tank 2 for storing the aromatic hydrocarbon hydride as a raw material and then distributed. After mixing with hydrogen and preheating and vaporizing the mixture of the flowing hydrogen and hydride in the primary vaporizer 4 and the secondary vaporizer 5, the mixture is supplied to the dehydrogenation reactor 6 to perform the dehydrogenation reaction. The product after the dehydrogenation reaction in the dehydrogenation reactor 6 is supplied to the hydrogen separator 7, and hydrogen gas is removed from the product by a hydrogen separation membrane (not shown) provided in the hydrogen separator 7. Separated and recovered. The gas that has not passed through the hydrogen separation membrane is used as a heat source for the primary vaporizer 4 to effectively use waste heat, and then cooled and condensed using cold water in the condenser 8. It is separated into liquid components such as unreacted aromatic hydrocarbon hydride, aromatic hydrocarbon generated by dehydrogenation reaction and alkylcyclopentane generated by side reaction, and hydrogen and other gases. The other gases separated include lower hydrocarbons generated by side reactions and liquid vapor that could not be separated. Here, hydrogen and other gas can be used as a raw material of a heat source, for example. On the other hand, a liquid component containing unreacted aromatic hydrocarbon hydride, aromatic hydrocarbon generated by the dehydrogenation reaction and alkylcyclopentane generated by the side reaction is recovered in the recovery oil tank 10 and is not shown in the figure. It can be re-hydrogenated in the apparatus and reused as an aromatic hydrocarbon hydride.

ここで、原料となる芳香族炭化水素の水素化物としては、シクロヘキサン類、デカリン類を用いることができるが、脱水素反応後に生成する芳香族炭化水素の安全性及び取り扱い易さの観点から、置換基を持つものが好ましく、メチルシクロヘキサン、エチルシクロヘキサン、ジメチルシクロヘキサン、ジエチルシクロヘキサン、トリメチルシクロヘキサンなどのアルキルシクロヘキサン、メチルデカリン、エチルデカリン、ジメチルデカリン、ジエチルデカリンなどのアルキルデカリン、およびこれらの混合物を用いることが好ましい。   Here, cyclohexanes and decalins can be used as the aromatic hydrocarbon hydride as a raw material, but from the viewpoint of the safety and ease of handling of the aromatic hydrocarbons produced after the dehydrogenation reaction, A group having a group is preferable, and alkylcyclohexane such as methylcyclohexane, ethylcyclohexane, dimethylcyclohexane, diethylcyclohexane and trimethylcyclohexane, alkyldecalin such as methyldecalin, ethyldecalin, dimethyldecalin and diethyldecalin, and a mixture thereof may be used. preferable.

多管型固定床流通式反応器である脱水素反応器6は、略円筒状の密閉容器であって、その内部の空間は原料を脱水素反応させるための反応領域61となっている。そして、脱水素反応器6には、脱水素反応触媒を充填した反応管62が反応領域61を貫通して設けられており、その反応管62においては、図1では上側にある入口から原料が供給されて脱水素反応が行われ、図1では下側の出口から脱水素反応の生成物が排出される。なお、反応管62内の脱水素反応触媒(触媒層)は、入口側から1/3の部分の平均触媒濃度が、該触媒層全体の平均触媒濃度より低くなるように充填されている。   The dehydrogenation reactor 6 which is a multi-tube type fixed bed flow reactor is a substantially cylindrical hermetic container, and the internal space serves as a reaction region 61 for dehydrogenating the raw material. The dehydrogenation reactor 6 is provided with a reaction tube 62 filled with a dehydrogenation reaction catalyst, penetrating the reaction region 61. In the reaction tube 62, the raw material is introduced from the upper inlet in FIG. The dehydrogenation reaction is carried out, and in FIG. 1, the product of the dehydrogenation reaction is discharged from the lower outlet. The dehydrogenation reaction catalyst (catalyst layer) in the reaction tube 62 is packed so that the average catalyst concentration in the 1 / portion from the inlet side is lower than the average catalyst concentration in the entire catalyst layer.

ここで、脱水素反応器6への原料供給方式としては、芳香族炭化水素水素化物を液体で供給する方式、および予熱して気体で供給する方式のいずれをとることもできるが、特には、固定床式の脱水素反応器に気体で供給することが好ましい。   Here, as a raw material supply method to the dehydrogenation reactor 6, either a method of supplying an aromatic hydrocarbon hydride in a liquid or a method of supplying it in a preheated gas can be taken. It is preferable to supply the gas to a fixed bed type dehydrogenation reactor.

また、反応領域61には熱媒体供給装置11から加熱した空気(熱媒体)が反応管62内の原料の流れと並流になるように供給されており、適当な温度で脱水素反応が進行し得るようにされている。なお、反応領域61には、熱交換を効率的に行うための邪魔板63が設けられており、反応領域61に図1では上側から供給された熱媒体が反応領域61内でジグザグに流れ、下側から排出されるようになっている。そして、脱水素反応器6から排出された熱媒体は、2次気化器5の熱源として再利用された後に大気中へ放出される。ここで、熱媒体供給装置11において熱媒体を加熱する熱源には、燃料をバーナー等の加熱手段で燃焼させて発生させた熱等を用いることができる。   In addition, air (heat medium) heated from the heat medium supply device 11 is supplied to the reaction region 61 so as to be in parallel with the raw material flow in the reaction tube 62, and the dehydrogenation reaction proceeds at an appropriate temperature. Have been able to. The reaction region 61 is provided with a baffle plate 63 for efficiently performing heat exchange. In FIG. 1, the heat medium supplied from the upper side to the reaction region 61 flows in a zigzag manner in the reaction region 61. It is designed to be discharged from the lower side. The heat medium discharged from the dehydrogenation reactor 6 is reused as a heat source for the secondary vaporizer 5 and then released into the atmosphere. Here, as the heat source for heating the heat medium in the heat medium supply device 11, heat generated by burning fuel with a heating means such as a burner can be used.

脱水素反応器6の反応管62に充填する脱水素反応触媒としては、白金、ルテニウム、パラジウム、ロジウム、スズ、レニウム、及びゲルマニウムよりなる群から選択される少なくとも1種の触媒活性を有する金属を多孔質担体に担持したものが好ましく、原料となる芳香族炭化水素水素化物の種類により、平均細孔径を適宜選択することが好ましい。例えば、1環のシクロヘキサン類を用いる場合には、特に40〜80Åの平均細孔径を持つ触媒が好ましく、2環のデカリン類を用いる場合には、特に65〜130Åの平均細孔径を持つ触媒を選択することが好ましく、いずれの触媒も好ましい細孔径をもつ細孔の容量が全細孔容量の50%以上であることが好ましい。   The dehydrogenation reaction catalyst charged in the reaction tube 62 of the dehydrogenation reactor 6 is a metal having at least one catalytic activity selected from the group consisting of platinum, ruthenium, palladium, rhodium, tin, rhenium, and germanium. Those supported on a porous carrier are preferable, and it is preferable to appropriately select the average pore diameter depending on the type of aromatic hydrocarbon hydride used as a raw material. For example, a catalyst having an average pore size of 40 to 80 mm is particularly preferable when monocyclic cyclohexanes are used, and a catalyst having an average pore size of 65 to 130 mm is particularly preferable when bicyclic decalins are used. It is preferable to select any of the catalysts, and it is preferable that the volume of pores having a preferable pore diameter is 50% or more of the total pore volume.

なお、脱水素反応触媒の平均細孔径および細孔容量の比率を制御するには、触媒の担体としてAl23あるいはSiO2を用いることが好ましく、これらは、それぞれ単独で用いてもよいし、適当な割合で両者を組み合わせて用いてもよい。芳香族炭化水素水素化物が1環と2環の混合物である場合は、その組成により、好ましい平均細孔径をもつ触媒を混合して用いても良い。 In order to control the average pore diameter and the pore volume ratio of the dehydrogenation reaction catalyst, it is preferable to use Al 2 O 3 or SiO 2 as the catalyst support, and these may be used alone. These may be used in combination at an appropriate ratio. When the aromatic hydrocarbon hydride is a mixture of one ring and two rings, a catalyst having a preferable average pore diameter may be mixed and used depending on the composition.

また、脱水素反応触媒における多孔質担体の金属担持率は、0.001〜10質量%の範囲が好ましく、0.01〜5質量%の範囲が更に好ましい。金属担持率が0.001質量%未満では、十分に脱水素反応を進行させることができず、一方、10質量%を超えて金属を担持しても、金属の増量に見合う効果が得られないからである。   Further, the metal loading of the porous carrier in the dehydrogenation reaction catalyst is preferably in the range of 0.001 to 10% by mass, and more preferably in the range of 0.01 to 5% by mass. If the metal loading is less than 0.001% by mass, the dehydrogenation reaction cannot be sufficiently progressed. On the other hand, even if the metal is loaded exceeding 10% by mass, an effect commensurate with the increase in the amount of metal cannot be obtained. Because.

脱水素反応器6での脱水素反応は、上記した脱水素反応用触媒の存在下、LHSVが0.5〜4hr-1、反応温度が100〜450℃、好ましくは250℃〜450℃、反応圧力が常圧〜2MPaG、好ましくは常圧〜0.7MPaGの条件下で、芳香族炭化水素水素化物と共に水素を流通しながら実施する。なお、脱水素反応の反応温度、即ち、反応管62内の脱水素反応触媒層の平均温度は、後述する水素分離膜の温度に応じて適宜選択される。また、流通水素の量は、水素/芳香族炭化水素水素化物のモル比が0.01〜10となる範囲が好ましい。このように水素を流通させながら脱水素反応を行うと、水素を流通させない場合に比べ、副反応を抑えることができ、水素を効率的に製造できるだけでなく、脱水素反応後に回収される油を再度水素化して芳香族炭化水素水素化物として再利用する際に、水素化物中に含まれる不純物量を少なくすることが出来る。更に、水素を効率的に製造するには、転化率85%以上になるように反応条件を選択することが好ましい。 The dehydrogenation reaction in the dehydrogenation reactor 6 is carried out in the presence of the above-mentioned catalyst for dehydrogenation reaction, LHSV is 0.5 to 4 hr −1 , reaction temperature is 100 to 450 ° C., preferably 250 to 450 ° C. It is carried out while flowing hydrogen together with the aromatic hydrocarbon hydride under a pressure of normal pressure to 2 MPaG, preferably normal pressure to 0.7 MPaG. The reaction temperature of the dehydrogenation reaction, that is, the average temperature of the dehydrogenation catalyst layer in the reaction tube 62 is appropriately selected according to the temperature of the hydrogen separation membrane described later. Further, the amount of flowing hydrogen is preferably in the range where the molar ratio of hydrogen / aromatic hydrocarbon hydride is 0.01-10. When the dehydrogenation reaction is performed while hydrogen is circulated in this way, side reactions can be suppressed as compared to the case where hydrogen is not circulated, not only can hydrogen be produced efficiently, but also the oil recovered after the dehydrogenation reaction can be reduced. When hydrogenated again and reused as an aromatic hydrocarbon hydride, the amount of impurities contained in the hydride can be reduced. Furthermore, in order to produce hydrogen efficiently, it is preferable to select reaction conditions so that the conversion rate is 85% or more.

脱水素反応により生成するガスは、水素を主成分とするが、その他に、未反応の芳香族炭化水素水素化物、脱水素反応により生成する芳香族炭化水素、副反応により生じるメタン、エタン等の低級炭化水素、副反応により生じるアルキルシクロペンタンなどを含むことがある。しかしながら、都市ガス、灯油、ナフサ等の改質反応により水素を製造する場合の反応生成ガス中に含まれる一酸化炭素は、芳香族炭化水素水素化物の脱水素反応生成ガス中には含まれない。   The gas produced by the dehydrogenation reaction is mainly composed of hydrogen, but in addition to this, unreacted aromatic hydrocarbon hydride, aromatic hydrocarbons produced by the dehydrogenation reaction, methane, ethane produced by side reactions, etc. It may contain lower hydrocarbons, alkylcyclopentane produced by side reactions, and the like. However, carbon monoxide contained in the reaction product gas when hydrogen is produced by reforming reaction of city gas, kerosene, naphtha, etc. is not included in the dehydrogenation reaction product gas of aromatic hydrocarbon hydride. .

脱水素反応器6で生成したガスは、高純度の水素を得るために、水素分離膜を具える水素分離装置7に供給される。水素分離膜によって水素を分離する場合、脱水素反応直後の反応生成物を気液分離することなく水素を精製することが好ましい。このようにすれば、脱水素反応生成ガスの冷却と再加熱との双方を必要としていた従来技術に比べて、エネルギー効率を向上させることができる。   The gas produced in the dehydrogenation reactor 6 is supplied to a hydrogen separation device 7 having a hydrogen separation membrane in order to obtain high purity hydrogen. When hydrogen is separated by a hydrogen separation membrane, it is preferable to purify the hydrogen without gas-liquid separation of the reaction product immediately after the dehydrogenation reaction. In this way, energy efficiency can be improved as compared with the conventional technique that requires both cooling and reheating of the dehydrogenation reaction product gas.

水素分離装置7は、水素分離膜を具える限り特に限定されるものではない。また、該水素分離装置7に用いる水素分離膜としては、金属膜、セラミック膜、高分子膜等が挙げられるが、脱水素反応器6の温度、圧力、流体に含まれる成分を考慮すると、金属膜もしくはセラミック膜が好ましく、特に、高い水素分離性能を有しているPd合金膜を用いることが好ましい。Pd合金膜としては、Pd−Ag膜、Pd−Cu膜等が挙げられるが、特には、圧延膜として薄膜化が可能で、水素脆化の少ないPd−Cu膜が好ましい。Pd−Cu膜は、たとえば、米国特許第3,439,474号に記載の方法により作製することができる。   The hydrogen separator 7 is not particularly limited as long as it includes a hydrogen separation membrane. Examples of the hydrogen separation membrane used in the hydrogen separation device 7 include a metal membrane, a ceramic membrane, and a polymer membrane. In consideration of the temperature, pressure, and components contained in the fluid of the dehydrogenation reactor 6, A membrane or a ceramic membrane is preferable, and it is particularly preferable to use a Pd alloy membrane having high hydrogen separation performance. Examples of the Pd alloy film include a Pd—Ag film and a Pd—Cu film. In particular, a Pd—Cu film that can be thinned as a rolled film and has little hydrogen embrittlement is preferable. The Pd—Cu film can be produced, for example, by the method described in US Pat. No. 3,439,474.

なお、水素分離装置7の水素分離膜にPd−Cu膜を用いる場合、分離膜温度は、250〜400℃の範囲が好ましい。水素分離膜の温度が250℃未満では、水素の透過速度が低下して、水素回収率が低下するからである。また、水素分離膜の温度が400℃を超えると、水素分離膜の結晶形態が変化して水素の透過速度が低下し、水素回収率が低下するからである。   In addition, when using a Pd-Cu membrane for the hydrogen separation membrane of the hydrogen separator 7, the separation membrane temperature is preferably in the range of 250 to 400 ° C. This is because when the temperature of the hydrogen separation membrane is less than 250 ° C., the hydrogen permeation rate is lowered and the hydrogen recovery rate is lowered. Further, when the temperature of the hydrogen separation membrane exceeds 400 ° C., the crystal form of the hydrogen separation membrane changes, the hydrogen permeation rate decreases, and the hydrogen recovery rate decreases.

水素分離装置7の水素分離膜を通して分離した高純度水素は、燃料電池自動車あるいは定置用燃料電池等の燃料電池向け燃料として用いることができる。また、該高純度水素の一部を脱水素反応器6へ循環させ、脱水素反応に必要な流通水素として用いてもよい。なお、脱水素反応に用いる流通水素としては、水素分離膜を通して分離した高純度水素以外にも、外部から導入される水素、脱水素反応器6から出る反応生成ガスの未精製ガス中に含まれる水素、水素分離膜を透過しなかったガスに含まれる水素を用いることもできるが、流通水素の純度が低いと、水素以外のガスの濃度が高くなってしまい、水素流通下で脱水素反応を行う利点が十分に得られなくなるため、水素分離膜を透過させて得た高純度水素を脱水素反応器6へ循環するのが好ましい。   The high-purity hydrogen separated through the hydrogen separation membrane of the hydrogen separator 7 can be used as fuel for fuel cells such as fuel cell vehicles or stationary fuel cells. Alternatively, a part of the high-purity hydrogen may be circulated to the dehydrogenation reactor 6 and used as circulating hydrogen necessary for the dehydrogenation reaction. In addition to the high purity hydrogen separated through the hydrogen separation membrane, the circulating hydrogen used in the dehydrogenation reaction is included in the hydrogen introduced from the outside and the unpurified gas of the reaction product gas that exits from the dehydrogenation reactor 6. Hydrogen or hydrogen contained in a gas that has not permeated through the hydrogen separation membrane can be used. However, if the purity of the circulating hydrogen is low, the concentration of the gas other than hydrogen becomes high, and the dehydrogenation reaction is performed under the hydrogen circulation. It is preferable to circulate the high-purity hydrogen obtained by permeating the hydrogen separation membrane to the dehydrogenation reactor 6 because the advantage of performing cannot be sufficiently obtained.

なお、上記実施形態以外にも、気液分離装置9の下流側にPSA(Pressure Swing Adsorption)やTSA(Temperature Swing Adsorption)等のガス分離技術を用いた水素精製装置を設け、水素分離装置7の水素分離膜を通過しなかったガスから高純度水素を製造しても良い。   In addition to the above embodiment, a hydrogen purifier using a gas separation technique such as PSA (Pressure Swing Adsorption) or TSA (Temperature Swing Adsorption) is provided on the downstream side of the gas-liquid separator 9. High purity hydrogen may be produced from a gas that has not passed through the hydrogen separation membrane.

以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明は下記の実施例に何ら限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples.

(実施例1)
上述した水素製造装置1において、反応管62中の触媒層(容積:1.4L)におけるPt(活性金属)の量が、該触媒層を深さ方向に3等分したときに、(反応器入口側1/3の層[第1層])<(反応器中間の1/3の層[第2層])<(反応器出口側の1/3の層[第3層])となるように、反応管62にPt/Al23触媒(平均細孔径72.9Å、全細孔容量に占める40〜80Åの細孔容量の割合が60%)を充填した。なお、各層にはPt担持量を変化させた同量のPt/Al23触媒を均一に充填することとし、各層のPt/Al23触媒のPt担持量は、第1層が0.3質量%、第2層が0.5質量%、第3層が0.7質量%となるようにした。そして、芳香族炭化水素水素化物としてメチルシクロヘキサン(MCH)を用い、反応圧力0.3MPaG、液空間速度(LHSV)=2.0hr-1、水素/オイル比(H2/Oil)=1.0mol/molの条件下で脱水素反応を行った。各層の温度、触媒層全体の平均温度、及び転化率を表1に示す。
Example 1
In the hydrogen production apparatus 1 described above, when the amount of Pt (active metal) in the catalyst layer (volume: 1.4 L) in the reaction tube 62 divides the catalyst layer into three equal parts in the depth direction (reactor 1/3 layer on the inlet side [first layer]) <(1/3 layer in the middle of the reactor [second layer]) <(1/3 layer on the outlet side of the reactor [third layer]) As described above, the reaction tube 62 was filled with a Pt / Al 2 O 3 catalyst (average pore diameter: 72.9 kg, and the ratio of the pore volume of 40 to 80 kg to the total pore volume was 60%). Each layer is uniformly filled with the same amount of Pt / Al 2 O 3 catalyst with different Pt loading, and the Pt loading of each layer of Pt / Al 2 O 3 catalyst is 0 for the first layer. .3% by mass, 0.5% by mass of the second layer, and 0.7% by mass of the third layer. Then, methylcyclohexane (MCH) is used as the aromatic hydrocarbon hydride, the reaction pressure is 0.3 MPaG, the liquid space velocity (LHSV) is 2.0 hr −1 , and the hydrogen / oil ratio (H 2 / Oil) is 1.0 mol. The dehydrogenation reaction was performed under the conditions of / mol. Table 1 shows the temperature of each layer, the average temperature of the entire catalyst layer, and the conversion rate.

(比較例1)
反応器全体に、Pt担持量が0.5質量%のPt/Al23触媒を均一に充填する以外は、実施例1と同様にして、脱水素反応を行った。各層の温度、触媒層全体の平均温度、及び転化率を表1に示す。
(Comparative Example 1)
A dehydrogenation reaction was performed in the same manner as in Example 1 except that the entire reactor was uniformly filled with a Pt / Al 2 O 3 catalyst having a Pt loading of 0.5% by mass. Table 1 shows the temperature of each layer, the average temperature of the entire catalyst layer, and the conversion rate.

Figure 0005243859
Figure 0005243859

表1の実施例1から、触媒層の平均触媒濃度を、(反応器入口側1/3の層)<(反応器中間の1/3の層)<(反応器出口側の1/3の層)とし、触媒層の入口側から1/3の部分の平均触媒濃度を、該触媒層全体の平均触媒濃度より低くすることで、脱水素転化率が向上することが分かる。一方、比較例1の結果から、触媒が均一に充填された反応管を用いた脱水素反応器では、実施例1に比べて転化率が大幅に低下することが分かる。 From Example 1 in Table 1, the average catalyst concentration of the catalyst layer was determined as follows: (1/3 layer on the reactor inlet side) <(1/3 layer in the middle of the reactor) <(1/3 on the reactor outlet side) It can be seen that the dehydrogenation conversion rate is improved by making the average catalyst concentration of the portion 1/3 from the inlet side of the catalyst layer lower than the average catalyst concentration of the entire catalyst layer. On the other hand, it can be seen from the results of Comparative Example 1 that the conversion rate in the dehydrogenation reactor using the reaction tube uniformly packed with the catalyst is significantly lower than that in Example 1.

本発明の水素製造装置の一例を示す模式図である。It is a schematic diagram which shows an example of the hydrogen production apparatus of this invention.

符号の説明Explanation of symbols

1 水素製造装置
2 タンク
3 ポンプ
4 1次気化器
5 2次気化器
6 脱水素反応器
7 水素分離装置
8 凝縮器
9 気液分離装置
10 回収油タンク
11 熱媒体供給装置
61 反応領域
62 反応管
63 邪魔板
DESCRIPTION OF SYMBOLS 1 Hydrogen production apparatus 2 Tank 3 Pump 4 Primary vaporizer 5 Secondary vaporizer 6 Dehydrogenation reactor 7 Hydrogen separation apparatus 8 Condenser 9 Gas-liquid separation apparatus 10 Recovery oil tank 11 Heating medium supply apparatus 61 Reaction area 62 Reaction tube 63 Baffle plate

Claims (3)

脱水素反応を用いて芳香族炭化水素の水素化物から水素を製造する装置であって、
前記水素化物が流入する入口と、前記脱水素反応の生成物が流出する出口とを有し、内部に脱水素反応触媒の触媒層が設けられた脱水素反応器を備え、
前記触媒層の入口側から1/3の部分の、単位体積当たりに存在する触媒活性を有する物質の量である平均触媒濃度が、該触媒層全体の、単位体積当たりに存在する触媒活性を有する物質の量である平均触媒濃度より低いことを特徴とする、水素製造装置。
An apparatus for producing hydrogen from a hydride of an aromatic hydrocarbon using a dehydrogenation reaction,
A dehydrogenation reactor having an inlet through which the hydride flows in and an outlet through which a product of the dehydrogenation reaction flows out, and in which a catalyst layer of a dehydrogenation catalyst is provided;
The average catalyst concentration, which is the amount of a substance having catalytic activity per unit volume, in the 1/3 portion from the inlet side of the catalyst layer has the catalytic activity existing per unit volume of the entire catalyst layer. An apparatus for producing hydrogen, which is lower than an average catalyst concentration which is an amount of a substance .
前記触媒層の入口側から1/3の部分の平均触媒濃度が、前記触媒層全体の平均触媒濃度の0.3〜0.7倍である、請求項1に記載の水素製造装置。   2. The hydrogen production apparatus according to claim 1, wherein an average catalyst concentration in a portion of 3 from the inlet side of the catalyst layer is 0.3 to 0.7 times an average catalyst concentration of the entire catalyst layer. 脱水素反応を用いて芳香族炭化水素の水素化物から水素を製造する方法であって、
脱水素反応器を備える水素製造装置に前記水素化物を含有する原料を供給する工程と、
前記脱水素反応器内で前記水素化物の脱水素反応を行う工程と、
少なくとも水素を含む前記脱水素反応の生成物を取り出す工程と、
を含み、前記水素製造装置が請求項1または2に記載の水素製造装置であることを特徴とする、水素製造方法。
A method for producing hydrogen from a hydride of an aromatic hydrocarbon using a dehydrogenation reaction,
Supplying a raw material containing the hydride to a hydrogen production apparatus including a dehydrogenation reactor;
Performing a dehydrogenation reaction of the hydride in the dehydrogenation reactor;
Removing the product of the dehydrogenation reaction containing at least hydrogen;
The hydrogen production apparatus according to claim 1 or 2, wherein the hydrogen production apparatus is the hydrogen production apparatus according to claim 1 or 2.
JP2008168962A 2008-06-27 2008-06-27 Hydrogen production apparatus and hydrogen production method Active JP5243859B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008168962A JP5243859B2 (en) 2008-06-27 2008-06-27 Hydrogen production apparatus and hydrogen production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008168962A JP5243859B2 (en) 2008-06-27 2008-06-27 Hydrogen production apparatus and hydrogen production method

Publications (2)

Publication Number Publication Date
JP2010006651A JP2010006651A (en) 2010-01-14
JP5243859B2 true JP5243859B2 (en) 2013-07-24

Family

ID=41587569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008168962A Active JP5243859B2 (en) 2008-06-27 2008-06-27 Hydrogen production apparatus and hydrogen production method

Country Status (1)

Country Link
JP (1) JP5243859B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015053475A (en) * 2013-08-06 2015-03-19 日東電工株式会社 Hydrogen discharge membrane
JP6792550B2 (en) * 2015-03-27 2020-11-25 Eneos株式会社 Dehydrogenation catalyst for hydrocarbons, hydrogen production system and hydrogen production method
WO2019111408A1 (en) * 2017-12-08 2019-06-13 三菱電機株式会社 Elevator control device and elevator control method
JP7544499B2 (en) * 2020-03-31 2024-09-03 Eneos株式会社 Hydrogen supply system and hydrogen production method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002143675A (en) * 2000-09-04 2002-05-21 Kawasaki Heavy Ind Ltd Reactor as well as catalyst used for this reactor, and method for manufacturing the catalyst
US7404936B2 (en) * 2002-10-22 2008-07-29 Velocys Catalysts, in microchannel apparatus, and reactions using same
JP4323184B2 (en) * 2003-02-25 2009-09-02 新日本石油株式会社 Hydrogen production apparatus and hydrogen production method
CA2857176C (en) * 2006-03-23 2016-08-30 Velocys, Inc. Process for making styrene using microchannel process technology
JP5097963B2 (en) * 2006-06-08 2012-12-12 Jx日鉱日石エネルギー株式会社 Reactor

Also Published As

Publication number Publication date
JP2010006651A (en) 2010-01-14

Similar Documents

Publication Publication Date Title
JP5215057B2 (en) Hydrogen production method
JP4801359B2 (en) Hydrogen production method
JP4684069B2 (en) Production method of high purity hydrogen
JP5611627B2 (en) Membrane separation type reactor, membrane separation type hydrogen production apparatus and hydrogen production method
JP5654371B2 (en) Hydrogen gas generation apparatus and hydrogen gas generation method
JP5243859B2 (en) Hydrogen production apparatus and hydrogen production method
AU2007232922B2 (en) Liquid fuel synthesis system
JP5138586B2 (en) Liquid fuel synthesis system
JP4601742B2 (en) Method for producing city gas
CA2940616C (en) System and method for producing hydrogen by dehydrogenation of an organic hydride
JP2008081385A (en) Method for producing hydrogen and reaction tube for it
JP5243860B2 (en) Hydrogen production method
JP5242233B2 (en) Membrane separation type hydrogen production apparatus and hydrogen production method using the same
JP2007076982A (en) Hydrogen production system and power generation system
JP5611628B2 (en) Membrane separation type reactor, membrane separation type hydrogen production apparatus and hydrogen production method
JP2006225169A (en) Hydrogen production apparatus and method
JP2005336003A (en) High purity hydrogen producing device
JP2016040218A (en) Dehydrogenation system and operation method of dehydrogenation system
JP2005289652A (en) Method for producing hydrogen and reaction tube
JP2007084378A (en) Method for producing hydrogen and apparatus used in the same
JP5215058B2 (en) Hydrogen production equipment
JP2017202459A (en) Gas separation method, method for producing organic oxide, gas separation device, and system for producing organic oxide
JP5127516B2 (en) Raw material composition for hydrogen generation and method for producing hydrogen
JP2007076992A (en) Apparatus for producing hydrogen and fuel cell system using the same
AU2015221652B2 (en) Aromatic compound hydrogenation system and hydrogenation method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100831

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130405

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160412

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5243859

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250