JP5242233B2 - Membrane separation type hydrogen production apparatus and hydrogen production method using the same - Google Patents

Membrane separation type hydrogen production apparatus and hydrogen production method using the same Download PDF

Info

Publication number
JP5242233B2
JP5242233B2 JP2008117105A JP2008117105A JP5242233B2 JP 5242233 B2 JP5242233 B2 JP 5242233B2 JP 2008117105 A JP2008117105 A JP 2008117105A JP 2008117105 A JP2008117105 A JP 2008117105A JP 5242233 B2 JP5242233 B2 JP 5242233B2
Authority
JP
Japan
Prior art keywords
hydrogen
catalyst layer
steam reforming
separation membrane
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008117105A
Other languages
Japanese (ja)
Other versions
JP2009263183A (en
Inventor
英二 根岸
崇志 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
JXTG Nippon Oil and Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JXTG Nippon Oil and Energy Corp filed Critical JXTG Nippon Oil and Energy Corp
Priority to JP2008117105A priority Critical patent/JP5242233B2/en
Publication of JP2009263183A publication Critical patent/JP2009263183A/en
Application granted granted Critical
Publication of JP5242233B2 publication Critical patent/JP5242233B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

本発明は、膜分離型水素製造装置及びそれを用いた水素製造方法に関し、特には、水素分離膜を用いて水素を効率よく製造することが可能な水素製造装置及び水素製造方法に関するものである。   The present invention relates to a membrane separation type hydrogen production apparatus and a hydrogen production method using the same, and more particularly to a hydrogen production apparatus and a hydrogen production method capable of efficiently producing hydrogen using a hydrogen separation membrane. .

従来、炭化水素の改質反応により水素を含有する改質ガスを生成させ、該改質ガスからPd系水素分離膜を利用して水素を分離する膜分離型水素製造装置においては、水素発生量が高くなる高温領域で改質反応を行う運転を志向することが多い。これに対し、Pd系水素分離膜の中でも特に利用が進んでいるPd−Ag合金系の水素分離膜では、膜の温度が高温になるほど水素透過特性は高くなるが、水素分離膜自体の強度は低下する。一方、Pd−Cu合金系の水素分離膜においては、膜の温度が450℃近傍で最も高い水素透過特性を示し、それ以上の高温では水素の透過特性および水素分離膜自体の強度が低下する。   Conventionally, in a membrane separation type hydrogen production apparatus that generates a reformed gas containing hydrogen by a hydrocarbon reforming reaction and separates hydrogen from the reformed gas using a Pd-based hydrogen separation membrane, In many cases, the reforming reaction is performed in a high-temperature region where the temperature increases. In contrast, among the Pd-based hydrogen separation membranes, the Pd-Ag alloy-based hydrogen separation membrane, which is particularly used, has higher hydrogen permeation characteristics as the membrane temperature increases, but the strength of the hydrogen separation membrane itself is high. descend. On the other hand, the Pd—Cu alloy-based hydrogen separation membrane exhibits the highest hydrogen permeation characteristics when the membrane temperature is around 450 ° C., and the hydrogen permeation characteristics and the strength of the hydrogen separation membrane itself decrease at higher temperatures.

また従来、水素分離膜を利用した水素の製造装置は、例えば、特許文献1(特開平06−048701号公報)に記載されているように、水素分離膜の周りに改質触媒を配して構成されていた。しかしながら、このような構成においては、改質触媒層と水素分離膜とがほぼ同じ温度で運転されるため、Pd−Ag系水素分離膜を組み込んだ場合には、改質反応温度が高いほど水素濃度が高い組成の改質ガスが得られ、水素分離膜の水素透過性からも、望ましい装置運転条件となるが、500〜800℃のような高温においては水素分離膜の強度の点で問題が生じる。一方、Pd−Ag系水素分離膜に比べて高温での強度が期待できるPd−Cu系の水素分離膜は、水素透過特性が極大を示す温度領域(350〜600℃)が改質反応に望ましい温度領域(600〜800℃)よりも低い。そのため、Pd−Cu系水素分離膜を利用し、Pd−Cu系水素分離膜が良好な水素透過性能を示す温度条件で水素製造装置を運転した場合、改質触媒を水素分離膜の周囲に配した同一反応器内では、改質反応に最適な温度範囲よりも低い温度条件で改質反応を行うことになるため、改質反応において水素濃度が十分に高い改質ガスを得ることができず、水素分離膜表面に水素濃度が十分に高いガスを供給することが困難であった。   Conventionally, a hydrogen production apparatus using a hydrogen separation membrane has a reforming catalyst arranged around the hydrogen separation membrane as described in, for example, Patent Document 1 (Japanese Patent Laid-Open No. 06-048701). Was composed. However, in such a configuration, since the reforming catalyst layer and the hydrogen separation membrane are operated at substantially the same temperature, when the Pd-Ag hydrogen separation membrane is incorporated, the higher the reforming reaction temperature, the more hydrogen A reformed gas having a high concentration is obtained, and the hydrogen permeation rate of the hydrogen separation membrane is a desirable apparatus operating condition. However, there is a problem in terms of the strength of the hydrogen separation membrane at high temperatures such as 500 to 800 ° C. Arise. On the other hand, Pd-Cu-based hydrogen separation membranes, which can be expected to have higher strength than Pd-Ag-based hydrogen separation membranes, are desirable for the reforming reaction in the temperature range (350 to 600 ° C.) where the hydrogen permeation characteristics are maximized. It is lower than the temperature range (600 to 800 ° C.). Therefore, when a Pd—Cu-based hydrogen separation membrane is used and the hydrogen production apparatus is operated under a temperature condition where the Pd—Cu-based hydrogen separation membrane exhibits good hydrogen permeation performance, a reforming catalyst is disposed around the hydrogen separation membrane. In the same reactor, the reforming reaction is performed under a temperature condition lower than the optimum temperature range for the reforming reaction. Therefore, a reformed gas having a sufficiently high hydrogen concentration cannot be obtained in the reforming reaction. It has been difficult to supply a gas having a sufficiently high hydrogen concentration to the surface of the hydrogen separation membrane.

また、上記のような膜分離型の水素製造装置においては、原料ガスの入口付近で反応に伴う吸熱のため水蒸気改質触媒の温度が低下する。これに対し、触媒層入口領域での反応量の低下と温度低下に伴うコーキングの抑制を目的として、改質触媒層内のガスの流れと水素分離膜の低圧側のガスの流れとを向流に設定するとともに、水素分離管の触媒層入口部分に水素分離膜を有しない素管部分である伝熱部を設けた水蒸気改質反応器が提案されている(特許文献2)。しかしながら、この水蒸気改質反応器は、改質触媒層入口領域の温度低下の抑制を目的としたものであって、水素分離膜は改質触媒層内に内蔵され、水素分離膜は改質触媒層と同じ温度にさらされている。   Further, in the membrane separation type hydrogen production apparatus as described above, the temperature of the steam reforming catalyst decreases due to the endotherm associated with the reaction near the inlet of the raw material gas. On the other hand, the flow of gas in the reforming catalyst layer and the flow of gas on the low pressure side of the hydrogen separation membrane are counter-flowed for the purpose of reducing the reaction amount in the catalyst layer inlet region and suppressing coking due to the temperature drop. In addition, a steam reforming reactor has been proposed in which a heat transfer portion, which is a raw pipe portion having no hydrogen separation membrane, is provided at the catalyst layer inlet portion of the hydrogen separation pipe (Patent Document 2). However, this steam reforming reactor is intended to suppress the temperature drop in the reforming catalyst layer inlet region, and the hydrogen separation membrane is built in the reforming catalyst layer, and the hydrogen separation membrane is the reforming catalyst. Exposed to the same temperature as the layer.

さらに、炭素および水素を含む化合物の燃料を改質反応器内で水素を含む燃料ガスに変換する改質システムにおいて、反応器の化合物入口付近の領域には水素分離膜を設けない改質システムが提案されている(特許文献3)。しかしながら、このシステムは、水素の差圧を用いて貯蔵手段に水素を蓄えるため、入口付近の領域に水素分離膜を設けないことで水素分圧を高め、水素分離膜により水素を分離して貯蔵手段に蓄えることを目的としており、水素分離膜は改質触媒に接して設けられているため、水素分離膜の温度は改質触媒層の温度と同じである。   Further, in a reforming system that converts a fuel of a compound containing carbon and hydrogen into a fuel gas containing hydrogen in the reforming reactor, there is a reforming system in which no hydrogen separation membrane is provided in a region near the compound inlet of the reactor. It has been proposed (Patent Document 3). However, since this system stores hydrogen in the storage means using the differential pressure of hydrogen, the hydrogen partial pressure is increased by not providing a hydrogen separation membrane in the area near the inlet, and hydrogen is separated and stored by the hydrogen separation membrane. Since the hydrogen separation membrane is provided in contact with the reforming catalyst, the temperature of the hydrogen separation membrane is the same as the temperature of the reforming catalyst layer.

特開平6−48701号公報Japanese Patent Laid-Open No. 6-48701 特開平6−40702号公報Japanese Patent Laid-Open No. 6-40702 特開2004−18280号公報JP 2004-18280 A

ところで、従来の膜分離型の水素製造装置は、水素分離膜の耐久性および水素透過性能の観点から水素分離膜の温度を350〜550℃として運転されることが好ましい。加えて、装置内は加圧状態でもあり、平衡反応である改質反応の特性上から、改質ガス中の水素濃度が高くならない条件で運転されるため、高い水素透過量が得られないという課題があった。また、改質ガス中の水素濃度を上げるために予備改質器を設けた場合には、コンパクトな水素製造装置とはならないという問題が発生する。   By the way, the conventional membrane separation type hydrogen production apparatus is preferably operated at a temperature of the hydrogen separation membrane of 350 to 550 ° C. from the viewpoint of durability and hydrogen permeation performance of the hydrogen separation membrane. In addition, the inside of the apparatus is also in a pressurized state, and because of the characteristics of the reforming reaction, which is an equilibrium reaction, it is operated under conditions where the hydrogen concentration in the reformed gas does not increase, so a high hydrogen permeation amount cannot be obtained. There was a problem. Further, when a pre-reformer is provided in order to increase the hydrogen concentration in the reformed gas, there arises a problem that a compact hydrogen production apparatus cannot be obtained.

そこで、本発明の目的は、水素濃度の高い改質ガスが得られる条件で改質反応を行うとともに、同一の反応器内で水素分離膜にとって好適な条件で水素分離膜による水素の分離精製を行うことが可能で、結果としてコンパクトでかつ高い収率で水素を製造することが可能な水素製造装置と、該水素製造装置を用いた水素製造方法を提供することにある。   Accordingly, an object of the present invention is to perform a reforming reaction under conditions that provide a reformed gas with a high hydrogen concentration, and to separate and purify hydrogen using a hydrogen separation membrane under conditions suitable for the hydrogen separation membrane in the same reactor. An object of the present invention is to provide a hydrogen production apparatus that can be performed and, as a result, can produce hydrogen in a compact and high yield, and a hydrogen production method using the hydrogen production apparatus.

本発明者らは、上記の課題を解決するために鋭意検討した結果、炭化水素と水蒸気の混合ガスを反応器の上流部分に配置した水蒸気改質触媒層に供給して、高い温度で水蒸気改質を行い、改質ガスを水蒸気改質触媒層の下流部分に配置した非触媒層に供給して冷却し、水素分離膜が水素透過に好ましい温度になるように制御して、水素濃度の高い改質ガスから水素分離膜により水素を分離し、さらには、非触媒層の下流にシフト触媒層を配置して、該シフト触媒層に水素が分離され水素分圧が低下した改質ガスを供給し、シフト反応により水素を生成させるとともに、生成した水素を水素分離膜により分離することで、効率良く水素を製造できることを見出し、本発明を完成させるに至った。すなわち、本発明は、以下の発明を包含するものである。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have supplied a mixed gas of hydrocarbon and steam to a steam reforming catalyst layer disposed in the upstream portion of the reactor, and improved steam reforming at a high temperature. The hydrogen separation membrane is supplied to the non-catalyst layer arranged in the downstream part of the steam reforming catalyst layer and cooled, and the hydrogen separation membrane is controlled to a temperature preferable for hydrogen permeation, so that the hydrogen concentration is high. Hydrogen is separated from the reformed gas by a hydrogen separation membrane, and further, a shift catalyst layer is disposed downstream of the non-catalyst layer, and hydrogen is separated into the shift catalyst layer and a reformed gas having a reduced hydrogen partial pressure is supplied. In addition, the inventors have found that hydrogen can be efficiently produced by generating hydrogen by a shift reaction and separating the generated hydrogen by a hydrogen separation membrane, thereby completing the present invention. That is, the present invention includes the following inventions.

(1)炭化水素を水蒸気改質する水蒸気改質触媒からなる水蒸気改質触媒層と、水素透過能を有する水素分離膜とを備える膜分離型水素製造装置であって、
炭化水素と水蒸気の入口部を上流として、上流側に前記水蒸気改質触媒層が配置され、該水蒸気改質触媒層の下流側に非触媒粒子からなる非触媒層が配置され、さらに、該非触媒層の下流側に改質ガスのシフト反応を行うシフト触媒からなるシフト触媒層が配置され、
前記水素分離膜は、前記シフト触媒層を貫通して、前記水蒸気改質触媒層に配置又は接することなく、前記非触媒層内に少なくとも一部がかかるように配置されている
膜分離型水素製造装置。
(1) A membrane separation type hydrogen production apparatus comprising a steam reforming catalyst layer comprising a steam reforming catalyst for steam reforming hydrocarbons, and a hydrogen separation membrane having hydrogen permeability,
The steam reforming catalyst layer is disposed upstream of the hydrocarbon and steam inlet, the non-catalytic layer comprising non-catalytic particles is disposed downstream of the steam reforming catalyst layer, and the non-catalyst A shift catalyst layer composed of a shift catalyst that performs a shift reaction of the reformed gas is disposed downstream of the layer,
The hydrogen separation membrane is disposed so as to penetrate at least a part of the non-catalyst layer without penetrating the shift catalyst layer and being disposed on or in contact with the steam reforming catalyst layer. apparatus.

(2)前記非触媒粒子が、アルミナ、シリカ、及びシリカ−アルミナの少なくとも1種である上記(1)の膜分離型水素製造装置。 (2) The membrane-separated hydrogen production apparatus according to (1), wherein the non-catalytic particles are at least one of alumina, silica, and silica-alumina.

(3)前記水素分離膜が、焼結フィルター部を有する金属管の焼結フィルター部上にバリア層を設け、該バリア層の上にパラジウム−銅合金のメッキ膜を配したものである上記(1)又は(2)の膜分離型水素製造装置。 (3) The above-mentioned hydrogen separation membrane is obtained by providing a barrier layer on a sintered filter portion of a metal tube having a sintered filter portion, and placing a palladium-copper alloy plating film on the barrier layer ( The membrane separation type hydrogen production apparatus of 1) or (2).

(4)上記(1)〜(3)のいずれかの膜分離型水素製造装置の水蒸気改質触媒層に炭化水素と水蒸気の混合ガスを供給して、水蒸気改質反応により水素を主成分とする改質ガスを生成させ、
次に、前記改質ガスを非触媒層に供給し、非触媒粒子と接触させて改質ガスの温度を低下させた後、
前記水素分離膜により水素を選択的に透過させて水素を取り出し、
さらに、水素が分離された改質ガスをシフト触媒層へ供給し、シフト反応により水素を生成させるとともに、前記水素分離膜により水素を選択的に透過させて水素を取り出す
水素製造方法。
(4) A mixed gas of hydrocarbon and steam is supplied to the steam reforming catalyst layer of the membrane separation type hydrogen production apparatus according to any one of (1) to (3) above, and hydrogen is mainly contained by the steam reforming reaction. To generate reformed gas,
Next, after the reformed gas is supplied to the non-catalyst layer and brought into contact with the non-catalyst particles to lower the temperature of the reformed gas,
Hydrogen is selectively permeated through the hydrogen separation membrane to extract hydrogen,
Furthermore, a reformed gas from which hydrogen has been separated is supplied to the shift catalyst layer, hydrogen is generated by a shift reaction, and hydrogen is selectively permeated through the hydrogen separation membrane to extract hydrogen.

(5)前記水蒸気改質触媒層の温度が、前記水素分離膜の温度より高い温度である上記(4)の水素製造方法。 (5) The method for producing hydrogen according to (4), wherein the temperature of the steam reforming catalyst layer is higher than the temperature of the hydrogen separation membrane.

(6)前記水蒸気改質触媒層の温度が600〜800℃であり、水素分離膜の温度が600℃未満である上記(5)の水素製造方法。 (6) The method for producing hydrogen according to (5) above, wherein the temperature of the steam reforming catalyst layer is 600 to 800 ° C., and the temperature of the hydrogen separation membrane is less than 600 ° C.

(7)前記炭化水素が、ナフサ留分、ガソリン留分、灯油留分、軽油留分からなる群から選択される少なくとも一種である上記(4)〜(6)のいずれかの水素製造方法。 (7) The method for producing hydrogen according to any one of (4) to (6), wherein the hydrocarbon is at least one selected from the group consisting of a naphtha fraction, a gasoline fraction, a kerosene fraction, and a light oil fraction.

本発明によれば、改質反応と水素分離膜による水素の分離精製を、それぞれ好適な温度条件で行えるようにしたので、高効率で水素を回収できるコンパクトな膜分離型の水素製造装置ならびに該装置を用いた高効率な水素製造方法を提供することができる。   According to the present invention, since the reforming reaction and the hydrogen separation and purification using the hydrogen separation membrane can be performed under suitable temperature conditions, respectively, a compact membrane separation type hydrogen production apparatus capable of recovering hydrogen with high efficiency and the A highly efficient hydrogen production method using the apparatus can be provided.

以下に、本発明の膜分離型水素製造装置及び水素製造方法を、図1を用いて詳細に説明する。図1は、本発明の膜分離型水素製造装置の一例を示す模式図である。図1に示す膜分離型水素製造装置においては、炭化水素と水蒸気の入口部1を上流として、上流側に水蒸気改質触媒層2が配置され、該水蒸気改質触媒層2の下流側に非触媒粒子からなる非触媒層3が配置され、該非触媒層3の下流側に改質ガスのシフト反応を行うシフト触媒からなるシフト触媒層4が配置されており、更に、水素分離膜5が、シフト触媒層4を貫通して、水蒸気改質触媒層2に配置又は接することなく、非触媒層3内に少なくとも一部がかかるように配置されている。また、図1に示す膜分離型水素製造装置は、シフト触媒層4の下流側に非透過ガスの出口部6が設けられており、更に水素分離膜5に連通する製品水素の出口部7を備える。   Below, the membrane separation type | mold hydrogen production apparatus and hydrogen production method of this invention are demonstrated in detail using FIG. FIG. 1 is a schematic view showing an example of a membrane separation type hydrogen production apparatus of the present invention. In the membrane-separated hydrogen production apparatus shown in FIG. 1, a steam reforming catalyst layer 2 is disposed upstream from the hydrocarbon and steam inlet 1, and a non-stream is formed downstream from the steam reforming catalyst layer 2. A non-catalyst layer 3 made of catalyst particles is arranged, a shift catalyst layer 4 made of a shift catalyst that performs a shift reaction of the reformed gas is arranged downstream of the non-catalyst layer 3, and further, a hydrogen separation membrane 5 The non-catalyst layer 3 is arranged so as to be at least partially covered without passing through or in contact with the steam reforming catalyst layer 2 through the shift catalyst layer 4. Further, the membrane separation type hydrogen production apparatus shown in FIG. 1 is provided with a non-permeate gas outlet 6 on the downstream side of the shift catalyst layer 4 and further has a product hydrogen outlet 7 connected to the hydrogen separation membrane 5. Prepare.

図1に示す膜分離型水素製造装置においては、炭化水素と水蒸気とを入口部1を通して水蒸気改質触媒層2に供給して、水蒸気改質反応により改質ガスを生成させる。生成した改質ガスは、非触媒層3に供給されて、冷却され、非触媒層3に一部内蔵される水素分離膜5を透過して製品水素として、出口部7を通して装置外に取り出される。また、水素分離膜5を透過しなかった改質ガスは、シフト触媒層4に供給されて、シフト反応を受け、該シフト反応で発生した水素は、シフト触媒層4に接する水素分離膜5を透過して製品水素として、出口部7を通して装置外に取り出される。一方、水素分離膜5を透過することなく、シフト触媒層4を通過したガスは、非透過ガスとして出口部6から装置外に排出される。   In the membrane separation type hydrogen production apparatus shown in FIG. 1, hydrocarbons and steam are supplied to the steam reforming catalyst layer 2 through the inlet 1 to generate a reformed gas by a steam reforming reaction. The generated reformed gas is supplied to the non-catalyst layer 3, cooled, permeates the hydrogen separation membrane 5 partially incorporated in the non-catalyst layer 3, and is taken out of the apparatus through the outlet portion 7 as product hydrogen. . The reformed gas that has not permeated the hydrogen separation membrane 5 is supplied to the shift catalyst layer 4 and undergoes a shift reaction. Hydrogen generated by the shift reaction passes through the hydrogen separation membrane 5 in contact with the shift catalyst layer 4. The permeated product hydrogen is taken out from the apparatus through the outlet 7 as product hydrogen. On the other hand, the gas that has passed through the shift catalyst layer 4 without passing through the hydrogen separation membrane 5 is discharged out of the apparatus from the outlet 6 as a non-permeating gas.

[原料炭化水素]
改質反応により水素を製造するための原料となる炭化水素としては、沸点が370℃以下の炭化水素及びそれらの混合物を用いることができる。例えば、メタン、エタン、プロパン、ブタン、ペンタン、天然ガス、LPガスなどの常温で気体状態の炭化水素の他、ナフサ留分、ガソリン留分、灯油留分、軽油留分などの常温で液体状態の石油系炭化水素を用いることができる。
[Raw material hydrocarbon]
As the hydrocarbon used as a raw material for producing hydrogen by the reforming reaction, a hydrocarbon having a boiling point of 370 ° C. or lower and a mixture thereof can be used. For example, methane, ethane, propane, butane, pentane, natural gas, LP gas and other hydrocarbons in the gaseous state at room temperature, as well as naphtha fraction, gasoline fraction, kerosene fraction, light oil fraction, etc. The following petroleum-based hydrocarbons can be used.

ナフサ留分は、原油や天然ガスコンデンセートなどを蒸留分離して得られる留分のうち、沸点範囲として30℃〜180℃の範囲内の沸点を有する留分である。ナフサ留分としては、例えば、沸点範囲が30〜80℃程度の軽質ナフサ留分、沸点範囲が80〜180℃程度の重質ナフサ留分、沸点範囲が30〜180℃程度のホールナフサ留分などが含まれる。   A naphtha fraction is a fraction having a boiling point within a range of 30 ° C. to 180 ° C. as a boiling point range among fractions obtained by distillation separation of crude oil, natural gas condensate, and the like. Examples of the naphtha fraction include a light naphtha fraction having a boiling range of about 30 to 80 ° C, a heavy naphtha fraction having a boiling range of about 80 to 180 ° C, and a whole naphtha fraction having a boiling range of about 30 to 180 ° C. Etc. are included.

ガソリン留分は、沸点範囲として30℃〜200℃の範囲内の沸点を有する留分であり、市販の自動車ガソリン、工業ガソリンの他、自動車ガソリンの調合に用いられる沸点が上記の範囲内である中間製品(基材とも呼ばれる)、沸点が上記の範囲にある中間製品や自動車ガソリンに相当する留分も含まれる。   The gasoline fraction is a fraction having a boiling point in the range of 30 ° C. to 200 ° C. as a boiling range, and the boiling point used for the preparation of automobile gasoline is within the above range in addition to commercial automobile gasoline and industrial gasoline. An intermediate product (also called a base material), an intermediate product having a boiling point in the above range, and a fraction corresponding to automobile gasoline are also included.

灯油留分は、原油や天然ガスコンデンセートなどを蒸留分離して得られる留分のうち、沸点範囲として140℃〜270℃の範囲内の沸点を有する留分であり、灯火用、暖房用、ちゅう房用などの市販灯油の他に、上記の範囲内の沸点を有する灯油相当の留分が含まれる。   A kerosene fraction is a fraction having a boiling point within a range of 140 ° C. to 270 ° C. as a boiling point among fractions obtained by distillation separation of crude oil, natural gas condensate, and the like. In addition to commercial kerosene such as for use, a fraction corresponding to kerosene having a boiling point within the above range is included.

軽油留分は、沸点範囲160℃〜370℃の範囲内の沸点を有する留分であり、ディーゼルエンジン用などに使用する市販軽油の他、上記の範囲内の沸点を有する軽油相当の留分が含まれる。   The light oil fraction is a fraction having a boiling point in the boiling range of 160 ° C. to 370 ° C. In addition to the commercially available light oil used for diesel engines, the fraction corresponding to the light oil having the boiling point in the above range is included. included.

製品の流通面、コスト、入手の容易性から、メタン、LPGなどのガス状炭化水素、ナフサ留分、ガソリン留分、灯油留分、軽油留分などの液状炭化水素が好ましく、特には灯油留分が好ましい。また、これら炭化水素は、水蒸気改質触媒に対する被毒の観点から、含有する硫黄分が低いものが好ましく、特には硫黄分が50質量ppb以下のものが好ましい。   Liquid hydrocarbons such as gaseous hydrocarbons such as methane and LPG, naphtha fractions, gasoline fractions, kerosene fractions, and diesel oil fractions are preferred from the viewpoint of product distribution, cost, and availability. Minutes are preferred. Further, these hydrocarbons preferably have a low sulfur content, particularly those having a sulfur content of 50 mass ppb or less, from the viewpoint of poisoning the steam reforming catalyst.

[水蒸気改質触媒、水蒸気改質触媒層]
本発明に用いる水蒸気改質触媒としては、通常の水蒸気改質触媒を用いることができる。例えば、Fe、Co、Ni、Ru、Rh、Pd、Ir、Ptのうちから選ばれる少なくとも1種の触媒活性成分を、Mg、Al、Si、Ti、Zr、Ba、Laの酸化物および/または水和酸化物から選ばれた少なくとも1種の担体成分を含む担体に担持したものを使用することができる。コーキングの発生を抑制する点から、触媒活性成分としてRuやRhの使用が好ましい。
[Steam reforming catalyst, steam reforming catalyst layer]
As the steam reforming catalyst used in the present invention, a normal steam reforming catalyst can be used. For example, at least one catalytically active component selected from Fe, Co, Ni, Ru, Rh, Pd, Ir, and Pt is used as an oxide of Mg, Al, Si, Ti, Zr, Ba, La and / or Those supported on a carrier containing at least one carrier component selected from hydrated oxides can be used. From the viewpoint of suppressing the occurrence of coking, it is preferable to use Ru or Rh as the catalyst active component.

これらの水蒸気改質触媒を、炭化水素と水蒸気の混合ガスの供給方向を基準として、最も上流側に配置して水蒸気改質触媒層2とし、該水蒸気改質触媒層2が水素製造装置の改質部Rに相当する。水蒸気改質触媒層2に含ませる水蒸気改質触媒の量は、原料である炭化水素の種類、改質反応温度、スチーム/カーボン比などにより適宜決定することができる。   These steam reforming catalysts are arranged on the most upstream side with respect to the supply direction of the mixed gas of hydrocarbon and steam as a steam reforming catalyst layer 2, and the steam reforming catalyst layer 2 is a modification of the hydrogen production apparatus. Corresponds to the mass part R. The amount of the steam reforming catalyst to be included in the steam reforming catalyst layer 2 can be appropriately determined depending on the type of hydrocarbon as a raw material, the reforming reaction temperature, the steam / carbon ratio, and the like.

[非触媒粒子、非触媒層]
本発明において、非触媒粒子とは、改質反応に対して実質的に触媒作用を有さない粒子を指し、改質ガスを冷却する役割を担う。改質ガスを冷却するために用いる非触媒粒子の材料としては、改質ガスに対し反応活性の低いマグネシア、マグネシア−酸化カルシウム−シリカ、マグネシア−シリカ、アルミナ、シリカ、シリカ−アルミナ等のセラミックボールを挙げることができ、これらの中でも、アルミナ、シリカ、シリカ−アルミナが好ましい。その形状としては、リング状、球状、ペレット状等の各種の形状が挙げられる。
[Non-catalytic particles, non-catalytic layer]
In the present invention, non-catalytic particles refer to particles that have substantially no catalytic action on the reforming reaction, and serve to cool the reformed gas. Non-catalytic particles used for cooling the reformed gas include ceramic balls such as magnesia, magnesia-calcium oxide-silica, magnesia-silica, alumina, silica, silica-alumina, etc., which have low reaction activity with respect to the reformed gas. Among these, alumina, silica, and silica-alumina are preferable. Examples of the shape include various shapes such as a ring shape, a spherical shape, and a pellet shape.

上記非触媒粒子を水蒸気改質触媒層2の下流側に配置して非触媒層3とする。非触媒層3内には、後述する水素分離膜5が少なくとも一部がかかるように配置されるが、水蒸気改質触媒層2と水素分離膜5とは非触媒層3を介して適宜距離をとり、改質ガスが非触媒層3を通過することにより冷却され、水素分離膜5が水素透過性能に好ましい温度となるようにする。すなわち、水蒸気改質触媒層2から水素分離膜5までの非触媒層3が冷却部Cに相当し、水素分離膜5が配置された非触媒層3の部分が上部分離部Uに相当し、後述のシフト触媒層4の部分が下部分離部Lに相当する。なお、反応器外部より強制的に冷却管などで冷却することも可能である。また、非触媒層3中に熱媒体などを流通させた冷却管を直接通しても良い。このようにして、冷却部Cにおいて、改質ガスを水素分離膜5の水素透過性に適した温度、即ち350℃以上600℃未満、好ましくは350〜550℃まで冷却する。   The non-catalyst particles are arranged downstream of the steam reforming catalyst layer 2 to form the non-catalyst layer 3. In the non-catalyst layer 3, a hydrogen separation membrane 5 to be described later is disposed so as to cover at least a part thereof, but the steam reforming catalyst layer 2 and the hydrogen separation membrane 5 are appropriately separated via the non-catalyst layer 3. Thus, the reformed gas is cooled by passing through the non-catalyst layer 3 so that the hydrogen separation membrane 5 has a temperature preferable for hydrogen permeation performance. That is, the non-catalytic layer 3 from the steam reforming catalyst layer 2 to the hydrogen separation membrane 5 corresponds to the cooling unit C, and the portion of the non-catalytic layer 3 in which the hydrogen separation membrane 5 is disposed corresponds to the upper separation unit U. A portion of the shift catalyst layer 4 described later corresponds to the lower separation portion L. It is also possible to forcibly cool from the outside of the reactor with a cooling pipe or the like. Further, a cooling pipe in which a heat medium or the like is circulated in the non-catalyst layer 3 may be directly passed. In this manner, in the cooling section C, the reformed gas is cooled to a temperature suitable for the hydrogen permeability of the hydrogen separation membrane 5, that is, 350 ° C. or higher and lower than 600 ° C., preferably 350 to 550 ° C.

[シフト触媒、シフト触媒層]
さらに、上記非触媒層3の下流側に、シフト触媒を含むシフト触媒層4を配置する。非触媒層3において水素分離膜5により水素が分離され水素分圧が低下した改質ガスをシフト触媒層4に供給することにより、シフト反応によってさらに水素を生成させるとともに、水素分離膜5により水素を分離することで、より高効率で水素を製造することができる。なお、シフト触媒層の温度は、350℃以上600℃未満とすることが好ましく、350〜550℃とすることが更に好ましい。
[Shift catalyst, shift catalyst layer]
Further, a shift catalyst layer 4 including a shift catalyst is disposed downstream of the non-catalyst layer 3. In the non-catalyst layer 3, hydrogen is separated by the hydrogen separation membrane 5 and the reformed gas having a reduced hydrogen partial pressure is supplied to the shift catalyst layer 4, whereby hydrogen is further generated by the shift reaction. By separating, hydrogen can be produced with higher efficiency. The temperature of the shift catalyst layer is preferably 350 ° C. or higher and lower than 600 ° C., more preferably 350 to 550 ° C.

本発明に用いるシフト触媒としては、従来公知のものが使用できる。例えば、触媒活性成分としては、Fe23系、Cu−ZnO系、Ru、Pt、Auなど貴金属系のもの等が挙げられる。これらの触媒活性成分をマグネシア、マグネシア−酸化カルシウム−シリカ、マグネシア−シリカ、アルミナ、シリカ−アルミナ、シリカ等に担持したものをシフト触媒として使用することができる。シフト触媒層4に含ませるシフト触媒の量は、使用する原料炭化水素の種類、シフト反応温度などにより適宜決定することができる。 A conventionally well-known thing can be used as a shift catalyst used for this invention. For example, examples of the catalytically active component include those of noble metals such as Fe 2 O 3 , Cu—ZnO, Ru, Pt, and Au. What carried these catalyst active components in magnesia, magnesia-calcium oxide-silica, magnesia-silica, alumina, silica-alumina, silica, etc. can be used as a shift catalyst. The amount of the shift catalyst included in the shift catalyst layer 4 can be appropriately determined depending on the type of raw material hydrocarbon used, the shift reaction temperature, and the like.

[水素分離膜]
本発明に用いる水素分離膜5としては、水素の選択的透過性を有する材料であれば特に限定されないが、高い水素透過選択性を有するパラジウム膜、パラジウム合金膜が好ましく、パラジウム−銅、パラジウム−銀などのパラジウム合金膜がより好ましい。
[Hydrogen separation membrane]
The hydrogen separation membrane 5 used in the present invention is not particularly limited as long as it is a material having selective hydrogen permeability, but is preferably a palladium membrane or palladium alloy membrane having high hydrogen permeability, and palladium-copper, palladium- A palladium alloy film of silver or the like is more preferable.

上記水素分離膜5としては、図2に示すような、焼結フィルター部8を有する金属管9の焼結フィルター部8上にバリア層10を設け、該バリア層10の上にパラジウム合金のメッキ膜11を配した水素分離膜を用いることが好ましい。ここで、焼結フィルター部8及び金属管9は、ステンレス製であることが好ましく、バリア層10は、ジルコニア、アルミナなどからなることが好ましく、パラジウム合金のメッキ膜11としては、パラジウム−銅合金のメッキ膜、パラジウム−銀合金のメッキ膜などが好ましく、パラジウム−銅合金のメッキ膜が特に好ましい。前記のバリア層10は、焼結フィルター部8の金属成分がパラジウム合金のメッキ膜11へ拡散してメッキ膜11の水素透過性が劣化することを防止するとともに、表面の平滑度を上げて前記パラジウム合金のメッキ膜11に欠陥が生じることを防止する作用を有する。   As the hydrogen separation membrane 5, as shown in FIG. 2, a barrier layer 10 is provided on a sintered filter portion 8 of a metal tube 9 having a sintered filter portion 8, and a palladium alloy plating is formed on the barrier layer 10. It is preferable to use a hydrogen separation membrane provided with a membrane 11. Here, the sintered filter portion 8 and the metal tube 9 are preferably made of stainless steel, and the barrier layer 10 is preferably made of zirconia, alumina, or the like, and the palladium alloy plating film 11 includes a palladium-copper alloy. And a palladium-silver alloy plating film are preferred, and a palladium-copper alloy plating film is particularly preferred. The barrier layer 10 prevents the metal component of the sintered filter portion 8 from diffusing into the palladium alloy plating film 11 to deteriorate the hydrogen permeability of the plating film 11, and increases the smoothness of the surface to increase the surface smoothness. It has the effect of preventing defects in the palladium alloy plating film 11.

上記水素分離膜5は、シフト触媒層4を貫通して、水蒸気改質触媒層2に配置または接することなく、上記の非触媒層3内に少なくとも一部がかかるように配置される。   The hydrogen separation membrane 5 penetrates the shift catalyst layer 4 and is disposed so as to be at least partially covered with the non-catalyst layer 3 without being disposed or in contact with the steam reforming catalyst layer 2.

[水素製造方法]
本発明の膜分離型水素製造装置を用いた水素製造方法は、次のように行う。上記の炭化水素と水蒸気の混合ガスを、まず上記の水蒸気改質触媒層2に供給し、水蒸気改質反応を行い、水素を主成分とする改質ガスを生成させる。ここで、炭化水素と水蒸気の比率は、スチーム/カーボン比(S/C比)として2.5〜4.0の範囲が好ましく、2.8〜3.5の範囲がより好ましい。S/C比が低い状態ではコーキングが発生し、水蒸気改質触媒の活性を低下させてしまう。また、S/C比が必要以上に高い場合は、効率を低下させてしまう。
[Hydrogen production method]
The hydrogen production method using the membrane separation type hydrogen production apparatus of the present invention is performed as follows. First, the mixed gas of hydrocarbon and steam is supplied to the steam reforming catalyst layer 2 to perform a steam reforming reaction to generate a reformed gas mainly composed of hydrogen. Here, the ratio of hydrocarbon to water vapor is preferably in the range of 2.5 to 4.0 as the steam / carbon ratio (S / C ratio), and more preferably in the range of 2.8 to 3.5. When the S / C ratio is low, coking occurs and the activity of the steam reforming catalyst is reduced. Further, when the S / C ratio is higher than necessary, the efficiency is lowered.

水蒸気改質触媒層2の温度、すなわち改質反応の温度としては、600〜800℃が好ましく、650〜750℃がより好ましい。改質反応の温度が600℃未満の場合は、水素分率が30vol%以下(メタン原料で反応圧0.9MPaGの条件下で)となり十分な水素透過量が得られず、一方、800℃を超える場合は、反応管の材質などとして耐熱材料(カンタル(登録商標)、インコネル(登録商標)、ハステロイ(登録商標)など)が必要となりコストが高くなる。 The temperature of the steam reforming catalyst layer 2, that is, the temperature of the reforming reaction is preferably 600 to 800 ° C, more preferably 650 to 750 ° C. When the temperature of the reforming reaction is less than 600 ° C., the hydrogen fraction is 30 vol% or less (under the condition of a reaction pressure of 0.9 MPaG with a methane raw material) and a sufficient hydrogen permeation amount cannot be obtained. If it exceeds, a heat-resistant material (such as Kanthal (registered trademark) , Inconel (registered trademark) , Hastelloy (registered trademark) ) is required as the material of the reaction tube and the cost becomes high.

改質反応の圧力としては、0.5〜1.5MPaGが好ましく、0.7〜1.2MPaGがより好ましい。反応圧力が低過ぎると水素透過量が十分得られず、また反応圧力が高過ぎると炭化水素の反応(水素発生側への反応)が進みにくくなる。   The pressure for the reforming reaction is preferably 0.5 to 1.5 MPaG, more preferably 0.7 to 1.2 MPaG. When the reaction pressure is too low, a sufficient amount of hydrogen permeation cannot be obtained, and when the reaction pressure is too high, the hydrocarbon reaction (reaction toward the hydrogen generation side) is difficult to proceed.

原料炭化水素として灯油を用いた場合、SV(灯油ベースのLHSV)としては、現状の触媒において0.3〜3.0h-1の範囲が好ましく、0.3〜1.7h-1の範囲がより好ましい。 When kerosene is used as the raw material hydrocarbon, SV (kerosene-based LHSV) is preferably in the range of 0.3 to 3.0 h −1 in the current catalyst, and in the range of 0.3 to 1.7 h −1 . More preferred.

ついで、改質ガスを、水蒸気改質触媒層2の下流側に配置した非触媒層3に供給し非触媒粒子と接触させて、改質ガスの温度を水蒸気改質触媒層2よりも低く水素分離膜5による水素分離に好ましい温度、特には600℃未満まで冷却した後、水素分離膜5により水素を透過分離する。本発明においては、水蒸気改質触媒層2で水蒸気改質反応に好ましい温度条件で改質反応を行わせて、水素含有量が高い改質ガスとなっているので、水素分離膜5により効率的に水素を分離することができる。   Next, the reformed gas is supplied to the non-catalyst layer 3 disposed on the downstream side of the steam reforming catalyst layer 2 and brought into contact with the non-catalyst particles so that the temperature of the reformed gas is lower than that of the steam reforming catalyst layer 2 and hydrogen. After cooling to a temperature preferable for hydrogen separation by the separation membrane 5, particularly below 600 ° C., hydrogen is permeated and separated by the hydrogen separation membrane 5. In the present invention, the reforming reaction is performed in the steam reforming catalyst layer 2 under a temperature condition preferable for the steam reforming reaction, so that the reformed gas has a high hydrogen content. Hydrogen can be separated.

さらに、水素分離膜5により水素が分離された改質ガスを、非触媒層3の下流側に配置したシフト触媒層4に供給して、シフト反応によりさらに水素を生成させるとともに、シフト触媒層4を貫通して配置されている水素分離膜5により、生成した水素の分離を行う。非触媒層3で水素が分離され水素分圧が低下した分、シフト反応により水素が生成するので、水素の生成量をより高め、高効率で水素を製造することができる。   Further, the reformed gas from which hydrogen has been separated by the hydrogen separation membrane 5 is supplied to the shift catalyst layer 4 disposed on the downstream side of the non-catalyst layer 3 to generate more hydrogen by the shift reaction, and the shift catalyst layer 4 The generated hydrogen is separated by the hydrogen separation membrane 5 disposed so as to pass through. Since hydrogen is separated by the non-catalyst layer 3 and the hydrogen partial pressure is reduced, hydrogen is produced by the shift reaction, so that the amount of hydrogen produced can be increased and hydrogen can be produced with high efficiency.

[変形実施形態]
上記においては、本発明を図1に従い説明したが、本発明の膜分離型水素製造装置は、図1に示した以外の構造とすることもできる。例えば、図3に示すように、冷却部Cに冷却管12を設けて、例えば冷却ガスを流すことにより強制的に冷却を行う構造とすることも可能である。このとき冷却ガスとして原料ガスを用い、改質ガスの熱を原料ガスの予熱に利用することで、熱効率を向上させることもできる。また、冷却部Cに冷却管12を設ける代わりに、図4及び図5に示すように、冷却部Cを多管の熱交換器型として、管13内に非触媒層3を充填し、管13の外側を冷却ガスにより冷却するようにしても良い。また、本発明の膜分離型水素製造装置は、図6に示すように、水素分離膜5を複数備えることもできる。
[Modified Embodiment]
In the above, the present invention has been described with reference to FIG. 1, but the membrane separation type hydrogen production apparatus of the present invention may have a structure other than that shown in FIG. For example, as shown in FIG. 3, it is also possible to provide a cooling pipe 12 in the cooling part C and to have a structure for forcibly cooling by flowing a cooling gas, for example. At this time, by using the raw material gas as the cooling gas and using the heat of the reformed gas for preheating the raw material gas, the thermal efficiency can be improved. Further, instead of providing the cooling pipe 12 in the cooling section C, as shown in FIGS. 4 and 5, the cooling section C is formed as a multi-tube heat exchanger type, and the non-catalytic layer 3 is filled in the pipe 13, You may make it cool the outer side of 13 with a cooling gas. Moreover, the membrane separation type hydrogen production apparatus of the present invention can also include a plurality of hydrogen separation membranes 5 as shown in FIG.

本発明によれば、水蒸気改質触媒層2において改質反応を高温(600〜800℃)の条件で行わせるため高水素濃度の改質ガスを得ることができる。改質ガスは、その後、非触媒層3により水素分離膜5の分離性能が十分に発揮される温度まで冷却され、水素分離膜5が設置されている分離部で水素が高い透過率で分離される。更に、水素分離膜5により水素濃度が低くなった改質ガスは、次いでシフト触媒が充填されたシフト触媒層4に導入され、シフト反応を受けてさらに水素が生成するとともに、シフト反応で発生した水素は水素分離膜5により回収される。   According to the present invention, since the reforming reaction is performed in the steam reforming catalyst layer 2 at a high temperature (600 to 800 ° C.), a reformed gas having a high hydrogen concentration can be obtained. The reformed gas is then cooled to a temperature at which the separation performance of the hydrogen separation membrane 5 is sufficiently exerted by the non-catalytic layer 3, and hydrogen is separated at a high permeability in the separation section where the hydrogen separation membrane 5 is installed. The Further, the reformed gas whose hydrogen concentration has been lowered by the hydrogen separation membrane 5 is then introduced into the shift catalyst layer 4 filled with the shift catalyst, undergoes a shift reaction, generates more hydrogen, and is generated by the shift reaction. Hydrogen is recovered by the hydrogen separation membrane 5.

上述のように、本発明によれば、高効率で水素を回収できる膜分離型水素製造装置および水素製造方法を提供することができる。なお、本発明の膜分離型水素製造装置は、コンパクトな構成で高純度の水素ガスを高効率かつ高回収量で製造できるので、高分子電解質形燃料電池(PEFC)用の水素製造装置、或いは水素ステーションで用いるオンサイト型の水素製造装置として好適に使用できる。   As described above, according to the present invention, it is possible to provide a membrane separation type hydrogen production apparatus and a hydrogen production method capable of recovering hydrogen with high efficiency. The membrane-separated hydrogen production apparatus of the present invention can produce high-purity hydrogen gas in a compact configuration with high efficiency and a high recovery amount. Therefore, a hydrogen production apparatus for a polymer electrolyte fuel cell (PEFC), or It can be suitably used as an on-site type hydrogen production apparatus used in a hydrogen station.

以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明は下記の実施例に何ら限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples.

(実施例1)
図1に示す構造を有し、内径43mmφ、長さ700mmのSUS製の反応管内に、長さ45mmの水素透過部を有するSUS製の9.525mm(3/8インチ管を水素分離膜モジュールとして備えた装置を用いた。反応管の上部に、一般的な水蒸気改質触媒(Ru系、サイズ2mmφ)を層高30mmになるように充填し、水蒸気改質触媒層とした。
Example 1
A SUS 9.525 mm ( 3/8 inch ) tube having a 45 mm-long hydrogen permeation section in a SUS reaction tube having an inner diameter of 43 mmφ and a length of 700 mm having the structure shown in FIG. 1 is a hydrogen separation membrane module. The apparatus provided as was used. The upper part of the reaction tube was filled with a general steam reforming catalyst (Ru system, size 2 mmφ) so as to have a layer height of 30 mm, thereby forming a steam reforming catalyst layer.

原料炭化水素(メタン)を用いて、水蒸気改質触媒層の反応温度600℃(水蒸気改質触媒層の下端)、反応圧力0.9MPaG、スチーム/カーボン比(S/C)=3.0、GHSV(メタン+スチーム)=1500h-1(触媒層は改質触媒層体積基準とする)の条件で改質反応を行った。 Using raw material hydrocarbon (methane), reaction temperature of steam reforming catalyst layer 600 ° C. (lower end of steam reforming catalyst layer), reaction pressure 0.9 MPaG, steam / carbon ratio (S / C) = 3.0, The reforming reaction was performed under the condition of GHSV (methane + steam) = 1500 h −1 (the catalyst layer is based on the volume of the reforming catalyst layer).

冷却部には、非触媒粒子として炭化水素・水蒸気に対し反応活性のないシリカ−アルミナのセラミックボール(2mmφ)を充填し、反応生成ガスが500℃に冷却されるまでの距離をとった。   The cooling part was filled with non-catalytic particles of silica-alumina ceramic balls (2 mmφ) having no reaction activity with respect to hydrocarbons and water vapor, and a distance was taken until the reaction product gas was cooled to 500 ° C.

上部の水素分離部においては、水素分離膜の周囲には冷却部と同じく、シリカ−アルミナのセラミックボールを充填し、改質部で生成した改質ガスをその組成のまま水素分離部に導入し、水素分離を行った。ここで、水素分離膜モジュールとしては、SUS製の焼結フィルター部を有するSUS管の焼結フィルター部上にバリア層として安定化ジルコニア層(約20μm)を配した支持体にPd−Cu(Cuが40wt%)のメッキ膜(膜厚約3μm)を配したモジュールを使用した。   In the upper hydrogen separation section, the silica-alumina ceramic balls are filled around the hydrogen separation membrane in the same manner as the cooling section, and the reformed gas generated in the reforming section is introduced into the hydrogen separation section with its composition. Hydrogen separation was performed. Here, as a hydrogen separation membrane module, Pd—Cu (Cu) is provided on a support in which a stabilized zirconia layer (about 20 μm) is disposed as a barrier layer on a sintered filter portion of a SUS tube having a sintered filter portion made of SUS. Is a module having a plating film (film thickness of about 3 μm).

下部の水素分離部においては、水素分離膜の周囲にシフト反応を促進する触媒として改質触媒と同じ触媒を水素分離膜下端より上方に層高20mm充填し、上部の水素分離部で分離した水素濃度の低下した改質ガスをシフト反応させることにより、水素を生成させながら水素分離を行った。   In the lower hydrogen separation part, the same catalyst as the reforming catalyst is filled around the hydrogen separation membrane as a catalyst for promoting the shift reaction, with a layer height of 20 mm above the lower end of the hydrogen separation membrane, and the hydrogen separated by the upper hydrogen separation part. Hydrogen was separated while producing hydrogen by shift reaction of the reformed gas having a reduced concentration.

上記の結果、水素分離膜を透過した水素として0.24L/minの水素が得られ、水素回収率(透過水素量/生成水素量)は59.8%であった。   As a result, 0.24 L / min of hydrogen was obtained as the hydrogen permeated through the hydrogen separation membrane, and the hydrogen recovery rate (permeated hydrogen amount / produced hydrogen amount) was 59.8%.

(比較例1)
図7に示すように、実施例1と同様の構造を有する装置に対して、実施例1で用いたのと同じ水蒸気改質触媒のみを水素分離膜直上に30mm及び水素分離膜の周囲に充填し、水蒸気改質触媒層の下端の温度を500℃とした以外は、実施例1と同様の条件で実験を行った。その結果、水素分離膜を透過した水素として0.16L/minの水素が得られ、水素回収率は46.8%であり、実施例1に比べて約2/3の水素回収量であった。
(Comparative Example 1)
As shown in FIG. 7, only the same steam reforming catalyst as used in Example 1 is filled in the apparatus having the same structure as in Example 1 30 mm above and around the hydrogen separation membrane. The experiment was performed under the same conditions as in Example 1 except that the temperature at the lower end of the steam reforming catalyst layer was 500 ° C. As a result, 0.16 L / min of hydrogen was obtained as hydrogen permeated through the hydrogen separation membrane, and the hydrogen recovery rate was 46.8%, which was about 2/3 of the hydrogen recovery amount compared to Example 1. .

本発明の膜分離型水素製造装置の一例を示す模式図である。It is a schematic diagram which shows an example of the membrane separation type | mold hydrogen production apparatus of this invention. 本発明の膜分離型水素製造装置に用いる水素分離膜の好適例の部分断面図である。It is a fragmentary sectional view of the suitable example of the hydrogen separation membrane used for the membrane separation type | mold hydrogen production apparatus of this invention. 本発明の膜分離型水素製造装置の他の一例を示す模式図である。It is a schematic diagram which shows another example of the membrane separation type | mold hydrogen production apparatus of this invention. 本発明の膜分離型水素製造装置の別の一例を示す模式図である。It is a schematic diagram which shows another example of the membrane separation type | mold hydrogen production apparatus of this invention. 図4のV−V線に沿う断面図である。It is sectional drawing which follows the VV line of FIG. 本発明の膜分離型水素製造装置のその他の一例を示す模式図である。It is a schematic diagram which shows another example of the membrane separation type | mold hydrogen production apparatus of this invention. 比較例1で用いた膜分離型水素製造装置の一例を示す模式図である。It is a schematic diagram which shows an example of the membrane separation type | mold hydrogen production apparatus used by the comparative example 1. FIG.

符号の説明Explanation of symbols

1 炭化水素と水蒸気の入口部
2 水蒸気改質触媒層
3 非触媒層
4 シフト触媒層
5 水素分離膜
6 非透過ガスの出口部
7 製品水素の出口部
8 焼結フィルター部
9 金属管
10 バリア層
11 パラジウム合金のメッキ膜
12 冷却管
13 管
R 改質部
C 冷却部
U 上部分離部
L 下部分離部
DESCRIPTION OF SYMBOLS 1 Entrance part of hydrocarbon and steam 2 Steam reforming catalyst layer 3 Non-catalyst layer 4 Shift catalyst layer 5 Hydrogen separation membrane 6 Non-permeate gas exit part 7 Product hydrogen exit part 8 Sintering filter part 9 Metal tube 10 Barrier layer 11 Plating film of palladium alloy 12 Cooling pipe 13 Pipe R Reforming part C Cooling part U Upper separation part L Lower separation part

Claims (7)

炭化水素を水蒸気改質する水蒸気改質触媒からなる水蒸気改質触媒層と、水素透過能を有する水素分離膜とを備える膜分離型水素製造装置であって、
炭化水素と水蒸気の入口部を上流として、上流側に前記水蒸気改質触媒層が配置され、該水蒸気改質触媒層の下流側に非触媒粒子からなる非触媒層が配置され、さらに、該非触媒層の下流側に改質ガスのシフト反応を行うシフト触媒からなるシフト触媒層が配置され、
前記水素分離膜は、前記シフト触媒層を貫通して、前記水蒸気改質触媒層に配置又は接することなく、前記非触媒層内に少なくとも一部がかかるように配置されている
ことを特徴とする膜分離型水素製造装置。
A membrane separation type hydrogen production apparatus comprising a steam reforming catalyst layer comprising a steam reforming catalyst for steam reforming hydrocarbons, and a hydrogen separation membrane having hydrogen permeability,
The steam reforming catalyst layer is disposed upstream of the hydrocarbon and steam inlet, the non-catalytic layer comprising non-catalytic particles is disposed downstream of the steam reforming catalyst layer, and the non-catalyst A shift catalyst layer composed of a shift catalyst that performs a shift reaction of the reformed gas is disposed downstream of the layer,
The hydrogen separation membrane passes through the shift catalyst layer and is disposed so as to be at least partially in the non-catalyst layer without being disposed or in contact with the steam reforming catalyst layer. Membrane separation type hydrogen production equipment.
前記非触媒粒子が、アルミナ、シリカ、及びシリカ−アルミナの少なくとも1種である請求項1に記載の膜分離型水素製造装置。   The membrane-separated hydrogen production apparatus according to claim 1, wherein the non-catalytic particles are at least one of alumina, silica, and silica-alumina. 前記水素分離膜が、焼結フィルター部を有する金属管の焼結フィルター部上にバリア層を設け、該バリア層の上にパラジウム−銅合金のメッキ膜を配したものであることを特徴とする請求項1又は2に記載の膜分離型水素製造装置。   The hydrogen separation membrane is characterized in that a barrier layer is provided on a sintered filter portion of a metal tube having a sintered filter portion, and a palladium-copper alloy plating film is disposed on the barrier layer. The membrane-separated hydrogen production apparatus according to claim 1 or 2. 請求項1〜3のいずれかに記載の膜分離型水素製造装置の水蒸気改質触媒層に炭化水素と水蒸気の混合ガスを供給して、水蒸気改質反応により水素を主成分とする改質ガスを生成させ、
次に、前記改質ガスを非触媒層に供給し、非触媒粒子と接触させて改質ガスの温度を低下させた後、
前記水素分離膜により水素を選択的に透過させて水素を取り出し、
さらに、水素が分離された改質ガスをシフト触媒層へ供給し、シフト反応により水素を生成させるとともに、前記水素分離膜により水素を選択的に透過させて水素を取り出す
ことを特徴とする水素製造方法。
A reformed gas mainly comprising hydrogen by a steam reforming reaction by supplying a mixed gas of hydrocarbon and steam to the steam reforming catalyst layer of the membrane separation type hydrogen production apparatus according to any one of claims 1 to 3. To generate
Next, after the reformed gas is supplied to the non-catalyst layer and brought into contact with the non-catalyst particles to lower the temperature of the reformed gas,
Hydrogen is selectively permeated through the hydrogen separation membrane to extract hydrogen,
Further, the reformed gas from which hydrogen has been separated is supplied to the shift catalyst layer, hydrogen is generated by a shift reaction, and hydrogen is selectively permeated through the hydrogen separation membrane to extract hydrogen. Method.
前記水蒸気改質触媒層の温度が、前記水素分離膜の温度より高い温度である請求項4に記載の水素製造方法。   The method for producing hydrogen according to claim 4, wherein the temperature of the steam reforming catalyst layer is higher than the temperature of the hydrogen separation membrane. 前記水蒸気改質触媒層の温度が600〜800℃であり、前記水素分離膜の温度が600℃未満である請求項5に記載の水素製造方法。   The temperature of the said steam reforming catalyst layer is 600-800 degreeC, The temperature of the said hydrogen separation membrane is less than 600 degreeC, The hydrogen manufacturing method of Claim 5. 前記炭化水素が、ナフサ留分、ガソリン留分、灯油留分、軽油留分からなる群から選択される少なくとも一種である請求項4〜6のいずれかに記載の水素製造方法。   The method for producing hydrogen according to any one of claims 4 to 6, wherein the hydrocarbon is at least one selected from the group consisting of a naphtha fraction, a gasoline fraction, a kerosene fraction, and a light oil fraction.
JP2008117105A 2008-04-28 2008-04-28 Membrane separation type hydrogen production apparatus and hydrogen production method using the same Active JP5242233B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008117105A JP5242233B2 (en) 2008-04-28 2008-04-28 Membrane separation type hydrogen production apparatus and hydrogen production method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008117105A JP5242233B2 (en) 2008-04-28 2008-04-28 Membrane separation type hydrogen production apparatus and hydrogen production method using the same

Publications (2)

Publication Number Publication Date
JP2009263183A JP2009263183A (en) 2009-11-12
JP5242233B2 true JP5242233B2 (en) 2013-07-24

Family

ID=41389524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008117105A Active JP5242233B2 (en) 2008-04-28 2008-04-28 Membrane separation type hydrogen production apparatus and hydrogen production method using the same

Country Status (1)

Country Link
JP (1) JP5242233B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5611627B2 (en) * 2010-03-19 2014-10-22 Jx日鉱日石エネルギー株式会社 Membrane separation type reactor, membrane separation type hydrogen production apparatus and hydrogen production method
JP5611628B2 (en) * 2010-03-19 2014-10-22 Jx日鉱日石エネルギー株式会社 Membrane separation type reactor, membrane separation type hydrogen production apparatus and hydrogen production method
JP5390448B2 (en) * 2010-03-26 2014-01-15 Jx日鉱日石エネルギー株式会社 Membrane separation reactor and method for producing hydrogen
JP5723650B2 (en) * 2011-03-28 2015-05-27 Jx日鉱日石金属株式会社 Hydrogen permeation module and hydrogen separation method using the same
CN110759316A (en) * 2019-10-28 2020-02-07 中科液态阳光(苏州)氢能科技发展有限公司 Reforming and separating integrated reaction device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3051564B2 (en) * 1992-05-21 2000-06-12 三菱重工業株式会社 Steam reforming reactor
JPH0648701A (en) * 1992-07-24 1994-02-22 Mitsubishi Heavy Ind Ltd Steam-reforming reactor
JPH10265202A (en) * 1997-03-25 1998-10-06 Ishikawajima Harima Heavy Ind Co Ltd Hydrogen producing device
JP2002255506A (en) * 2001-02-26 2002-09-11 Corona Corp Production method for high purity hydrogen from heavy hydrocarbon fuel and its apparatus
JP4923371B2 (en) * 2001-09-21 2012-04-25 トヨタ自動車株式会社 Start-up method of hydrogen generator equipped with hydrogen separation membrane
JP2003306311A (en) * 2002-04-09 2003-10-28 Nippon Oil Corp Autothermal reforming device and autothermal reforming method using the same
JP2004018280A (en) * 2002-06-13 2004-01-22 Nissan Motor Co Ltd Reforming system
IL175270A0 (en) * 2006-04-26 2006-09-05 Acktar Ltd Composite inorganic membrane for separation in fluid systems

Also Published As

Publication number Publication date
JP2009263183A (en) 2009-11-12

Similar Documents

Publication Publication Date Title
JP5611627B2 (en) Membrane separation type reactor, membrane separation type hydrogen production apparatus and hydrogen production method
KR101807112B1 (en) A shell-and-tube type reactor for reforming natural gas and a preparation method of syngas or hydrogen gas by using the same
US6090312A (en) Reactor-membrane permeator process for hydrocarbon reforming and water gas-shift reactions
US7540893B2 (en) System and method for producing synthesis gas
JP6039136B2 (en) Catalysts and processes for thermal neutralization reforming of liquid hydrocarbons
EP2384308B1 (en) Hydrogen process
JP5390448B2 (en) Membrane separation reactor and method for producing hydrogen
US20060013759A1 (en) Systems and methods for hydrogen production
US20080038598A1 (en) Fuel cell fuel processor with hydrogen buffering and staged membrane
EP1829821A1 (en) Membrane process for hydrogen production from reforming of organic products, such as hydrocarbons or alcohols
JP2006520527A (en) Pressure swing reforming for fuel cell systems
Lukyanov et al. Catalytic reactors with hydrogen membrane separation
EP2086875A2 (en) Systems and processes for producing hydrogen and carbon dioxide
JP4995461B2 (en) Carbon dioxide reforming method of hydrocarbons by selectively permeable membrane reactor
AU2008327957B2 (en) Process to prepare a mixture of hydrogen and carbon monoxide
JP5242233B2 (en) Membrane separation type hydrogen production apparatus and hydrogen production method using the same
US20140120023A1 (en) Methods and systems for ammonia production
KR102075627B1 (en) Pd-based metal dense hydrogen permeation membrane using a Ni-based porous support with methanation catalyst function
JP5611628B2 (en) Membrane separation type reactor, membrane separation type hydrogen production apparatus and hydrogen production method
JPWO2007111278A1 (en) Hydrogen production method using selectively permeable membrane reactor and selectively permeable membrane reactor
WO2021251471A1 (en) Co2 methanation reaction apparatus provided with selective oxidation catalyst for co, and metod for removing co from gas
Bredesen et al. Palladium-based membranes in hydrogen production
JP5248976B2 (en) Membrane separation type hydrogen production system
WO2004046022A2 (en) The production of synthesis gas from a feed stream comprising hydrogen
JP4319126B2 (en) Rapid hydrogen generation method and reactor module therefor

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100831

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130403

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160412

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5242233

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250