JP2007084378A - Method for producing hydrogen and apparatus used in the same - Google Patents

Method for producing hydrogen and apparatus used in the same Download PDF

Info

Publication number
JP2007084378A
JP2007084378A JP2005274063A JP2005274063A JP2007084378A JP 2007084378 A JP2007084378 A JP 2007084378A JP 2005274063 A JP2005274063 A JP 2005274063A JP 2005274063 A JP2005274063 A JP 2005274063A JP 2007084378 A JP2007084378 A JP 2007084378A
Authority
JP
Japan
Prior art keywords
hydrogen
gas
membrane
permeate side
dehydrogenation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005274063A
Other languages
Japanese (ja)
Inventor
Takanari Matsumoto
隆也 松本
Toshiyuki Enomoto
敏行 榎本
Yasuyuki Iwasa
泰之 岩佐
Masakazu Ikeda
雅一 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corp filed Critical Nippon Oil Corp
Priority to JP2005274063A priority Critical patent/JP2007084378A/en
Publication of JP2007084378A publication Critical patent/JP2007084378A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To reduce the loss of hydrogen by discharging a dehydrogenation product to the outside of a system while maintaining the hydrogen partial pressure of a non-permeation side gas constant for the membrane separation of hydrogen after dehydrogenation of a hydrocarbon. <P>SOLUTION: A preferable method for producing hydrogen includes following steps (I) to (III). The step (I) comprises continuously dehydrogenating the hydrocarbon by a duplex tube and membrane type flow-through dehydrogenation reactor to obtain a mixed gas of hydrogen and the dehydrogenation product, then separating hydrogen from the permeation side being the inner side of a hydrogen separation membrane constituting an inner tube, and obtaining hydrogen and the dehydrogenation product as the non-permeation side gas from the non-permeation side. The step (II) comprises liquefying the dehydrogenation product by cooling the non-permeation side gas. The step (III) comprises separating the non-permeation side gas containing the liquefied component into a gas and a liquid and discharging only the liquefied component substantially containing the dehydrogenation product to the outside of the system. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、水素製造の分野において、炭化水素化合物、例えばシクロヘキサン環を有する炭化水素からなる原料油の脱水素反応で水素を発生させる水素製造方法及びそれに用いる水素製造装置に関するものである。   The present invention relates to a hydrogen production method for generating hydrogen by a dehydrogenation reaction of a feedstock composed of a hydrocarbon compound, for example, a hydrocarbon having a cyclohexane ring in the field of hydrogen production, and a hydrogen production apparatus used therefor.

水素は石油精製、化学産業などをはじめとしてあらゆる産業分野において広く用いられている。とくに近年、将来のエネルギーとして水素エネルギーが注目されてきており燃料電池を中心に研究が進められているが、水素ガスは熱量あたりの体積が大きく、また液化に必要なエネルギーも大きいため、水素の貯蔵、輸送のシステムが重要な課題となっている。また水素供給のためにあらたなインフラストラクチャーの整備が必要である(非特許文献1参照)。一方、液状の炭化水素は水素ガスに比べてエネルギー密度が大きく取り扱いやすいことに加え、既存のインフラストラクチャーが利用できるという利点もあることから、炭化水素を貯蔵、輸送して、必要に応じ炭化水素から水素を製造する方法は重要である。   Hydrogen is widely used in various industrial fields including the oil refining and chemical industries. In particular, in recent years, hydrogen energy has attracted attention as a future energy, and research is focused on fuel cells, but hydrogen gas has a large volume per calorie and also requires a large amount of energy for liquefaction. Storage and transport systems are an important issue. In addition, a new infrastructure is required for hydrogen supply (see Non-Patent Document 1). Liquid hydrocarbons, on the other hand, have the advantage of being easy to handle and having a higher energy density than hydrogen gas, and also have the advantage of being able to use existing infrastructure. The method of producing hydrogen from methane is important.

水素の製造はメタンや軽質パラフィンの水蒸気改質法、自己熱改質法、部分酸化法など公知の技術により広く行われているが、これらの反応は高温を必要とする。更に、燃料電池、特に固体高分子型燃料電池によるオンサイトでの発電を対象とした場合には、その後段にシフト反応器及び、CO選択酸化もしくはメタネーションによる一酸化炭素除去器が必要となり、非常に複雑なプロセスとなる。また、自動車用の水素ステーションを対象とした場合には、PSA(圧力スイング吸着)を用いて高純度の水素にしなければならない。これはメタノールの改質方式においても同様で、オンサイトの場合では一酸化炭素の除去器が必要であり、水素ステーションの場合にはPSAが必要となる。   Production of hydrogen is widely carried out by known techniques such as steam reforming of methane and light paraffin, autothermal reforming, and partial oxidation, but these reactions require high temperatures. Furthermore, when targeting on-site power generation by a fuel cell, particularly a polymer electrolyte fuel cell, a shift reactor and a carbon monoxide remover by CO selective oxidation or methanation are required in the subsequent stage. This is a very complex process. In addition, when an automobile hydrogen station is targeted, high purity hydrogen must be obtained using PSA (pressure swing adsorption). The same applies to the methanol reforming system. In the case of on-site, a carbon monoxide remover is required, and in the case of a hydrogen station, PSA is required.

これに対し、液状の炭化水素を脱水素して水素を製造する方法では、反応が単純であることから製造プロセスも単純である。更に、生成物は気体である水素と、常温では液体である不飽和炭化水素であるため、両者の分離が比較的容易であるという特長がある。特にシクロヘキサン環を有する炭化水素を原料とし、そのシクロヘキサン環を脱水素し芳香族環にする反応は、脱水素触媒の存在下で容易に反応が進行し、生成物である水素と芳香族炭化水素の分離も比較的に容易であるために、小規模の水素製造に適した方法である(非特許文献2参照)。しかしながら、生成した水素と芳香族炭化水素の温度を大気圧下、室温まで下げれば大部分の芳香族炭化水素は液化して水素と分離できるが、室温での蒸気圧に応じた量の芳香族炭化水素は水素ガス中に混入する。例えばトルエンの場合、15℃、大気圧下では約2.1%の混入となる。従って、燃料電池用途などのように水素の純度を高くする必要がある場合、水素と芳香族炭化水素の分離に問題が生じてくる。   On the other hand, in the method of producing hydrogen by dehydrogenating liquid hydrocarbons, the production process is simple because the reaction is simple. Furthermore, since the product is hydrogen, which is a gas, and unsaturated hydrocarbon, which is a liquid at room temperature, the product is relatively easy to separate. In particular, the reaction using a hydrocarbon having a cyclohexane ring as a raw material and dehydrogenating the cyclohexane ring into an aromatic ring proceeds easily in the presence of a dehydrogenation catalyst, and the product hydrogen and aromatic hydrocarbon Is relatively easy, and is suitable for small-scale hydrogen production (see Non-Patent Document 2). However, most of the aromatic hydrocarbons can be liquefied and separated from hydrogen if the temperature of the produced hydrogen and aromatic hydrocarbons is reduced to room temperature under atmospheric pressure, but the amount of aromatics depends on the vapor pressure at room temperature. Hydrocarbons are mixed in hydrogen gas. For example, in the case of toluene, the mixture is about 2.1% at 15 ° C. and atmospheric pressure. Therefore, when it is necessary to increase the purity of hydrogen as in fuel cell applications, a problem arises in the separation of hydrogen and aromatic hydrocarbons.

分離の方法としては、冷却して分離する方法があるが、水素濃度99.9%以上を達成するためには、常圧で−30℃程度の低温が必要となる。冷凍機を用いた−30℃への冷却は水素製造においてエネルギー効率の低下をもたらし、設備も大きくなるため、好ましい除去方法ではない。   As a separation method, there is a method of cooling and separating, but in order to achieve a hydrogen concentration of 99.9% or more, a low temperature of about −30 ° C. at normal pressure is required. Cooling to −30 ° C. using a refrigerator is not a preferable removal method because it causes a decrease in energy efficiency in hydrogen production and the equipment becomes large.

この他に、吸着剤に吸着させて分離する吸着分離方法がある。この方法では吸着後の吸着剤から芳香族炭化水素を脱離させて回収するとともに吸着剤を再生することが必要である。この中で、圧力の変動により吸着および脱離を行わせるPSA法(圧力スイング吸着法)がよく知られているが、水素ガスの回収率及び全体の効率が低く、また昇圧、降圧などの操作が必要でシステムとして大きなものとなる欠点がある。   In addition, there is an adsorptive separation method in which it is adsorbed by an adsorbent and separated. In this method, it is necessary to desorb and recover the aromatic hydrocarbon from the adsorbent after adsorption and to regenerate the adsorbent. Among them, the PSA method (pressure swing adsorption method) in which adsorption and desorption are performed by pressure fluctuation is well known, but the recovery rate and overall efficiency of hydrogen gas are low, and operations such as pressure increase and pressure decrease are performed. Is necessary and has the disadvantage of becoming a large system.

上記以外の分離方法として、膜分離法が挙げられる。膜分離法はエネルギー効率が良いという特徴をもっており、分離膜の種類としては、主に、パラジウム膜、高分子膜、セラミック膜、カーボン膜がある。水素の精製では、高純度水素精製の目的でパラジウム膜が実用化されている(非特許文献3参照)。膜分離法を用いる場合、非透過側を高圧にする必要があるため、水素生成反応(脱水素反応)を高圧化するか、反応後の生成ガスを昇圧する必要が生じる。生成ガスを昇圧する場合、水素製造においてエネルギー効率の低下をもたらす。また、脱水素反応は化学平衡の制約上の点から、反応圧力を高くした場合、反応温度を高くする必要が生じてしまう。   As a separation method other than the above, there is a membrane separation method. The membrane separation method is characterized by high energy efficiency, and the types of separation membranes are mainly palladium membranes, polymer membranes, ceramic membranes, and carbon membranes. In the purification of hydrogen, a palladium membrane has been put into practical use for the purpose of high-purity hydrogen purification (see Non-Patent Document 3). When the membrane separation method is used, it is necessary to increase the pressure on the non-permeate side. Therefore, it is necessary to increase the pressure of the hydrogen generation reaction (dehydrogenation reaction) or to increase the pressure of the product gas after the reaction. When the pressure of the product gas is increased, energy efficiency is reduced in hydrogen production. Further, in the dehydrogenation reaction, it is necessary to increase the reaction temperature when the reaction pressure is increased from the viewpoint of restrictions on chemical equilibrium.

しかしながら、主としてシクロヘキサン環を有する炭化水素の脱水素反応は、副反応である分解反応を抑制するため、より低温で反応を行う必要がある。例えば、メチルシクロヘキサンの脱水素反応においては360℃以下の温度で反応を行う必要がある。平衡論的な制約により、この工程の低温化は困難であった。この問題を解決するため、水素分離膜を組み込んだ膜反応器を用い、脱水素工程で発生する水素を反応場から選択的に取り除き、水素収率の向上と反応の低温化を達成しようとする技術として、例えば特許文献1には、水素を選択的に透過する多孔質セラミック膜を組み込みシクロヘキサンの脱水素反応を行う技術が開示されている。また、特許文献2、特許文献3には、パラジウム膜を用いた反応分離による水素製造技術が開示されている。しかしながら、いずれもスイープガスとしてアルゴン等のイナートガスを用いており、生成した水素の純度の点から、実用的ではない。   However, the dehydrogenation reaction of hydrocarbons mainly having a cyclohexane ring needs to be performed at a lower temperature in order to suppress the decomposition reaction that is a side reaction. For example, in the dehydrogenation reaction of methylcyclohexane, it is necessary to perform the reaction at a temperature of 360 ° C. or lower. Due to equilibrium constraints, it was difficult to lower the temperature of this process. In order to solve this problem, a membrane reactor incorporating a hydrogen separation membrane is used to selectively remove hydrogen generated in the dehydrogenation process from the reaction field, thereby improving the hydrogen yield and lowering the reaction temperature. As a technique, for example, Patent Document 1 discloses a technique in which a porous ceramic membrane that selectively permeates hydrogen is incorporated to perform a dehydrogenation reaction of cyclohexane. Patent Documents 2 and 3 disclose a hydrogen production technique by reaction separation using a palladium membrane. However, any of them uses an inert gas such as argon as a sweep gas, and is not practical in terms of the purity of the produced hydrogen.

また、気体の膜分離を用いた技術においては、水素分離の駆動力は水素分圧差であるから透過側の水素の分圧と同じ分圧以上の水素が非透過側には必ず残存してしまうという問題があった。
小林紀,「季報エネルギー総合工学」,2003年,第25巻,第4号,p.73−87 市川勝,「工業材料」,2003年,第51巻,第4号,p.62−69 中垣正幸監修,「膜処理技術体系(上巻)」,フジ・テクノシステム,1991年,p.661−662およびp.922−925 特開平4−71638号公報 特開平3−217227号公報 特開平5−317708号公報
Further, in the technology using gas membrane separation, the hydrogen separation driving force is a hydrogen partial pressure difference, so that hydrogen having a partial pressure equal to or higher than the partial pressure of hydrogen on the permeate side always remains on the non-permeate side. There was a problem.
Nori Kobayashi, “Quarterly Energy Comprehensive Engineering”, 2003, Vol. 25, No. 4, p. 73-87 Masaru Ichikawa, “Industrial Materials”, 2003, Vol. 51, No. 4, p. 62-69 Supervised by Masayuki Nakagaki, “Membrane Processing Technology System (Vol. 1)”, Fuji Techno System, 1991, p. 661-662 and p. 922-925 JP-A-4-71638 JP-A-3-217227 JP-A-5-317708

本発明の目的は、炭化水素、例えばシクロヘキサン環を有する炭化水素からなる原料油の脱水素反応による水素製造方法における分離、低温化、熱供給などの問題点を解決し、効率よく水素を製造する水素製造方法及びそのための水素製造装置を提供することである。
すなわち、膜分離における非透過側ガス中の水素分圧を一定に維持しながら、脱水素生成物を系外に排出し、もって水素の損失を低減する課題を解決する目的である。
The object of the present invention is to solve problems such as separation, temperature reduction, heat supply, etc. in a hydrogen production method by dehydrogenation of a feedstock consisting of hydrocarbons, for example, hydrocarbons having a cyclohexane ring, and produce hydrogen efficiently. A hydrogen production method and a hydrogen production apparatus therefor are provided.
That is, an object of the present invention is to solve the problem of reducing the hydrogen loss by discharging the dehydrogenated product outside the system while maintaining the hydrogen partial pressure in the non-permeate gas in the membrane separation constant.

本発明者らは上記の課題を解決するため鋭意研究を重ねた結果、炭化水素の脱水素反応により水素を発生させるに際し、水素膜分離器で水素を膜の透過側から選択的に除去し、膜の非透過側の生成物は、これを冷却して得られる液相部分のみを系外へ抜き出すことで、水素を非透過側から抜き出すことなく、非透過側の水素分圧を保ち、効率的に水素を製造する方法を提供するものである。   As a result of intensive studies to solve the above problems, the present inventors selectively removed hydrogen from the permeate side of the membrane with a hydrogen membrane separator when generating hydrogen by hydrocarbon dehydrogenation reaction, The product on the non-permeate side of the membrane is extracted from only the liquid phase part obtained by cooling it, so that the hydrogen partial pressure on the non-permeate side can be maintained without removing hydrogen from the non-permeate side. In particular, a method for producing hydrogen is provided.

すなわち、本発明の第1は、以下の工程(I)ないし(IV)を具備することを特徴とする水素の製造方法に関する。
(I)炭化水素を連続的に脱水素させて、水素と脱水素化生成物の混合ガスを得る工程;
(II)水素と脱水素化生成物の混合ガスを水素分離膜により膜分離して、主として膜の透過側から水素を分離し、非透過側から非透過側ガスとして水素および脱水素化生成物を得る工程;
(III)非透過側ガスを冷却して脱水素化生成物を液化する工程;
(IV)液化成分を含む非透過側ガスを気液分離し、これから実質的に液化成分のみを系外に排出する工程。
本発明の第2は、以下の工程(I)ないし(III)を具備することを特徴とする水素の製造方法に関する。
(I)炭化水素を、二重管式膜型の流通式脱水素反応器により連続的に脱水素させて、水素と脱水素化生成物の混合ガスを得て、内管を構成する水素分離膜の内側である透過側から水素を分離し、非透過側から非透過側ガスとして水素および脱水素化生成物を得る工程;
(II)非透過側ガスを冷却して脱水素化生成物を液化する工程;
(III)液化成分を含む非透過側ガスを気液分離し、実質的に脱水素化生成物を含む液化成分のみを系外へ排出する工程。
本発明の第3は、本発明の第1または第2において、前記気液分離された非透過側ガスの気相から、メタンなどの非液化成分を間欠的に系外へ排出する工程をさらに具備することを特徴とする水素の製造方法に関する。
本発明の第4は、本発明の第1乃至第3のいずれかにおいて、水素分離膜がセラミック膜であることを特徴とする水素の製造方法に関する。
本発明の第5は、本発明の第1乃至第3において、水素分離膜がPdを100〜10mass%含む金属膜であることを特徴とする水素の製造方法に関する。
本発明の第6は、
流通式脱水素反応器、
水素を分離する水素膜分離器、
脱水素化生成物を液化する冷却器、
非液化成分と液化した脱水素化生成物とを気液分離する気液分離器、および
気液分離機の液面を制御する液面制御器を具備し、
前記気液分離器に液排出弁が設けてなる水素製造装置に関する。
本発明の第7は、
二重管式膜型の流通式脱水素反応器、
脱水素化生成物を液化する冷却器、
非液化成分と液化した脱水素化生成物とを気液分離する気液分離器、および
気液分離機の液面を制御する液面制御器を具備し、
前記気液分離器に液排出弁が設けてなる水素製造装置に関する。
本発明の第8は、本発明の第6または第7において、前記気液分離器にガス排出弁が設けてなる水素製造装置に関する。
That is, the first aspect of the present invention relates to a method for producing hydrogen, which comprises the following steps (I) to (IV).
(I) a step of continuously dehydrogenating hydrocarbons to obtain a mixed gas of hydrogen and a dehydrogenated product;
(II) Membrane separation of a mixed gas of hydrogen and a dehydrogenation product is performed with a hydrogen separation membrane to separate hydrogen mainly from the permeate side of the membrane, and hydrogen and dehydrogenation product as a non-permeate side gas from the non-permeate side. Obtaining
(III) cooling the non-permeate side gas to liquefy the dehydrogenated product;
(IV) Gas-liquid separation of the non-permeate side gas containing the liquefied component, and substantially discharging only the liquefied component from the system.
2nd of this invention is related with the manufacturing method of hydrogen characterized by comprising the following process (I) thru | or (III).
(I) Hydrogen is continuously dehydrogenated by a double-pipe membrane-type flow-type dehydrogenation reactor to obtain a mixed gas of hydrogen and a dehydrogenation product, and hydrogen separation constituting the inner pipe Separating hydrogen from the permeate side, which is the inside of the membrane, and obtaining hydrogen and a dehydrogenated product from the non-permeate side as a non-permeate side gas;
(II) cooling the non-permeate side gas to liquefy the dehydrogenation product;
(III) A step of gas-liquid separation of the non-permeate side gas containing the liquefied component and discharging only the liquefied component containing the dehydrogenation product to the outside of the system.
A third aspect of the present invention further includes a step of intermittently discharging a non-liquefied component such as methane out of the system from the gas phase of the gas-liquid separated non-permeate side gas in the first or second aspect of the present invention. The present invention relates to a method for producing hydrogen.
A fourth aspect of the present invention relates to the method for producing hydrogen according to any one of the first to third aspects of the present invention, wherein the hydrogen separation membrane is a ceramic membrane.
A fifth aspect of the present invention relates to the method for producing hydrogen according to any one of the first to third aspects of the present invention, wherein the hydrogen separation membrane is a metal membrane containing 100 to 10 mass% of Pd.
The sixth of the present invention is
Flow-type dehydrogenation reactor,
Hydrogen membrane separator for separating hydrogen,
A cooler to liquefy the dehydrogenation product,
A gas-liquid separator that separates a non-liquefied component and a liquefied dehydrogenated product into a gas-liquid separator, and a liquid level controller that controls the liquid level of the gas-liquid separator;
The present invention relates to a hydrogen production apparatus in which a liquid discharge valve is provided in the gas-liquid separator.
The seventh of the present invention is
Double-pipe membrane-type flow dehydrogenation reactor,
A cooler to liquefy the dehydrogenation product,
A gas-liquid separator that separates a non-liquefied component and a liquefied dehydrogenated product into a gas-liquid separator, and a liquid level controller that controls the liquid level of the gas-liquid separator;
The present invention relates to a hydrogen production apparatus in which a liquid discharge valve is provided in the gas-liquid separator.
An eighth aspect of the present invention relates to the hydrogen production apparatus according to the sixth or seventh aspect of the present invention, wherein the gas-liquid separator is provided with a gas discharge valve.

本発明によれば、炭化水素化合物、例えば主としてシクロヘキサン環を有する炭化水素からなる原料油の脱水素反応による水素の製造に際し、水素分離膜の非透過側生成物を冷却した後の気相部分を封じきり、液相部分のみ生成物として抜き出すことにより、水素を非透過側から抜き出すことなく、非透過側の水素分圧を保ち、水素のロスを抑え、効率よく水素を製造することができる。   According to the present invention, in the production of hydrogen by a dehydrogenation reaction of a hydrocarbon compound, for example, a feedstock mainly composed of a hydrocarbon having a cyclohexane ring, the gas phase portion after cooling the non-permeate side product of the hydrogen separation membrane is By sealing and extracting only the liquid phase part as a product, hydrogen can be efficiently produced without extracting hydrogen from the non-permeate side, maintaining the hydrogen partial pressure on the non-permeate side, suppressing hydrogen loss.

以下、本発明の好適な実施形態について説明する。   Hereinafter, preferred embodiments of the present invention will be described.

(原料)
本発明における原料は炭化水素であり、好ましくはシクロヘキサン環を有する炭化水素である。具体的にはシクロヘキサンおよびシクロヘキサンのアルキル置換体、デカリンおよびデカリンのアルキル置換体、テトラリンおよびテトラリンのアルキル置換体が挙げられる。さらに好ましくはメチルシクロヘキサン、ジメチルシクロヘキサン類、デカリン、メチルデカリン類である。これらのシクロヘキサン環を有する炭化水素は純物質であっても良いが、複数の炭化水素の混合物であっても良い。なお、反応物はすべてシクロヘキサン環を有する炭化水素である必要はなく、ある程度の量の他の化合物、たとえばシクロヘキサン環を持たない炭化水素などを含んでいても良い。
(material)
The raw material in the present invention is a hydrocarbon, preferably a hydrocarbon having a cyclohexane ring. Specific examples include cyclohexane and cyclohexane alkyl-substituted products, decalin and decalin alkyl-substituted products, and tetralin and tetralin alkyl-substituted products. More preferred are methylcyclohexane, dimethylcyclohexane, decalin, and methyldecalin. These hydrocarbons having a cyclohexane ring may be pure substances, or may be a mixture of a plurality of hydrocarbons. The reactants need not all be hydrocarbons having a cyclohexane ring, and may contain a certain amount of other compounds such as hydrocarbons having no cyclohexane ring.

(脱水素触媒)
本発明の触媒には脱水素活性を有する固体触媒を用いて反応を行うことが好ましい。この固体触媒としては担体に触媒活性主成分を担持した触媒を好適に用いることができる。
(Dehydrogenation catalyst)
The catalyst of the present invention is preferably reacted using a solid catalyst having dehydrogenation activity. As this solid catalyst, a catalyst having a catalytically active main component supported on a carrier can be suitably used.

担体には機械的強度が高く熱的に安定で表面積が大きい点から、安定な金属酸化物もしくは、熱伝導性の良好な支持体(熱伝導性支持体)の表面に金属酸化物を形成させたものが好ましい。金属酸化物として具体的にはアルミナ、シリカ、チタニア、ジルコニア、シリカアルミナが挙げられる。さらに好ましくはアルミナ、シリカが挙げられる。熱伝導性支持体とは、300Kにおける熱伝導率が10W/m・K以上の物質を基体とする支持体と定義する。この熱伝導性支持体の基体は金属が好ましく、表面に酸化物などの皮膜を有するものを含む。基体の金属には通常用いられる任意の金属および合金を用いることができるが、特にアルミニウムまたは表面にアルミニウムを有する金属および合金が好ましい。熱伝導性支持体を用いることで触媒の熱伝導性が高まって熱供給が速くなり反応効率が向上する効果がある。また熱伝導性支持体の金属としての導電性を利用して直接通電することにより迅速に反応温度を上げて反応装置の起動時間を著しく短縮する効果がある。   Since the support has high mechanical strength, is thermally stable and has a large surface area, a metal oxide is formed on the surface of a stable metal oxide or a support having good thermal conductivity (thermally conductive support). Are preferred. Specific examples of the metal oxide include alumina, silica, titania, zirconia, and silica alumina. More preferred are alumina and silica. The thermally conductive support is defined as a support based on a substance having a thermal conductivity at 300 K of 10 W / m · K or more. The base of the thermally conductive support is preferably a metal, and includes a substrate having a film such as an oxide on the surface. Although any metal and alloy that are usually used can be used as the metal of the substrate, aluminum or a metal or alloy having aluminum on the surface is particularly preferable. By using a thermally conductive support, the thermal conductivity of the catalyst is increased, so that heat supply is accelerated and the reaction efficiency is improved. Moreover, there is an effect that the reaction temperature is raised rapidly by energizing directly using the conductivity of the heat conductive support as a metal, and the start-up time of the reactor is remarkably shortened.

この熱伝導性支持体の表面は、触媒活性主成分の担体としての機能を持たせるべく、高表面積になるよう処理されたものが好ましい。この処理の方法については公知の方法が採用できるが、たとえば特開2002−119856号公報に記載されているように、陽極酸化の処理をベースに高表面積化されたものが好ましい。また、熱伝導性支持体表面、例えば、高表面積化した熱伝導性支持体表面は、アルミナなどの安定で高表面積の金属酸化物の層を形成することが好ましい。このためには、たとえば、高表面化した熱伝導性支持体表面に、アルミナ水和物ゾルを塗布・乾燥後、焼成して金属酸化物層を形成させることができる。   The surface of the heat conductive support is preferably treated so as to have a high surface area so as to have a function as a carrier having a catalytically active main component. As this treatment method, a known method can be adopted. However, as described in, for example, Japanese Patent Application Laid-Open No. 2002-119856, a method having a high surface area based on an anodic oxidation treatment is preferable. The surface of the heat conductive support, for example, the surface of the heat conductive support having a high surface area, preferably forms a stable and high surface area metal oxide layer such as alumina. For this purpose, for example, an alumina hydrate sol can be applied and dried on the surface of the heat conductive support having a high surface, and then fired to form a metal oxide layer.

前記熱伝導性支持体の基体も含めて触媒担体の形状は任意であり、粒状、板状、管状、網状、ハニカム状、もしくは反応管内部に直接設置されたフィン形状とすることができる。反応熱の供給を効率的に行うためには、熱供給源と触媒担体が直接接触することが好ましく、このため触媒担体の形状を板状、管状、もしくは内部フィンとして熱交換器のような形式とすることが好ましい。   The shape of the catalyst carrier including the base of the thermally conductive support is arbitrary, and may be granular, plate-like, tubular, net-like, honeycomb-like, or fin-like installed directly inside the reaction tube. In order to efficiently supply reaction heat, it is preferable that the heat supply source and the catalyst carrier are in direct contact with each other. For this reason, the shape of the catalyst carrier is plate-like, tubular, or an internal fin type. It is preferable that

本発明の触媒における触媒活性主成分は脱水素活性を有する成分であり、任意に選択することができるが、好ましくは第8族元素、第9族元素、第10族元素および第11族元素であり、具体的には鉄、コバルト、ニッケル、銅、ルテニウム、ロジウム、パラジウム、銀、レニウム、オスミウム、イリジウム、白金、金である。なお本発明において、周期表の族番号は国際純正および応用化学連合無機化学命名法委員会命名規則1990年版に基づく。さらに好ましくはニッケル、パラジウム、白金、レニウムである。またこれらの元素の2種類以上を組み合わせても良い。これらの触媒活性主成分を担体に担持させる調製法は任意であるが、含浸法が好ましく挙げられる。具体的には、Incipient Wetness法、蒸発乾固法などが挙げられる。用いる元素の化合物は水溶性の塩が好ましく、水溶液として含浸することが好ましい。水溶性の化合物としては、塩化物、硝酸塩、炭酸塩が好ましく挙げられる。   The main component of catalytic activity in the catalyst of the present invention is a component having dehydrogenation activity, and can be arbitrarily selected. Yes, specifically iron, cobalt, nickel, copper, ruthenium, rhodium, palladium, silver, rhenium, osmium, iridium, platinum, gold. In the present invention, the group numbers in the periodic table are based on the International Pure and Applied Chemistry Union Inorganic Chemistry Nomenclature Commission naming rules 1990 edition. More preferred are nickel, palladium, platinum and rhenium. Two or more of these elements may be combined. The preparation method for supporting these catalytically active main components on a carrier is arbitrary, but an impregnation method is preferred. Specific examples include the Incipient Wetness method and the evaporation to dryness method. The elemental compound used is preferably a water-soluble salt, and is preferably impregnated as an aqueous solution. Preferred examples of the water-soluble compound include chlorides, nitrates and carbonates.

脱水素触媒には必要に応じ添加物を共存させても良い。好ましい添加物として、塩基性物質が挙げられる。塩基性物質が共存することにより、酸性に起因する分解などの副反応が抑制されるとともに、炭素質析出による触媒の劣化が抑制される。塩基性物質の種類は任意であるが、第1族元素および第2族元素の化合物が好ましく、具体的にはリチウム、ナトリウム、カリウム、ルビジウム、セシウム、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウムの化合物が好ましい。これらの化合物としては、水溶性の物質が好ましい。塩化物、硫酸塩、硝酸塩、炭酸塩がさらに好ましい。塩基性物質の含有量は触媒活性主成分に対して重量比で0.1〜100の範囲が好ましい。これらの塩基性物質を触媒体に含有させる調製法は任意であるが、含浸法が好ましく挙げられる。具体的には、Incipient Wetness法、蒸発乾固法などが挙げられる。   Additives may coexist in the dehydrogenation catalyst as necessary. Preferable additives include basic substances. The coexistence of the basic substance suppresses side reactions such as decomposition caused by acidity, and suppresses deterioration of the catalyst due to carbonaceous deposition. The type of the basic substance is arbitrary, but compounds of Group 1 elements and Group 2 elements are preferable, and specifically, lithium, sodium, potassium, rubidium, cesium, beryllium, magnesium, calcium, strontium, barium compounds Is preferred. These compounds are preferably water-soluble substances. More preferred are chlorides, sulfates, nitrates and carbonates. The content of the basic substance is preferably in the range of 0.1 to 100 by weight ratio with respect to the catalytically active main component. The preparation method for incorporating these basic substances into the catalyst body is optional, but an impregnation method is preferred. Specific examples include the Incipient Wetness method and the evaporation to dryness method.

(反応条件)
脱水素の反応条件は原料の種類に応じて適宜選択することになる。反応圧力は好ましくは0.1MPa以上、2.0MPa以下であり、さらに好ましくは0.1MPa以上、1.0MPa以下である。なお、本発明においては、特に断らないかぎり圧力は絶対圧で示す。反応温度は化学平衡上高温が好ましいが、エネルギー効率の点では低温のほうが好ましい。好ましい反応温度は200℃以上、400℃以下であり、さらに好ましくは270℃以上、360℃以下である。また化学平衡上は不利であるが、触媒の失活を防ぐ目的あるいは装置の運転上の理由で原料に水素を加えても良い。原料に水素を加える場合、水素と原料の比は、モル比で0.01以上、1以下が好ましい。LHSV(液空間速度)の好ましい範囲は、触媒の活性に依存するが、好ましくは0.2v/v/hr以上、20v/v/hr以下である。
(Reaction conditions)
The reaction conditions for dehydrogenation are appropriately selected according to the type of raw material. The reaction pressure is preferably 0.1 MPa or more and 2.0 MPa or less, more preferably 0.1 MPa or more and 1.0 MPa or less. In the present invention, the pressure is expressed as an absolute pressure unless otherwise specified. The reaction temperature is preferably a high temperature in terms of chemical equilibrium, but a low temperature is preferable in terms of energy efficiency. The reaction temperature is preferably 200 ° C. or higher and 400 ° C. or lower, more preferably 270 ° C. or higher and 360 ° C. or lower. Although it is disadvantageous in terms of chemical equilibrium, hydrogen may be added to the raw material for the purpose of preventing the deactivation of the catalyst or for operating the apparatus. When hydrogen is added to the raw material, the molar ratio of hydrogen to the raw material is preferably 0.01 or more and 1 or less. A preferable range of LHSV (liquid hourly space velocity) depends on the activity of the catalyst, but is preferably 0.2 v / v / hr or more and 20 v / v / hr or less.

(脱水素生成物)
本発明における炭化水素の脱水素の生成物は、水素と不飽和炭化水素であり、原料炭化水素としてシクロヘキサン環を有する炭化水素の場合、不飽和炭化水素は主として芳香族炭化水素である。例えば、メチルシクロヘキサンからはトルエンが脱水素化生成物として得られる。さらにメタン、エタン、プロパン、エチレン、プロピレン等の低級炭化水素が副生し、混入することがある。
得られる芳香族炭化水素は回収して再度水素化することにより、原料の炭化水素に戻すことができる。あるいは必要に応じて脱水素反応に必要な熱源の燃料としても用いることができる。また芳香族炭化水素は一般にオクタン価が高いので、沸点が好適な物質はガソリン基材として用いることもできる。その他化学製品としても利用することもできる。
(Dehydrogenation product)
The products of hydrocarbon dehydrogenation in the present invention are hydrogen and an unsaturated hydrocarbon. In the case of a hydrocarbon having a cyclohexane ring as a raw material hydrocarbon, the unsaturated hydrocarbon is mainly an aromatic hydrocarbon. For example, toluene is obtained as a dehydrogenation product from methylcyclohexane. In addition, lower hydrocarbons such as methane, ethane, propane, ethylene, and propylene may be by-produced and mixed.
The resulting aromatic hydrocarbon can be recovered and hydrogenated again to return it to the starting hydrocarbon. Alternatively, it can also be used as a heat source fuel necessary for the dehydrogenation reaction, if necessary. In addition, since aromatic hydrocarbons generally have a high octane number, substances having a suitable boiling point can also be used as a gasoline base material. It can also be used as other chemical products.

(水素分離膜)
水素分離膜としては、炭化水素と水素の混合ガスから水素を選択的に分離できる機能を有する公知の水素分離膜を使用することができるが、金属膜もしくは多孔質無機膜などが好ましい。金属膜としては、管状で細孔を有する多孔質金属支持体もしくは管状で細孔を有する多孔質セラミック支持体の内表面もしくは外表面に金属薄膜を形成させた水素分離膜であり、金属薄膜として、Pdを100〜10mass%含む金属膜、もしくは、Ag、Cu、V、Nb、Taより選ばれる少なくとも一種の金属を80〜10mass%含む金属膜が好ましい。金属薄膜の形成方法は任意の方法を選択できるが、具体的には、無電解メッキ法、蒸着法、圧延法などが挙げられる。多孔質無機膜としては、管状で細孔を有する多孔質セラミック支持体の内表面もしくは外表面に、細孔孔径の制御されたセラミック薄膜を形成させた水素分離膜が好ましい。多孔質無機膜は分子篩作用により選択的分離を行うため、薄膜部分の孔径は0.3nm以上、0.7nm以下が好ましく、0.3nm以上、0.5nm以下がさらに好ましい。セラミック膜の材質は、公知のセラミック材料が使えるが、シリカ、アルミナ、チタニア、ガラス、炭化ケイ素、窒化ケイ素が好ましい。後記の膜型反応器の膜部分としては、脱水素の反応圧等に耐える適宜の膜が使用できる。
(Hydrogen separation membrane)
As the hydrogen separation membrane, a known hydrogen separation membrane having a function of selectively separating hydrogen from a mixed gas of hydrocarbon and hydrogen can be used, and a metal membrane or a porous inorganic membrane is preferable. The metal membrane is a hydrogen separation membrane in which a metal thin film is formed on the inner surface or outer surface of a tubular porous metal support having pores or a porous ceramic support having tubular pores. A metal film containing 100 to 10 mass% of Pd or a metal film containing 80 to 10 mass% of at least one metal selected from Ag, Cu, V, Nb, and Ta is preferable. Although any method can be selected as the method for forming the metal thin film, specific examples include electroless plating, vapor deposition, and rolling. As the porous inorganic membrane, a hydrogen separation membrane in which a ceramic thin film having a controlled pore size is formed on the inner surface or outer surface of a porous porous ceramic support having pores is preferable. Since the porous inorganic membrane is selectively separated by molecular sieve action, the pore diameter of the thin film portion is preferably 0.3 nm or more and 0.7 nm or less, and more preferably 0.3 nm or more and 0.5 nm or less. A known ceramic material can be used as the material of the ceramic film, but silica, alumina, titania, glass, silicon carbide, and silicon nitride are preferable. As the membrane portion of the membrane reactor described later, an appropriate membrane that can withstand the dehydrogenation reaction pressure and the like can be used.

(水素分離)
水素分離膜の透過側圧力は、0.2MPa以下が好ましく、0.15MPa以下がさらに好ましい。また、水素分離膜の透過側には、透過側水素分圧を低下させる目的でイナートガスを供給してもよい。イナートガスを供給する場合、透過側水素分圧は、0.15MPa以下が好ましく、0.05MPa以下がさらに好ましい。イナートガスとしては、凝縮させることで容易に分離できるスチームが好ましい。また、固体高分子形燃料電池用途を意識した場合、除去することなく導入可能な点からもスチームが好ましい。
(Hydrogen separation)
The permeation side pressure of the hydrogen separation membrane is preferably 0.2 MPa or less, more preferably 0.15 MPa or less. Further, an inert gas may be supplied to the permeation side of the hydrogen separation membrane for the purpose of reducing the permeation side hydrogen partial pressure. When supplying the inert gas, the permeation side hydrogen partial pressure is preferably 0.15 MPa or less, more preferably 0.05 MPa or less. The inert gas is preferably steam that can be easily separated by condensation. Moreover, when considering the use of the polymer electrolyte fuel cell, steam is preferable because it can be introduced without removing it.

(膜型反応器)
脱水素反応器は任意のものが使用できる。好ましくは流通反応系に使用する反応器として、いわゆる膜型反応器を用いる。本発明でいう膜型反応器は、より正確には、流通式の反応管であって、脱水素触媒および水素分離膜が該反応管内に設けられているものである。通常は、水素分離膜が二重反応管の内管を構成し、触媒は外管と内管の間隙に存在させる形式の二重管構造であることが多い。図1に、このような二重管構造の反応管を持つ膜型反応器の例を示す。
ここで、図1において、反応管は二重管であり、外管は熱伝導性が良好な材料、例えば金属等からなり、内管は水素分離膜(水素透過膜)からなる。図示はしていないが、二重管の外側(外管の外側)は、熱媒体による加熱等適宜の加熱手段を講じている。内管と外管の間隙には、例えば粒状の適宜の担体に担時された触媒が充填されている。原料ガスは二重管の一方の端から上記間隙内へ導入され、他端から非透過ガスとして一部の水素と反応生成物が排出される。脱水素の温度は、間隙内に熱電対を挿入して測定・調節する。内管内部には選択的に膜分離された水素が透過ガスとして流れ、高純度な水素として取り出される。
(Membrane reactor)
Any dehydrogenation reactor can be used. A so-called membrane reactor is preferably used as the reactor used in the flow reaction system. More precisely, the membrane reactor referred to in the present invention is a flow-type reaction tube, and a dehydrogenation catalyst and a hydrogen separation membrane are provided in the reaction tube. Usually, the hydrogen separation membrane forms the inner tube of the double reaction tube, and the catalyst often has a double tube structure in which the catalyst exists in the gap between the outer tube and the inner tube. FIG. 1 shows an example of a membrane reactor having such a double tube structure reaction tube.
Here, in FIG. 1, the reaction tube is a double tube, the outer tube is made of a material having good thermal conductivity, such as metal, and the inner tube is made of a hydrogen separation membrane (hydrogen permeable membrane). Although not shown, an appropriate heating means such as heating with a heat medium is provided on the outside of the double pipe (outside of the outer pipe). The gap between the inner tube and the outer tube is filled with, for example, a catalyst supported on an appropriate granular carrier. The raw material gas is introduced into the gap from one end of the double pipe, and a part of hydrogen and reaction products are discharged from the other end as a non-permeating gas. The dehydrogenation temperature is measured and adjusted by inserting a thermocouple in the gap. Hydrogen selectively separated from the membrane flows into the inner tube as permeate gas and is taken out as high-purity hydrogen.

上記構造の膜型反応器を用いて炭化水素を脱水素して水素を製造するには以下のようにして行なうことができる。
すなわち、膜型反応器を構成する二重管の間隙を脱水素の反応場として、流通式反応管の一方の端から原料炭化水素を供給し、該間隙内に存在する脱水素触媒により原料炭化水素を脱水素して、水素と脱水素反応生成物(芳香族炭化水素等の不飽和炭化水素などの脱水素された炭化水素、副反応生成物および未反応炭化水素を含む)を生成させる。
生成した水素は、同時にin situで、二重管の内管を構成する水素分離膜により分離さる。すなわち、水素を選択的に膜透過させて、それにより二重管の最内側へ水素を透過・収集し、これを経由して集めた水素は系外へ排出させる。
かくして高純度な水素を得る。脱水素反応生成物は、残余の水素とともに前記二重管の外管と内管の間隙を経由して系外へ排出される。
Production of hydrogen by dehydrogenating hydrocarbons using the membrane reactor having the above structure can be carried out as follows.
That is, using the gap between the double tubes constituting the membrane reactor as a dehydrogenation reaction field, the feed hydrocarbon is supplied from one end of the flow-type reaction tube, and the feed carbonization is performed by the dehydrogenation catalyst existing in the gap. Hydrogen is dehydrogenated to produce hydrogen and dehydrogenation reaction products (including dehydrogenated hydrocarbons such as unsaturated hydrocarbons such as aromatic hydrocarbons, side reaction products and unreacted hydrocarbons).
The produced hydrogen is simultaneously separated in situ by the hydrogen separation membrane constituting the inner pipe of the double pipe. That is, hydrogen is selectively permeated through the membrane, whereby hydrogen is permeated and collected to the innermost side of the double tube, and the hydrogen collected via this is discharged out of the system.
Thus, high purity hydrogen is obtained. The dehydrogenation reaction product is discharged out of the system through the gap between the outer tube and the inner tube of the double tube together with the remaining hydrogen.

吸熱反応である脱水素反応が遂行される触媒層は、管外部からの適宜の加熱手段を設けることにより容易に熱が供給可能である。管外部からの適宜の加熱は、加熱媒体による加熱など公知の方法を適宜に採用できる。   Heat can be easily supplied to the catalyst layer in which the dehydrogenation reaction, which is an endothermic reaction, is performed by providing appropriate heating means from the outside of the tube. As the appropriate heating from the outside of the tube, a known method such as heating with a heating medium can be appropriately employed.

(水素製造装置)
膜型反応器を例にして、膜分離後の処理の概略図を図2に示す。図2には、膜分離後の非透過側ガスを冷却する冷却器と、それに接続する気液分離器が設けられ、気液分離器には液抜き出し用のバルブAとガス抜き出し用のバルブBが配設されている。なお、脱水素後、別個の膜分離器を用いて水素を膜分離する場合も、膜分離後は同様に処理することができる。図示されないが、気液分離器には液抜き出し用バルブAに連動する液面制御器が設置されている。
図2において、脱水素反応の炭化水素原料は膜型反応器に導入され、脱水素触媒(図示せず)上で水素と芳香族炭化水素等の不飽和炭化水素に変換される。
生成した水素は二重管内の膜(図示せず)を介して膜分離の透過ガスとして二重管の最内側へ分離され、製品水素となる。また、この際には、必要に応じて水素分離膜透過側にスチームを導入し、水素分圧を下げることが出来る。
(Hydrogen production equipment)
Taking a membrane reactor as an example, a schematic diagram of the treatment after membrane separation is shown in FIG. In FIG. 2, a cooler for cooling the non-permeate gas after membrane separation and a gas-liquid separator connected to the cooler are provided. The gas-liquid separator includes a valve A for extracting liquid and a valve B for extracting gas. Is arranged. In addition, also when carrying out the membrane separation of hydrogen using a separate membrane separator after dehydrogenation, it can process similarly after membrane separation. Although not shown, the gas-liquid separator is provided with a liquid level controller that is linked to the liquid extraction valve A.
In FIG. 2, the hydrocarbon raw material for the dehydrogenation reaction is introduced into a membrane reactor and converted to hydrogen and unsaturated hydrocarbons such as aromatic hydrocarbons on a dehydrogenation catalyst (not shown).
The produced hydrogen is separated to the innermost side of the double pipe through a membrane (not shown) in the double pipe as a permeation gas for membrane separation, and becomes product hydrogen. At this time, if necessary, steam can be introduced to the hydrogen separation membrane permeation side to lower the hydrogen partial pressure.

透過した残りの水素と非透過の芳香族炭化水素等の不飽和炭化水素(未反応原料も含む)は、非透過ガスとして二重管の外管と内管の間隙から回収される。この際、膜分離の駆動力が水素差圧であるから、透過側の水素の分圧と同じ分圧以上の水素が非透過側には必ず残存する。
そして従来の膜分離操作では、非透過側の残存水素はそのまま(炭化水素ガス等と共に)系外へ排出・廃棄される。そのため従来の膜分離を用いた技術においては、この非透過側から排出される水素のロス分だけ、水素回収率(透過側水素量/原料の理論発生水素量×100)は水素への原料転化率((透過側水素と非透過側水素量)/原料の理論発生水素量×100)よりも下回ることになる。
これに対し、本発明では、非透過側ガスを適宜の冷却器により冷却して、それに含まれる反応生成物と未反応原料等の液化成分を液化し、気液分離器において気液分離する。
冷却器としては、脱水素化生成物、例えば、トルエン等の芳香族炭化水素を液化する程度の冷却器でよく、水素や後記する副生するメタン、エタン等の低級炭化水素までをも液化することは不要である。したがって、例えば水冷冷却等の安価な冷却が利用できる。
その後、気液分離器内において気相部分を封じきり、液相部分のみを生成物として系外へ抜き出す。かくすることで、水素のロスを無くし、透過側ガスの水素回収率を限りなく水素への原料転化率に近づけることができる。
The remaining permeated hydrogen and unsaturated hydrocarbons (including unreacted raw materials) such as non-permeated aromatic hydrocarbons are recovered from the gap between the outer tube and the inner tube of the double tube as a non-permeated gas. At this time, since the driving force for membrane separation is a hydrogen differential pressure, hydrogen having a partial pressure equal to or higher than the partial pressure of hydrogen on the permeate side always remains on the non-permeate side.
In the conventional membrane separation operation, the residual hydrogen on the non-permeate side is discharged and discarded out of the system as it is (with hydrocarbon gas and the like). Therefore, in the conventional technology using membrane separation, the hydrogen recovery rate (permeated side hydrogen amount / theoretical generated hydrogen amount of raw material × 100) is the raw material conversion to hydrogen by the loss of hydrogen discharged from the non-permeate side. It is lower than the rate ((permeation side hydrogen amount and non-permeation side hydrogen amount) / theoretical hydrogen generation amount of raw material × 100).
On the other hand, in the present invention, the non-permeate side gas is cooled by an appropriate cooler, and liquefied components such as reaction products and unreacted raw materials contained therein are liquefied, and gas-liquid separation is performed in the gas-liquid separator.
The cooler may be a cooler capable of liquefying dehydrogenated products, for example, aromatic hydrocarbons such as toluene, and also liquefies hydrogen and even lower hydrocarbons such as by-product methane and ethane described later. It is not necessary. Therefore, for example, inexpensive cooling such as water cooling can be used.
Thereafter, the gas phase portion is sealed in the gas-liquid separator, and only the liquid phase portion is taken out of the system as a product. In this way, loss of hydrogen can be eliminated, and the hydrogen recovery rate of the permeate side gas can be made as close as possible to the raw material conversion rate to hydrogen.

従来の膜分離を用いた技術においては、非透過ガスとして、水素の一部と芳香族等の不飽和炭化水素及び未反応の原料は回収される。透過側の高純度な水素と比較して、非透過側の水素は冷却後も飽和蒸気圧分の芳香族炭化水素と飽和蒸気圧分の未反応の原料を含むため、反応装置の熱源となる燃料とされることが一般的である。
ここでエネルギーを投入して生成した水素を燃焼にまわす事は本来非効率であるため、加熱用の燃料とするよりも、できるだけ高純度水素として回収することが好ましい。
しかしながら、非透過側には必ず透過側の水素の分圧と同じ分圧以上の水素が残存してしまうため、従来の膜分離を用いた技術においては、非透過側から排出される水素のロス分だけ、水素回収率(透過側水素量/原料の理論発生水素量×100)は水素への原料転化率((透過側水素と非透過側水素量)/原料の理論発生水素量×100)よりも下回る。
In the conventional technique using membrane separation, a part of hydrogen, unsaturated hydrocarbon such as aromatic, and unreacted raw material are recovered as non-permeating gas. Compared with high-purity hydrogen on the permeate side, hydrogen on the non-permeate side, even after cooling, contains aromatic hydrocarbons for saturated vapor pressure and unreacted raw materials for saturated vapor pressure, thus providing a heat source for the reactor. It is common to use fuel.
Since it is inherently inefficient to use hydrogen generated by energy input for combustion, it is preferable to recover it as high purity hydrogen as possible rather than using fuel for heating.
However, since hydrogen having a pressure equal to or higher than the partial pressure of hydrogen on the permeate side always remains on the non-permeate side, the loss of hydrogen discharged from the non-permeate side is not achieved in the conventional technique using membrane separation. The hydrogen recovery rate (permeated hydrogen amount / theoretically generated hydrogen amount of raw material × 100) is the conversion rate of raw material to hydrogen ((permeated and non-permeated hydrogen amount) / theoretical generated hydrogen amount of raw material × 100). Less than.

これに対し、本発明では、非透過側生成物(芳香族炭化水素、未反応の原料および水素)を冷却し、芳香族炭化水素と未反応の原料の大部分の液化成分を液化させた後、水素と飽和蒸気圧分の芳香族炭化水素と同じく飽和蒸気圧分の未反応の原料で構成される気相部分を図2のバルブBを閉じることにより封じきり、液相部分のみを生成物として系外へ抜き出すこととする。これにより、非透過側からは水素をロスすることなく処理操作が行え、かつ従来と同様に水素分離膜の非透過側における水素分圧は保たれることとなる。
従って、従来非透過側からロスしていた水素は透過側から高純度水素として回収され、透過側の水素回収率を限りなく水素への原料転化率に近づけることができる。
水蒸気改質などのCOやCO等の常温、常圧で非液化の気体もまた水素と同時に生成する反応を用いた反応分離では、非透過側を冷却した後の気相部分を封じきった場合、水素の分圧はすぐに減少し、これに伴い水素分離膜における水素透過量も減少し、反応分離が機能しなくなるため、本方法は適用できない。本発明のように液化可能な炭化水素と水素のみが生成する系で初めて成り立つものであり、この点に関し、本発明は今までにない、新規な方法である。
On the other hand, in the present invention, after the non-permeate side product (aromatic hydrocarbon, unreacted raw material and hydrogen) is cooled, most of the liquefied components of the aromatic hydrocarbon and unreacted raw material are liquefied. The gas phase part composed of unreacted raw material with saturated vapor pressure is closed by closing valve B in FIG. 2, and the liquid phase part is the product. To be taken out of the system. As a result, the processing operation can be performed without losing hydrogen from the non-permeating side, and the hydrogen partial pressure on the non-permeating side of the hydrogen separation membrane is maintained as in the prior art.
Therefore, hydrogen that has been lost from the non-permeate side is recovered as high-purity hydrogen from the permeate side, and the hydrogen recovery rate on the permeate side can be as close to the raw material conversion rate as possible.
Room temperature 2 such as CO and CO, such as steam reforming, non-liquefied gas at normal pressure is also a reaction separation using a reaction for generating concurrently with the hydrogen was completely sealed gas phase portion after cooling the non-permeate side In this case, since the partial pressure of hydrogen immediately decreases, the hydrogen permeation amount in the hydrogen separation membrane also decreases, and the reaction separation does not function, so this method cannot be applied. The present invention is established for the first time in a system in which only liquefiable hydrocarbons and hydrogen are produced as in the present invention. In this regard, the present invention is a novel method that has not been heretofore.

膜分離の際、生成した芳香族炭化水素等の不飽和炭化水素の拡散を良くするため、膜分離器、好ましくは膜型反応器から上記冷却器へかけての反応生成混合物の移送の配管径は極力太い方が好ましい。
気液分離器から、液の抜き出し方法に関しては、既知の方法を適宜使用できる。例えば図2に示すように気液分離器の液相に対応する位置にバルブAを設け、該気液分離器の液面を、別途設ける液面のレベルセンサーまたは差圧計(図示せず)と、バルブAを連動させることにより、生成した芳香族炭化水素等の不飽和炭化水素を生成した分だけ、対応する量の液成分のみを抜き出すようにする。かくすることで、残存水素の損失がなく、脱水素生成物の抜き出しができ、その結果水素分圧の維持が可能となる。
In order to improve diffusion of unsaturated hydrocarbons such as aromatic hydrocarbons generated during membrane separation, the pipe diameter of the transfer of the reaction product mixture from the membrane separator, preferably from the membrane reactor to the cooler Is preferably as thick as possible.
As for a method for extracting liquid from the gas-liquid separator, a known method can be appropriately used. For example, as shown in FIG. 2, a valve A is provided at a position corresponding to the liquid phase of the gas-liquid separator, and the liquid level of the gas-liquid separator is separately provided with a level sensor or a differential pressure gauge (not shown). By operating the valve A, only the corresponding amount of liquid component is extracted by the amount of the generated unsaturated hydrocarbon such as aromatic hydrocarbon. By doing so, there is no loss of residual hydrogen and the dehydrogenation product can be extracted, and as a result, the hydrogen partial pressure can be maintained.

冷却後の非透過側のガス相に関しては、常温常圧で非液化のメタン、エタン、エチレン、プロパン、プロピレンなどの非微量成分が反応中に副生する場合、これらのガスは非透過側ガス中に蓄積し、これは非透過側における水素の分圧低下につながる。
非透過側の水素分圧が低下すると、分離膜における水素透過量が減少し、水素への原料転化率、水素回収率が低下する。気液分離器は冷却器を介して分離膜に連通しているので、気液分離器内の気相における水素分圧で上記分圧低下が判断できる。
Regarding the gas phase on the non-permeate side after cooling, when non-trace components such as methane, ethane, ethylene, propane, propylene, etc. that are not liquefied at normal temperature and pressure are by-produced during the reaction, these gases are non-permeate side gases. Which accumulates in, leading to a reduction in hydrogen partial pressure on the non-permeate side.
When the hydrogen partial pressure on the non-permeating side is reduced, the hydrogen permeation amount in the separation membrane is reduced, and the raw material conversion rate to hydrogen and the hydrogen recovery rate are reduced. Since the gas-liquid separator communicates with the separation membrane via the cooler, the partial pressure reduction can be determined by the hydrogen partial pressure in the gas phase in the gas-liquid separator.

そこで、図2に示すように気液分離器の気相部分に対応する位置にバルブBを設け常時には封じ切のために閉とするが、これを間欠的に開放して内部の気相ガスを系外に排出し、これらガス成分の蓄積を減少させることで、常に水素分圧を最大に保つことが可能となる。バルブBの開放周期と開放時間は、蓄積による水素分圧の低下状況に応じて適宜に変えることができ、これにより非透過側の水素分圧を最大に保つよう適宜決定することができる。すなわち、バルブBの開放周期と開放時間は、常温、常圧で非液化気体の非透過側における分圧上昇に依存するため、原料および反応条件によって異なり、非透過側の水素分圧を最大に保つよう適宜決定することができる。常温、常圧で非液化気体の非透過側における分圧は0.1MPa以下に保つようにバルブBの開放を行う。好ましくは0.05MPa以下、更に好ましくは0.001MPa以下が好ましい。   Therefore, as shown in FIG. 2, a valve B is provided at a position corresponding to the gas phase portion of the gas-liquid separator, and is normally closed for sealing. It is possible to always keep the hydrogen partial pressure at the maximum by reducing the accumulation of these gas components. The opening period and opening time of the valve B can be appropriately changed according to the decrease in the hydrogen partial pressure due to accumulation, and can be determined as appropriate so as to keep the hydrogen partial pressure on the non-permeating side to the maximum. That is, since the opening cycle and opening time of the valve B depend on the partial pressure increase on the non-permeate side of the non-liquefied gas at normal temperature and normal pressure, it varies depending on the raw materials and reaction conditions, and the hydrogen partial pressure on the non-permeate side is maximized. It can be decided appropriately to keep. The valve B is opened so that the partial pressure on the non-permeating side of the non-liquefied gas is kept at 0.1 MPa or less at normal temperature and normal pressure. Preferably it is 0.05 MPa or less, More preferably, 0.001 MPa or less is preferable.

以下、実施例により本発明を更に詳細に説明するが、本発明はこれら実施例の範囲に限定されるものではない。
実施例では以下の分離膜、触媒を使用した。
[分離膜]
外径10mm、内径8.4mm、長さ300mmの多孔質セラミックのチューブ状支持体内表面にα−アルミナ層を1層形成させた後、γ−アルミナ層を3層形成させる。更にシリカ層を1層形成させ、その後、最終表面にシリカ薄膜を形成したもので、水素透過係数4.2×10−7mol/m/sec/Pa、トルエン透過係数2.8×10−10mol/m/sec/Paであるセラミック膜を分離膜Aとする。
外径10mm、内径8.4mm、長さ300mmの多孔質セラミックのチューブ状支持体外表面に無電解メッキによりパラジウムと銀(Pd:Ag=85:15)をコーティングした、水素透過係数200cc/cm/min/atm1/2、膜厚2.5μmであるパラジウム膜を分離膜Bとする。
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to the range of these Examples.
In the examples, the following separation membranes and catalysts were used.
[Separation membrane]
After one α-alumina layer is formed on the surface of a porous ceramic tubular support body having an outer diameter of 10 mm, an inner diameter of 8.4 mm, and a length of 300 mm, three γ-alumina layers are formed. Further, one silica layer was formed, and then a silica thin film was formed on the final surface. The hydrogen permeability coefficient was 4.2 × 10 −7 mol / m 2 / sec / Pa, and the toluene permeability coefficient was 2.8 × 10 −. A ceramic membrane having a concentration of 10 mol / m 2 / sec / Pa is referred to as a separation membrane A.
Hydrogen permeation coefficient of 200 cc / cm 2 in which palladium and silver (Pd: Ag = 85: 15) are coated on the outer surface of a porous ceramic tubular support having an outer diameter of 10 mm, an inner diameter of 8.4 mm, and a length of 300 mm by electroless plating. A palladium membrane having a thickness of / min / atm 1/2 and a thickness of 2.5 μm is referred to as a separation membrane B.

[脱水素触媒]
γ−アルミナ担体に0.3mass%の白金を担持した平均直径1.5mmの球状市販触媒を使用する。
[膜型反応器]
アルミニウム管内部に上記筒状の分離膜A、Bをそれぞれ配設して二重管構造となし、内外の間隙内に上記脱水素触媒を充填する。
ここで、図1に概略を示す膜型反応器として、内径24mm、長さ300mmである反応管と水素分離膜の間隙に触媒を110ml充填した。
[Dehydrogenation catalyst]
A spherical commercial catalyst having an average diameter of 1.5 mm, in which 0.3 mass% of platinum is supported on a γ-alumina support, is used.
[Membrane reactor]
The cylindrical separation membranes A and B are respectively arranged inside the aluminum tube to form a double tube structure, and the dehydrogenation catalyst is filled in the inner and outer gaps.
Here, as a membrane reactor schematically shown in FIG. 1, 110 ml of catalyst was filled in a gap between a reaction tube having an inner diameter of 24 mm and a length of 300 mm and a hydrogen separation membrane.

図2に示す水素製造装置を用い、膜型反応器の非透過側ガスは冷却して、気液分離器に供給し、該気液分離器の液面は液面制御器(図示せず)により液抜き出し弁Aから液のみを抜き出すことで制御・調節した。
ここで、水素分離膜として分離膜Aを用いた膜型反応器でメチルシクロヘキサンを原料として脱水素した。膜型反応器の反応圧0.2、0.4、0.6、0.8MPa(絶対圧)、透過側圧力0.1MPa(絶対圧)、反応温度(触媒層出口温度)300℃、330℃、LHSV 0.5h−1の条件下で脱水素反応を行った。ここで、LHSVは流速であり、(メチルシクロヘキサン液体体積(cc)/触媒(cc)/時間(h))で表される。
反応性生物の膜分離後、冷却器によりトルエン蒸気と水素からなる非透過側ガスを冷却し気液分離器へ供給する。
Using the hydrogen production apparatus shown in FIG. 2, the non-permeate side gas of the membrane reactor is cooled and supplied to the gas-liquid separator. The liquid level of the gas-liquid separator is a liquid level controller (not shown). Was controlled and adjusted by extracting only the liquid from the liquid discharge valve A.
Here, dehydrogenation was performed using methylcyclohexane as a raw material in a membrane reactor using a separation membrane A as a hydrogen separation membrane. Reaction pressure of membrane reactor 0.2, 0.4, 0.6, 0.8 MPa (absolute pressure), permeate side pressure 0.1 MPa (absolute pressure), reaction temperature (catalyst layer outlet temperature) 300 ° C., 330 The dehydrogenation reaction was performed under the conditions of ° C and LHSV 0.5h- 1 . Here, LHSV is a flow rate and is represented by (methylcyclohexane liquid volume (cc) / catalyst (cc) / time (h)).
After membrane separation of the reactive organism, the non-permeate side gas composed of toluene vapor and hydrogen is cooled by a cooler and supplied to the gas-liquid separator.

気液分離器では気液分離すると共に、上記のように液面制御器(図示せず)により液抜き出し弁Aから液のみを抜き出すことで液面を制御・調節した。
さらに、図2のバルブBは閉として2時間に1度2分間だけバルブBを解放し、内部の気相成分のみを系外へ排出して運転した。なお、バルブBを解放にしても、バルブB後段の背圧弁により、非透過側の圧力は変動しないようにした。
相当期間運転後の結果を表1に示す。
表1において水素回収率は、(膜型反応器の透過側から回収された水素(mol)/導入したメチルシクロヘキサンからの理論水素発生量(mol)×100)で表される。
In the gas-liquid separator, gas-liquid separation was performed, and the liquid level was controlled and adjusted by extracting only the liquid from the liquid extraction valve A by the liquid level controller (not shown) as described above.
Further, the valve B in FIG. 2 was closed, and the valve B was opened once every two hours for 2 minutes, and only the internal gas phase component was discharged out of the system. Even when the valve B is released, the pressure on the non-permeate side is not changed by the back pressure valve at the rear stage of the valve B.
Table 1 shows the results after operation for a considerable period.
In Table 1, the hydrogen recovery rate is expressed by (hydrogen recovered from the permeation side of the membrane reactor (mol) / theoretical hydrogen generation amount from the introduced methylcyclohexane (mol) × 100).

水素分離膜として分離膜Bを用いた以外は実施例1と同様の実験を行った。相当期間運転後の結果を表1に示す。   The same experiment as in Example 1 was performed except that the separation membrane B was used as the hydrogen separation membrane. Table 1 shows the results after operation for a considerable period.

(比較例)
バルブBを常時解放状態として運転したほかは、実施例2と同様にしてメチルシクロヘキサンの脱水素を行った。相当期間運転後の結果は同じく表1に示す。
表1に示すとおり、比較例に対し、バルブBを閉止した実施例1及び実施例2では透過側の水素回収率を水素への原料転化率に近づけることができた。
(Comparative example)
Methylcyclohexane was dehydrogenated in the same manner as in Example 2 except that the valve B was operated with the valve B always open. The results after operation for a considerable period are also shown in Table 1.
As shown in Table 1, compared with the comparative example, in Examples 1 and 2 in which the valve B was closed, the hydrogen recovery rate on the permeate side could be brought close to the raw material conversion rate to hydrogen.

Figure 2007084378
Figure 2007084378

膜型反応器の概略図Schematic diagram of membrane reactor 本発明に従う膜分離後の処理の概略図Schematic of treatment after membrane separation according to the present invention

Claims (8)

以下の工程(I)ないし(IV)を具備することを特徴とする水素の製造方法:
(I)炭化水素を流通式脱水素反応器により連続的に脱水素させて、水素と脱水素化生成物の混合ガスを得る工程;
(II)水素と脱水素化生成物の混合ガスを水素分離膜により膜分離して、主として膜の透過側から水素を分離し、非透過側から非透過側ガスとして水素および脱水素化生成物を得る工程;
(III)非透過側ガスを冷却して脱水素化生成物を液化する工程;
(IV)液化成分を含む非透過側ガスを気液分離し、これから実質的に液化成分のみを系外に排出する工程。
A method for producing hydrogen, comprising the following steps (I) to (IV):
(I) a step of continuously dehydrogenating hydrocarbons with a flow-type dehydrogenation reactor to obtain a mixed gas of hydrogen and a dehydrogenated product;
(II) Membrane separation of a mixed gas of hydrogen and a dehydrogenation product is performed with a hydrogen separation membrane to separate hydrogen mainly from the permeate side of the membrane, and hydrogen and dehydrogenation product as a non-permeate side gas from the non-permeate side. Obtaining
(III) cooling the non-permeate side gas to liquefy the dehydrogenated product;
(IV) Gas-liquid separation of the non-permeate side gas containing the liquefied component, and substantially discharging only the liquefied component from the system.
以下の工程(I)ないし(III)を具備することを特徴とする水素の製造方法:
(I)炭化水素を二重管式膜型の流通式脱水素反応器により連続的に脱水素させて、水素と脱水素化生成物の混合ガスを得て、内管を構成する水素分離膜により膜分離して、主として膜の透過側から水素を分離し、非透過側から非透過側ガスとして水素および脱水素化生成物を得る工程;
(II)非透過側ガスを冷却して脱水素化生成物を液化する工程;
(III)液化成分を含む非透過側ガスを気液分離し、実質的に脱水素化生成物を含む液成分のみを系外へ排出する工程。
A method for producing hydrogen, comprising the following steps (I) to (III):
(I) A hydrogen separation membrane constituting an inner pipe by continuously dehydrogenating hydrocarbons with a double-pipe membrane-type flow-type dehydrogenation reactor to obtain a mixed gas of hydrogen and a dehydrogenated product Separating hydrogen mainly from the permeate side of the membrane to obtain hydrogen and a dehydrogenated product as a non-permeate side gas from the non-permeate side;
(II) cooling the non-permeate side gas to liquefy the dehydrogenation product;
(III) A step of gas-liquid separation of the non-permeate side gas containing the liquefied component and discharging only the liquid component containing substantially the dehydrogenated product out of the system.
前記気液分離された非透過側ガスの気相から、メタンなどの非液化成分を間欠的に系外へ排出する工程をさらに具備することを特徴とする請求項1または2記載の水素の製造方法。   The hydrogen production according to claim 1 or 2, further comprising a step of intermittently discharging a non-liquefied component such as methane out of the system from a gas phase of the gas-liquid separated non-permeate side gas. Method. 水素分離膜がセラミック膜であることを特徴とする請求項1〜3に記載の水素の製造方法。   The method for producing hydrogen according to claim 1, wherein the hydrogen separation membrane is a ceramic membrane. 水素分離膜がPdを100〜10mass%含む金属膜であることを特徴とする請求項1〜3に記載の水素の製造方法。   The method for producing hydrogen according to claim 1, wherein the hydrogen separation membrane is a metal membrane containing 100 to 10 mass% of Pd. 流通式脱水素反応器、
水素を分離する水素膜分離器、
脱水素化生成物を液化する冷却器、
非液化成分と液化した脱水素化生成物とを気液分離する気液分離器、および
気液分離機の液面を制御する液面制御器を具備し、
前記気液分離器に液排出弁が設けてなる水素製造装置。
Flow-type dehydrogenation reactor,
Hydrogen membrane separator for separating hydrogen,
A cooler to liquefy the dehydrogenation product,
A gas-liquid separator that separates a non-liquefied component from a liquefied dehydrogenated product into a gas-liquid separator, and a liquid level controller that controls the liquid level of the gas-liquid separator;
A hydrogen production apparatus in which a liquid discharge valve is provided in the gas-liquid separator.
二重管式膜型の流通式脱水素反応器、
脱水素化生成物を液化する冷却器、
非液化成分と液化した脱水素化生成物とを気液分離する気液分離器、および
気液分離機の液面を制御する液面制御器を具備し、
前記気液分離器に液排出弁が設けてなる水素製造装置。
Double-pipe membrane-type flow dehydrogenation reactor,
A cooler to liquefy the dehydrogenation product,
A gas-liquid separator that separates a non-liquefied component from a liquefied dehydrogenated product into a gas-liquid separator, and a liquid level controller that controls the liquid level of the gas-liquid separator;
A hydrogen production apparatus in which a liquid discharge valve is provided in the gas-liquid separator.
前記気液分離器にガス排出弁が設けてなる請求項6または7記載の水素製造装置。   The hydrogen production apparatus according to claim 6 or 7, wherein a gas discharge valve is provided in the gas-liquid separator.
JP2005274063A 2005-09-21 2005-09-21 Method for producing hydrogen and apparatus used in the same Pending JP2007084378A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005274063A JP2007084378A (en) 2005-09-21 2005-09-21 Method for producing hydrogen and apparatus used in the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005274063A JP2007084378A (en) 2005-09-21 2005-09-21 Method for producing hydrogen and apparatus used in the same

Publications (1)

Publication Number Publication Date
JP2007084378A true JP2007084378A (en) 2007-04-05

Family

ID=37971759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005274063A Pending JP2007084378A (en) 2005-09-21 2005-09-21 Method for producing hydrogen and apparatus used in the same

Country Status (1)

Country Link
JP (1) JP2007084378A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009061420A (en) * 2007-09-07 2009-03-26 Air Liquide Japan Ltd Manufacturing method of gas component and condensable component, and manufacturing system thereof
JP2009061422A (en) * 2007-09-07 2009-03-26 Air Liquide Japan Ltd Manufacturing method of gas component and condensable component, and manufacturing apparatus thereof
JP2017043552A (en) * 2015-08-25 2017-03-02 株式会社東芝 Manufacturing method of hydrogen carrier and manufacturing system of hydrogen carrier
KR101931746B1 (en) 2015-06-02 2018-12-24 주식회사 제이텍 High-Efficiency System For Generating On-Site Sodium Hypochlorite With Hydrogen Gas Recycling

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61291402A (en) * 1985-06-20 1986-12-22 Mitsubishi Heavy Ind Ltd Method for adjusting water/methanol ratio in methanol cracking
JPS63154629A (en) * 1986-12-18 1988-06-27 Agency Of Ind Science & Technol Dehydrogenating reactor
JPH03217227A (en) * 1990-01-24 1991-09-25 Mitsubishi Heavy Ind Ltd Membrane reactor for dehydrogenation reaction
JPH0471638A (en) * 1990-07-13 1992-03-06 Nok Corp Membrane type reactor
JPH05317708A (en) * 1992-05-27 1993-12-03 Mitsubishi Heavy Ind Ltd Membrane reactor for dehydrogenation reaction
JP2005035842A (en) * 2003-07-15 2005-02-10 Nippon Oil Corp Hydrogen production system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61291402A (en) * 1985-06-20 1986-12-22 Mitsubishi Heavy Ind Ltd Method for adjusting water/methanol ratio in methanol cracking
JPS63154629A (en) * 1986-12-18 1988-06-27 Agency Of Ind Science & Technol Dehydrogenating reactor
JPH03217227A (en) * 1990-01-24 1991-09-25 Mitsubishi Heavy Ind Ltd Membrane reactor for dehydrogenation reaction
JPH0471638A (en) * 1990-07-13 1992-03-06 Nok Corp Membrane type reactor
JPH05317708A (en) * 1992-05-27 1993-12-03 Mitsubishi Heavy Ind Ltd Membrane reactor for dehydrogenation reaction
JP2005035842A (en) * 2003-07-15 2005-02-10 Nippon Oil Corp Hydrogen production system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009061420A (en) * 2007-09-07 2009-03-26 Air Liquide Japan Ltd Manufacturing method of gas component and condensable component, and manufacturing system thereof
JP2009061422A (en) * 2007-09-07 2009-03-26 Air Liquide Japan Ltd Manufacturing method of gas component and condensable component, and manufacturing apparatus thereof
KR101931746B1 (en) 2015-06-02 2018-12-24 주식회사 제이텍 High-Efficiency System For Generating On-Site Sodium Hypochlorite With Hydrogen Gas Recycling
JP2017043552A (en) * 2015-08-25 2017-03-02 株式会社東芝 Manufacturing method of hydrogen carrier and manufacturing system of hydrogen carrier

Similar Documents

Publication Publication Date Title
Rahimpour et al. Palladium membranes applications in reaction systems for hydrogen separation and purification: A review
AU2012243063B2 (en) Metal supported silica based catalytic membrane reactor assembly
Marcano et al. Catalytic membranes and membrane reactors
CN107073427B (en) Shell-and-tube reactor for reforming natural gas and method for producing synthesis gas or hydrogen using the same
Iulianelli et al. Hydrogen production from ethanol via inorganic membrane reactors technology: a review
US6171574B1 (en) Method of linking membrane purification of hydrogen to its generation by steam reforming of a methanol-like fuel
US20060013759A1 (en) Systems and methods for hydrogen production
US20080234527A1 (en) Method for Producing Hydrogen and System Therefor
RU2598931C2 (en) Hydrogen generation
JP2005035842A (en) Hydrogen production system
Yue et al. Highly selective CO2 conversion to methanol in a bifunctional zeolite catalytic membrane reactor
EA020384B1 (en) Method for reacting natural gas to aromatics while electrochemically removing hydrogen
JP2008081385A (en) Method for producing hydrogen and reaction tube for it
Kong et al. Catalytic dehydrogenation of ethylbenzene to styrene in a zeolite silicalite-1 membrane reactor
JPWO2005075344A1 (en) Carbon dioxide reforming method of hydrocarbons by selectively permeable membrane reactor
Xia et al. Innovative steam methane reforming for coproducing CO‐free hydrogen and syngas in proton conducting membrane reactor
Yin et al. Generation and extraction of hydrogen from low-temperature water-gas-shift reaction by a ZIF-8-based membrane reactor
Mamivand et al. Applicability of membrane reactor technology in industrial hydrogen producing reactions: Current effort and future directions
Yue et al. Synthesis of Cu–ZnO–Pt@ HZSM-5 catalytic membrane reactor for CO2 hydrogenation to dimethyl ether
JP5102932B2 (en) High purity hydrogen production method
JP2007084378A (en) Method for producing hydrogen and apparatus used in the same
JP2007076982A (en) Hydrogen production system and power generation system
JP2005289652A (en) Method for producing hydrogen and reaction tube
Ferreira-Aparicio et al. Pure hydrogen production from methylcyclohexane using a new high performance membrane reactor
JP2006225169A (en) Hydrogen production apparatus and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20080409

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101122

A131 Notification of reasons for refusal

Effective date: 20110517

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20111018

Free format text: JAPANESE INTERMEDIATE CODE: A02