JP2009061422A - Manufacturing method of gas component and condensable component, and manufacturing apparatus thereof - Google Patents

Manufacturing method of gas component and condensable component, and manufacturing apparatus thereof Download PDF

Info

Publication number
JP2009061422A
JP2009061422A JP2007233080A JP2007233080A JP2009061422A JP 2009061422 A JP2009061422 A JP 2009061422A JP 2007233080 A JP2007233080 A JP 2007233080A JP 2007233080 A JP2007233080 A JP 2007233080A JP 2009061422 A JP2009061422 A JP 2009061422A
Authority
JP
Japan
Prior art keywords
gas
component
separation membrane
product
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007233080A
Other languages
Japanese (ja)
Other versions
JP5406441B2 (en
Inventor
Naohiko Yamashita
直彦 山下
Kazuo Kitsukawa
和生 橘川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Liquide Japan GK
Original Assignee
Air Liquide Japan GK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide Japan GK filed Critical Air Liquide Japan GK
Priority to JP2007233080A priority Critical patent/JP5406441B2/en
Priority to PCT/EP2008/061820 priority patent/WO2009030766A1/en
Publication of JP2009061422A publication Critical patent/JP2009061422A/en
Application granted granted Critical
Publication of JP5406441B2 publication Critical patent/JP5406441B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/14Pressure control

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a gas component and a condensable component which assures a desired product gas with a predetermined purity and a high recovering rate and capable of avoiding liquefaction of the condensable component in a primary side gas of a gas separation membrane with an universal and inexpensive method even at a high recovering rate, and to provide a manufacturing apparatus thereof. <P>SOLUTION: The manufacturing apparatus includes the gas separation membrane S having the selective permeability to the raw material gas containing a plurality of components and a first and a second gas-liquid separation part D1, D2 based on the difference in condensability of the components, and produces a permeation gas rich in the permeable and non-condensable component obtained from the gas separation membrane S, and the by-product gas reduced in the impermeable and condensable component and obtained from the first and second gas-liquid separation part. The apparatus is characterized by including a constituting element such as a circulation gas passage Fa for circulating part of at least the second by-product gas, a raw material gas passage Uo and the like. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、ガス成分および凝縮性成分の製造方法および製造装置に関し、具体的には、選択的透過性を有するガス分離膜の分離機能と各成分の凝縮温度の相違による気液分離機能を用い、複数の成分を含む原料ガスから特定の成分を分離回収するガス成分および凝縮性成分の製造方法および製造装置に関する。   The present invention relates to a method and apparatus for producing a gas component and a condensable component, and specifically uses a separation function of a gas separation membrane having selective permeability and a gas-liquid separation function based on a difference in condensation temperature of each component. The present invention relates to a gas component and a condensable component manufacturing method and a manufacturing apparatus for separating and recovering a specific component from a raw material gas including a plurality of components.

従来、半導体製造工場あるいは各種の化学プロセス工場などにおいては、各工程における原料ガスあるいは処理ガスとして所定量の純度の高いガスが必要とされ、入手容易で低コストの原料からこうしたガスを分離して連続的に使用することが多く行われる。具体的には、例えば、空気から富化酸素ガスと富化窒素ガスのいずれかあるいは両方を得る場合、ナフサ分解ガスから水素(H)を分離濃縮する場合、有機物蒸気を含むガス混合物から有機物蒸気を分離回収する場合、水性ガスからHを分離する場合などが該当する。かかる工程においては、装置が小型で簡便であることから、選択的透過性を有するガス分離膜に透過性の異なるガス混合物を原料ガスとして供給し、透過ガスと残留ガスに分離し、易透過性ガスに富んだ透過ガスを製品として取り出す方法が採られることが多い。 Conventionally, semiconductor manufacturing factories or various chemical process factories have required a predetermined amount of high-purity gas as a raw material gas or a processing gas in each process, and these gases are separated from readily available low-cost raw materials. Often used continuously. Specifically, for example, when obtaining either or both of enriched oxygen gas and enriched nitrogen gas from the air, when separating and concentrating hydrogen (H 2 ) from the naphtha cracked gas, the organic substance from the gas mixture containing organic vapor For example, when vapor is separated and recovered, H 2 is separated from water gas. In such a process, since the apparatus is small and simple, a gas mixture having different permeability is supplied as a raw material gas to a gas separation membrane having selective permeability, and separated into a permeated gas and a residual gas. In many cases, gas permeated gas is taken out as a product.

こうしたガス分離膜を用いたガス製造方法においては、図9に例示するような、圧縮機102、乾燥器108、加熱器109、ガス分離膜101を備えたガス分離部103、残留側圧力調整弁110、冷却器113透過側圧力調整弁111を備えた系を基本として、所望の用途や仕様に応じた種々の構成が用いられてきた(例えば特許文献1参照)。   In such a gas production method using a gas separation membrane, as shown in FIG. 9, a compressor 102, a dryer 108, a heater 109, a gas separation unit 103 provided with a gas separation membrane 101, a residual pressure regulating valve. 110, cooler 113 Based on a system including a permeate pressure regulating valve 111, various configurations according to a desired application and specifications have been used (for example, see Patent Document 1).

例えば、比較的高圧の水素ガスおよび比較的低圧の水素ガスの製品を必要とする場合、図10に示すようなカスケードサイクルが有効であることはよく知られている。この例にあっては、二組のガス分離膜201(第1ガス分離膜201a及び第2ガス分離膜201b)が組み合わせて使用される。この構造にあっては、原料ガスg1は、第2ガス分離膜201bの透過性ガスg2aaと合流され、圧縮後、第1ガス分離膜201aに供給される。この状態で、第1ガス分離膜201aによる透過性ガスg2aが産出され、その残留性ガスg2bは、第2ガス分離膜201bの原料ガスとして供給される。この第2ガス分離膜201bでは、残留性ガスが産出される。それからの透過性ガスg2aaは、元々の原料ガスと合流することにより再利用される(例えば特許文献1参照)。ここで、図10においては、第2ガス分離膜201bからの透過性ガスg2aaが再利用される構成として例示されているが、透過性ガスg2aを高圧製品ガスとして取り出し、透過性ガスg2aaを低圧製品ガスとして取り出すことが可能である。   For example, when a relatively high pressure hydrogen gas product and a relatively low pressure hydrogen gas product are required, it is well known that a cascade cycle as shown in FIG. 10 is effective. In this example, two sets of gas separation membranes 201 (first gas separation membrane 201a and second gas separation membrane 201b) are used in combination. In this structure, the source gas g1 merges with the permeable gas g2aa of the second gas separation membrane 201b, and is supplied to the first gas separation membrane 201a after being compressed. In this state, a permeable gas g2a is produced by the first gas separation membrane 201a, and the residual gas g2b is supplied as a source gas for the second gas separation membrane 201b. In the second gas separation membrane 201b, residual gas is produced. Then, the permeable gas g2aa is reused by merging with the original source gas (see, for example, Patent Document 1). Here, in FIG. 10, the permeable gas g2aa from the second gas separation membrane 201b is illustrated as being reused. However, the permeable gas g2a is taken out as a high-pressure product gas, and the permeable gas g2aa is reduced to a low pressure. It can be taken out as product gas.

また、並列サイクルとして、図11に例示するような、空気から富化窒素ガスを分離回収するシステムを挙げることができる。図11では、2本の中空糸分離膜モジュール312、313が並列で用いられており、供給ガスは前処理を終わったあと分岐してそれぞれのモジュール312、313へ供給され、それぞれの中空糸分離膜モジュール312、313で得られた富化窒素ガスは合流して製品ガス出口324へ導かれている。空気取入口301から採取された空気はダストフィルター302で空気中の浮遊粒子などを除去されコンプレッサー303へ供給される。ここで加圧された空気は、中空糸ガス分離膜モジュール312、313のガス供給口から膜の供給側へ流される。透過した透過ガスは、膜の透過側を流れてモジュールの透過ガス排出口を経由して透過ガス排出流となり、配管の途中で流量調節弁316、317で流量を絞られたのち系外へ排出される(例えば特許文献2参照)。ここで、図11のシステムにおいては、富化窒素ガスを製品ガスとして回収する場合を表しているが、透過ガス排出流は富化酸素ガスであり、これを製品ガスとして回収することも可能である。このとき、並列の中空糸分離膜モジュール312、313に供給する空気の圧力や流量を各々独立的に調整することによって、一方の透過性ガスを高圧製品ガスとして取り出し、他方の透過性ガスを低圧製品ガスとして取り出すことが可能である。   Moreover, as a parallel cycle, the system which isolate | separates and collects enriched nitrogen gas from the air which is illustrated in FIG. 11 can be mentioned. In FIG. 11, two hollow fiber separation membrane modules 312 and 313 are used in parallel, and the supply gas branches after the pretreatment and is supplied to each of the modules 312 and 313. The enriched nitrogen gas obtained in the membrane modules 312, 313 merges and is led to the product gas outlet 324. Air collected from the air intake port 301 is supplied with air to the compressor 303 after removing suspended particles in the air by the dust filter 302. The pressurized air flows from the gas supply ports of the hollow fiber gas separation membrane modules 312, 313 to the membrane supply side. The permeated gas that has permeated flows through the permeate side of the membrane and becomes a permeated gas exhaust flow through the permeate gas discharge port of the module. (See, for example, Patent Document 2). Here, in the system of FIG. 11, the case where the enriched nitrogen gas is recovered as the product gas is shown, but the permeate gas discharge flow is the enriched oxygen gas, and this can also be recovered as the product gas. is there. At this time, by independently adjusting the pressure and flow rate of the air supplied to the parallel hollow fiber separation membrane modules 312, 313, one permeable gas is taken out as a high pressure product gas, and the other permeable gas is taken as a low pressure. It can be taken out as product gas.

特開2000−33222号公報JP 2000-33222 A 特開2002−35530号公報JP 2002-35530 A

ガス分離膜を利用してガスを製造する場合、製品の純度と回収率が主要な特性となる。一般に、製品ガスの用途に応じて、所要の純度が定まり、その範囲で回収率をできるだけ確保するとの方針で検討を行いプロセスや減量操作を含めた制御方法を決定する。しかしながら、難透過性かつ凝縮性の成分を含む複数の成分を含有する原料ガスに対しては、上記システムあるいは方法によっては、いくつかの課題が生じることがあった。
(i)膜自体の変質を齎すことがあるので、膜の1次側のガス中でのミストの生成を回避する必要がある。より詳細には、原料ガス中に凝縮性成分が含まれる場合には、常温で液化を起こす可能性があり、この凝縮性成分が難透過性ガスであるとき、ガス分離の進行に従い、ガス分離膜の1次側(非透過側)のガス中に凝縮性成分が濃縮し液化する恐れがあることから、例えば約40℃(夏季の外気条件)まで原料ガスを冷却し、凝縮液化成分を分離後、加熱手段にて加熱することにより、ガス分離膜での液体ミストの生成の恐れを回避する必要があった。
(ii)しかし、ガス分離膜の分離特性や高温耐性などの関係から加熱温度に限界があるので、透過ガスの所望成分の回収率(以下「回収率」という)を上昇しようとすると、ガス分離膜の1次側のガス中で凝縮性成分が液化する恐れが残ることから、回収率を制限し、あるいはガス分離膜の1次圧力を下げて、液化を回避するとの対策がなされてきた。
なお、本発明ではガス分離膜の1次側のガス中に凝縮性成分の濃縮に伴う液化を避けることに注目する。透過の進行に伴い、凝縮性成分の濃縮が進行するので、残留ガス出口(直近)のガスが最も液化し易い状態となる。従って、残留ガス出口のガスの圧力下の露点が重要となり、露点がガス分離膜でのガス温度に比較して低いならば、ガス分離膜の1次側のガス中で液化が起こらないこととなる。実際には、原料ガス組成や運転条件の変動などを考慮して、ガス分離膜のガス温度に対し僅かに(例えば10℃)低く、前記露点の基準値を設定して運用するのが望ましい。以下、ガス分離膜の残留ガス出口直後の圧力を「残留ガス圧力」といい、ガス分離膜の残留ガス流路出口直後における残留ガス圧力下の露点を「残留ガス露点」、ガス分離膜の残留ガスの流量を「残留ガス流量」、透過ガスの圧力および流量を「透過ガス圧力」および「透過ガス流量」という。
When gas is produced using a gas separation membrane, product purity and recovery are the main characteristics. In general, the required purity is determined according to the application of the product gas, and the control method including the process and weight reduction operation is determined by examining the policy of ensuring the recovery rate as much as possible within that range. However, some problems may occur with a raw material gas containing a plurality of components including a hardly permeable and condensable component depending on the system or method.
(I) Since alteration of the membrane itself may occur, it is necessary to avoid generation of mist in the gas on the primary side of the membrane. More specifically, when a condensable component is contained in the raw material gas, liquefaction may occur at room temperature. When this condensable component is a hardly permeable gas, gas separation proceeds according to the progress of gas separation. Since the condensable components may concentrate and liquefy in the gas on the primary side (non-permeate side) of the membrane, for example, the raw material gas is cooled to about 40 ° C (summer outdoor air conditions) to separate the condensed liquefied components. Thereafter, it was necessary to avoid the risk of generating liquid mist on the gas separation membrane by heating with a heating means.
(Ii) However, since there is a limit to the heating temperature due to the separation characteristics of the gas separation membrane and the high-temperature resistance, when attempting to increase the recovery rate of the desired component of the permeate gas (hereinafter referred to as “recovery rate”) Since there is a possibility that the condensable component is liquefied in the gas on the primary side of the membrane, measures have been taken to limit the recovery rate or reduce the primary pressure of the gas separation membrane to avoid liquefaction.
In the present invention, attention is paid to avoiding liquefaction associated with concentration of condensable components in the gas on the primary side of the gas separation membrane. As the permeation progresses, the condensation of the condensable component proceeds, so that the gas at the residual gas outlet (nearest) is most easily liquefied. Therefore, the dew point under the pressure of the gas at the residual gas outlet is important, and if the dew point is lower than the gas temperature at the gas separation membrane, liquefaction will not occur in the gas on the primary side of the gas separation membrane. Become. In practice, it is desirable to operate by setting a reference value for the dew point slightly lower (for example, 10 ° C.) than the gas temperature of the gas separation membrane in consideration of fluctuations in the raw material gas composition and operating conditions. Hereinafter, the pressure immediately after the residual gas outlet of the gas separation membrane is referred to as “residual gas pressure”, the dew point under the residual gas pressure immediately after the residual gas flow path outlet of the gas separation membrane is “residual gas dew point”, and the residual gas separation membrane The gas flow rate is referred to as “residual gas flow rate”, and the permeate gas pressure and flow rate are referred to as “permeate gas pressure” and “permeate gas flow rate”.

本発明の目的は、複数の成分を含む原料ガスからガス成分および凝縮性成分を回収するに際し、所望の純度や回収率を有し所望の製品ガスおよび凝縮性成分を確保するとともに、効率的かつ汎用的な手法で、高い回収率に対しても、ガス分離膜の1次側のガス中で凝縮性成分が液化することを回避することができるガス成分および凝縮性成分の製造方法および製造装置を提供することにある。特に、減量操作に際して、さらに回収率を得ることを目的とする。なお、本願において、単に「回収率」とした場合には、製品ガス中の所望の成分(易透過性ガス)流量の総計の、原料ガス中の所望の成分の流量に対する割合を意味する。また、最終残留ガスは副製品として利用される場合も含むこというまでもない。   An object of the present invention is to ensure a desired product gas and a condensable component having a desired purity and recovery rate when recovering a gas component and a condensable component from a raw material gas containing a plurality of components, and efficiently and Gas component and condensable component manufacturing method and apparatus capable of avoiding liquefaction of condensable component in gas on the primary side of the gas separation membrane with a general technique, even for a high recovery rate Is to provide. In particular, it is intended to obtain a further recovery rate during the weight reduction operation. In the present application, when simply referred to as “recovery rate”, it means the ratio of the total flow rate of the desired component (easy-permeable gas) in the product gas to the flow rate of the desired component in the raw material gas. Needless to say, the final residual gas may be used as a by-product.

本発明者らは、上記課題を解決するために、鋭意研究を重ねた結果、以下に示すガス成分および凝縮性成分の製造方法および製造装置により上記目的を達成できることを見出し、本発明を完成するに到った。なお、同一機能の要素について、上流側を第1または1次、下流側を第2または2次という。   In order to solve the above-mentioned problems, the present inventors have conducted intensive research and found that the above-described object can be achieved by the following gas component and condensable component manufacturing method and manufacturing apparatus, thereby completing the present invention. It reached. For elements having the same function, the upstream side is referred to as first or primary, and the downstream side is referred to as second or secondary.

本発明は、複数の成分を含有する原料ガスに対して、選択的透過性を有するガス分離膜による分離機能と各成分の凝縮性の相違に基づく気液分離機能を利用し、前記ガス分離膜の分離機能によって得られる易透過性かつ非凝縮性の成分Aに富んだ透過ガスと、前記ガス分離膜の上流および下流に位置する少なくとも2つの前記気液分離機能によって得られる難透過性かつ凝縮性の成分Bに富んだ副生液および前記成分Bが減少した副生ガスを生成する方法であって、少なくとも下記の工程
(1)下流側の前記気液分離機能によって得られた第2副生ガスの一部を、循環ガスとして分岐する工程
(2)前記循環ガスの流量調整および昇圧を行う工程
(3)前記循環ガスの1次冷却処理および1次気液分離処理、あるいは1次気液分離処理のみを行う工程
(4)前記1次気液分離処理により得られた前記成分Bの減少した第1副生ガスを抜き出す工程
(5)前記1次気液分離処理により得られた主として前記成分Bからなる第1副生液を抜き出す工程
(6)前記第1副生ガスを加熱処理した後、ガス分離膜に供給する工程
(7)前記原料ガスを供給し、前記昇圧処理前、1次冷却処理前、1次気液分離処理前、1次気液分離処理後あるいは加熱処理した後のいずれかにおいて前記循環ガスと混合する工程
(8)前記ガス分離膜の1次圧力あるいはこれと連動するプロセス値のいずれかを調整する工程
(9)前記ガス分離膜において、透過ガスと残留ガスに分離する工程
(10)前記ガス分離膜に対し前記成分Aに富んだ透過ガスを製品として抜き出す工程
(11)前記ガス分離膜に対し前記成分Bに富んだ残留ガスを抜き出す工程
(12)前記残留ガスの2次冷却処理および2次気液分離処理を行う工程
(13)前記2次気液分離処理により得られた前記成分Bの減少した第2副生ガスを抜き出す工程
(14)前記2次気液分離処理により得られた主として前記成分Bからなる第2副生液を抜き出す工程
を有することを特徴とする。
The present invention uses a gas separation liquid function based on a separation function of a gas separation membrane having selective permeability and a gas-liquid separation function based on a difference in condensability of each component for a raw material gas containing a plurality of components, Easily permeable and non-condensable component A-rich permeate gas obtained by the separation function, and at least two gas-liquid separation functions located upstream and downstream of the gas separation membrane. A by-product liquid rich in the component B and a by-product gas in which the component B is reduced, wherein at least the second step obtained by the gas-liquid separation function on the downstream side of the following step (1) Step of branching part of raw gas as circulating gas (2) Step of adjusting flow rate and increasing pressure of circulating gas (3) Primary cooling processing and primary gas-liquid separation processing of the circulating gas, or primary air Only liquid separation processing Step (4) Step of extracting the first by-product gas in which the component B obtained by the primary gas-liquid separation process is reduced (5) Mainly comprising the component B obtained by the primary gas-liquid separation process A step of extracting the first byproduct liquid (6) A step of heating the first byproduct gas and then supplying it to the gas separation membrane (7) A step of supplying the raw material gas before the pressurizing process and before the primary cooling process Step of mixing with the circulating gas either before the primary gas-liquid separation treatment, after the primary gas-liquid separation treatment or after the heat treatment (8) The primary pressure of the gas separation membrane or a process value linked thereto (9) A step of separating any of permeated gas and residual gas in the gas separation membrane (10) A step of extracting the permeated gas rich in component A as a product from the gas separation membrane (11) For the gas separation membrane Step (12) of extracting residual gas rich in component B (12) Step of performing secondary cooling treatment and secondary gas-liquid separation treatment of the residual gas (13) Component B obtained by the secondary gas-liquid separation treatment A step of extracting the reduced second byproduct gas (14), characterized in that it comprises a step of extracting a second byproduct liquid mainly composed of the component B obtained by the secondary gas-liquid separation process.

また、本発明は、複数の成分を含有する原料ガスに対して、選択的透過性を有するガス分離膜と各成分の凝縮性の相違に基づく少なくとも2つの気液分離部を有し、前記ガス分離膜から得られる易透過性かつ非凝縮性の成分Aに富んだ透過ガスと、前記気液分離部から得られる難透過性かつ凝縮性の成分Bに富んだ副生液および前記成分Bが減少した副生ガスを生成する装置であって、少なくとも下記の構成要素
(a)前記下流側の気液分離部からの副生ガス流路を分岐して形成される循環ガス流路
(b)前記循環ガス流路に設けられた流量調整部および昇圧部
(c)前記循環ガス流路に接続する第1供給ガス流路
(d)前記第1供給ガス流路に設けられた第1冷却部および第1気液分離部
(e)前記第1気液分離部の気相部から副生ガスが取り出される第1副生ガス流路
(f)前記第1気液分離部の液相部から副生液が取り出される第1副生液流路
(g)前記第1副生ガス流路に設けられた加熱部
(h)前記昇圧部上流、第1冷却部上流、第1気液分離部上流、第1気液分離部下流、あるいは加熱部の下流のいずれかにおいて前記循環ガス流路あるいは第1供給ガス流路と接合し、複数の成分を含有する原料ガスが供給される原料ガス流路
(j)前記第1副生ガス流路に接続され、透過ガスと残留ガスに分離するガス分離膜
(k)前記ガス分離膜から透過される透過ガスが取り出される透過ガス流路
(m)前記ガス分離膜からの残留ガスが供出される残留ガス流路
(n)前記残留ガス流路に配設された第2冷却部および第2気液分離部
(p)前記第2気液分離部の気相部からの副生ガスが供出される第2副生ガス流路
(q)前記第2気液分離部の液相部から副生液が取り出される第2副生液流路
(r)前記分岐以降の前記第2副生ガス流路に配設された第2圧力調整部
を有することを特徴とする。
The present invention also includes a gas separation membrane having selective permeability for a source gas containing a plurality of components and at least two gas-liquid separation units based on the difference in condensability of each component, A permeate gas rich in easily permeable and non-condensable component A obtained from the separation membrane, a by-product liquid rich in hardly permeable and condensable component B obtained from the gas-liquid separator, and the component B An apparatus for generating a reduced by-product gas, at least the following component (a) a circulating gas flow path (b) formed by branching a by-product gas flow path from the downstream gas-liquid separation section A flow rate adjusting unit and a pressure increasing unit provided in the circulating gas channel; (c) a first supply gas channel connected to the circulating gas channel; and (d) a first cooling unit provided in the first supply gas channel. And a first gas-liquid separation part (e) by-product gas from the gas phase part of the first gas-liquid separation part A first by-product gas channel to be discharged (f) a first by-product liquid channel from which a by-product liquid is taken out from the liquid phase part of the first gas-liquid separation unit; and (g) the first by-product gas channel. The provided heating unit (h) the circulating gas flow path or the upstream of the boosting unit, the first cooling unit upstream, the first gas-liquid separation unit upstream, the first gas-liquid separation unit downstream, or the heating unit downstream A source gas channel that is joined to the first supply gas channel and is supplied with a source gas containing a plurality of components (j) A gas that is connected to the first by-product gas channel and separates into a permeate gas and a residual gas Separation membrane (k) Permeate gas channel from which permeated gas permeated from the gas separation membrane is taken out (m) Residual gas channel from which residual gas from the gas separation membrane is supplied (n) In the residual gas channel A second cooling section and a second gas-liquid separation section (p) arranged from the gas phase section of the second gas-liquid separation section; A second by-product gas flow path (q) through which gas is supplied (q) a second by-product liquid flow path from which a by-product liquid is taken out from the liquid phase part of the second gas-liquid separation part (r) It has the 2nd pressure adjustment part arrange | positioned by the byproduct gas flow path.

複数の成分を含む原料ガスから易透過性かつ非凝縮性の成分(本発明において「成分A」とする。)や難透過性かつ凝縮性の成分(本発明において「成分B」とする。)を回収し、所望の純度や回収率を有し所望の製品ガスおよび凝縮性成分を確保する方法として、選択的透過性を有するガス分離膜による分離機能を利用する方法や各成分の凝縮性の相違に基づく気液分離機能を利用する方法があり、従前各々別個に使用されることが多かった。また、これらを組合せる場合においても、前処理として後者を用いた後に、処理されたガスを前者を用いて処理する方法、あるいはその逆の方法は用いられることがあるが、いずれも一方を主とし、他方をその補助とするものであった。本発明は、原料ガスに成分Bが含まれる場合、ガス分離膜の残留ガス中に成分Bが濃縮することを利用し、冷却部と気液分離部の組合せをガス分離膜前後に配設し、ガス分離膜の1次側のガス中での前記成分の凝縮の防止を図るとともに、透過ガスおよび凝縮性成分の回収率の向上を図るものである。   An easily permeable and non-condensable component (referred to as “component A” in the present invention) and a hardly permeable and condensable component (referred to as “component B” in the present invention) from a source gas containing a plurality of components. As a method of ensuring the desired product gas and condensable components with the desired purity and recovery rate, a method using a separation function by a gas separation membrane having selective permeability and the condensability of each component There is a method using a gas-liquid separation function based on the difference, and it has been often used separately. Also, when combining these, after using the latter as a pretreatment, a method of treating the treated gas with the former, or vice versa, may be used. And the other was the auxiliary. The present invention utilizes the fact that component B is concentrated in the residual gas of the gas separation membrane when the component gas is contained in the source gas, and a combination of a cooling unit and a gas-liquid separation unit is disposed before and after the gas separation membrane. In addition to preventing condensation of the components in the gas on the primary side of the gas separation membrane, the recovery rate of the permeated gas and the condensable component is improved.

つまり、初段での成分Bの回収により、残留ガスへ移動する成分Bの減量を図りガス分離膜の1次側のガス中での凝縮の防止を図るとともに、ガス分離膜での透過ガスの効率を上げることができる。また、残留ガス中の濃縮された成分Bを後段の冷却部と気液分離部によって回収することによって、初段での回収と合わせ、成分Bに対して従前にない高い回収率を確保することが可能となる。なお、原料ガスの温度が比較的低温の場合においては、初段の冷却部を必要とせず、直接気液分離部に導入することが可能である。   That is, by collecting component B at the first stage, the amount of component B moving to the residual gas is reduced to prevent condensation in the gas on the primary side of the gas separation membrane, and the efficiency of the permeated gas in the gas separation membrane Can be raised. In addition, by collecting the concentrated component B in the residual gas by the subsequent cooling unit and the gas-liquid separation unit, it is possible to ensure an unprecedented high recovery rate for the component B together with the recovery at the first stage. It becomes possible. In addition, when the temperature of source gas is comparatively low, it is possible to introduce directly into a gas-liquid separation part, without requiring the first stage cooling part.

また、このとき、原料ガスに成分Bが含まれる場合、ガス分離膜の1次側のガス中で成分Bが濃縮することから、ミスト発生を防ぐためには、本来透過ガスとして抜き出すべき成分Aを、残留ガス中にあるレベル残し、露点が下った残留ガスとして抜き出す必要がある。従って、実動操作において、成分Aは、結果的に副生ガスに含まれて抜き出される。そこで、この一部を分岐し循環ガスとして原料ガスと混合すると、その流量に応じて成分Aを、回収再利用することができる。特に、原料ガスに難透過性かつ非凝縮性の成分を含む場合には、循環系の形成により、残留ガス中の前記成分の濃度が上がるので、成分Aの前記レベルを低くすることができるとの効果も加わる。従って、所望の純度を有し所望の製品ガスおよび凝縮性成分を確保するとともに、効率的かつ汎用的な手法で、高い回収率に対しても、ガス分離膜の1次側のガス中で凝縮性成分が液化することを回避することができるガス成分および凝縮性成分の製造方法および製造装置を提供することが可能となる。   At this time, when the component gas is contained in the source gas, the component B is concentrated in the gas on the primary side of the gas separation membrane. Therefore, in order to prevent the generation of mist, the component A that should be originally extracted as the permeated gas is selected. It is necessary to leave a certain level in the residual gas and extract it as a residual gas with a lowered dew point. Therefore, in the actual operation, the component A is extracted as a result of being contained in the byproduct gas. Therefore, when this part is branched and mixed with the raw material gas as a circulating gas, the component A can be recovered and reused according to the flow rate. In particular, when the raw material gas contains a hardly permeable and non-condensable component, the concentration of the component in the residual gas increases due to the formation of the circulation system, so that the level of the component A can be lowered. The effect of. Therefore, while ensuring the desired product gas and condensable components with the desired purity, it is condensed in the gas on the primary side of the gas separation membrane, even for high recovery rates, using an efficient and versatile technique. It becomes possible to provide a manufacturing method and a manufacturing apparatus of a gas component and a condensable component that can avoid the liquefaction of the sexual component.

なお、ここで、「ガス分離膜」とは、1つの膜モジュールを用い供給ガス、透過ガスおよび残留ガスの各流入出路を設けた場合だけではなく、複数の膜モジュールを必要数並列に配設して、各々の供給ガス、透過ガスおよび残留ガスの各流入出路毎に統合して構成した場合を含むものとする。また、「凝縮性成分」とは、凝縮処理に対して凝縮性を有する成分をいい、ガス分離膜に対する透過性の容難に限定されるものではない。「易透過性かつ非凝縮性の成分」とは、ガス分離膜に対して易透過性を有し、かつ凝縮処理に対して非凝縮性を有する成分をいい、具体的には、後述の実施例において、例えば原料ガス中に、水素、メタン、ブタン、ペンタンが混在する場合についての水素をいう。「難透過性かつ非凝縮性の成分」とは、ガス分離膜に対して難透過性を有し、かつ凝縮処理に対して非凝縮性を有する成分をいい、上記例におけるメタンをいい、「難透過性かつ凝縮性の成分」とは、ガス分離膜に対して難透過性を有し、かつ凝縮処理に対して凝縮性を有する成分をいい、上記例におけるブタンおよびペンタンをいう。また、本発明は、原料ガス中に透過性かつ凝縮性の成分(例えば、後述の実施例における原料ガス中に水分)が少量含まれる場合にも本質的に同様の効果がある。従って、本発明は、このような場合を含むことを注記しておく。また、ここでいう「圧力と連動するプロセス値」とは、圧力変化に伴い変化するプロセス値をいい、1次圧力に対する残留ガス流量、2次圧力に対する透過ガス流量を挙げることができる。以下同様である。   Here, the “gas separation membrane” is not only a case where a single membrane module is used and each inflow / outflow passage for the supply gas, permeate gas and residual gas is provided, but a plurality of membrane modules are arranged in parallel. In addition, the case where the supply gas, the permeation gas, and the residual gas are integrated for each inflow / outflow path is included. The “condensable component” refers to a component having condensability with respect to the condensation treatment, and is not limited to difficulty in permeability to the gas separation membrane. “Easily permeable and non-condensable component” means a component that is easily permeable to the gas separation membrane and non-condensable to the condensation treatment. In the examples, for example, hydrogen in a case where hydrogen, methane, butane, and pentane are mixed in the raw material gas. “Non-condensable and non-condensable component” refers to a component that is hardly permeable to the gas separation membrane and non-condensable to the condensation treatment, and refers to methane in the above example. The term “refractory and condensable component” refers to a component that is hardly permeable to the gas separation membrane and condensable to the condensation treatment, and refers to butane and pentane in the above example. In addition, the present invention has essentially the same effect even when a small amount of a permeable and condensable component (for example, moisture in the raw material gas in Examples described later) is contained in the raw material gas. Therefore, it should be noted that the present invention includes such a case. In addition, the “process value linked with pressure” here refers to a process value that changes with a change in pressure, and includes a residual gas flow rate with respect to the primary pressure and a permeate gas flow rate with respect to the secondary pressure. The same applies hereinafter.

本発明は、上記ガス成分および凝縮性成分の製造方法であって、減量操作に際して、前記循環ガスの流量を減量度に応じて調整することを特徴とする。   The present invention is a method for producing the gas component and the condensable component, wherein the flow rate of the circulating gas is adjusted according to the degree of weight reduction during the weight reduction operation.

原料ガスに難透過性かつ凝縮性の成分が含まれる場合、ガス分離膜の1次側のガス中での凝縮性成分の液化を防ぐためには、残留ガスの露点が低い状態を保持することが求められ、上記のように、副生ガスの一部を分岐し循環ガスとして原料ガスと混合する循環系の形成により、ガス分離膜の1次側のガス中において凝縮性成分が液化することを回避することができる。しかし、原料ガスの減量操作が生じた場合、ガス分離膜の1次圧力を一定にしたままであれば、残留ガス出口での透過性ガスの濃度は低下し、凝縮性成分の液化しやすくなる。このとき、循環ガスの流量を増加させると、残留ガス中の非凝縮性成分の濃度は増加することから凝縮性成分の液化を防止することができる。このように、循環ガスの流量を減量度に応じて調整することによって、所望の純度や回収率を有し所望の製品ガスおよび凝縮性成分を確保するとともに、高い回収率に対しても、ガス分離膜の1次側のガス中で凝縮性成分が液化することを回避することができる。特に、原料ガスに昇圧部が必要なときには循環ガスの昇圧部と兼用することができ、減量操作においても昇圧部の余剰能力を活用することが可能である。   When the raw material gas contains a hardly permeable and condensable component, in order to prevent liquefaction of the condensable component in the gas on the primary side of the gas separation membrane, the state where the dew point of the residual gas is kept low may be maintained. As described above, by forming a circulation system in which a part of the by-product gas is branched and mixed with the source gas as a circulation gas, the condensable component is liquefied in the gas on the primary side of the gas separation membrane. It can be avoided. However, when the raw material gas is reduced, if the primary pressure of the gas separation membrane is kept constant, the concentration of the permeable gas at the outlet of the residual gas is lowered, and the condensable component is easily liquefied. . At this time, if the flow rate of the circulating gas is increased, the concentration of the non-condensable component in the residual gas increases, so that the condensable component can be prevented from being liquefied. In this way, by adjusting the flow rate of the circulating gas according to the degree of weight loss, the desired product gas and condensable components having the desired purity and recovery rate can be secured, and the gas can also be used for a high recovery rate. It is possible to avoid liquefaction of the condensable component in the gas on the primary side of the separation membrane. In particular, when a booster is required for the raw material gas, it can also be used as a booster for circulating gas, and it is possible to utilize the surplus capacity of the booster in the reduction operation.

本発明は、上記ガス成分および凝縮性成分の製造方法であって、減量操作に際して、前記第1ガス分離膜の1次圧力、2次圧力あるいはこれらと連動するプロセス値のいずれかを減量度に応じて調整することを特徴とする。   The present invention provides a method for producing the gas component and the condensable component, wherein the primary pressure, the secondary pressure, or a process value associated therewith in the first gas separation membrane is reduced to a reduction degree during the reduction operation. It adjusts according to it, It is characterized by the above-mentioned.

原料ガスの減量操作が生じた場合、第2副生ガスの一部を循環する効果に加え、原料ガスの流量の減少に応じて1次圧力P1を低下させると凝縮性ガスの分圧が低くなるので、第1ガス分離膜の1次側のガス中での凝縮性成分の液化を防止することができる。また、1次圧力P1に代え、残留ガス流量を増やす調整を行っても同様の効果がある。さらに、2次圧力P2を上昇させる調整あるいは透過ガス量を少なくする調整を行い、透過性ガスの回収率の増加を抑えることによっても、第1ガス分離膜の1次側のガス中での凝縮性成分の液化を防止することができる。   When the operation of reducing the source gas occurs, in addition to the effect of circulating a part of the second by-product gas, if the primary pressure P1 is reduced in accordance with the decrease in the flow rate of the source gas, the partial pressure of the condensable gas is lowered. Therefore, liquefaction of the condensable component in the gas on the primary side of the first gas separation membrane can be prevented. The same effect can be obtained by adjusting the residual gas flow rate in place of the primary pressure P1. Furthermore, by adjusting the secondary pressure P2 or adjusting the amount of permeate gas to reduce the increase in the permeate gas recovery rate, condensation in the gas on the primary side of the first gas separation membrane can also be achieved. The liquefaction of the sex component can be prevented.

本発明は、上記ガス成分および凝縮性成分の製造方法であって、前記循環ガスの流量と原料ガスの流量の流量比をrとおき、
原料ガス組成と前記ガス分離膜の特性を基に、前記ガス分離膜の残留ガス流路出口直後における圧力下の露点Zの基準値Zaを設定し、前記ガス分離膜の残留ガスの圧力と残留ガス中の前記成分Aの濃度の間の相関関数に関して、前記流量比rをパラメータとして含む形で予め解析しておき、
運転操作において、前記相関関数を利用して、前記流量比rと残留ガス中の前記成分Aの濃度の計測値から、前記露点Zが前記基準値Za以下になるように監視するとともに、前記基準値Zaを超える場合、前記循環ガスの流量、前記ガス分離膜の残留ガスの圧力、透過ガスの圧力もしくはこれらと連動するプロセス値のいずれかの調整を行って、前記基準値Za以下に保ち、前記ガス分離膜の1次側のガス中での液化を防止することを特徴とする。
The present invention is a method for producing the gas component and the condensable component, wherein the flow rate ratio between the flow rate of the circulating gas and the flow rate of the raw material gas is set as r,
Based on the raw material gas composition and the characteristics of the gas separation membrane, a reference value Za for the dew point Z under pressure immediately after the residual gas flow path outlet of the gas separation membrane is set, and the pressure and residual pressure of the residual gas in the gas separation membrane are set. The correlation function between the concentrations of the component A in the gas is analyzed in advance in a form including the flow rate ratio r as a parameter,
In operation, the correlation function is used to monitor the dew point Z from the measured value of the flow rate ratio r and the concentration of the component A in the residual gas so that the dew point Z is not more than the reference value Za. If the value Za is exceeded, the flow rate of the circulating gas, the pressure of the residual gas of the gas separation membrane, the pressure of the permeating gas or the process value linked to these are adjusted, and kept below the reference value Za, Liquefaction in the gas on the primary side of the gas separation membrane is prevented.

ガス分離膜へ供給される原料ガス組成および残留ガス露点を固定したとき、残留ガス圧力Prと残留ガス中の成分Aの濃度Xとの間には、1/PrとXとが線形となるような相関が有り、種々のパラメータを含む形でこの相関関数は拡張できるとともに、具体的事例において、ガス分離膜の1次側での凝縮性成分が液化することを回避するために利用できる(特願2007−232918参照)。本発明は、残留ガス流路出口直後における圧力下の露点を基準とし、循環ガス流量と原料ガス流量の流量比rを含む形への拡張であり、後述する実施例での数値値解析によっても、その有効性は確認された。この相関関数は、ガス分離膜の1次側での液化を防止する判断に供し、もし必要なら循環ガス流量、ガス分離膜の残留ガス圧力、透過ガス圧力もしくはこれらと連動するプロセス値のいずれかの調整を行うことができる。以下、残留ガス流路出口直後における圧力下の露点を「残留ガス露点Z」といい、その基準値をZa,Zbこのように、本発明によって、汎用的かつ安価な方法で、ガス分離膜の1次側のガス中で凝縮性成分が液化することを回避して、所望の純度を確保しつつ、可能な限り高い回収率を得ることができるガス成分および凝縮性成分の製造方法を提供することが可能となる。   When the raw material gas composition supplied to the gas separation membrane and the residual gas dew point are fixed, 1 / Pr and X are linear between the residual gas pressure Pr and the concentration X of the component A in the residual gas. The correlation function can be expanded to include various parameters, and can be used to avoid liquefaction of condensable components on the primary side of the gas separation membrane in specific cases (special features). Application 2007-232918). The present invention is based on the dew point under pressure immediately after the outlet of the residual gas passage, and is expanded to include a flow rate ratio r between the circulating gas flow rate and the raw material gas flow rate, and also by numerical value analysis in the examples described later. The effectiveness was confirmed. This correlation function is used to determine whether to prevent liquefaction on the primary side of the gas separation membrane. If necessary, either the circulating gas flow rate, the residual gas pressure of the gas separation membrane, the permeate gas pressure, or a process value linked to these can be selected. Adjustments can be made. Hereinafter, the dew point under pressure immediately after the outlet of the residual gas flow path is referred to as “residual gas dew point Z”, and the reference values thereof are Za and Zb. Provided is a gas component and a method for producing a condensable component that can avoid the liquefaction of the condensable component in the gas on the primary side and obtain the highest possible recovery rate while ensuring the desired purity. It becomes possible.

本発明は、上記ガス成分および凝縮性成分の製造方法であって、前記ガス分離膜を複数段利用し、前段のガス分離膜の残留ガスを後段のガス分離膜に供給し、カスケード接続を形成することを特徴とする。   The present invention is a method for producing the above gas component and condensable component, which uses a plurality of stages of the gas separation membrane, and supplies the residual gas of the gas separation membrane of the preceding stage to the gas separation membrane of the subsequent stage to form a cascade connection It is characterized by doing.

また、本発明は、上記ガス成分および凝縮性成分の製造装置であって、前記ガス分離膜を複数段利用し、前段のガス分離膜の残留ガス流路を後段のガス分離膜の供給ガス流路に接続し、カスケード接続を形成することを特徴とする。   Further, the present invention provides the above-described apparatus for producing a gas component and a condensable component, wherein the gas separation membrane is used in a plurality of stages, and the residual gas flow path of the preceding gas separation membrane is used as the supply gas flow of the latter gas separation membrane. It is characterized by connecting to the road and forming a cascade connection.

通常、カスケードサイクルは、純度の異なる複数の製品ガスを作製する場合などに、複数段のガス分離膜を用い、各透過ガスを製品ガスとすることで、比較的小さな膜面積であっても所定の製品純度および回収率を確保することができる。このカスケードサイクルの一般的利点に加え、第2副生ガスの一部を循環する本発明によれば、ガス分離膜の1次側のガス中で凝縮性成分が液化することを回避しつつ、更に高い回収率を確保てきる。また、前段のガス分離膜からの残留ガス中には透過ガスが比較的多く含まれていることから、残留ガス露点は比較的低く凝縮性成分が液化する可能性は低く、各段のガス分離膜の1次圧力を順次低く制御することにより、順次後段のガス分離膜に供給されるに従い、凝縮性成分が濃縮されても、液化することを避けることが可能となり、さらに、透過性ガスの回収率を上げることが可能となる。従って、所望の純度や回収率を有し所望の製品ガスおよび凝縮性成分を確保するとともに、効率的かつ汎用的な手法で、高い回収率に対しても、ガス分離膜の1次側のガス中で凝縮性成分が液化することを回避することができるガス成分および凝縮性成分の製造方法および製造装置を提供することが可能となる。   Usually, the cascade cycle uses a plurality of stages of gas separation membranes when producing a plurality of product gases having different purities, and each permeate gas is a product gas. Product purity and recovery rate can be ensured. In addition to the general advantage of this cascade cycle, according to the present invention that circulates a part of the second by-product gas, while avoiding liquefaction of condensable components in the gas on the primary side of the gas separation membrane, A higher recovery rate is secured. In addition, since the residual gas from the gas separation membrane in the previous stage contains a relatively large amount of permeated gas, the residual gas dew point is relatively low and the possibility that the condensable component is liquefied is low. By successively controlling the primary pressure of the membrane, it is possible to avoid liquefaction even if the condensable component is concentrated as it is sequentially supplied to the subsequent gas separation membrane. The recovery rate can be increased. Therefore, while ensuring the desired product gas and condensable components with the desired purity and recovery rate, the gas on the primary side of the gas separation membrane can also be used for high recovery rates with an efficient and versatile technique. It is possible to provide a method for producing a gas component and a condensable component and a production apparatus that can avoid liquefaction of the condensable component therein.

以上のように、本発明に係るガス成分および凝縮性成分の製造方法および製造装置を適用することによって、所望の純度や回収率を有し所望の製品ガスおよび凝縮性成分を確保するとともに、効率的かつ汎用的な手法で、高い回収率に対しても、ガス分離膜の1次側のガス中で凝縮性成分が液化することを回避することができるガス成分および凝縮性成分の製造方法および製造装置を提供することが可能となる。特に、減量操作に際して、さらに高い回収率を得ることが可能となった。   As described above, by applying the method and apparatus for producing a gas component and a condensable component according to the present invention, the desired product gas and the condensable component having a desired purity and recovery rate are ensured and efficiency is improved. Gas component capable of avoiding liquefaction of condensable components in the gas on the primary side of the gas separation membrane and a method for producing the condensable components, and a high recovery rate by a general and general technique, and A manufacturing apparatus can be provided. In particular, a higher recovery rate can be obtained during the weight reduction operation.

以下、本発明の実施の形態について、図面を参照しながら説明する。ここでは、複数の成分を含有する原料ガスに対して、選択的透過性を有するガス分離膜による分離機能と各成分の凝縮性の相違に基づく気液分離機能を利用し、分離機能によって得られる易透過性かつ非凝縮性の成分Aに富んだ透過ガスと、ガス分離膜の上流および下流に位置する少なくとも2つの気液分離機能によって得られる難透過性かつ凝縮性の成分Bに富んだ副生液および成分Bが減少した副生ガスを生成するプロセスにおいて、ガス分離膜による選択的分離処理の前後に、原料ガスの1次冷却処理および1次気液分離処理、および残留ガスの2次冷却処理および2次気液分離処理を行い、第2副生ガスの一部を分岐循環し原料ガスに合流することにより、所望の純度の透過ガスを作製するとともに、凝縮性成分についても所望の回収率を確保することが基本となる。なお、本プロセスに要求される条件は、上流、下流のプロセス構成や製品ガスの用途により、様々に変化し、それに応じてその運転条件や制御方法が選定されるので、ここでは典型的な例を挙げた。本発明は、以下に述べる構成例に限定されるものでなく、ガス分離膜プロセス一般に上記特徴を組み合わせることにより、多くの変形や拡張が可能である。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Here, for a source gas containing a plurality of components, a separation function using a gas separation membrane having selective permeability and a gas-liquid separation function based on the difference in condensability of each component are used to obtain the separation gas. A permeation gas rich in easily permeable and non-condensable component A and a low-permeability and condensable component B-rich side gas obtained by at least two gas-liquid separation functions located upstream and downstream of the gas separation membrane. In the process of generating a by-product gas in which the raw liquid and component B are reduced, the raw material gas is subjected to primary cooling treatment and primary gas-liquid separation treatment and residual gas secondary treatment before and after the selective separation treatment by the gas separation membrane. A cooling process and a secondary gas-liquid separation process are performed, and a part of the second by-product gas is branched and circulated to join the raw material gas, so that a permeated gas having a desired purity is produced and a condensable component is also desired. Times It is the basic to ensure the rate. The conditions required for this process vary depending on the upstream and downstream process configurations and product gas applications, and the operating conditions and control method are selected accordingly. Mentioned. The present invention is not limited to the configuration examples described below, and many variations and expansions are possible by combining the above characteristics in general with gas separation membrane processes.

<本発明に係るガス成分および凝縮性成分の製造装置の基本構成例>
図1に、本発明に係るガス成分および凝縮性成分の製造装置(以下「本装置」という。)の1の構成例(第1構成例、本装置1)を示す。具体的には、原料ガス流路Uo、第1供給ガス流路U1、第1副生ガス流路G1、第1副生液流路L1、ガス分離膜S、透過ガス流路T1、残留ガス流路R1、第2副生ガス流路G2、第2副生液流路L2、循環ガス流路Fa、第1供給ガス流路U1に設けられた第1冷却部C1および第1気液分離部D1、第1副生ガス流路G1に設けられた加熱部H、第1副生液流路L1に設けられた第1液面検知部LC1および第1制御弁LCV1、残留ガス流路R1に設けられた第2冷却部C2および第2気液分離部D2、第2副生ガス流路G2に設けられた圧力調整手段PCr1(圧力制御弁PCV1および圧力調節計PC1)、第2副生液流路L2に設けられた第2液面検知部LC2および第2制御弁LCV2、循環ガス流路Faに設けられた流量調整手段FCr1(流量制御弁FCV1および流量調節計FC1)および昇圧部E、および制御部(図示せず)から構成される。ここで、循環ガス流路Faは、第2副生ガス流路G2に設けられた分岐点を起点とし、流量調整手段FCr1および昇圧部Eを介して第1供給ガス流路U1(原料ガス流路Uoと接続する)に接続することによって形成される。また、ガス製造プロセスの性能確認用に、原料ガスの分析ポートAPoおよび透過ガスの分析ポートAP1(ガスクロ分析計などによるバッチ分析に利用する)が設けられている。なお、分析ポートに代え、濃度計測手段を設けることも可能である。詳細は後述する。
<Example of basic configuration of gas component and condensable component manufacturing apparatus according to the present invention>
FIG. 1 shows a configuration example (first configuration example, the present apparatus 1) of a gas component and condensable component production apparatus (hereinafter referred to as “the present apparatus”) according to the present invention. Specifically, the raw material gas flow path Uo, the first supply gas flow path U1, the first by-product gas flow path G1, the first by-product liquid flow path L1, the gas separation membrane S, the permeate gas flow path T1, the residual gas. The first cooling section C1 and the first gas-liquid separation provided in the flow path R1, the second by-product gas flow path G2, the second by-product liquid flow path L2, the circulation gas flow path Fa, the first supply gas flow path U1. Part D1, heating unit H provided in the first by-product gas flow path G1, first liquid level detection unit LC1 and first control valve LCV1 provided in the first by-product liquid flow path L1, residual gas flow path R1 Pressure adjusting means PCr1 (pressure control valve PCV1 and pressure regulator PC1) provided in the second cooling part C2 and the second gas-liquid separation part D2 provided in the second by-product gas flow path G2, and the second by-product. The second liquid level detector LC2 and the second control valve LCV2 provided in the liquid flow path L2, and the flow provided in the circulation gas flow path Fa It consists adjusting means FCR1 (flow control valve FCV1 and flow adjusting meter FC1) and the step-up unit E, and a control unit (not shown). Here, the circulation gas flow channel Fa starts from a branch point provided in the second by-product gas flow channel G2, and flows through the first supply gas flow channel U1 (raw material gas flow through the flow rate adjusting means FCr1 and the booster E. Connected to the path Uo). Also, a raw material gas analysis port APo and a permeate gas analysis port AP1 (used for batch analysis by a gas chromatograph, etc.) are provided for performance confirmation of the gas production process. It should be noted that a concentration measuring means can be provided instead of the analysis port. Details will be described later.

本装置1は、原料ガスに比較的多くの成分Bが含まれる場合、ミスト発生を防ぐために行われる、原料ガスの1次冷却処理および1次気液分離処理、ガス分離膜による選択的分離処理および残留ガスの2次冷却処理および2次気液分離処理の負荷の低減を図るもので、2次気液分離処理後の凝縮性成分の少ない第2副生ガスの一部を分岐し、循環ガスとして原料ガスと混合すると、その流量に応じて成分A(例えば水素)を、回収再利用することができる。つまり、こうした循環系の形成により、第1供給ガス中の水素濃度が上がるので、残留ガス中に残留する水素濃度を作為的に上げる必要がなく、ガス分離膜Sの特性に合せた条件設定をすることができるとの効果も加わる。   In the present apparatus 1, when the source gas contains a relatively large amount of component B, the source gas is subjected to primary cooling processing and primary gas-liquid separation processing, and selective separation processing using a gas separation membrane, which is performed to prevent mist generation. In order to reduce the load of the secondary gas cooling process and the secondary gas-liquid separation process of the residual gas, a part of the second by-product gas with less condensable components after the secondary gas-liquid separation process is branched and circulated. When mixed with the source gas as a gas, the component A (for example, hydrogen) can be recovered and reused according to the flow rate. In other words, the formation of such a circulation system increases the hydrogen concentration in the first supply gas, so there is no need to artificially increase the hydrogen concentration remaining in the residual gas, and the conditions set according to the characteristics of the gas separation membrane S can be set. The effect of being able to do is also added.

このとき、原料ガスと循環ガスとの混合ポイントは、図1に示すような昇圧部Eの直前に限定されず、原料ガスの圧力、温度あるいはその露点などによって、破線a〜dで示すように、a:昇圧部Eと第1冷却部C1の中間、b:第1冷却部C1と第1気液分離部D1の中間、c:第1気液分離部D1と加熱部Hの間あるいはd:加熱部Hとガス分離膜Sの間に設けることが可能である。また、こうした構成は、以下の構成例においても同様に適用することができる。なお、上記aの場合で、循環ガスの昇圧のためのみに昇圧部Eが使われる場合には循環ループの圧力損失を補償するのみで良く、エジェクタを用い、原料ガスの流れで循環ガスを吸引するとの方式を用いることも可能である。   At this time, the mixing point of the source gas and the circulating gas is not limited to the point immediately before the pressurizing unit E as shown in FIG. 1, but as indicated by broken lines a to d depending on the pressure, temperature, or dew point of the source gas. A: intermediate between the booster E and the first cooling part C1, b: intermediate between the first cooling part C1 and the first gas-liquid separation part D1, c: between the first gas-liquid separation part D1 and the heating part H or d : It can be provided between the heating part H and the gas separation membrane S. Such a configuration can be similarly applied to the following configuration examples. In the case of a, when the booster E is used only for boosting the circulating gas, it is only necessary to compensate for the pressure loss of the circulating loop, and the ejector is used to suck the circulating gas by the flow of the source gas. Then, it is possible to use this method.

本装置1においては、原料ガスを供給する1次圧力P1の制御を、第2副生ガス流路G2に設けられた圧力調整手段PCr1によって行う構成を例示しているが、圧力調整手段PCr1を原料ガス流路Uo、供給ガス流路U1、第1副生ガス流路G1、第1残留ガス流路R1あるいは別途バイパス流路を追加してそこに配設する構成等、これに限定されるものでないことはいうまでもない。なお、第2気液分離部D2での凝縮は、一般に高圧の状態の方が効果的であるので、圧力制御弁PCV1を第2副生ガス流路G2の循環ガス分岐点以降に置くことが望ましい。また、1次圧力P1の制御に代え、1次圧力の変化に伴い変化するプロセス値として、残留ガス流量を制御することも可能である。以下同様である。   In the present apparatus 1, the configuration in which the primary pressure P1 for supplying the raw material gas is controlled by the pressure adjusting means PCr1 provided in the second by-product gas flow path G2, but the pressure adjusting means PCr1 is controlled. The material gas flow path Uo, the supply gas flow path U1, the first by-product gas flow path G1, the first residual gas flow path R1, or a configuration in which a separate bypass flow path is additionally provided, and the like are limited thereto. It goes without saying that it is not a thing. In addition, since the condensation in the second gas-liquid separation part D2 is generally more effective in a high pressure state, the pressure control valve PCV1 may be placed after the circulation gas branch point of the second by-product gas flow path G2. desirable. Further, instead of controlling the primary pressure P1, it is also possible to control the residual gas flow rate as a process value that changes as the primary pressure changes. The same applies hereinafter.

原料ガスは、精製ガスあるいは粗製ガスを精製処理されたガスを供給することが好ましく、具体的には、精製空気、精製ナフサ分解ガス、精製改質ガス、精製水性ガス、精製天然ガスなどが該当する。原料ガスの供給条件は、通常、環境温度とし、流量約1,000〜100,000[Nm/h]の上記各種ガスが使用される。また、圧力条件は、透過ガスの用途などによって異なるが、1〜50[bar(abs)]程度に加圧して使用する。 The raw material gas is preferably a refined gas or a refined gas supplied from a refined gas, specifically, purified air, purified naphtha cracked gas, purified reformed gas, purified water gas, purified natural gas, etc. To do. The supply conditions of the source gas are usually the ambient temperature, and the various gases described above having a flow rate of about 1,000 to 100,000 [Nm 3 / h] are used. In addition, the pressure condition varies depending on the use of the permeating gas, but is pressurized to about 1 to 50 [bar (abs)].

ガス分離膜Sは、原料ガスあるいは透過ガスの種類によって、最適な素材や容量(表面積)あるいは形状などが選択される。ガス分離膜Sの素材として、例えば、ポリエチレン(PE)、ポリプロピレン(PP)、シリコーンゴム、ポリスルフォン、酢酸セルロース、ポリアラミド(PA)やポリイミド(PI)などの分離膜を挙げることができる。本装置1においては、これらに限定されるものではない。   For the gas separation membrane S, an optimum material, capacity (surface area), shape, or the like is selected depending on the type of the source gas or the permeated gas. Examples of the material of the gas separation membrane S include separation membranes such as polyethylene (PE), polypropylene (PP), silicone rubber, polysulfone, cellulose acetate, polyaramid (PA), and polyimide (PI). The apparatus 1 is not limited to these.

ここで、ガス分離膜Sへ原料ガスを供給する第1副生ガス流路G1に、加熱手段(加熱部H)を設けることが好ましい。ガス分離膜Sは、その特性と用途に応じて適切な温度でガス分離を行うことが望ましく、原料ガスを適切な温度まで加熱することが必要となる。また、原料ガス中に液体のミストが含まれた場合には、ガス分離膜Sの材質によってはその変質を齎すことがある。より詳細には、原料ガス中に高沸点成分が含まれる場合には、常温で液化を起こす可能性があり、この高沸点成分が難透過性ガスであるとき、ガス分離膜Sの1次側のガス中に高沸点成分が濃縮し液化する恐れがある。そのため、第1供給ガス流路U1に設けられた第1冷却部C1によって例えば約40℃(夏季の条件)まで原料ガスを冷却し、第1気液分離部D1によって凝縮液化成分を分離後、加熱部Hにて加熱することにより、ガス分離膜Sでの液体ミストの生成の恐れを回避することができる。ただし、原料ガス中に含まれる高沸点成分が少量の場合には、第1冷却部C1をパスすることも可能であり(つまり、第1供給ガス流路U1への原料ガスの供給)、さらには第1気液分離部D1をパスすることも可能である(つまり、第1副生ガス流路G1への原料ガスの供給)。   Here, it is preferable to provide a heating means (heating unit H) in the first by-product gas flow path G1 for supplying the source gas to the gas separation membrane S. The gas separation membrane S desirably performs gas separation at an appropriate temperature according to its characteristics and application, and it is necessary to heat the source gas to an appropriate temperature. Further, when liquid mist is contained in the raw material gas, depending on the material of the gas separation membrane S, the alteration may occur. More specifically, when a high-boiling component is contained in the raw material gas, liquefaction may occur at room temperature. When this high-boiling component is a hardly permeable gas, the primary side of the gas separation membrane S is used. There is a risk that high-boiling components concentrate in the gas and liquefy. Therefore, after the source gas is cooled to, for example, about 40 ° C. (summer conditions) by the first cooling part C1 provided in the first supply gas flow path U1, and the condensed liquefied component is separated by the first gas-liquid separation part D1, By heating in the heating part H, the possibility of generating liquid mist in the gas separation membrane S can be avoided. However, when the high-boiling component contained in the raw material gas is small, it is possible to pass through the first cooling section C1 (that is, supply of the raw material gas to the first supply gas flow path U1), and further Can pass through the first gas-liquid separation part D1 (that is, supply of the raw material gas to the first by-product gas flow path G1).

分析ポートAPoおよびAP1から採取したガスは、ガスクロマトグラフィーなどを使用してバッチ分析を行い、定期的な分析結果から、演算式の係数を修正する方式を採ることができる。また、これに代え、濃度計測手段を後述するように制御に利用することもできる。濃度計測手段は、所望の成分、つまり製品ガス成分に対して選択性の高い分析計が好ましく、連続分析で信頼できるものが好ましい。また、製品ガスに対して化学的な変化を生じさせない分析計が好ましい。例えば、成分が水素の場合には熱伝導度式分析計や成分がメタンの場合には赤外線吸光式分析計などを挙げることができる。また、バッチ分析と連続分析を併用する方式も可能である。より信頼できるバッチ分析の結果から連続分析計の誤差を確認しつつ、微調整の判断に供することができる。   The gas collected from the analysis ports APo and AP1 can be batch-analyzed using gas chromatography or the like, and a method of correcting the coefficient of the arithmetic expression from the periodic analysis results can be adopted. Alternatively, the density measuring means can be used for control as will be described later. The concentration measuring means is preferably an analyzer having high selectivity with respect to a desired component, that is, a product gas component, and preferably a device that can be trusted by continuous analysis. An analyzer that does not cause a chemical change in the product gas is preferable. For example, when the component is hydrogen, a thermal conductivity analyzer can be used, and when the component is methane, an infrared absorption analyzer can be used. In addition, a method using both batch analysis and continuous analysis is also possible. While checking the error of the continuous analyzer from the result of more reliable batch analysis, it can be used for judgment of fine adjustment.

〔本装置1を用いた制御方法例〕
本装置1のガス分離膜Sに供給される原料ガスから最終製品ガスおよび凝縮性成分の作製までのプロセスにおいては、ガス分離膜Sの透過ガスを製品ガスとした場合、少なくとも以下の工程によって構成される。
(1)第2副生ガスの一部を、循環ガスとして分岐する工程
(2)循環ガスの流量調整および昇圧を行う工程:このときの流量が制御対象となる。
(3)循環ガスの1次冷却処理および1次気液分離処理、あるいは1次気液分離処理のみを行う工程
(4)第1副生ガスを抜き出す工程
(5)第1副生液を抜き出す工程
(6)第1副生ガスを加熱処理した後、ガス分離膜Sに供給する工程
(7)原料ガスを供給し、昇圧処理前において循環ガスと混合する工程:混合するポイントは、原料ガスの性状により、1次冷却処理前、1次気液分離処理前、1次気液分離処理後あるいは加熱処理した後のいずれでも可能である。
(8)ガス分離膜Sの1次圧力あるいはこれと連動するプロセス値のいずれかを調整する工程:このときの圧力が制御対象となる。
(9)ガス分離膜Sにおいて、透過ガスと残留ガスに分離する工程
(10)透過ガスを製品として抜き出す工程
(11)残留ガスを抜き出す工程
(12)残留ガスの2次冷却処理および2次気液分離処理を行う工程
(13)第2副生ガスを抜き出す工程
(14)第2副生液を抜き出す工程
[Example of control method using the apparatus 1]
In the process from the raw material gas supplied to the gas separation membrane S of the present apparatus 1 to the production of the final product gas and the condensable component, when the permeate gas of the gas separation membrane S is the product gas, the process gas is constituted by at least the following steps. Is done.
(1) A step of branching a part of the second by-product gas as a circulating gas (2) A step of adjusting the flow rate and increasing the pressure of the circulating gas: The flow rate at this time is a control target.
(3) A step of performing only the primary cooling process and the primary gas-liquid separation process of the circulating gas, or the primary gas-liquid separation process (4) the step of extracting the first byproduct gas (5) the step of extracting the first byproduct liquid Step (6) Step of supplying the gas separation membrane S after heat treatment of the first by-product gas (7) Step of supplying the raw material gas and mixing it with the circulating gas before the pressure increasing treatment: The point of mixing is the raw material gas Depending on the nature, it can be performed before the primary cooling process, before the primary gas-liquid separation process, after the primary gas-liquid separation process, or after the heat treatment.
(8) Step of adjusting either the primary pressure of the gas separation membrane S or the process value linked with this: The pressure at this time becomes the control target.
(9) Step of separating permeate gas and residual gas in gas separation membrane S (10) Step of extracting permeate gas as product (11) Step of extracting residual gas (12) Secondary cooling treatment and secondary air of residual gas Step of performing liquid separation process (13) Step of extracting second by-product gas (14) Step of extracting second by-product liquid

ここで、製品ガス濃度および回収率を所望の範囲に調整するために、1次圧力P1を制御すると同時に、循環ガスの流量F1を制御することが好ましい。具体的には、分析ポートAPoおよびAP1から採取した所望の成分の濃度を基に、第2副生ガス流路G2に設けられた圧力調整手段PCr1(圧力制御弁PCV1および圧力調節計PC1)、および循環ガス流路Faに設けられた流量調整手段FCr1(流量制御弁FCV1および流量調節計FC1)にて制御される。   Here, in order to adjust the product gas concentration and the recovery rate to desired ranges, it is preferable to control the primary pressure P1 and simultaneously control the flow rate F1 of the circulating gas. Specifically, based on the concentration of the desired component collected from the analysis ports APo and AP1, pressure adjusting means PCr1 (pressure control valve PCV1 and pressure regulator PC1) provided in the second by-product gas flow path G2, The flow rate is controlled by flow rate adjusting means FCr1 (flow rate control valve FCV1 and flow rate controller FC1) provided in the circulation gas flow path Fa.

また、減量操作に際しても、上記同様(i)ガス分離膜Sの1次圧力P1あるいは2次圧力P2を減量度に応じて調整する方法、(ii)循環ガスの流量F1を減量度に応じて調整する方法、および(iii)減量度に応じて(i)と(ii)を組み合わせて調整する方法を用いることが可能である。   In the reduction operation, (i) a method of adjusting the primary pressure P1 or the secondary pressure P2 of the gas separation membrane S according to the amount of reduction, and (ii) the circulation gas flow rate F1 according to the amount of reduction. It is possible to use a method of adjusting, and (iii) a method of adjusting by combining (i) and (ii) according to the degree of weight loss.

(i)ガス分離膜Sの1次圧力P1あるいは2次圧力P2を減量度に応じて調整する方法
原料ガスに難透過性かつ凝縮性の成分が含まれる場合、原料ガスの減量操作において、ガス分離膜Sの1次圧力P1を一定にしたままであれば、上記のようにガス分離膜Sの1次側のガス中において凝縮性成分の液化を生じるおそれがある。第2副生ガスの一部を循環する効果に加え、原料ガスの流量の減少に応じて1次圧力P1を低下させた時、凝縮性ガスの分圧が低くなるので、ガス分離膜Sの1次側のガス中での凝縮性成分の液化を防止することができる。このとき、透過ガスと残留ガスの各々の流量も原料ガスの流量に応じて変化することから、減量操作においての安定的な回収率を確保することができる。
(I) Method for adjusting the primary pressure P1 or the secondary pressure P2 of the gas separation membrane S according to the degree of weight reduction When the raw material gas contains a hardly permeable and condensable component, If the primary pressure P1 of the separation membrane S is kept constant, the condensable component may be liquefied in the gas on the primary side of the gas separation membrane S as described above. In addition to the effect of circulating a part of the second by-product gas, when the primary pressure P1 is lowered in accordance with the decrease in the flow rate of the raw material gas, the partial pressure of the condensable gas is lowered. Liquefaction of the condensable component in the primary gas can be prevented. At this time, since the flow rates of the permeate gas and the residual gas also change according to the flow rate of the raw material gas, a stable recovery rate in the weight reduction operation can be ensured.

ただし、製品に対する要求仕様によっては、減量に際して、透過性ガスの濃度の低下やガス分離膜Sの1次側のガス中において凝縮性成分の液化を生じるおそれが問題とならないこともあり、その設定値を一定とすることが好ましい場合もある。また、製品に対する要求仕様によっては、その設定値をガス分離膜Sへの原料ガスの流量あるいは透過ガスの流量のある関数(例えば1次式)で演算する方法が好ましい場合もある。さらに、減量率の折れ線関数により演算し、例えば、所定の減量率までは、1次圧力P1を低下させずに、それ以降の減量率において、1次圧力P1を減量率に応じて低下させる方法が好ましい場合もある。つまり、上記のような構成あるいは方法を適用することによって、原料ガスの流量が減少した場合もモジュール数を変更することなく、簡便な手法で所望の製品ガスの純度と回収率の安定性を確保することが可能となった。なお、減量に際して、1次圧力P1および2次圧力P2を一定にしておくと回収率が上昇するが、2次圧力P2を上昇させて回収率の上昇を抑え液化を防止する方法も可能である。あるいは、2次圧力P2を下げ得る場合には、1次圧力P1および2次圧力P2を同時に下げる方法も可能である。   However, depending on the required specifications for the product, there may be no problem in reducing the concentration of the permeable gas or causing the liquefaction of the condensable component in the gas on the primary side of the gas separation membrane S when reducing the amount. It may be preferable to keep the value constant. Further, depending on the required specifications for the product, a method of calculating the set value by a function (for example, a linear expression) of the flow rate of the raw material gas to the gas separation membrane S or the flow rate of the permeate gas may be preferable. Further, the calculation is performed by the line-segment function of the weight loss rate. For example, the primary pressure P1 is decreased according to the weight loss rate in the subsequent weight loss rate without decreasing the primary pressure P1 until the predetermined weight loss rate. May be preferred. In other words, by applying the configuration or method as described above, the purity of the desired product gas and the stability of the recovery rate can be ensured with a simple method without changing the number of modules even when the flow rate of the raw material gas decreases. It became possible to do. Note that the recovery rate increases when the primary pressure P1 and the secondary pressure P2 are kept constant during the reduction, but a method of increasing the secondary pressure P2 to suppress the increase in the recovery rate and preventing liquefaction is also possible. . Alternatively, when the secondary pressure P2 can be lowered, a method of simultaneously reducing the primary pressure P1 and the secondary pressure P2 is also possible.

(ii)循環ガスの流量F1を減量度に応じて調整する方法
循環ガスは、第2副生ガスの一部を分岐することから、成分Bが減少したガスで構成される。従って、1次圧力P1を低下させずに、減量相当分の循環ガスの流量を原料ガスに追加的に混合するように制御することによって、減量操作の影響を軽減し、かつ、ガス分離膜の1次側のガス中における凝縮性成分の液化の危険性を軽減することが可能となり、安定した製品純度および回収率を確保しながら製品ガスおよび凝縮性成分を作製することができる。
(Ii) Method of adjusting the flow rate F1 of the circulating gas according to the degree of reduction The circulating gas is composed of a gas in which the component B is reduced because a part of the second by-product gas is branched. Therefore, by controlling the flow rate of the circulation gas corresponding to the reduction amount to be additionally mixed with the raw material gas without reducing the primary pressure P1, the influence of the reduction operation is reduced, and the gas separation membrane The risk of liquefaction of the condensable component in the primary gas can be reduced, and the product gas and the condensable component can be produced while ensuring stable product purity and recovery.

(iii)減量度に応じて(i)と(ii)を組み合わせて調整する方法
減量操作においては、製品ガス流量の維持を目的とする操作あるいは所望の成分の回収率の維持を目的とする操作など、要求仕様によって操作内容が異なる一方、減量率によって、その特性や凝縮の危険性も変化する。従って、上記のように、方法(i)と方法(ii)では、それぞれの技術的効果が異なることを利用し、これらを組み合わせて調整することによって、減量操作の影響を軽減ことが可能となり、安定した製品純度および回収率を確保しながら製品ガスおよび凝縮性成分を作製することができる。具体的には、所定の減量率までは、1次圧力P1を低下させずに、減量相当分の循環ガスの流量F1を原料ガスに追加的に混合するように制御し、それ以上の減量率において、1次圧力P1を減量率に応じて低下させることによって、安定した製品純度および回収率を確保しながら凝縮の危険性を回避することが可能となる。
(Iii) Method of adjusting by combining (i) and (ii) according to the degree of weight loss In the weight reduction operation, an operation aimed at maintaining the product gas flow rate or an operation aimed at maintaining the recovery rate of a desired component While the operation contents differ depending on the required specifications, the characteristics and the risk of condensation change depending on the weight loss rate. Therefore, as described above, in the method (i) and the method (ii), it is possible to reduce the influence of the weight loss operation by using the different technical effects and adjusting them in combination. Product gas and condensable components can be produced while ensuring stable product purity and recovery. Specifically, until the predetermined reduction rate, the primary pressure P1 is not reduced, and the flow rate F1 of the circulation gas corresponding to the reduction is controlled to be additionally mixed with the raw material gas, and the reduction rate beyond that is controlled. In this case, by reducing the primary pressure P1 in accordance with the weight loss rate, it is possible to avoid the risk of condensation while ensuring stable product purity and recovery rate.

さらに、前述の如く、循環ガス流量と原料ガス流量の流量比をrとおき、原料ガス組成と前記ガス分離膜の特性を基に、残留ガス露点Zの基準値Zaを設定し、ガス分離膜の残留ガスの圧力と残留ガス中の成分Aの濃度の間の相関関数に関して、流量比rをパラメータとして含む形で予め解析しておき、運転操作において、相関関数を利用して、流量比rと残留ガス中の成分Aの濃度の計測値から、残留ガス露点Zが基準値Za以下になるように上記(i)と(ii)の制御を行うことも有効である。以降の他の構成例においても同様である。   Further, as described above, the flow rate ratio between the circulating gas flow rate and the raw material gas flow rate is set to r, and the reference value Za of the residual gas dew point Z is set based on the raw material gas composition and the characteristics of the gas separation membrane, and the gas separation membrane. The correlation function between the residual gas pressure and the concentration of the component A in the residual gas is analyzed in advance in a form including the flow rate ratio r as a parameter. It is also effective to perform the above controls (i) and (ii) so that the residual gas dew point Z is not more than the reference value Za from the measured value of the concentration of the component A in the residual gas. The same applies to other configuration examples thereafter.

〔本装置1の変形例1〕
本装置1の変形例1を、図2に示す。基本的な構成は第1構成例と同様であるが、さらに、第1副生ガス流路G1に圧力調整手段PCro(圧力制御弁PCVoおよび圧力調節計PCo)を設けた装置が構成される。原料ガスの減量操作においても、ガス分離膜Sの1次圧力P1に対して、第1気液分離部D1の1次圧力Poを独立に制御することが可能となるとともに、さらに高い圧力に制御することが可能となる。なお、原料ガスと循環ガスとの混合ポイントは、破線a〜cで示すように、a:昇圧部Eと第1冷却部C1の中間、b:第1冷却部C1と第1気液分離部D1の中間、c:第1気液分離部D1と圧力調整手段PCroの中間に設けることができる。
[Variation 1 of the apparatus 1]
Modification 1 of the device 1 is shown in FIG. Although the basic configuration is the same as that of the first configuration example, an apparatus is further provided in which pressure adjusting means PCro (pressure control valve PCVo and pressure regulator PCo) is provided in the first by-product gas flow path G1. In the operation of reducing the source gas, the primary pressure Po of the first gas-liquid separation part D1 can be independently controlled with respect to the primary pressure P1 of the gas separation membrane S, and the pressure is controlled to be higher. It becomes possible to do. Note that the mixing point of the source gas and the circulating gas is as follows: a: intermediate between the pressure increasing unit E and the first cooling unit C1, b: the first cooling unit C1 and the first gas-liquid separation unit In the middle of D1, c: can be provided in the middle of the first gas-liquid separator D1 and the pressure adjusting means PCro.

〔本装置1の変形例2〕
本装置1の変形例2を、図3に示す。基本的な構成は第1構成例と同様であるが、第2副生ガス流路G2に分岐点を設け、流量調整手段FCr3(流量制御弁FCV3および流量調節計FC3)を介して透過ガス流路T1に接続する添加ガス流路Fcを形成した装置を構成する。透過ガスと添加ガスを混合した製品ガスが取り出される製品ガス流路A1には、性能確認用の分析ポートAP3が設けられる。残留ガスの気液分離によって第2副生ガス中に濃縮された易透過性かつ非凝縮性の成分を、透過ガスに添加することによって、透過ガスおよび凝縮性成分の回収率の向上を図るものである。また、残留ガスの露点を制限することによって、ガス分離膜Sの1次側での液化を避けるとともに、残留ガスを第2気液分離部D2において副生した副生ガスを添加ガスとして有効に利用することによって、高い回収率を確保することが可能となる。
[Modification 2 of the apparatus 1]
A modification 2 of the apparatus 1 is shown in FIG. The basic configuration is the same as in the first configuration example, but a branch point is provided in the second by-product gas flow path G2, and the permeate gas flow through the flow rate adjusting means FCr3 (the flow rate control valve FCV3 and the flow rate controller FC3). An apparatus in which the additive gas flow path Fc connected to the path T1 is formed is configured. An analysis port AP3 for performance confirmation is provided in the product gas flow path A1 from which the product gas obtained by mixing the permeated gas and the additive gas is taken out. By adding the easily permeable and non-condensable components concentrated in the second by-product gas by gas-liquid separation of the residual gas to the permeated gas, the recovery rate of the permeated gas and the condensable component is improved. It is. In addition, by limiting the dew point of the residual gas, liquefaction on the primary side of the gas separation membrane S is avoided, and the by-product gas by-produced in the second gas-liquid separation unit D2 is effectively used as the additional gas. By using it, it becomes possible to ensure a high recovery rate.

具体的には、分析ポートAPoおよびAP1から採取した所望の成分の濃度を基に、ガス分離膜Sの副生ガス流路G2に設けられた圧力調整手段PCr1にて1次圧力P1が制御され、流量調整手段FCb1にて循環ガスの流量F1が制御される。次に、流量調整手段FCb3にて添加ガスの流量F3が制御される。このとき、添加ガスの流量F3の制御を分析ポートAP3から採取した所望の成分の濃度を基に行うことも可能である。さらに、減量操作に際しても、減量度に応じて1次圧力P1および循環ガスの流量F1を原料ガスに追加的に混合するように制御した後に、添加ガスの流量F3を制御することによって、減量操作の影響を大幅に軽減し、安定した製品純度および回収率を確保しながら製品ガスおよび凝縮性成分を作製することができる。この構成例は、気液分離処理に得られた副生ガスの一部をガス分離膜の2次側流路に添加することによって、ガス分離膜の透過ガスの回収率を上げる方法(特願2007−233029参照)と組み合わせた例であるが、上記特許の他の構成例との組み合わせも同様に有効である。   Specifically, the primary pressure P1 is controlled by the pressure adjusting means PCr1 provided in the by-product gas flow path G2 of the gas separation membrane S based on the concentration of the desired component collected from the analysis ports APo and AP1. The flow rate F1 of the circulating gas is controlled by the flow rate adjusting means FCb1. Next, the flow rate F3 of the additive gas is controlled by the flow rate adjusting means FCb3. At this time, it is also possible to control the flow rate F3 of the additive gas based on the concentration of the desired component collected from the analysis port AP3. Further, in the weight reduction operation, the primary pressure P1 and the circulation gas flow rate F1 are controlled to be additionally mixed with the raw material gas in accordance with the degree of weight reduction, and then the additive gas flow rate F3 is controlled. The product gas and the condensable component can be produced while ensuring the stable product purity and recovery rate. In this configuration example, a part of the by-product gas obtained in the gas-liquid separation process is added to the secondary flow path of the gas separation membrane to increase the permeate recovery rate of the gas separation membrane (Japanese Patent Application No. 2007-233029), but the combination with other configuration examples of the above patent is also effective.

<本発明に係るガス成分および凝縮性成分の製造装置の第2の構成例>
本発明に係るガス成分および凝縮性成分の製造装置の第2の構成例を図4に示す。基本的な構成は、第1構成例と同様であるが、複数段のガス分離膜を用い、前段のガス分離膜の残留ガス流路を後段のガス分離膜の供給ガス流路に接続し、カスケード接続を形成した装置(以下「本装置2」という。)を構成する。つまり、第1ガス分離膜S1の第1残留ガス流路R1を第2ガス分離膜S2の供給ガス流路に接続することによって、その第1透過ガス流路T1から第1透過ガスを取り出し、第2透過ガス流路T2から第2透過ガスを取り出すことが可能となる。
<The 2nd structural example of the manufacturing apparatus of the gas component which concerns on this invention, and a condensable component>
The 2nd structural example of the manufacturing apparatus of the gas component which concerns on this invention, and a condensable component is shown in FIG. The basic configuration is the same as in the first configuration example, but using a plurality of gas separation membranes, connecting the residual gas flow path of the preceding gas separation membrane to the supply gas flow path of the subsequent gas separation membrane, A device forming a cascade connection (hereinafter referred to as “the present device 2”) is configured. That is, by connecting the first residual gas passage R1 of the first gas separation membrane S1 to the supply gas passage of the second gas separation membrane S2, the first permeation gas is taken out from the first permeation gas passage T1, It becomes possible to take out the second permeable gas from the second permeable gas flow path T2.

カスケードサイクルは、各段の透過ガス圧力やガス分離膜の膜の材質など変えることにより複数の純度条件の透過ガスを得る場合に回収率を上げ得るとの利点から良く利用される。ここで、前段のガス分離膜からの残留ガス中には非凝縮性のガスが比較的多く含まれていることから、残留ガスの露点は比較的低く凝縮性成分が液化する可能性は低く、順次後段のガス分離膜に供給されるに従い、凝縮性成分が濃縮され効率よく回収することができる。このとき、第1ガス分離膜S1と第2ガス分離膜S2の膜面積を選択することによって、第2残留ガス中の凝縮性成分の濃度を調整して、効率的に液化を防止することが可能である。   The cascade cycle is often used from the advantage that the recovery rate can be increased when the permeate gas having a plurality of purity conditions is obtained by changing the permeate gas pressure of each stage, the material of the gas separation membrane, and the like. Here, since the residual gas from the gas separation membrane in the previous stage contains a relatively large amount of non-condensable gas, the dew point of the residual gas is relatively low, and the possibility that the condensable component is liquefied is low. The condensable components are concentrated and can be efficiently recovered as they are sequentially supplied to the subsequent gas separation membrane. At this time, by selecting the membrane areas of the first gas separation membrane S1 and the second gas separation membrane S2, the concentration of the condensable component in the second residual gas can be adjusted to efficiently prevent liquefaction. Is possible.

カスケードサイクルに基づく機能に加え、循環系を有することによって、第1供給ガス中の非凝縮性成分の濃度が高くなり、第1,第2ガス分離膜の1次側のガス中での凝縮性成分の液化を防止することができるとともに、減量操作時の処理条件の変化にも柔軟に対応することが可能となる。   By having a circulation system in addition to the function based on the cascade cycle, the concentration of the non-condensable component in the first supply gas is increased, and the condensability in the gas on the primary side of the first and second gas separation membranes is increased. It is possible to prevent liquefaction of components and flexibly cope with changes in processing conditions during the weight reduction operation.

〔本装置2の変形例〕
本装置2の変形例を図5および図6に示す。つまり、基本的な構成は、第2構成例と同様であるが、図5においては、第1残留ガス流路R1に圧力調整手段PCr2(圧力制御弁PCV2および圧力調節計PC2)を設けた装置が構成される。原料ガスの減量操作においても、第1気液分離部D1の圧力および第1ガス分離膜S1の1次圧力P1を第2ガス分離膜S2の1次圧力P1と独立に制御することが可能となる。また、図6においては、第1残留ガス流路R1に圧力調整手段PCr2(圧力制御弁PCV2および圧力調節計PC2)を設けるとともに、さらに、第1副生ガス流路G1に圧力調整手段PCro(圧力制御弁PCVoおよび圧力調節計PCo)を設けた装置が構成される。原料ガスの減量操作においても、第1気液分離部D1の圧力を第1,第2ガス分離膜S1,S2の1次圧力と独立に制御することが可能となるとともに、さらに高い圧力に制御することなど汎用性の高い制御が可能となる。なお、図6における原料ガスと循環ガスとの混合ポイントは、破線a〜cで示すように、a:昇圧部Eと第1冷却部C1の中間、b:第1冷却部C1と第1気液分離部D1の中間、c:第1気液分離部D1と圧力調整手段PCroの中間に設けることができる。
[Modification of the device 2]
A modification of the apparatus 2 is shown in FIGS. That is, the basic configuration is the same as that of the second configuration example, but in FIG. 5, an apparatus in which the pressure adjusting means PCr2 (pressure control valve PCV2 and pressure regulator PC2) is provided in the first residual gas flow path R1. Is configured. Also in reduction operation of the feed gas, it is possible to control the primary pressure P1 1 pressure and the first gas separation membrane S1 of the first gas-liquid separator D1 in the primary pressure P1 2 independent of the second gas separation membrane S2 It becomes possible. In FIG. 6, pressure adjusting means PCr2 (pressure control valve PCV2 and pressure regulator PC2) is provided in the first residual gas flow path R1, and pressure adjusting means PCro (in addition to the first by-product gas flow path G1). A device provided with a pressure control valve PCVo and a pressure regulator PCo) is constructed. Even in the operation of reducing the source gas, the pressure of the first gas-liquid separation part D1 can be controlled independently of the primary pressure of the first and second gas separation membranes S1 and S2, and the pressure is controlled to be higher. This makes it possible to perform highly versatile control. In addition, as shown by broken lines a to c, the mixing point of the source gas and the circulating gas in FIG. 6 is a: intermediate between the pressure-increasing part E and the first cooling part C1, and b: the first cooling part C1 and the first air. It can be provided in the middle of the liquid separation part D1, c: in the middle of the first gas-liquid separation part D1 and the pressure adjusting means PCro.

〔本装置2の他の構成例〕
なお、上記本装置2においては、ガス分離膜を2段設けカスケードに接続した場合について説明したが、さらに多数のガス分離膜を用いて、その機能を活かし汎用性の高いガス製造装置とすることも可能である。例えば、その一部を第1のガス分離膜として並列的に接続された複数のグループに分け異なる条件の製品ガスを得るようにし、各グループの残留ガスを集合して第2のガス分離膜に供給するよう変更することも可能である。
[Another configuration example of the apparatus 2]
In the present apparatus 2, the case where two stages of gas separation membranes are provided and connected to the cascade has been described. However, by using a larger number of gas separation membranes, a highly versatile gas production apparatus that takes advantage of its function is used. Is also possible. For example, a part of the gas is divided into a plurality of groups connected in parallel as a first gas separation membrane so as to obtain product gas of different conditions, and the residual gases of each group are collected to form a second gas separation membrane. It is also possible to change to supply.

また、後段の第2ガス分離膜S2の第2残留ガス流路R2に第3ガス分離膜を設けて、本発明のような構成あるいは機能を適用することが可能である。さらに、第4、第5と順にこうしたガス分離膜からなる構成を連続的に複数配列することによって、個々の仕様に基づく各製品ガスの純度と本発明に係る構成全体としての高い回収率を確保することが可能である。また、各段のガス分離膜の1次圧力を順次低く制御することにより、一層透過性ガスの回収率を上げることが可能となる。   Further, it is possible to apply a configuration or function as in the present invention by providing a third gas separation membrane in the second residual gas flow path R2 of the second gas separation membrane S2 at the subsequent stage. Furthermore, by sequentially arranging a plurality of such gas separation membranes in order of 4th and 5th, the purity of each product gas based on individual specifications and a high recovery rate as a whole according to the present invention are ensured. Is possible. In addition, it is possible to further increase the recovery rate of the permeable gas by sequentially controlling the primary pressure of the gas separation membrane in each stage.

さらに、2つガス分離膜S1,S2を設けた場合において、一方の第1ガス分離膜S1からの製品ガス1と、他方の第2ガス分離膜S2からの製品ガス2を別々に得ることができるが、これらの少なくとも一部を混合して、1つの製品ガスを作製することも可能であり、さらに、連続的に複数段のガス分離膜を配列することによって、種々の仕様に基づく各製品ガスの純度を確保し、本装置2全体として高い回収率を確保することが可能である。   Furthermore, when two gas separation membranes S1 and S2 are provided, the product gas 1 from one first gas separation membrane S1 and the product gas 2 from the other second gas separation membrane S2 can be obtained separately. However, it is also possible to mix at least a part of these to produce one product gas, and further, by arranging a plurality of gas separation membranes continuously, each product based on various specifications It is possible to ensure the purity of the gas and ensure a high recovery rate as the entire apparatus 2.

<本発明に係るガス成分および凝縮性成分の製造装置の第3の構成例>
本発明に係るガス成分および凝縮性成分の製造装置の第3構成例(以下「本装置3」という。)を図7に示す。基本的な構成は図1で示した第1構成例と同様であるが、循環ガス流路Fbと、循環ガス流路Fbに設けられた流量調整手段FCr2(流量制御弁FCV2および流量調節計FC2)が追加されたことを特徴とする。ここに、循環ガス流路Fbは第1透過ガス流路T1に設けた分岐点を出発点として、流量調整手段FCr2を介して、流量調整手段FCr1の下流側で循環ガス流路Faに接続される。
<The 3rd example of composition of the manufacture device of the gas ingredient and the condensable ingredient concerning the present invention>
FIG. 7 shows a third configuration example (hereinafter referred to as “the present apparatus 3”) of the gas component and condensable component production apparatus according to the present invention. The basic configuration is the same as that of the first configuration example shown in FIG. 1, but the circulation gas flow path Fb and the flow rate adjusting means FCr2 (flow rate control valve FCV2 and flow rate controller FC2) provided in the circulation gas flow path Fb. ) Is added. Here, the circulation gas flow path Fb is connected to the circulation gas flow path Fa on the downstream side of the flow rate adjusting means FCr1 via the flow rate adjusting means FCr2 starting from the branch point provided in the first permeate gas flow path T1. The

第2副生ガスの一部からなる循環ガスに加え、第1透過ガスからなる循環ガスを有することによって、易透過性成分を含む第1供給ガス中の非凝縮性成分の濃度が高くなり、ガス分離膜の1次側のガス中での凝縮性成分の液化を容易に防止することができるとともに、減量操作時の透過ガスの純度低下を防ぐことが可能となる。   By having the circulating gas consisting of the first permeated gas in addition to the circulating gas consisting of a part of the second by-product gas, the concentration of the non-condensable component in the first supply gas containing the easily permeable component is increased, It is possible to easily prevent liquefaction of the condensable component in the gas on the primary side of the gas separation membrane and to prevent a decrease in the purity of the permeated gas during the weight reduction operation.

次に、上記の構成例に関して、水素ガス製造プロセスを設定し、透過ガスの純度や回収率の数値解析を行った結果を以下に示す。   Next, regarding the above configuration example, the results of setting the hydrogen gas production process and performing the numerical analysis of the purity and recovery rate of the permeated gas are shown below.

(1)解析条件
(1−1)原料ガスの組成を表1に示す。

Figure 2009061422
(1−2)解析に用いたガス分離膜は、第1および第2ガス分離膜ともに、素材をポリアラミド系膜とした。
(1−3)原料ガスのガス分離膜入口温度は、90℃とした。
(1−4)残留ガス露点Zは80℃以下を基準とする。
(1−5)第1,第2冷却部として水冷却方式を用い、40℃まで冷却する。
(1−6)原料ガスの流量の最大値は、10,000Nm/hとし、以下「流量」は、この最大値に対する割合(%)によって表示した。
(1−7)透過ガスの圧力は、ガス分離膜出口において15bar(abs)とした。
(1−8)本装置の圧力損失
(i)原料ガスの流量が最大(100%)のとき:第2冷却器、第2気液分離部の圧力損失は0.2barと仮定した。
(ii)減量時の圧力損失:本装置の圧力損失は、上記100%の場合を基準として、ρVに比例して変化するものと仮定して評価した。但し、ここにρ(kg/m)はガスの密度、V(m/h)は体積流量を表す。
(1−9)本装置の圧力基準点
(i)原料ガスの流量が最大のとき:第1気液分離部における第1副生ガスの圧力は、38bar(abs)を基準とした。
(ii)減量操作時:制御方法に依存する。ここでは、ガス分離膜が1段のときは、残留ガス流路の圧力(第2気液分離部からの第2副生ガスの圧力で代表した)を基準とし、ガス分離膜を2段用いたカスケードサイクルの場合は、第1残留ガス流路の圧力(第1残留ガス流路の第1ガス分離膜直近の圧力で代表した)、または第2残留ガス流路の圧力(第2気液分離部からの第2副生ガスの圧力で代表した)を基準とした。但し、表5、表6においてPrと記したものおよび表7の括弧内は、第1残留ガス流路の第1ガス分離膜直近の圧力を示す。 (1) Analysis conditions (1-1) Table 1 shows the composition of the source gas.
Figure 2009061422
(1-2) The gas separation membrane used for the analysis was a polyaramid membrane for both the first and second gas separation membranes.
(1-3) The gas separation membrane inlet temperature of the raw material gas was 90 ° C.
(1-4) Residual gas dew point Z is based on 80 ° C. or less.
(1-5) A water cooling system is used as the first and second cooling sections, and cooling is performed to 40 ° C.
(1-6) The maximum value of the flow rate of the raw material gas was set to 10,000 Nm 3 / h, and the “flow rate” was expressed as a ratio (%) to the maximum value.
(1-7) The pressure of the permeating gas was 15 bar (abs) at the gas separation membrane outlet.
(1-8) Pressure loss of this apparatus (i) When the flow rate of the raw material gas is maximum (100%): The pressure loss of the second cooler and the second gas-liquid separation unit was assumed to be 0.2 bar.
(Ii) Pressure loss at the time of weight reduction: The pressure loss of this apparatus was evaluated on the assumption that it changes in proportion to ρV 2 on the basis of the case of 100%. Here, ρ (kg / m 3 ) represents the gas density, and V (m 3 / h) represents the volume flow rate.
(1-9) Pressure reference point of this apparatus (i) When the flow rate of the raw material gas is maximum: The pressure of the first by-product gas in the first gas-liquid separation unit is based on 38 bar (abs).
(Ii) During weight reduction operation: Depends on the control method. Here, when the gas separation membrane has one stage, the pressure of the residual gas flow path (represented by the pressure of the second by-product gas from the second gas-liquid separation unit) is used as a reference, and the gas separation membrane is used for two stages. In the case of the cascade cycle, the pressure of the first residual gas flow path (represented by the pressure immediately adjacent to the first gas separation membrane of the first residual gas flow path) or the pressure of the second residual gas flow path (second gas-liquid) (Represented by the pressure of the second by-product gas from the separation section). However, what is indicated as Pr in Tables 5 and 6 and the parentheses in Table 7 indicate pressures in the vicinity of the first gas separation membrane in the first residual gas flow path.

(2)予備解析
(2−1)検討1
図1の装置(第1構成例)で、ある膜面積を設定し、Case1の組成の原料ガスを最大流量流し、循環ガス流量はゼロとして解析した。回収率は85.84%、透過ガス中の水素純度は99.7%であった。ただし、残留ガス露点Zは約91.3℃であり、上記露点の基準値を満たさない結果であった。
(2) Preliminary analysis (2-1) Study 1
With the apparatus of FIG. 1 (first configuration example), a certain membrane area was set, the raw material gas having the composition of Case 1 was flowed at the maximum flow rate, and the circulation gas flow rate was analyzed as zero. The recovery rate was 85.84%, and the hydrogen purity in the permeated gas was 99.7%. However, the residual gas dew point Z was about 91.3 ° C., which was a result of not satisfying the standard value of the dew point.

(2−2)検討2
上記検討1の状態から循環ガスの流量を増やしていくと、
(i)残留ガス露点Zは、単調に降下する。
(ii)透過ガスの水素純度は、緩やかに降下する。
(iii)回収率は、徐々に増加するもあるところで最大値約86.7%を取った後、徐々に降下する。
(iv)透過ガス流量は、上記、回収率の変化と連動して変化した。
(2-2) Study 2
When increasing the flow rate of the circulating gas from the state of Study 1 above,
(I) The residual gas dew point Z decreases monotonously.
(Ii) The hydrogen purity of the permeate gas gradually falls.
(Iii) The recovery rate gradually increases after taking a maximum value of about 86.7% where it gradually increases.
(Iv) The permeate gas flow rate was changed in conjunction with the change in the recovery rate.

(2−3)検討3
上記検討2の状態から循環ガス流量を調節し、循環ガス流量が約11.8%のとき残留ガス露点Zは80℃となることが分かった。このときの回収率は86.61%、水素純度は99.69%であった。
比較のため、循環ガス流量をゼロとして、
(i)同じ膜面積でガス分離膜の操作1次圧力を下げる操作を行うと、第1気液分離器の圧力が約34.8bar(abs)のとき残留ガス露点Zが80℃となった。このときの回収率は77.87%に低下した。なお、水素純度は99.73%であった。
(ii)また、膜面積を少なくした場合(元の面積の約79%)、残留ガス露点Zが80℃となった。このときの回収率は77.45%に低下した。なお、水素純度は99.78%であった。以上より、循環ガスを利用し残留ガス露点Zを調整することの有効性が証明された。
(2-3) Study 3
It was found that the residual gas dew point Z was 80 ° C. when the circulating gas flow rate was adjusted from the state of Study 2 above and the circulating gas flow rate was about 11.8%. The recovery rate at this time was 86.61%, and the hydrogen purity was 99.69%.
For comparison, the circulation gas flow rate is set to zero.
(I) When the primary pressure of the gas separation membrane was lowered with the same membrane area, the residual gas dew point Z reached 80 ° C. when the pressure of the first gas-liquid separator was about 34.8 bar (abs). . The recovery rate at this time decreased to 77.87%. The hydrogen purity was 99.73%.
(Ii) Further, when the film area was reduced (about 79% of the original area), the residual gas dew point Z was 80 ° C. The recovery rate at this time decreased to 77.45%. The hydrogen purity was 99.78%. From the above, the effectiveness of adjusting the residual gas dew point Z using circulating gas was proved.

(3)解析結果
(3−1)実施例1
図1の装置で、予備解析と同じ膜面積を設定し、Case1の組成の原料ガスについて、ガス分離膜の1次圧力は一定とし、減量特性を調べた。循環ガス流量は、残留ガス露点Zが約80℃となる点に調整した。
検討結果を表2に示す。
減量につれ回収率が顕著に増加することが分かった。表2の水素純度レベルが許容される応用の場合には、この方式が利用できることが分かる。

Figure 2009061422
(3) Analysis results (3-1) Example 1
With the apparatus of FIG. 1, the same membrane area as that in the preliminary analysis was set, and for the source gas having the composition of Case 1, the primary pressure of the gas separation membrane was kept constant, and the weight loss characteristics were examined. The circulating gas flow rate was adjusted so that the residual gas dew point Z was about 80 ° C.
The examination results are shown in Table 2.
It was found that the recovery rate increased markedly as the weight decreased. It can be seen that this approach can be used for applications where the hydrogen purity levels in Table 2 are acceptable.
Figure 2009061422

(3−2)実施例2
実施例1の変形で、予備解析および実施例1と同じ膜面積を設定し、水素純度が99.0%以上を条件とし、ガス分離膜の残留ガス圧力を減量度の1次式で変更して減量操作を行った場合を解析した。循環ガス流量は減量操作中一定とした。
検討結果を表3に示す。
この操作を行っても減量につれ回収率が顕著に増加することが分かった。

Figure 2009061422
(3-2) Example 2
In the modification of Example 1, the same membrane area as in the preliminary analysis and Example 1 is set, the hydrogen purity is 99.0% or more, and the residual gas pressure of the gas separation membrane is changed by a linear expression of the reduction degree. The case where weight reduction operation was performed was analyzed. The circulating gas flow rate was constant during the reduction operation.
The examination results are shown in Table 3.
It was found that even when this operation was performed, the recovery rate increased markedly as the weight decreased.
Figure 2009061422

(3−3)実施例3
実施例2の変形として、予備解析および実施例1,2と同じ膜面積を設定し、図2に示すように(第1構成例の変形例に相当)、第1気液分離部の圧力を一定に保持し、ガス分離膜Sの残留ガス圧力を減量度の1次式で変更した場合の減量操作を解析した。最大流量時、第1気液分離部の保圧弁(PCVo)の差圧を0.2barと仮定した。循環ガス流量は減量操作中一定とした。
検討結果を表4に示す。
最大定格時には、保圧弁(PCVo)の差圧のため、僅かに回収率が低くなるが、減量時には実施例2に比較して回収率が増加することが分かった。

Figure 2009061422
(3-3) Example 3
As a modification of the second embodiment, the same membrane area as that of the preliminary analysis and the first and second embodiments is set. As shown in FIG. 2 (corresponding to a modification of the first configuration example), the pressure of the first gas-liquid separation unit is changed. The amount reduction operation when the residual gas pressure of the gas separation membrane S was changed by the linear expression of the degree of reduction was kept constant. At the maximum flow rate, the differential pressure of the pressure holding valve (PCVo) of the first gas-liquid separation unit was assumed to be 0.2 bar. The circulating gas flow rate was constant during the reduction operation.
The examination results are shown in Table 4.
At the maximum rating, the recovery rate was slightly lower due to the pressure difference of the pressure retaining valve (PCVo), but it was found that the recovery rate increased compared to Example 2 when the amount was reduced.
Figure 2009061422

(3−4)実施例4
実施例3と同様に、図2に示すように、第1気液分離部の圧力を一定に保持する場合を検討する。ただし、残留ガス圧力と残留ガス中の水素(成分A)の濃度の間の相関関数に関して、流量比rをパラメータとして含む形で予め解析しておき減量操作に利用する場合を解析した。そのため、次のように相関関数を求めた。
(3-4) Example 4
As in the third embodiment, as shown in FIG. 2, the case where the pressure of the first gas-liquid separation unit is kept constant will be considered. However, the correlation function between the residual gas pressure and the concentration of hydrogen (component A) in the residual gas was analyzed in advance in a form including the flow rate ratio r as a parameter, and the case where it was used for the weight reduction operation was analyzed. Therefore, the correlation function was obtained as follows.

(i)流量比r=0.11とし、減量度100%、70%、40%の場合について、残留ガス圧力を調整して残留ガス露点Zが80℃となる条件を求めた。結果を表5に示す。なお、表5および後続の表6での残留ガス圧力Prの値は、ガス分離膜の残留ガス流路直近の圧力値を示す。

Figure 2009061422
(I) When the flow rate ratio r = 0.11 and the degree of weight loss was 100%, 70%, and 40%, the residual gas pressure was adjusted and the conditions under which the residual gas dew point Z was 80 ° C. were determined. The results are shown in Table 5. In addition, the value of the residual gas pressure Pr in Table 5 and the subsequent Table 6 indicates the pressure value in the immediate vicinity of the residual gas flow path of the gas separation membrane.
Figure 2009061422

(ii)同様に、流量比r=0.18とし、減量度80%、60%、40%の場合について、残留ガス圧力を調整して残留ガス露点Zが80℃となる条件を求めた。結果を表6に示す。

Figure 2009061422
(Ii) Similarly, for the cases where the flow rate ratio r = 0.18 and the degree of weight loss is 80%, 60%, and 40%, the residual gas pressure was adjusted to obtain the conditions for the residual gas dew point Z to be 80 ° C. The results are shown in Table 6.
Figure 2009061422

(iii)残留ガス圧力の逆数1/Prと残留ガス中の水素濃度Xをプロットすると、図8に示すように、r=0.11およびr=0.18の各々の場合について、ほぼ線形の相関関係が確認できた。このときの相関関数として、下式1および2を求めた。
X = a−b/Pe ・・・(式1)
Pe = b/(a−X) ・・・(式2)
ここで、Peは、相関関数から期待される成分Aの濃度Xに対応する残留ガス圧力を意味する。また、a=[(0.18−r)*a+(r−0.11)*a]/0.07
=[(0.18−r)*b+(r−0.11)*b]/0.07
、bはr=0.11のときの係数、
、bはr=0.18のときの係数を意味する。
(Iii) When the reciprocal 1 / Pr of the residual gas pressure and the hydrogen concentration X in the residual gas are plotted, as shown in FIG. 8, for each of r = 0.11 and r = 0.18, it is almost linear. Correlation was confirmed. As correlation functions at this time, the following equations 1 and 2 were obtained.
X = a r -b r / Pe ··· ( Equation 1)
Pe = b r / (a r -X) ··· ( Equation 2)
Here, Pe means the residual gas pressure corresponding to the concentration X of the component A expected from the correlation function. Moreover, a r = [(0.18−r) * a 1 + (r−0.11) * a 2 ] /0.07
b r = [(0.18−r) * b 1 + (r−0.11) * b 2 ] /0.07
a 1 and b 1 are coefficients when r = 0.11.
a 2 and b 2 mean coefficients when r = 0.18.

以上の準備のもとに、循環ガス流量を減量度の1次式で変化させ、上式1および2に示す相関関数に従い、ガス分離膜の残留ガス圧力を減量度に応じて下げた場合の減量操作を解析した。解析結果を表7に示す。残留ガス圧力は、第2気液分離部の圧力と残留ガス流路直近の圧力Prの両方を示した(後者は括弧内に示した)。減量度100%、40%のときは、それぞれ流量比rが0.11、0.18であるので残留ガス露点Zは80℃となった。減量度70%のときは僅かに誤差を伴うが、上記相関式は実用上充分な精度があることが確認できた。また、透過ガス中の水素濃度は99mol%の条件を守りつつ高い回収率を確保できた。

Figure 2009061422
Based on the above preparation, the circulating gas flow rate is changed by the linear expression of the degree of reduction, and the residual gas pressure of the gas separation membrane is lowered according to the degree of reduction according to the correlation function shown in the above formulas 1 and 2. The weight loss operation was analyzed. The analysis results are shown in Table 7. The residual gas pressure indicated both the pressure of the second gas-liquid separation part and the pressure Pr immediately adjacent to the residual gas flow path (the latter is shown in parentheses). When the degree of weight loss was 100% and 40%, the flow rate ratio r was 0.11 and 0.18, respectively, so the residual gas dew point Z was 80 ° C. When the degree of weight loss was 70%, there was a slight error, but it was confirmed that the above correlation equation had sufficient accuracy for practical use. Further, the hydrogen concentration in the permeate gas was able to secure a high recovery rate while maintaining the condition of 99 mol%.
Figure 2009061422

(3−5)実施例5
Case2の組成の原料について同様の検討を行った。循環ガスに類似の効果が得られた。ただし、ガス分離膜の1次圧力を一定に保つ方法では、減量操作を行うと、循環ガス流量を増やそうとしても第2副生ガス流量が限度となり、全量を循環させても残留ガス露点Zが80℃以上となることが分かった。また、ガス分離膜の1次圧力を下げて行くと第2副生ガス流量が増加して、上記残留ガス露点Zの調整が可能となった。
従って、実施例3と同様、図2に示すように、第1気液分離部の圧力を一定に保持し、ガス分離膜の残留ガス圧力を減量度の1次式で変更した場合の減量操作を解析した。循環ガスの流量も減量度の1次式で変更した。最大流量時、第1気液分離部の保圧弁(PCVo)の差圧を0.2barと仮定した。
検討結果を表8に示す。
減量につれ回収率が顕著に増加することが分かった。

Figure 2009061422
(3-5) Example 5
A similar study was performed on the raw material having the composition of Case2. Similar effects were obtained with circulating gas. However, in the method of keeping the primary pressure of the gas separation membrane constant, if the reduction operation is performed, the second by-product gas flow rate becomes the limit even if the circulation gas flow rate is increased, and the residual gas dew point Z is not limited even if the entire amount is circulated. Was found to be 80 ° C. or higher. Further, when the primary pressure of the gas separation membrane was lowered, the second by-product gas flow rate was increased, and the residual gas dew point Z could be adjusted.
Accordingly, as in the third embodiment, as shown in FIG. 2, the pressure reduction operation is performed when the pressure of the first gas-liquid separation unit is kept constant and the residual gas pressure of the gas separation membrane is changed by the primary expression of the weight reduction degree. Was analyzed. The flow rate of the circulating gas was also changed by the primary expression for the degree of weight loss. At the maximum flow rate, the differential pressure of the pressure holding valve (PCVo) of the first gas-liquid separation unit was assumed to be 0.2 bar.
The examination results are shown in Table 8.
It was found that the recovery rate increased markedly as the weight decreased.
Figure 2009061422

(3−6)実施例6
カスケードサイクル(図5、装置2の変形例に相当)についても同様の解析を行った。第1ガス分離膜および第2ガス分離膜の膜面積は、予備検討および実施例1〜3で用いたガス分離膜の膜面積のそれぞれ、100%、50%とした。第1ガス分離膜および第2ガス分離膜の透過ガス圧力は同じとしてこれらを合流して製品ガスとするものとした。第1気液分離部の圧力を一定に保持し、第1ガス分離膜および第2ガス分離膜の残留ガス圧力は減量度の1次式で変更、また、循環ガス流量は減量度に比例するとした。第1ガス分離膜および第2ガス分離膜の残留ガス露点Zをいずれも80℃以下に制約し、透過ガスの水素純度は99mol%以上とした。最大流量時、第1気液分離部の保圧弁(PCVo)の差圧を0.2barと仮定した。
検討結果を表9に示す。
回収率は全てのケースで90%以上とすることができた。

Figure 2009061422
(3-6) Example 6
The same analysis was performed for the cascade cycle (FIG. 5, corresponding to a modification of the apparatus 2). The membrane areas of the first gas separation membrane and the second gas separation membrane were set to 100% and 50%, respectively, of the membrane areas of the gas separation membrane used in the preliminary study and Examples 1 to 3. The permeated gas pressures of the first gas separation membrane and the second gas separation membrane were the same, and they were merged into a product gas. The pressure of the first gas-liquid separation unit is kept constant, the residual gas pressure of the first gas separation membrane and the second gas separation membrane is changed by the primary expression of the reduction degree, and the circulation gas flow rate is proportional to the reduction degree did. The residual gas dew point Z of the first gas separation membrane and the second gas separation membrane was both limited to 80 ° C. or less, and the hydrogen purity of the permeated gas was 99 mol% or more. At the maximum flow rate, the differential pressure of the pressure holding valve (PCVo) of the first gas-liquid separation unit was assumed to be 0.2 bar.
The examination results are shown in Table 9.
The recovery rate could be over 90% in all cases.
Figure 2009061422

(3−7)実施例7
図7に示す装置(第3構成例に相当)のように、循環ガスに第2副生ガスの一部に加え透過ガスの一部を供給する場合について検討した。Case1の組成の原料ガスについて、膜の面積は検討1〜3の場合に合わせ、透過ガスからの循環ガス流量の設定値は原料ガス流量の1次式で変更し、第2副生ガスからの循環ガス流量および残留ガス圧力は一定とした。100%〜40%の広い減量幅において、残留ガス露点Z80℃以下を確保し、水素純度を99mol%以上として高い回収率を得ることができた。
検討結果を表10に示す。
透過ガスの少なくとも一部を循環ガスに加えることにより、減量操作において透過ガスの純度を上昇でき、かつ実施例2、3に比較して高い回収率を得ることが分った。

Figure 2009061422
(3-7) Example 7
As in the apparatus shown in FIG. 7 (corresponding to the third configuration example), a case where a part of the permeated gas is supplied to the circulating gas in addition to a part of the second by-product gas was examined. For the source gas having the composition of Case 1, the area of the membrane is changed according to the cases of the examinations 1 to 3, and the set value of the circulating gas flow rate from the permeate gas is changed by the primary expression of the raw material gas flow rate. The circulating gas flow rate and residual gas pressure were constant. In a wide weight loss range of 100% to 40%, a residual gas dew point Z of 80 ° C. or less was secured, and a high recovery rate was obtained with a hydrogen purity of 99 mol% or more.
The examination results are shown in Table 10.
It has been found that by adding at least a part of the permeate gas to the circulating gas, the purity of the permeate gas can be increased in the weight reduction operation, and a higher recovery rate can be obtained compared to Examples 2 and 3.
Figure 2009061422

(4)まとめ
上記の結果に示すように、実施例1〜7のいずれについても、透過ガスの純度に対する高い安定性と高い回収率を安定的に保することができた。
(4) Summary As shown in the above results, in all of Examples 1 to 7, it was possible to stably maintain high stability and high recovery rate with respect to the purity of the permeated gas.

本発明に係る製造装置の基本の構成例(第1構成例)を示す説明図Explanatory drawing which shows the basic structural example (1st structural example) of the manufacturing apparatus which concerns on this invention 本発明に係る製造装置の第1構成例の変形例1を示す説明図Explanatory drawing which shows the modification 1 of the 1st structural example of the manufacturing apparatus which concerns on this invention. 本発明に係る製造装置の第1構成例の変形例2を示す説明図Explanatory drawing which shows the modification 2 of the 1st structural example of the manufacturing apparatus which concerns on this invention. 本発明に係る製造装置の第2の構成例を示す説明図Explanatory drawing which shows the 2nd structural example of the manufacturing apparatus which concerns on this invention. 本発明に係る製造装置の第2構成例の変形例を示す説明図Explanatory drawing which shows the modification of the 2nd structural example of the manufacturing apparatus which concerns on this invention. 本発明に係る製造装置の第2構成例の変形例を示す説明図Explanatory drawing which shows the modification of the 2nd structural example of the manufacturing apparatus which concerns on this invention. 本発明に係る製造装置の第3の構成例を示す説明図Explanatory drawing which shows the 3rd structural example of the manufacturing apparatus which concerns on this invention. 本発明に係る製造装置における解析結果を示す説明図Explanatory drawing which shows the analysis result in the manufacturing apparatus which concerns on this invention 従来技術に係る製造装置の基本構成を例示する説明図Explanatory drawing illustrating the basic configuration of a manufacturing apparatus according to the prior art 従来技術に係る製造装置の他の1の構成を例示する説明図Explanatory drawing which illustrates another 1 structure of the manufacturing apparatus which concerns on a prior art 従来技術に係る製造装置の他の2の構成を例示する説明図Explanatory drawing illustrating the other two configurations of the manufacturing apparatus according to the prior art

符号の説明Explanation of symbols

APo,AP1,AP2,AP3 分析ポート
C1,C2 (第1,第2)冷却部
D1,D2 (第1,第2)気液分離部
E 昇圧部
Fa,Fb 循環ガス流路
FC1,FC2 流量調節計
FCr1,FCr2 流量調整手段
FCV1,FCV2 流量制御弁
G1,G2 (第1,第2)副生ガス流路
H 加熱部
L1,L2 (第1,第2)副生液流路
LC1,LC2 (第1,第2)液面検知部
LCV1,LCV2 (第1,第2)制御弁
Pr 残留ガス圧力
PCo,PC1,PC2 圧力調節計
PCro,PCr1,PCr2 圧力調整手段
PCVo,PCV1,PCV2 圧力制御弁
R1,R2 (第1,第2)残留ガス流路
S,S1,S2 (第1,第2)ガス分離膜
T1,T2 (第1,第2)透過ガス流路
Uo 原料ガス流路
U1,U2 (第1,第2)供給ガス流路
X 水素濃度
APo, AP1, AP2, AP3 Analysis ports C1, C2 (First and second) Cooling parts D1, D2 (First, second) Gas-liquid separation part E Boosting part Fa, Fb Circulating gas flow paths FC1, FC2 Flow rate adjustment Total FCr1, FCr2 Flow rate adjusting means FCV1, FCV2 Flow control valves G1, G2 (first and second) by-product gas flow path H heating parts L1, L2 (first and second) by-product liquid flow paths LC1, LC2 ( (First and second) liquid level detectors LCV1 and LCV2 (first and second) control valve Pr Residual gas pressure PCo, PC1, PC2 Pressure regulator PCro, PCr1, PCr2 Pressure adjusting means PCVo, PCV1, PCV2 Pressure control valve R1, R2 (first, second) residual gas flow paths S, S1, S2 (first, second) gas separation membranes T1, T2 (first, second) permeate gas flow paths Uo raw material gas flow paths U1, U2 (first and second) supply gas S channel X Hydrogen concentration

Claims (7)

複数の成分を含有する原料ガスに対して、選択的透過性を有するガス分離膜による分離機能と各成分の凝縮性の相違に基づく気液分離機能を利用し、前記ガス分離膜の分離機能によって得られる易透過性かつ非凝縮性の成分Aに富んだ透過ガスと、前記ガス分離膜の上流および下流に位置する少なくとも2つの前記気液分離機能によって得られる難透過性かつ凝縮性の成分Bに富んだ副生液および前記成分Bが減少した副生ガスを生成する方法であって、少なくとも下記の工程
(1)下流側の前記気液分離機能によって得られた第2副生ガスの一部を、循環ガスとして分岐する工程
(2)前記循環ガスの流量調整および昇圧を行う工程
(3)前記循環ガスの1次冷却処理および1次気液分離処理、あるいは1次気液分離処理のみを行う工程
(4)前記1次気液分離処理により得られた前記成分Bの減少した第1副生ガスを抜き出す工程
(5)前記1次気液分離処理により得られた主として前記成分Bからなる第1副生液を抜き出す工程
(6)前記第1副生ガスを加熱処理した後、ガス分離膜に供給する工程
(7)前記原料ガスを供給し、前記昇圧処理前、1次冷却処理前、1次気液分離処理前、1次気液分離処理後あるいは加熱処理した後のいずれかにおいて前記循環ガスと混合する工程
(8)前記ガス分離膜の1次圧力あるいはこれと連動するプロセス値のいずれかを調整する工程
(9)前記ガス分離膜において、透過ガスと残留ガスに分離する工程
(10)前記ガス分離膜に対し前記成分Aに富んだ透過ガスを製品として抜き出す工程
(11)前記ガス分離膜に対し前記成分Bに富んだ残留ガスを抜き出す工程
(12)前記残留ガスの2次冷却処理および2次気液分離処理を行う工程
(13)前記2次気液分離処理により得られた前記成分Bの減少した第2副生ガスを抜き出す工程
(14)前記2次気液分離処理により得られた主として前記成分Bからなる第2副生液を抜き出す工程
を有することを特徴とするガス成分および凝縮性成分の製造方法。
For the raw material gas containing a plurality of components, the separation function of the gas separation membrane having selective permeability and the gas-liquid separation function based on the difference in condensability of each component are utilized. Permeable gas rich in easily permeable and non-condensable component A obtained, and at least two gas-liquid separating functions located upstream and downstream of the gas separation membrane, hardly permeable and condensable component B A by-product liquid rich in component B and a by-product gas reduced in component B, wherein at least one of the second by-product gas obtained by the gas-liquid separation function on the downstream side of the following step (1) (2) Step of adjusting the flow rate and increasing the pressure of the circulating gas (3) Primary cooling processing and primary gas-liquid separation processing of the circulating gas, or only primary gas-liquid separation processing Process ( ) A step of extracting the first by-product gas in which the component B is reduced obtained by the primary gas-liquid separation process. (5) A first by-product mainly composed of the component B obtained by the primary gas-liquid separation process. (6) Step of supplying the gas to the gas separation membrane after heat-treating the first by-product gas (6) Supplying the raw material gas before the pressurizing process and before the primary cooling process Step (8) of mixing with the circulating gas either before the liquid separation treatment, after the primary gas-liquid separation treatment or after the heat treatment (8) Either the primary pressure of the gas separation membrane or a process value linked thereto (9) Step of adjusting (9) Step of separating permeated gas and residual gas in the gas separation membrane (10) Step of extracting permeated gas rich in component A from the gas separation membrane as a product (11) Gas separation membrane Component B A step of extracting a rich residual gas (12) A step of performing a secondary cooling process and a secondary gas-liquid separation process of the residual gas (13) A second reduced amount of the component B obtained by the secondary gas-liquid separation process Extracting by-product gas (14) A method for producing a gas component and a condensable component, comprising a step of extracting a second by-product liquid mainly composed of component B obtained by the secondary gas-liquid separation process. .
減量操作に際して、前記循環ガスの流量を減量度に応じて調整することを特徴とする請求項1記載のガス成分および凝縮性成分の製造方法。   2. The method for producing a gas component and a condensable component according to claim 1, wherein the flow rate of the circulating gas is adjusted in accordance with the degree of weight reduction during the weight reduction operation. 減量操作に際して、前記ガス分離膜の1次圧力、2次圧力あるいはこれらと連動するプロセス値のいずれかを減量度に応じて調整することを特徴とする請求項1または2記載のガス成分および凝縮性成分の製造方法。   3. The gas component and condensation according to claim 1 or 2, wherein, during the weight reduction operation, either the primary pressure or the secondary pressure of the gas separation membrane or a process value linked with these is adjusted according to the degree of weight reduction. The manufacturing method of a sex component. 前記循環ガスの流量と原料ガスの流量の流量比をrとおき、
原料ガス組成と前記ガス分離膜の特性を基に、前記ガス分離膜の残留ガス流路出口直後における圧力下の露点Zの基準値Zaを設定し、前記ガス分離膜の残留ガスの圧力と残留ガス中の前記成分Aの濃度の間の相関関数に関して、前記流量比rをパラメータとして含む形で予め解析しておき、
運転操作において、前記相関関数を利用して、前記流量比rと残留ガス中の前記成分Aの濃度の計測値から、前記露点Zが前記基準値Za以下になるように監視するとともに、前記基準値Zaを超える場合、前記循環ガスの流量、前記ガス分離膜の残留ガスの圧力、透過ガスの圧力もしくはこれらと連動するプロセス値のいずれかの調整を行って、前記基準値Za以下に保ち、前記ガス分離膜の1次側のガス中での液化を防止することを特徴とする請求項1〜3のいずれかに記載のガス成分および凝縮性成分の製造方法。
Let r be the flow rate ratio between the flow rate of the circulating gas and the flow rate of the source gas,
Based on the raw material gas composition and the characteristics of the gas separation membrane, a reference value Za for the dew point Z under pressure immediately after the residual gas flow path outlet of the gas separation membrane is set, and the pressure and residual pressure of the residual gas in the gas separation membrane are set. The correlation function between the concentrations of the component A in the gas is analyzed in advance in a form including the flow rate ratio r as a parameter,
In operation, the correlation function is used to monitor the dew point Z from the measured value of the flow rate ratio r and the concentration of the component A in the residual gas so that the dew point Z is not more than the reference value Za. If the value Za is exceeded, the flow rate of the circulating gas, the pressure of the residual gas of the gas separation membrane, the pressure of the permeating gas or the process value linked to these are adjusted, and kept below the reference value Za, The method for producing a gas component and a condensable component according to any one of claims 1 to 3, wherein liquefaction in the gas on the primary side of the gas separation membrane is prevented.
前記ガス分離膜を複数段利用し、前段のガス分離膜の残留ガスを後段のガス分離膜に供給し、カスケード接続を形成することを特徴とする請求項1〜4のいずれかに記載のガス成分および凝縮性成分の製造方法。   5. The gas according to claim 1, wherein the gas separation membrane is used in a plurality of stages, and residual gas in the preceding gas separation membrane is supplied to the subsequent gas separation membrane to form a cascade connection. Component and condensable component production method. 複数の成分を含有する原料ガスに対して、選択的透過性を有するガス分離膜と各成分の凝縮性の相違に基づく少なくとも2つの気液分離部を有し、前記ガス分離膜から得られる易透過性かつ非凝縮性の成分Aに富んだ透過ガスと、前記気液分離部から得られる難透過性かつ凝縮性の成分Bに富んだ副生液および前記成分Bが減少した副生ガスを生成する装置であって、少なくとも下記の構成要素
(a)前記下流側の気液分離部からの副生ガス流路を分岐して形成される循環ガス流路
(b)前記循環ガス流路に設けられた流量調整部および昇圧部
(c)前記循環ガス流路に接続する第1供給ガス流路
(d)前記第1供給ガス流路に設けられた第1冷却部および第1気液分離部
(e)前記第1気液分離部の気相部から副生ガスが取り出される第1副生ガス流路
(f)前記第1気液分離部の液相部から副生液が取り出される第1副生液流路
(g)前記第1副生ガス流路に設けられた加熱部
(h)前記昇圧部上流、第1冷却部上流、第1気液分離部上流、第1気液分離部下流、あるいは加熱部の下流のいずれかにおいて前記循環ガス流路あるいは第1供給ガス流路と接合し、複数の成分を含有する原料ガスが供給される原料ガス流路
(j)前記第1副生ガス流路に接続され、透過ガスと残留ガスに分離するガス分離膜
(k)前記ガス分離膜から透過される透過ガスが取り出される透過ガス流路
(m)前記ガス分離膜からの残留ガスが供出される残留ガス流路
(n)前記残留ガス流路に配設された第2冷却部および第2気液分離部
(p)前記第2気液分離部の気相部からの副生ガスが供出される第2副生ガス流路
(q)前記第2気液分離部の液相部から副生液が取り出される第2副生液流路
(r)前記分岐以降の前記第2副生ガス流路に配設された第2圧力調整部
を有することを特徴とするガス成分および凝縮性成分の製造装置。
For a source gas containing a plurality of components, the gas separation membrane having selective permeability and at least two gas-liquid separation sections based on the difference in condensability of each component are easily obtained from the gas separation membrane. Permeated gas rich in permeable and non-condensable component A, by-product liquid rich in hardly permeable and condensable component B obtained from the gas-liquid separator, and by-product gas reduced in component B An apparatus for generating a circulating gas flow path formed by branching at least the following component (a) by-product gas flow path from the downstream gas-liquid separation section; and (b) the circulating gas flow path A flow rate adjusting unit and a pressure increasing unit provided; (c) a first supply gas channel connected to the circulating gas channel; and (d) a first cooling unit and a first gas-liquid separation provided in the first supply gas channel. Part (e) A first by-product gas is taken out from the gas phase part of the first gas-liquid separation part. A raw gas flow path (f) a first by-product liquid flow path (g) from which a by-product liquid is taken out from a liquid phase part of the first gas-liquid separation part (g) a heating unit ( h) The circulating gas flow path or the first supply gas flow path in any one of the upstream of the boosting unit, the first cooling unit, the first gas-liquid separation unit, the first gas-liquid separation unit, or the heating unit. A gas separation membrane (k) connected to the first by-product gas flow path and separated into a permeate gas and a residual gas. A permeate gas channel from which a permeate gas permeated from the gas separation membrane is taken out (m) a residual gas channel from which the residual gas from the gas separation membrane is delivered (n) a second gas channel disposed in the residual gas channel Cooling section and second gas-liquid separation section (p) By-product gas from the gas phase section of the second gas-liquid separation section is delivered Second by-product gas channel (q) Second by-product liquid channel from which by-product liquid is taken out from the liquid phase part of the second gas-liquid separation unit (r) The second by-product gas channel after the branch A device for producing a gas component and a condensable component, comprising: a second pressure adjusting unit disposed in
前記ガス分離膜を複数段配設し、前段のガス分離膜の残留ガス流路を後段のガス分離膜の供給ガス流路に接続し、カスケード接続を形成することを特徴とする請求項6記載のガス成分および凝縮性成分の製造装置。   7. The gas separation membrane is provided in a plurality of stages, and the residual gas flow path of the preceding gas separation membrane is connected to the supply gas flow path of the subsequent gas separation membrane to form a cascade connection. Equipment for producing gas components and condensable components.
JP2007233080A 2007-09-07 2007-09-07 Method and apparatus for producing gas component and condensable component Expired - Fee Related JP5406441B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007233080A JP5406441B2 (en) 2007-09-07 2007-09-07 Method and apparatus for producing gas component and condensable component
PCT/EP2008/061820 WO2009030766A1 (en) 2007-09-07 2008-09-05 Method and apparatus for gaseous mixture separation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007233080A JP5406441B2 (en) 2007-09-07 2007-09-07 Method and apparatus for producing gas component and condensable component

Publications (2)

Publication Number Publication Date
JP2009061422A true JP2009061422A (en) 2009-03-26
JP5406441B2 JP5406441B2 (en) 2014-02-05

Family

ID=39942873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007233080A Expired - Fee Related JP5406441B2 (en) 2007-09-07 2007-09-07 Method and apparatus for producing gas component and condensable component

Country Status (2)

Country Link
JP (1) JP5406441B2 (en)
WO (1) WO2009030766A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020157830A1 (en) * 2019-01-29 2020-08-06 日揮グローバル株式会社 Carbon dioxide gas separation method and carbon dioxide gas separation device
WO2021124937A1 (en) * 2019-12-17 2021-06-24 株式会社堀場製作所 Analysis device and analysis system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102502513B (en) * 2011-11-07 2013-03-27 上海奕材环保科技有限公司 Method for providing oxidant with stable flow and purity for oxygen rich combustion supporting of kiln
CN112449612A (en) * 2018-06-26 2021-03-05 詹姆斯·罗伯特·德吕兹 Band-pass filter for separating a particular selected gas from a group of gases or the atmosphere

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6249927A (en) * 1985-08-23 1987-03-04 エア−.プロダクツ.アンド.ケミカルス.インコ−ポレ−テツド Hibrid membrane/extremely low temperature method to hydrogen purification
JP2000033222A (en) * 1998-07-22 2000-02-02 Air Liquide Japan Ltd Method and apparatus for cleaning gas
US6179996B1 (en) * 1998-05-22 2001-01-30 Membrane Technology And Research, Inc. Selective purge for hydrogenation reactor recycle loop
JP2005213087A (en) * 2004-01-29 2005-08-11 Nippon Oil Corp Method for producing high purity hydrogen
JP2007084378A (en) * 2005-09-21 2007-04-05 Nippon Oil Corp Method for producing hydrogen and apparatus used in the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6053965A (en) * 1998-10-14 2000-04-25 Membrane Technology And Research, Inc. Fuel gas conditioning process
US6361582B1 (en) * 2000-05-19 2002-03-26 Membrane Technology And Research, Inc. Gas separation using C3+ hydrocarbon-resistant membranes

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6249927A (en) * 1985-08-23 1987-03-04 エア−.プロダクツ.アンド.ケミカルス.インコ−ポレ−テツド Hibrid membrane/extremely low temperature method to hydrogen purification
US6179996B1 (en) * 1998-05-22 2001-01-30 Membrane Technology And Research, Inc. Selective purge for hydrogenation reactor recycle loop
JP2000033222A (en) * 1998-07-22 2000-02-02 Air Liquide Japan Ltd Method and apparatus for cleaning gas
JP2005213087A (en) * 2004-01-29 2005-08-11 Nippon Oil Corp Method for producing high purity hydrogen
JP2007084378A (en) * 2005-09-21 2007-04-05 Nippon Oil Corp Method for producing hydrogen and apparatus used in the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020157830A1 (en) * 2019-01-29 2020-08-06 日揮グローバル株式会社 Carbon dioxide gas separation method and carbon dioxide gas separation device
US11806660B2 (en) 2019-01-29 2023-11-07 Jgc Corporation Carbon dioxide gas separation method and carbon dioxide gas separation apparatus
WO2021124937A1 (en) * 2019-12-17 2021-06-24 株式会社堀場製作所 Analysis device and analysis system

Also Published As

Publication number Publication date
WO2009030766A1 (en) 2009-03-12
JP5406441B2 (en) 2014-02-05

Similar Documents

Publication Publication Date Title
US8444749B2 (en) Method and system for membrane-based gas recovery
KR102005593B1 (en) Method for separating gases
JP2789548B2 (en) Multi-stage membrane control device and method
JP2966836B1 (en) Gas purification method and gas purification device
JP7469319B2 (en) Apparatus and membrane process for separating gas components from gas streams having varying composition or flow rate - Patents.com
WO2018236750A1 (en) Methods and apparatuses for treating raw natural gas comprising a membrane unit and a distillation
JP7332297B2 (en) Process for gas separation
JPH08173749A (en) Method for film separation of hydrogen through cascade of film increased in selectivity
JP5406441B2 (en) Method and apparatus for producing gas component and condensable component
CA2967244A1 (en) Co2 separation device in gas and its membrane separation method and method for controlling membrane separation of co2 separation device in gas
US20140026612A1 (en) Method and Apparatus for Liquefying a CO2-Rich Gas
JP2009061420A (en) Manufacturing method of gas component and condensable component, and manufacturing system thereof
JPH09235101A (en) Production of hydrogen and energy and apparatus therefor
EA020101B1 (en) Process that utilizes combined distillation and membrane separation in the separation of an acidic contaminant from a light hydrocarbon gas stream
CN107108244B (en) The device and method for producing ammonia and relevant remodeling method are purified for deep cooling
JP4879795B2 (en) Gas production method and gas production apparatus using gas separation membrane
US20160083254A1 (en) Method, device and system for enrichment of nf3 gas
JP5260920B2 (en) Gas production method using gas separation membrane
CN113457390B (en) Membrane process and system for high recovery of non-permeate gas
JP2008104949A (en) Method for producing gas using a gas separation membrane and gas producing apparatus
JP7031214B2 (en) Helium-enriched gas production method and gas separation system
JP5013855B2 (en) Gas production method and gas production apparatus using gas separation membrane
US11344842B2 (en) Apparatus and method for separating CO2 at low temperature comprising a step of separation by permeation
WO2024014494A1 (en) Gas separation system and enriched gas production method
US20230114525A1 (en) Biogas upgrading apparatus and process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100324

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131101

R150 Certificate of patent or registration of utility model

Ref document number: 5406441

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees