JP2004057858A - Catalyst for manufacturing hydrogen gas and manufacturing method of hydrogen gas - Google Patents

Catalyst for manufacturing hydrogen gas and manufacturing method of hydrogen gas Download PDF

Info

Publication number
JP2004057858A
JP2004057858A JP2002216186A JP2002216186A JP2004057858A JP 2004057858 A JP2004057858 A JP 2004057858A JP 2002216186 A JP2002216186 A JP 2002216186A JP 2002216186 A JP2002216186 A JP 2002216186A JP 2004057858 A JP2004057858 A JP 2004057858A
Authority
JP
Japan
Prior art keywords
hydrogen
catalyst
hydrogen gas
reaction
dehydrogenation reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002216186A
Other languages
Japanese (ja)
Inventor
Shinichi Oyama
大山 眞一
Atsushi Sakai
阪井 敦
Toyo Okubo
大久保 都世
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Original Assignee
Kansai Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc filed Critical Kansai Electric Power Co Inc
Priority to JP2002216186A priority Critical patent/JP2004057858A/en
Publication of JP2004057858A publication Critical patent/JP2004057858A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To make hydrogen efficiently manufacturable. <P>SOLUTION: When hydrogen gas is produced by dehydrogenation reaction of a hydrogen-containing organic compound using a catalyst, a porous carrier having pores of an average pore size of not less than 50Å and carrying metal particles is used as the catalyst. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、水素を製造するための触媒及び方法に関する。
【0002】
【従来の技術】
近年、地球的規模における環境汚染が、生態系の存続をも脅かす重大な問題であることが明確に認識されるに至っている。特に、化石燃料の使用により排出される炭酸ガスの大気圏蓄積を主要因とする地球の温暖化が、気象の不安定化など急激な環境変化を顕在化させつつある。
【0003】
その結果、世界的な規模でのよりクリーンなエネルギーの導入が求められている。このためには、当面は、資源賦存量は豊であるが炭酸ガス排出量の高い石炭などの化石燃料を高効率かつ低環境負荷で利用するための新規な技術を開発するとともに、将来的には、化石燃料への依存を低減しつつ、世界に広くかつ豊富に賦存する再生可能エネルギー(クリーンエネルギー)源の地球規模での利用を図ることが重要である。
【0004】
しかしながら、再生可能エネルギー資源は、化石燃料と異なり、そのままの形態では、長距離輸送、貯蔵などが困難又は実質的に不可能であることなどの理由により、その利用は地域的な制限を受けざるを得ない。
【0005】
この様な制約を受ける再生可能エネルギー資源を地球的規模で効率的に利用するためには、様々な種類及び形態の再生可能エネルギー資源から得られるエネルギーを、生産段階から流通過程を経て消費段階に至るまで一貫して取り扱える形態に変換させる「二次エネルギー体系」の確立が必要である。
【0006】
二次エネルギー体系においては、最もクリーンかつ環境にやさしい水素が、そのエネルギー媒体としての役割を果たすことが期待されている。水素は、太陽熱、太陽光、石油、石炭などの一次エネルギー資源ではなく、それらから得られるエネルギーを変換し、水と作用させて得られる二次エネルギー資源である。この様に、水素は、各種の一次エネルギー資源からの変換による生成が容易であり、また多くの合成燃料へも誘導できるので、「エネルギー変換の十字路にある媒体」として、高く評価できる。
【0007】
従って、水素は、再生可能なエネルギー資源を輸送・貯蔵可能な形態とすることにより、化石燃料と同様に国際市場における取り引きを可能とし、国際的なエネルギー資源供給の多様化及び安定化に資するとともに、クリーンなエネルギ一資源の国際的で大規模な導入を促進するものと考えられる。
【0008】
しかしながら、水素は、常温常圧では気体であり、エネルギー/体積比が低く、かつ触媒的作用を有する物質の存在下又は高温下で爆発的な反応性を示すので、その貯蔵、輸送及び供給には、特別な技術が必要である。これまでに、水素ガスを高圧容器に加圧充填して貯蔵・輸送する方法、水素ガスを液化し、断熱容器に充填して貯蔵・輸送する方法、水素ガスを水素吸蔵合金に吸蔵させた金属水素化物の形態による貯蔵・輸送方法などが一般的に知られている。
【0009】
また、最近は、メタノール、アンモニアなどを水素キャリアとする水素の貯蔵・輸送法も検討されている。これらの水素の貯蔵・輸送方法には、経済性、エネルギー効率、CO抑制効果、安全性等の面において、解決すべき問題点を有しているおり、より効率的な水素貯蔵、輸送及び供給技術の確立が望まれている。
【0010】
特開2001−110437には水素製造効率が高く、しかもCO又はCOを含まない液体水素化芳香族化合物を原料とする燃料電池用水素燃料供給システム及び供給方法が開示されている。本方法によれば、例えばシクロヘキサンから効率よく水素を取り出しベンゼンを生成する。また、ベンゼンに水素を付加することで再びシクロヘキサンを製造できることから循環形の水素キャリアとしての有用性が示されている。
【0011】
しかし、以下の課題の解決が求められている。
1.水素化触媒反応及び水素分離を効率良く行うためには、加熱が必要であり、熱エネルギー効率の改善が求められている。
2.転化率、選択率が現状では低く、高活性、高選択性触媒が求められている。
3.水素含有有機化合物の触媒反応において、比較的低温領域では反応選択率は高いが、転化効率が低く、また、高温域では転化率は高くなるが、選択率は低く、副生成物が発生するなどの間題がある。
4.水素分離膜、触媒の長寿命化が求められている。
【0012】
【発明が解決しようとする課題】
本発明の主な目的は、効率よく水素を製造するための触媒及び方法を提供することである。
【0013】
【課題を解決するための手段】
本発明者らは、鋭意検討を重ねた結果、特定の構造を有する触媒を用いることにより水素を効率よく製造できることを見出し、本発明を完成するに至った。
【0014】
即ち、本発明は、下記の水素製造用触媒及び該触媒を用いた水素製造方法を提供するものである。
【0015】
1.水素含有有機化合物を脱水素反応させることによって水素ガスを生成させる方法に用いる触媒であって、
当該触媒が、平均細孔径50Å以上の細孔を有する多孔質担体に金属粒子が担持されたものであることを特徴とする水素ガス製造用触媒。
【0016】
2.多孔質担体の比表面積が100m/g以上である上記項1記載の水素ガス製造用触媒。
【0017】
3.金属粒子が、白金、パラジウム、ルテニウム、ロジウム及びイリジウムの少なくとも1種である上記項1又は2に記載の水素ガス製造用触媒。
【0018】
4.多孔質担体が、Al、ZrO、TiO、MgO、SiO、ゼオライト及び活性炭の少なくとも1種である上記項1〜3のいずれかに記載の水素ガス製造用触媒。
【0019】
5.触媒が平均粒径0.2〜1mmの粒状体からなり、当該粒状体が多孔質担体に平均粒径1〜20nmの金属粒子が担持された構成を有する、上記項1〜3のいずれかに記載の水素ガス製造用触媒。
【0020】
6.上記項1〜5のいずれかに記載の触媒の存在下、水素含有有機化合物を脱水素反応させることにより水素ガスを生成させることを特徴とする水素ガスの製造方法。
【0021】
7.反応系の水素分圧を下げながら脱水素反応を進行させる上記項6記載の製造方法。
【0022】
8.反応系に少なくとも不活性ガスを存在させる上記項6又は7に記載の製造方法。
【0023】
9.脱水素反応により生成した反応生成物から未反応の水素含有有機化合物を回収し、当該化合物をさらに脱水素反応させる上記項6〜8のいずれかに記載の製造方法。
【0024】
10.脱水素反応により生成した反応生成物から水素ガスを水素分離膜を介して回収する上記項6〜9のいずれかに記載の製造方法。
【0025】
【発明の実施の形態】
本発明は、脱水素反応により、水素含有有機化合物から効率良く水素を得るための触媒に関する。
【0026】
本発明において、水素を得るための原料として用いられる水素含有有機化合物としては、水素を含有し、且つ、脱水素反応を行い得る有機化合物であれば特に限定されない。例えば、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン、デカリン等の有機環状化合物、エタノール、メタノール、プロパノール、2−プロパノールなどのアルコール類、メタン、エタン、プロパン、ブタン等の脂肪族炭化水素類等が例示できる。
【0027】
前記水素含有有機化合物の脱水素反応に使用する本発明の触媒は、金属粒子を担体としての多孔質固体物質に担持させたことを特徴とする。金属粒子としては、白金、パラジウム、ルテニウム、ロジウム、イリジウム等が例示できる。これらの金属粒子は、単独で又は2種以上を組み合わせて用いることが可能であるが、白金を含むようにすると触媒活性がより高くなるので好ましい。また、触媒活性の点から、粒子経は0.1〜30nm程度、好ましくは1〜20nm程度が例示できる。
【0028】
担体の多孔質固体物質としては、Al、ZrO、TiO、MgO、SiO、ゼオライト、活性炭等が例示できる。これらの多孔質固体物質は、単独又は2種以上を組み合わせて用いることも可能である。選択率、転化率の高さ等の点から、Al及び/又は活性炭等が好ましい。また、これら多孔質固体物質の形状は限定されず、用途等に応じて適宜選択することができる。ヒートサイクルによる担体の微粉化を防止する点からは、ナノファイバー状のアルミナの成型体、カーボン等が好ましい。
【0029】
前記多孔質固体物質の平均細孔径は、有機化合物の分子を取り込め、且つ、水素含有有機化合物の選択性を発現させることも可能であるので、50Å程度以上であることが好ましく、更に好ましくは100〜200Å程度とする。多孔質担体の比表面積は、転化率を高くできるので100m/g程度以上、好ましくは150m/g程度以上とする。
【0030】
前記金属粒子を担体に担持させる方法としては、特に限定されず、公知の方法を用いて担持させることができる。例えば、金属を含む化合物の溶液を担体に含浸する方法(含浸法)、イオン変換方法により担持させた後、不活性ガス又は酸素ガス中で加熱処理する方法等の公知の方法を使用することができる。本発明は、含浸法を好適に使用できる。
【0031】
上記化合物としては、限定的でなく、例えば、塩化物、臭化物等のハロゲン化物;硝酸塩、硫酸塩、炭酸塩、リン酸塩等の無機酸塩;酢酸塩、修酸塩等の有機酸塩、金属カルボニル錯体、シクロペンタジエニル錯体等の有機金属化合物等を使用することができる。溶媒は、上記化合物の種類に応じて適宜選択できる。例えば、水の他、アルコール等の有機溶媒も使用できる。
【0032】
具体的には、例えば、0.1mM〜10M程度、好ましくは10〜500mM程度の上記化合物の溶液を担体に含浸担持させた後、70〜150℃程度、好ましくは90〜120℃程度で、1分〜50時間程度、好ましくは1〜24時間程度乾燥し、必要に応じて不活性ガス存在下で、150〜600℃程度、好ましくは350〜500℃程度で、1〜6時間程度、好ましくは3〜4時間程度加熱処理することにより、金属を担持した触媒を製造することができる。
【0033】
前記金属粒子を担体に担持させる担持量は特に限定されないが、高い転化率が得られるという点で、全触媒重量に基いて0.001〜40wt%程度、より好ましくは0.1〜10wt%程度がよい。また、2種以上の金属を組み合わせて使用する場合は、金属粒子の担持量の合計は、全触媒重量に基いて0.002〜40wt%程度、より好ましくは0.2〜10wt%程度が例示できる。
【0034】
本発明の触媒の形状も特に限定されるものでなく、用途等に応じて適宜選択することができる。例えば、粉末状、ペレット状等が例示できる。圧損の低減と触媒充填の効率上昇の点から、直径が0.1〜2.0mm程度、特に0.2〜1.0mm程度の球状のものが好ましい。また、触媒活性の点から、これらの触媒を複数用いて公知の方法により造粒した造粒物の形で用いることもできる。このときも、直径が0.1〜2.0mm程度、特に0.2〜1.0mm程度の球状のものが好ましい。
【0035】
更に、本発明の触媒は、水素ガス、ヒドラジン、例えばBH、NaH、AlH等金属水素化合物等により活性化させて使用することも可能である。
【0036】
本発明の水素の製造方法では、水素含有有機化合物を本発明の触媒に接触させることによって脱水素反応を行うことにより水素を得ることができる。この反応条件としては、例えば、酸素が存在しない雰囲気下で、100〜800℃程度(特に200〜500℃程度)の温度で、有機水素化化合物原料を触媒と接触させるのが好ましい。また、該反応は、0.1〜10気圧程度、好ましくは1〜7気圧程度で行うことが好ましい。重量時問空間速度(WHSV)は、例えば0.1〜10が例示でき、好ましくは0.5〜5.0とする。
【0037】
本発明の水素を製造する工程としては、特に限定されず、適宜選択することができる。例えば、固定床、移動床、流動化床等の流通式、回分式等の形式が例示でき、流通式で実施することが好ましい。該工程で生成した水素は、水素分離膜等を用いた公知の方法により分離、回収等することができる。未反応の水素含有有機化合物は、回収され、更に脱水素反応に供することができる。
【0038】
また、窒素、二酸化炭素、ヘリウム、ネオン、アルゴン、キセノン等の不活性ガスを反応系内に存在させることにより、水素分圧を下げ、水素の製造効率を更に高めることも可能である。
【0039】
本発明の水素製造用触媒及び該触媒を用いた水素製造方法により、高純度の水素が得られる。得られた水素は、燃料電池等にも使用することができるが、利用方法、利用分野等は何ら限定されるものではない。
【0040】
【実施例】
以下、本発明を実施例によりさらに詳述する。
【0041】
この実施例で用いるシクロヘキサン転化率、ベンゼン選択率、水素生成速度は以下のように定義した。
【0042】
シクロヘキサン転化率(%)=〔(原料シクロヘキサンモル数−未反応のシクロヘキサンモル数)/原料シクロヘキサンモル数〕×100。
【0043】
ベンゼン選択率(%)=〔生成したベンゼンモル数/(原料シクロヘキサンモル数一未反応のシクロヘキサンモル数)〕×100。
【0044】
水素生成速度=触媒1gあたり、1時間に生成した水素のmol数。
【0045】
実施例
金属粒子の原料として、塩化白金酸六水和物を用いた。担体としては、表1に示したような様々な平均細孔径を有するAlを粉砕して用いた。金属粒子の担体への担持は、含浸法により行った。
【0046】
即ち、あらかじめ120℃で乾燥させた担体Alを10gサンプリングし、塩化白金酸六水和物(Pt 2.56mmol)水溶液をAlに滴下して、混練しながら蒸発乾固させた。これを500℃、3時間、空気1L/min流通下にて焼成することによりPt粒子を形成させた後、室温まで冷却した。これを粉砕・成型(ゲージ圧400psi、2分間)・分級することにより0.5〜1.0mmの触媒粒子を得た。
【0047】
【表1】

Figure 2004057858
【0048】
上記各触媒1.0gを固定床流通式反応装置の石英製反応管(図1)に充填し、反応温度300〜500℃、1気圧で、シクロヘキサンを重量時間空間速度WHSV=5.0g/g−cat/hrとなるように供給し、シクロヘキサン脱水素反応によるベンゼン及び水素の生成反応活性を調べた。反応後120分経過後の結果を表2に示した。
【0049】
【表2】
Figure 2004057858
【0050】
【発明の効果】
本発明の水素製造用触媒及び水素製造方法によれば、水素含有有機化合物から効率良く水素を得ることができる。
【図面の簡単な説明】
【図1】固定床流通式反応装置の石英製反応管の模式図を示す。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a catalyst and a method for producing hydrogen.
[0002]
[Prior art]
In recent years, it has become clear that global pollution is a serious problem that threatens the survival of ecosystems. In particular, global warming, which is mainly caused by the accumulation of carbon dioxide gas emitted from the use of fossil fuels in the atmosphere, is causing rapid environmental changes such as unstable weather.
[0003]
As a result, the introduction of cleaner energy on a global scale is required. To this end, for the time being, we will develop new technologies to use fossil fuels such as coal, which has abundant resource reserves but high carbon dioxide emissions, with high efficiency and low environmental impact. It is important to reduce the dependence on fossil fuels and to use renewable energy (clean energy), which is widely and abundantly distributed in the world, on a global scale.
[0004]
However, unlike fossil fuels, the use of renewable energy resources is not subject to regional restrictions, for example, because long-distance transport, storage, etc., are difficult or practically impossible. Not get.
[0005]
In order to use renewable energy resources subject to such restrictions efficiently on a global scale, the energy obtained from various types and forms of renewable energy resources must go from the production stage to the consumption stage through the distribution process. It is necessary to establish a “secondary energy system” that can be converted to a form that can be handled consistently.
[0006]
In the secondary energy system, the cleanest and eco-friendly hydrogen is expected to play a role as its energy medium. Hydrogen is not a primary energy resource such as solar heat, sunlight, petroleum, and coal, but a secondary energy resource obtained by converting the energy obtained therefrom and interacting with water. As described above, hydrogen can be easily generated by conversion from various primary energy resources, and can be guided to many synthetic fuels. Therefore, hydrogen can be highly evaluated as a “medium in the crossroads of energy conversion”.
[0007]
Therefore, hydrogen can be traded in international markets, like fossil fuels, by making renewable energy resources transportable and storable, contributing to the diversification and stabilization of international energy resource supplies. It is thought to promote international and large-scale introduction of clean energy resources.
[0008]
However, hydrogen is a gas at normal temperature and pressure, has a low energy / volume ratio, and exhibits explosive reactivity in the presence of a substance having a catalytic action or at high temperature, so that hydrogen can be stored, transported and supplied. Requires special skills. So far, a method of storing and transporting hydrogen gas under pressure in a high-pressure container, a method of liquefying hydrogen gas and filling and storing and transporting it in an insulated container, and a method of storing hydrogen gas in a hydrogen storage alloy A storage / transport method in the form of a hydride is generally known.
[0009]
Recently, a method of storing and transporting hydrogen using methanol, ammonia or the like as a hydrogen carrier is also being studied. The storage and transportation method of the hydrogen economy, energy efficiency, CO 2 inhibitory effect, in terms of safety, and has a problem to be solved, more efficient hydrogen storage, transport and Establishment of supply technology is desired.
[0010]
Japanese Patent Application Laid-Open No. 2001-110439 discloses a hydrogen fuel supply system and a supply method for a fuel cell which uses a liquid hydrogenated aromatic compound containing CO or CO 2 as a raw material and having high hydrogen production efficiency. According to this method, for example, hydrogen is efficiently extracted from cyclohexane to produce benzene. Further, since cyclohexane can be produced again by adding hydrogen to benzene, its usefulness as a circulating hydrogen carrier has been demonstrated.
[0011]
However, there is a need to solve the following problems.
1. In order to efficiently perform the hydrogenation catalytic reaction and the hydrogen separation, heating is required, and improvement in thermal energy efficiency is required.
2. At present, conversion and selectivity are low, and a high activity and high selectivity catalyst is required.
3. In the catalytic reaction of hydrogen-containing organic compounds, the reaction selectivity is relatively high in the relatively low temperature range, but the conversion efficiency is low. In the high temperature range, the conversion is high, but the selectivity is low and by-products are generated. There is a problem between
4. There is a demand for longer life of hydrogen separation membranes and catalysts.
[0012]
[Problems to be solved by the invention]
A main object of the present invention is to provide a catalyst and a method for efficiently producing hydrogen.
[0013]
[Means for Solving the Problems]
As a result of intensive studies, the present inventors have found that hydrogen can be efficiently produced by using a catalyst having a specific structure, and have completed the present invention.
[0014]
That is, the present invention provides the following catalyst for hydrogen production and a method for producing hydrogen using the catalyst.
[0015]
1. A catalyst used in a method for generating hydrogen gas by subjecting a hydrogen-containing organic compound to a dehydrogenation reaction,
A catalyst for hydrogen gas production, characterized in that the catalyst has metal particles supported on a porous carrier having pores having an average pore diameter of 50 ° or more.
[0016]
2. Item 2. The catalyst for producing hydrogen gas according to Item 1, wherein the specific surface area of the porous carrier is 100 m 2 / g or more.
[0017]
3. Item 3. The catalyst for producing hydrogen gas according to Item 1 or 2, wherein the metal particles are at least one of platinum, palladium, ruthenium, rhodium and iridium.
[0018]
4. Porous carrier, Al 2 O 3, ZrO 2 , TiO 2, MgO, SiO 2, zeolites, and at least one kind of catalyst for producing hydrogen gas according to any one of items 1 to 3 of the activated carbon.
[0019]
5. The catalyst according to any one of the above items 1 to 3, wherein the catalyst comprises a granular material having an average particle size of 0.2 to 1 mm, and the granular material has a configuration in which metal particles having an average particle size of 1 to 20 nm are supported on a porous carrier. The catalyst for producing hydrogen gas as described in the above.
[0020]
6. Item 6. A method for producing hydrogen gas, comprising generating hydrogen gas by subjecting a hydrogen-containing organic compound to a dehydrogenation reaction in the presence of the catalyst according to any one of the above items 1 to 5.
[0021]
7. Item 7. The production method according to Item 6, wherein the dehydrogenation reaction proceeds while reducing the hydrogen partial pressure of the reaction system.
[0022]
8. Item 8. The production method according to item 6 or 7, wherein at least an inert gas is present in the reaction system.
[0023]
9. Item 9. The method according to any one of Items 6 to 8, wherein an unreacted hydrogen-containing organic compound is recovered from a reaction product generated by the dehydrogenation reaction, and the compound is further subjected to a dehydrogenation reaction.
[0024]
10. Item 10. The method according to any one of Items 6 to 9, wherein hydrogen gas is recovered from a reaction product generated by the dehydrogenation reaction through a hydrogen separation membrane.
[0025]
BEST MODE FOR CARRYING OUT THE INVENTION
The present invention relates to a catalyst for efficiently obtaining hydrogen from a hydrogen-containing organic compound by a dehydrogenation reaction.
[0026]
In the present invention, the hydrogen-containing organic compound used as a raw material for obtaining hydrogen is not particularly limited as long as it is an organic compound containing hydrogen and capable of performing a dehydrogenation reaction. Examples thereof include organic cyclic compounds such as cyclohexane, methylcyclohexane, ethylcyclohexane, and decalin; alcohols such as ethanol, methanol, propanol, and 2-propanol; and aliphatic hydrocarbons such as methane, ethane, propane, and butane.
[0027]
The catalyst of the present invention used for the dehydrogenation reaction of the hydrogen-containing organic compound is characterized in that metal particles are supported on a porous solid substance as a carrier. Examples of the metal particles include platinum, palladium, ruthenium, rhodium, and iridium. These metal particles can be used alone or in combination of two or more kinds. However, it is preferable to include platinum because the catalytic activity becomes higher. In addition, from the viewpoint of catalytic activity, the particle size may be about 0.1 to 30 nm, preferably about 1 to 20 nm.
[0028]
Examples of the porous solid substance of the carrier include Al 2 O 3 , ZrO 2 , TiO 2 , MgO, SiO 2 , zeolite, and activated carbon. These porous solid substances can be used alone or in combination of two or more. Al 2 O 3 and / or activated carbon and the like are preferable in terms of selectivity, high conversion rate, and the like. Further, the shape of the porous solid substance is not limited, and can be appropriately selected according to the use and the like. From the viewpoint of preventing the carrier from being pulverized by the heat cycle, a nanofiber-shaped alumina molded product, carbon, or the like is preferable.
[0029]
The average pore diameter of the porous solid substance is preferably about 50 ° or more, and more preferably 100 ° or more, since it is possible to incorporate molecules of the organic compound and to express selectivity of the hydrogen-containing organic compound. About 200 °. The specific surface area of the porous carrier is set to about 100 m 2 / g or more, preferably about 150 m 2 / g or more because the conversion can be increased.
[0030]
The method for supporting the metal particles on the carrier is not particularly limited, and the metal particles can be supported using a known method. For example, a known method such as a method of impregnating a carrier with a solution of a compound containing a metal (impregnation method), a method of performing heat treatment in an inert gas or an oxygen gas after supporting by a ion conversion method, and the like can be used. it can. In the present invention, the impregnation method can be suitably used.
[0031]
Examples of the compound include, but are not limited to, halides such as chloride and bromide; inorganic acid salts such as nitrate, sulfate, carbonate and phosphate; organic acid salts such as acetate and oxalate; Organometallic compounds such as metal carbonyl complexes and cyclopentadienyl complexes can be used. The solvent can be appropriately selected according to the type of the compound. For example, in addition to water, an organic solvent such as alcohol can be used.
[0032]
Specifically, for example, after a carrier is impregnated with a solution of the above compound at about 0.1 mM to 10 M, preferably about 10 to 500 mM, the solution is heated at about 70 to 150 ° C., preferably about 90 to 120 ° C. Dried for about 1 minute to about 50 hours, preferably about 1 to 24 hours, and in the presence of an inert gas, if necessary, at about 150 to 600 ° C., preferably about 350 to 500 ° C., for about 1 to 6 hours, preferably about 1 to 6 hours. By performing the heat treatment for about 3 to 4 hours, a catalyst supporting a metal can be manufactured.
[0033]
The amount of the metal particles supported on the carrier is not particularly limited, but is preferably about 0.001 to 40 wt%, more preferably about 0.1 to 10 wt% based on the total catalyst weight, in that a high conversion is obtained. Is good. When two or more metals are used in combination, the total amount of metal particles carried is, for example, about 0.002 to 40% by weight, more preferably about 0.2 to 10% by weight based on the total catalyst weight. it can.
[0034]
The shape of the catalyst of the present invention is not particularly limited, either, and can be appropriately selected according to the use and the like. For example, a powder form, a pellet form and the like can be exemplified. From the viewpoint of reducing the pressure loss and increasing the efficiency of charging the catalyst, a spherical one having a diameter of about 0.1 to 2.0 mm, particularly about 0.2 to 1.0 mm is preferable. Further, from the viewpoint of catalytic activity, a plurality of these catalysts can be used in the form of granules obtained by granulation by a known method. Also in this case, a spherical shape having a diameter of about 0.1 to 2.0 mm, particularly about 0.2 to 1.0 mm is preferable.
[0035]
Further, the catalyst of the present invention can be used after being activated by hydrogen gas or hydrazine, for example, a metal hydrogen compound such as BH 3 , NaH, or AlH 3 .
[0036]
In the method for producing hydrogen of the present invention, hydrogen can be obtained by performing a dehydrogenation reaction by bringing a hydrogen-containing organic compound into contact with the catalyst of the present invention. As the reaction conditions, for example, it is preferable to contact the organic hydride compound raw material with the catalyst at a temperature of about 100 to 800 ° C. (particularly about 200 to 500 ° C.) in an atmosphere in which oxygen does not exist. The reaction is preferably performed at about 0.1 to 10 atm, preferably about 1 to 7 atm. The weight hourly space velocity (WHSV) can be, for example, 0.1 to 10 and preferably 0.5 to 5.0.
[0037]
The step of producing hydrogen of the present invention is not particularly limited and can be appropriately selected. For example, a fixed bed, a moving bed, a fluidized bed, etc., a flow type, a batch type, etc. can be exemplified, and it is preferable to carry out the flow type. Hydrogen generated in this step can be separated and recovered by a known method using a hydrogen separation membrane or the like. The unreacted hydrogen-containing organic compound is recovered and can be further subjected to a dehydrogenation reaction.
[0038]
In addition, the presence of an inert gas such as nitrogen, carbon dioxide, helium, neon, argon, or xenon in the reaction system can lower the hydrogen partial pressure and further increase the hydrogen production efficiency.
[0039]
By the catalyst for hydrogen production of the present invention and the method for producing hydrogen using the catalyst, high-purity hydrogen can be obtained. The obtained hydrogen can be used for a fuel cell or the like, but the method of use and the field of use are not limited at all.
[0040]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples.
[0041]
The cyclohexane conversion, benzene selectivity, and hydrogen generation rate used in this example were defined as follows.
[0042]
Cyclohexane conversion (%) = [(moles of cyclohexane starting material−moles of unreacted cyclohexane) / moles of starting cyclohexane] × 100.
[0043]
Benzene selectivity (%) = [number of moles of benzene formed / (number of moles of starting cyclohexane / number of moles of unreacted cyclohexane)] × 100.
[0044]
Hydrogen generation rate = mol number of hydrogen generated per hour per g of catalyst.
[0045]
Example 1
Chloroplatinic acid hexahydrate was used as a raw material of the metal particles. As the carrier, Al 2 O 3 having various average pore diameters as shown in Table 1 was pulverized and used. The loading of the metal particles on the carrier was performed by an impregnation method.
[0046]
That is, 10 g of the carrier Al 2 O 3 previously dried at 120 ° C. was sampled, an aqueous solution of chloroplatinic acid hexahydrate (Pt 2.56 mmol) was dropped into Al 2 O 3 , and the mixture was evaporated to dryness while kneading. Was. This was fired at 500 ° C. for 3 hours under a flow of air of 1 L / min to form Pt particles, and then cooled to room temperature. This was pulverized, molded (gauge pressure 400 psi, 2 minutes) and classified to obtain 0.5 to 1.0 mm catalyst particles.
[0047]
[Table 1]
Figure 2004057858
[0048]
1.0 g of each of the above catalysts was charged into a quartz reaction tube (FIG. 1) of a fixed bed flow reactor, and cyclohexane was charged at a reaction temperature of 300 to 500 ° C. and 1 atm with a weight hourly space velocity WHSV = 5.0 g / g. −cat / hr, and the activity of benzene and hydrogen production by cyclohexane dehydrogenation was examined. Table 2 shows the results 120 minutes after the reaction.
[0049]
[Table 2]
Figure 2004057858
[0050]
【The invention's effect】
According to the hydrogen production catalyst and the hydrogen production method of the present invention, hydrogen can be efficiently obtained from a hydrogen-containing organic compound.
[Brief description of the drawings]
FIG. 1 shows a schematic view of a quartz reaction tube of a fixed bed flow type reaction apparatus.

Claims (10)

水素含有有機化合物を脱水素反応させることによって水素ガスを生成させる方法に用いる触媒であって、
当該触媒が、平均細孔径50Å以上の細孔を有する多孔質担体に金属粒子が担持されたものであることを特徴とする水素ガス製造用触媒。
A catalyst used in a method for generating hydrogen gas by subjecting a hydrogen-containing organic compound to a dehydrogenation reaction,
A catalyst for hydrogen gas production, wherein the catalyst is obtained by supporting metal particles on a porous carrier having pores having an average pore diameter of 50 ° or more.
多孔質担体の比表面積が100m/g以上である請求項1記載の水素ガス製造用触媒。Porous claim 1 wherein the hydrogen gas production catalyst specific surface area of the support is 100 m 2 / g or more. 金属粒子が、白金、パラジウム、ルテニウム、ロジウム及びイリジウムの少なくとも1種である請求項1又は2に記載の水素ガス製造用触媒。The catalyst for hydrogen gas production according to claim 1 or 2, wherein the metal particles are at least one of platinum, palladium, ruthenium, rhodium and iridium. 多孔質担体が、Al、ZrO、TiO、MgO、SiO、ゼオライト及び活性炭の少なくとも1種である請求項1〜3のいずれかに記載の水素ガス製造用触媒。Porous carrier, Al 2 O 3, ZrO 2 , TiO 2, MgO, SiO 2, zeolites, and at least one hydrogen gas production catalyst according to any one of claims 1 to 3, activated carbon. 触媒が平均粒径0.2〜1mmの粒状体からなり、当該粒状体が多孔質担体に平均粒径1〜20nmの金属粒子が担持された構成を有する、請求項1〜3のいずれかに記載の水素ガス製造用触媒。The catalyst according to any one of claims 1 to 3, wherein the catalyst is a granular material having an average particle size of 0.2 to 1 mm, and the granular material has a configuration in which metal particles having an average particle size of 1 to 20 nm are supported on a porous carrier. The catalyst for producing hydrogen gas as described above. 請求項1〜5のいずれかに記載の触媒の存在下、水素含有有機化合物を脱水素反応させることにより水素ガスを生成させることを特徴とする水素ガスの製造方法。A method for producing hydrogen gas, comprising generating a hydrogen gas by subjecting a hydrogen-containing organic compound to a dehydrogenation reaction in the presence of the catalyst according to claim 1. 反応系の水素分圧を下げながら脱水素反応を進行させる請求項6記載の製造方法。7. The production method according to claim 6, wherein the dehydrogenation reaction proceeds while lowering the hydrogen partial pressure of the reaction system. 反応系に少なくとも不活性ガスを存在させる請求項6又は7に記載の製造方法。The production method according to claim 6, wherein at least an inert gas is present in the reaction system. 脱水素反応により生成した反応生成物から未反応の水素含有有機化合物を回収し、当該化合物をさらに脱水素反応させる請求項6〜8のいずれかに記載の製造方法。The production method according to any one of claims 6 to 8, wherein an unreacted hydrogen-containing organic compound is recovered from a reaction product generated by the dehydrogenation reaction, and the compound is further subjected to a dehydrogenation reaction. 脱水素反応により生成した反応生成物から水素ガスを水素分離膜を介して回収する請求項6〜9のいずれかに記載の製造方法。The production method according to any one of claims 6 to 9, wherein hydrogen gas is recovered from a reaction product generated by the dehydrogenation reaction through a hydrogen separation membrane.
JP2002216186A 2002-07-25 2002-07-25 Catalyst for manufacturing hydrogen gas and manufacturing method of hydrogen gas Pending JP2004057858A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002216186A JP2004057858A (en) 2002-07-25 2002-07-25 Catalyst for manufacturing hydrogen gas and manufacturing method of hydrogen gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002216186A JP2004057858A (en) 2002-07-25 2002-07-25 Catalyst for manufacturing hydrogen gas and manufacturing method of hydrogen gas

Publications (1)

Publication Number Publication Date
JP2004057858A true JP2004057858A (en) 2004-02-26

Family

ID=31938007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002216186A Pending JP2004057858A (en) 2002-07-25 2002-07-25 Catalyst for manufacturing hydrogen gas and manufacturing method of hydrogen gas

Country Status (1)

Country Link
JP (1) JP2004057858A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006102632A (en) * 2004-10-05 2006-04-20 Japan Energy Corp Catalyst for manufacturing hydrogen, and hydrogen manufacturing method
JP2006232607A (en) * 2005-02-24 2006-09-07 Japan Energy Corp Hydrogen production method
JP2006272324A (en) * 2005-03-03 2006-10-12 Japan Energy Corp Catalyst for producing hydrogen and method for producing hydrogen
JP2007039312A (en) * 2005-06-30 2007-02-15 National Institute Of Advanced Industrial & Technology Apparatus and method for producing hydrogen
WO2007046462A1 (en) * 2005-10-19 2007-04-26 Kyocera Corporation Catalyst for hydrogen production, process for producing the same, fuel reformer, and fuel cell
JP2008297160A (en) * 2007-05-31 2008-12-11 Petroleum Energy Center Method for producing hydrogen and reaction tube for hydrogen production

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006102632A (en) * 2004-10-05 2006-04-20 Japan Energy Corp Catalyst for manufacturing hydrogen, and hydrogen manufacturing method
JP2006232607A (en) * 2005-02-24 2006-09-07 Japan Energy Corp Hydrogen production method
JP2006272324A (en) * 2005-03-03 2006-10-12 Japan Energy Corp Catalyst for producing hydrogen and method for producing hydrogen
JP4743521B2 (en) * 2005-03-03 2011-08-10 Jx日鉱日石エネルギー株式会社 Catalyst for producing hydrogen and method for producing hydrogen
JP2007039312A (en) * 2005-06-30 2007-02-15 National Institute Of Advanced Industrial & Technology Apparatus and method for producing hydrogen
WO2007046462A1 (en) * 2005-10-19 2007-04-26 Kyocera Corporation Catalyst for hydrogen production, process for producing the same, fuel reformer, and fuel cell
JP2007136445A (en) * 2005-10-19 2007-06-07 Oita Univ Hydrogen production catalyst and production method thereof
JP2008297160A (en) * 2007-05-31 2008-12-11 Petroleum Energy Center Method for producing hydrogen and reaction tube for hydrogen production

Similar Documents

Publication Publication Date Title
Chen et al. Ru-based catalysts for ammonia decomposition: a mini-review
Preuster et al. Liquid organic hydrogen carriers (LOHCs): toward a hydrogen-free hydrogen economy
Wang et al. Highly active ruthenium catalyst supported on barium hexaaluminate for ammonia decomposition to CO x-free hydrogen
Asif et al. Recent advances in green hydrogen production, storage and commercial-scale use via catalytic ammonia cracking
Yolcular et al. Ni/Al2O3 catalysts and their activity in dehydrogenation of methylcyclohexane for hydrogen production
US9005571B2 (en) Process for the storage delivery of hydrogen using catalyst
Schüth et al. Ammonia as a possible element in an energy infrastructure: catalysts for ammonia decomposition
Bai et al. Carbon-supported platinum catalysts for on-site hydrogen generation from NaBH4 solution
Sotoodeh et al. An overview of the kinetics and catalysis of hydrogen storage on organic liquids
Furusawa et al. Preparation of Ru/ZrO2 catalysts by NaBH4 reduction and their catalytic activity for NH3 decomposition to produce H2
Atsumi et al. Ammonia decomposition activity over Ni/SiO2 catalysts with different pore diameters
EP2579984B1 (en) Catalyst for aqueous phase reforming of biomass-derived polyols and preparation method thereof
Dong et al. Heterogeneous catalysis on liquid organic hydrogen carriers
WO2022219822A1 (en) Hydrogen station and hydrogen generation method
Müller et al. Releasing hydrogen at high pressures from liquid carriers: aspects for the H2 delivery to fueling stations
Adamou et al. Recent progress for hydrogen production from ammonia and hydrous hydrazine decomposition: A review on heterogeneous catalysts
JP2008546533A (en) Hydrogen production catalyst and hydrogen production system
Lee et al. Catalytic ammonia decomposition to produce hydrogen: A mini-review
JP4835967B2 (en) Hydrogen production system
JP2004057858A (en) Catalyst for manufacturing hydrogen gas and manufacturing method of hydrogen gas
Wei et al. Ultrasound-assisted preparation of PdCo bimetallic nanoparticles loaded on beta zeolite for efficient catalytic hydrogen production from dodecahydro-N-ethylcarbazole
JP4604476B2 (en) How to store and transport hydrogen
Sun et al. Methane catalytic decomposition integrated with on-line Pd membrane hydrogen separation for fuel cell application
Peng et al. Single-atom and cluster catalysts for thermocatalytic ammonia synthesis at mild conditions
KR102556059B1 (en) Pt-Pd catalyst for synthesis of hydrogen, and Method of preaparing hydrogen using the Pt-Pd catalyst