JP2009221057A - Hydrogen production system - Google Patents

Hydrogen production system Download PDF

Info

Publication number
JP2009221057A
JP2009221057A JP2008068286A JP2008068286A JP2009221057A JP 2009221057 A JP2009221057 A JP 2009221057A JP 2008068286 A JP2008068286 A JP 2008068286A JP 2008068286 A JP2008068286 A JP 2008068286A JP 2009221057 A JP2009221057 A JP 2009221057A
Authority
JP
Japan
Prior art keywords
hydrogen
gas
hydrogenation
concentration
dehydrogenation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008068286A
Other languages
Japanese (ja)
Other versions
JP5288840B2 (en
Inventor
Takahiko Matsuda
隆彦 松田
Junko Matsui
順子 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Japan Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corp filed Critical Japan Energy Corp
Priority to JP2008068286A priority Critical patent/JP5288840B2/en
Publication of JP2009221057A publication Critical patent/JP2009221057A/en
Application granted granted Critical
Publication of JP5288840B2 publication Critical patent/JP5288840B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Landscapes

  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydrogen production system capable of stably producing hydrogen with high energy efficiency and excellent load followability without supplying heat additionally from the outside. <P>SOLUTION: The hydrogen production system is provided with a hydrogenation apparatus 1, a gas liquid separation apparatus 2, a dehydrogenation apparatus 3 and a power generation apparatus 4, wherein a hydrogen-containing gas and an aromatic hydrocarbon are supplied to the hydrogenation apparatus 1 to hydrogenate the aromatic hydrocarbon, the hydrogenation reaction product flowing out from the outlet of the hydrogenation apparatus is separated into a gas portion and a liquid portion in the gas liquid separation apparatus 2, an aromatic hydrocarbon hydrogenated product in the liquid portion separated in the gas liquid separation apparatus 2 is dehydrogenated in the dehydrogenation apparatus 3 to produce an aromatic hydrocarbon and hydrogen and the gas portion separated in the gas liquid separation apparatus 2 is supplied to the power generation apparatus 4 to generate powder. At least a part of waste heat generated in the hydrogenation apparatus 1 and at least a part of waste heat generated in the power generation apparatus 4 are used for the heat source of the dehydrogenation apparatus 3. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、水素製造システム、特には、水素を含む混合ガス及びシステム内の廃熱を利用して、高いエネルギー効率で、負荷追従性よく、安定的に水素を製造することが可能なシステムに関するものである。   The present invention relates to a hydrogen production system, and more particularly, to a system capable of stably producing hydrogen with high energy efficiency, good load followability, using a mixed gas containing hydrogen and waste heat in the system. Is.

製油所や製鉄所を含むコンビナートやバイオマス・廃棄物のガス化装置等からは、水素を含む混合ガスが発生するが、該混合ガスは価値が低いため、従来は燃料ガスとして利用されることが多かった。近年、燃料電池等への水素利用が盛んに検討されるようになり、このような価値の低い水素含有ガスから高純度水素を取り出す技術が開発されている。最も一般的な方法はPSA(Pressure Swing Adsorption)であるが、水素回収率が高々80%程度であるため、より高い回収率が期待できる芳香族炭化水素との反応を利用する方法が注目されている。   From gas refineries such as refineries and steelworks and gasifiers for biomass and waste, mixed gas containing hydrogen is generated, but since this mixed gas has low value, it has been used as fuel gas in the past. There were many. In recent years, the use of hydrogen in fuel cells and the like has been actively studied, and a technique for extracting high-purity hydrogen from such a low-value hydrogen-containing gas has been developed. The most common method is PSA (Pressure Swing Adsorption). However, since the hydrogen recovery rate is about 80% at most, a method using a reaction with an aromatic hydrocarbon that can be expected to have a higher recovery rate has attracted attention. Yes.

例えば、下記特許文献1では、コークス炉ガス(COG)中の水素を用いてベンゼンからシクロヘキサンを製造し、分離されたCOG中のその他の成分は、メタンリッチガスであるため、SNG(synthetic natural gas)としての利用が可能とある。また、下記特許文献2では、COG中の水素濃度を調整するためにベンゼンとの反応を利用し、水素濃度が調整されたCOGは水蒸気改質してメタノールやDMEの製造に用いられるとある。更に、下記特許文献3では、ナフタレンとテトラリン間の反応を利用してヘテロ化合物を多く含むCOGから水素を取り出す方法が示されており、残存したCOGは、メタン濃度が高まるため高カロリーとなり、燃料ガスとして適するとある。これらの方法では、芳香族炭化水素との反応条件を適宜設定することにより、水素含有ガス中の水素をほぼ全量回収することができるが、水素含有ガスから水素を取り出した残りのガスは、燃料ガスとして燃やされたり、天然ガスの代替に使われたり、化学品製造の原料とされており、直接発電に用いることはなされていなかった。   For example, in Patent Document 1 below, since hydrogen in coke oven gas (COG) is used to produce cyclohexane from benzene, and other components in the separated COG are methane-rich gas, SNG (synthetic natural gas) It can be used as In Patent Document 2 below, the reaction with benzene is used to adjust the hydrogen concentration in the COG, and the COG having the adjusted hydrogen concentration is steam reformed and used in the production of methanol and DME. Furthermore, Patent Document 3 below shows a method of extracting hydrogen from COG containing a large amount of hetero compounds using a reaction between naphthalene and tetralin. The remaining COG becomes high in calories due to an increase in methane concentration, and fuel It is suitable as a gas. In these methods, it is possible to recover almost all of the hydrogen in the hydrogen-containing gas by appropriately setting the reaction conditions with the aromatic hydrocarbon. It was burned as a gas, used as a substitute for natural gas, and used as a raw material for chemical production, and was not used directly for power generation.

一方、水素を含むガスを用いる発電方法としては、ガスタービンや燃料電池が知られている。しかしながら、水素含有ガスを燃焼させて用いるガスタービンの場合、ガス中の水素含有量が少ないほうが高カロリーとなって望ましく、逆に燃料電池では、その種類によって水素以外の成分含有量が厳しく規定されるものもある。そのため、様々な副生ガス、燃料ガス等をそのままガスタービンや燃料電池に用いることは好ましくない。   On the other hand, gas turbines and fuel cells are known as power generation methods using a gas containing hydrogen. However, in the case of a gas turbine that burns and uses a hydrogen-containing gas, it is preferable that the hydrogen content in the gas is low, resulting in high calories, and conversely, in the fuel cell, the content of components other than hydrogen is strictly defined by the type. Some are. For this reason, it is not preferable to use various by-product gases, fuel gases, etc. as they are in gas turbines and fuel cells.

また、上記のようにして芳香族炭化水素との反応で取り出した水素含有ガス中の水素は、次に、芳香族炭化水素の水素化物の脱水素反応により、該水素化物から取り出して活用される。この際、脱水素反応は吸熱反応であるため、熱を外部から供給する必要がある。そこで、エネルギー効率を向上させるために、脱水素反応装置に供給する熱源として、併設する設備からの廃熱を利用することが検討されている。   Further, the hydrogen in the hydrogen-containing gas taken out by the reaction with the aromatic hydrocarbon as described above is then taken out from the hydride and utilized by the dehydrogenation reaction of the hydride of the aromatic hydrocarbon. . At this time, since the dehydrogenation reaction is an endothermic reaction, it is necessary to supply heat from the outside. Then, in order to improve energy efficiency, using the waste heat from the facility installed as a heat source supplied to a dehydrogenation reaction apparatus is examined.

例えば、下記特許文献4には、芳香族炭化水素の水素化反応が発熱反応であり、芳香族炭化水素水素化物の脱水素反応が吸熱反応であることから、水素化装置と脱水素装置とを直列にし、水素化反応時に発生した熱を水蒸気や油等の熱媒体を介して回収し、脱水素反応に利用する方法が開示されているが、放熱や熱交換ロスがあるため、外部から別途熱を補充しなければならなかった。   For example, in Patent Document 4 below, since the hydrogenation reaction of an aromatic hydrocarbon is an exothermic reaction and the dehydrogenation reaction of an aromatic hydrocarbon hydride is an endothermic reaction, a hydrogenation device and a dehydrogenation device are provided. Although a method is disclosed in which the heat generated during the hydrogenation reaction is recovered via a heat medium such as steam or oil and used for the dehydrogenation reaction, there is heat dissipation and heat exchange loss. I had to replenish the heat.

また、芳香族炭化水素水素化物の脱水素反応を利用して、水素ステーション等で水素を供給するシステムにおいても、脱水素反応に必要な熱を如何にして供給するかについて様々な検討がされている。例えば、製造した水素や回収される芳香族炭化水素を燃焼させる方法(下記特許文献5)、併設した燃焼タービンの廃熱を利用する方法(下記特許文献6)、同じく併設した固体酸化物形燃料電池(SOFC)の廃熱を利用する方法(下記特許文献7)等が提案されている。しかしながら、芳香族炭化水素の燃焼を利用する場合はCO2の発生を伴うため好ましなく、水素の燃焼を利用する場合は本来燃料電池等へ利用したかった水素の量が減ってしまうため好ましくなく、燃焼タービンやSOFCの廃熱を利用する場合にも、放熱や熱交換ロスがあれば別途熱を補充しなければならないおそれがあった。また、これらの方法において、回収した芳香族炭化水素を再度水素化するのは、水素化装置の設置された別の場所で行われるため、コンビナート等を除けば、水素化装置で発生する熱は、脱水素装置に十分に有効利用されているとはいえなかった。 In addition, in a system for supplying hydrogen at a hydrogen station or the like using the dehydrogenation reaction of aromatic hydrocarbon hydrides, various studies have been conducted on how to supply heat necessary for the dehydrogenation reaction. Yes. For example, a method of combusting produced hydrogen and recovered aromatic hydrocarbon (Patent Document 5 below), a method of using waste heat of a combusted turbine (Patent Document 6 below), and a solid oxide fuel that is also provided A method of utilizing waste heat of a battery (SOFC) (the following Patent Document 7) has been proposed. However, the use of aromatic hydrocarbon combustion is not preferable because it involves the generation of CO 2 , and the use of hydrogen combustion is preferable because the amount of hydrogen originally intended for use in a fuel cell is reduced. In addition, when using waste heat of a combustion turbine or SOFC, there is a possibility that heat must be replenished separately if there is heat dissipation or heat exchange loss. In these methods, since the recovered aromatic hydrocarbons are hydrogenated again in another place where the hydrogenation device is installed, the heat generated in the hydrogenation device except for the complex is Therefore, it could not be said that the dehydrogenation apparatus was sufficiently utilized effectively.

さらに、上記の水素を含む混合ガスにおいては、製油所で処理される石油、製鉄所で処理される石炭、ガス化装置で処理される原料の切り替えに伴い、各プラントの原料組成が変動したり、運転条件を変更したりすることにより、水素を含む混合ガスの組成や流量が変動することがあるが、これらの変動への対応は、未だ十分に検討されてはいなかった。   Furthermore, in the above mixed gas containing hydrogen, the raw material composition of each plant fluctuates with the switching of oil processed at refineries, coal processed at steelworks, and raw materials processed at gasifiers. Although the composition and flow rate of the mixed gas containing hydrogen may change by changing the operating conditions, the response to these changes has not yet been fully studied.

特開昭62−215540号公報JP-A-62-215540 特開2005−146147号公報JP 2005-146147 A 特開2006−143507号公報JP 2006-143507 A 特開2005−200254号公報Japanese Patent Laying-Open No. 2005-200254 特開2004−256326号公報JP 2004-256326 A 特開2004−197705号公報JP 2004-197705 A 特開2006−221850号公報JP 2006-221850 A

このような状況下、本発明の目的は、水素含有ガスから水素を有効利用するために芳香族炭化水素の水素化反応を利用し、さらに生成した芳香族炭化水素水素化物の脱水素反応により高純度化された水素を製造する際に、外部から熱を別途供給することなく、高いエネルギー効率で、負荷追従性よく、安定して水素を製造することが可能な水素製造システムを提供することにある。   Under such circumstances, the object of the present invention is to use an aromatic hydrocarbon hydrogenation reaction in order to effectively use hydrogen from a hydrogen-containing gas, and to further enhance the dehydrogenation reaction of the produced aromatic hydrocarbon hydride. To provide a hydrogen production system capable of stably producing hydrogen with high energy efficiency, good load followability, without separately supplying heat from the outside when producing purified hydrogen. is there.

本発明者らは、上記課題を解決するために鋭意研究した結果、水素化装置、脱水素装置及び発電装置をすべて同じサイトに設置し、水素化装置で芳香族炭化水素を水素化し、水素化反応後に残ったガス分を発電装置に用い、水素化装置及び発電装置で発生した廃熱の少なくとも一部を熱の供給が必要な脱水素装置に供給することにより、脱水素反応に必要な熱を水素化装置及び発電装置以外の外部の熱源から供給する必要がなくなり、また、発電装置が改質器を具えた燃料電池である場合は、発電装置の廃熱を脱水素装置と改質器とに分配することにより、水素含有ガスの組成や流量の変動が起きても、安定して水素を製造できることを見出し、本発明を完成させるに至った。   As a result of diligent research to solve the above problems, the present inventors have installed a hydrogenation device, a dehydrogenation device, and a power generation device all at the same site, hydrogenated aromatic hydrocarbons in the hydrogenation device, and hydrogenated The amount of gas remaining after the reaction is used in the power generation device, and at least a part of the waste heat generated in the hydrogenation device and the power generation device is supplied to the dehydrogenation device that needs to supply heat. Is not required to be supplied from an external heat source other than the hydrogenation device and the power generation device, and when the power generation device is a fuel cell including a reformer, the waste heat of the power generation device is removed from the dehydrogenation device and the reformer. It was found that hydrogen can be stably produced even when the composition and flow rate of the hydrogen-containing gas vary, and the present invention has been completed.

即ち、本発明の水素製造システムは、水素化装置と、気液分離装置と、脱水素装置と、発電装置とを具え、
前記水素化装置に水素含有ガスと芳香族炭化水素を供給して芳香族炭化水素を水素化し、
該水素化装置の出口から流出する水素化反応生成物を前記気液分離装置でガス分と液分とに分離し、
該気液分離装置で分離された液分中の芳香族炭化水素水素化物を前記脱水素装置で脱水素して芳香族炭化水素と水素を生成させ、
前記気液分離装置で分離されたガス分を前記発電装置に供給して発電を行う水素製造システムであって、
前記水素化装置で発生した廃熱の少なくとも一部と前記発電装置で発生した廃熱の少なくとも一部を前記脱水素装置の熱源に利用することを特徴とする。なお、本発明においては、水素化装置及び発電装置で発生した廃熱の一部を脱水素装置の熱源に利用しても、全部を利用してもよい。
That is, the hydrogen production system of the present invention comprises a hydrogenation device, a gas-liquid separation device, a dehydrogenation device, and a power generation device,
Hydrogenating aromatic hydrocarbons by supplying a hydrogen-containing gas and aromatic hydrocarbons to the hydrogenator,
The hydrogenation reaction product flowing out from the outlet of the hydrogenation device is separated into a gas component and a liquid component by the gas-liquid separator,
Aromatic hydrocarbons in the liquid separated by the gas-liquid separator are dehydrogenated by the dehydrogenator to produce aromatic hydrocarbons and hydrogen,
A hydrogen production system for generating power by supplying the gas component separated by the gas-liquid separator to the power generator,
At least a part of the waste heat generated in the hydrogenation device and at least a part of the waste heat generated in the power generation device are used as a heat source of the dehydrogenation device. In the present invention, a part of the waste heat generated in the hydrogenation device and the power generation device may be used as a heat source of the dehydrogenation device or all of it may be used.

本発明の水素製造システムにおいて、前記発電装置としては、改質器を具えた燃料電池が好ましい。ここで、該燃料電池としては、固体酸化物形燃料電池(SOFC)及び溶融炭酸塩形燃料電池が好ましい。   In the hydrogen production system of the present invention, the power generator is preferably a fuel cell equipped with a reformer. Here, as the fuel cell, a solid oxide fuel cell (SOFC) and a molten carbonate fuel cell are preferable.

本発明の水素製造システムにおいて、前記水素含有ガスは、水素濃度が20〜80体積%で、飽和炭化水素濃度が10〜80体積%で、硫黄化合物濃度が硫黄濃度として100モルppm以下で、CO濃度が100体積ppm以下で、塩素化合物濃度が塩素濃度として0.1モルppm以下で、シアン化合物濃度がCN濃度として0.1モルppm以下であることが好ましい。この場合、該水素含有ガスは、水素濃度が20体積%未満になるまで前記芳香族炭化水素の水素化に水素が用いられることが好ましい。   In the hydrogen production system of the present invention, the hydrogen-containing gas has a hydrogen concentration of 20 to 80% by volume, a saturated hydrocarbon concentration of 10 to 80% by volume, a sulfur compound concentration of 100 mol ppm or less as a sulfur concentration, and CO 2. It is preferable that the concentration is 100 ppm by volume or less, the chlorine compound concentration is 0.1 mol ppm or less as the chlorine concentration, and the cyanide concentration is 0.1 mol ppm or less as the CN concentration. In this case, it is preferable that hydrogen is used for hydrogenation of the aromatic hydrocarbon until the hydrogen concentration is less than 20% by volume.

本発明によれば、芳香族炭化水素と水素の化学反応を利用して水素含有ガスから高純度の水素を取り出す際に、都市ガス、灯油、LPGなど燃焼や発電に用いるエネルギーを特段に使用することなく、原料として用いた水素含有ガスから、水素及びその他含まれる炭化水素等のガスを利用することによって、脱水素装置への熱供給を十分に行うことができる。さらに、この熱供給は、原料の水素含有ガスの組成や流量が変動しても水素化装置からの供給と発電装置からの供給バランスが変動するだけであるため、別途エネルギーを使用する必要がないという利点もある。   According to the present invention, when high-purity hydrogen is extracted from a hydrogen-containing gas using a chemical reaction between an aromatic hydrocarbon and hydrogen, energy used for combustion and power generation, such as city gas, kerosene, and LPG, is particularly used. Without using the hydrogen-containing gas used as a raw material, hydrogen and other gases such as hydrocarbons can be used to sufficiently supply heat to the dehydrogenation apparatus. Furthermore, since this heat supply only changes the supply balance from the hydrogenation apparatus and the supply from the power generation apparatus even if the composition and flow rate of the hydrogen-containing gas of the raw material fluctuate, there is no need to use additional energy. There is also an advantage.

以下に、本発明の実施の形態について図1を用いて具体的に説明する。図1に示す水素製造システムは、芳香族炭化水素の水素化装置1と、気液分離装置2と、脱水素装置3と、発電装置4とを具える。水素化装置1には、水素含有ガスと芳香族炭化水素が供給され、該水素化装置の出口から水素化反応生成物が流出する。該水素化反応生成物は、前記水素化装置1における水素化反応により生成した芳香族炭化水素水素化物と、未反応の芳香族炭化水素と、水素含有ガスから水素が利用された後の残存ガスとの混合物である。次に、該水素化反応生成物は、気液分離装置2においてガス分と液分とに分離される。気液分離装置2で分離されたガス分は、発電装置4に供給され、電気と熱に変換されて最終利用される。一方、気液分離装置2で分離された液分は、脱水素装置3に供給され、液分中の芳香族炭化水素水素化物が脱水素され、芳香族炭化水素と水素とが生成する。脱水素反応生成物は、水素化装置1で水素化されなかった芳香族炭化水素と、脱水素反応で生成した芳香族炭化水素と、脱水素反応されなかった芳香族炭化水素水素化物と、水素とを含み、別の気液分離装置5においてガス分と液分とに分離される。気液分離装置5で分離されたガス分は、水素を主成分とするため、そのままあるいは精製装置にてさらに高純度化し、燃料電池、水素エンジン等へ利用される。一方、気液分離装置5で分離された液分は、芳香族炭化水素を主成分とするため、水素化装置1にリサイクルして水素化に再利用したり、化学品の原料、溶剤等の別の用途に利用することができる。   Hereinafter, an embodiment of the present invention will be specifically described with reference to FIG. The hydrogen production system shown in FIG. 1 includes an aromatic hydrocarbon hydrogenation device 1, a gas-liquid separation device 2, a dehydrogenation device 3, and a power generation device 4. The hydrogenation apparatus 1 is supplied with a hydrogen-containing gas and aromatic hydrocarbons, and a hydrogenation reaction product flows out from the outlet of the hydrogenation apparatus. The hydrogenation reaction product is an aromatic hydrocarbon hydride generated by a hydrogenation reaction in the hydrogenation apparatus 1, an unreacted aromatic hydrocarbon, and a residual gas after hydrogen is used from a hydrogen-containing gas. And a mixture. Next, the hydrogenation reaction product is separated into a gas component and a liquid component in the gas-liquid separator 2. The gas component separated by the gas-liquid separator 2 is supplied to the power generator 4 and converted into electricity and heat for final use. On the other hand, the liquid component separated by the gas-liquid separation device 2 is supplied to the dehydrogenation device 3, and the aromatic hydrocarbon hydride in the liquid component is dehydrogenated to produce aromatic hydrocarbon and hydrogen. The dehydrogenation reaction product includes an aromatic hydrocarbon that has not been hydrogenated in the hydrogenation apparatus 1, an aromatic hydrocarbon that has been generated by the dehydrogenation reaction, an aromatic hydrocarbon hydride that has not been dehydrogenated, hydrogen And separated into a gas component and a liquid component in another gas-liquid separator 5. Since the gas component separated by the gas-liquid separation device 5 contains hydrogen as a main component, it is further purified by a purification device as it is or used for a fuel cell, a hydrogen engine or the like. On the other hand, since the liquid component separated by the gas-liquid separator 5 is mainly composed of aromatic hydrocarbons, it can be recycled to the hydrogenator 1 to be reused for hydrogenation, raw materials of chemicals, solvents, etc. It can be used for other purposes.

図1に示すシステムにおいて用いられる水素含有ガスとしては、製鉄所、製油所、石油化学コンビナート等で得られる副生水素や燃料ガス、あるいはバイオマスガス化装置、廃棄物ガス化装置等から生じる副生水素が挙げられる。これらの水素含有ガスには、水素の他、メタン、エタン、エチレン等の炭化水素や、硫黄化合物、一酸化炭素、窒素化合物、塩素化合物、シアン化合物等が含まれる場合があり、芳香族炭化水素の水素化反応において用いられる触媒の被毒物質となるようなもの、あるいは、発電装置4の運転に障害となるような物質を多く含んでいる場合には、従来技術を用いてこれらを予め所定の濃度以下に低減することが好ましい。   The hydrogen-containing gas used in the system shown in FIG. 1 includes by-product hydrogen and fuel gas obtained from steelworks, refineries, petrochemical complexes, etc., or by-products generated from biomass gasifiers, waste gasifiers, etc. Hydrogen is mentioned. These hydrogen-containing gases may include hydrocarbons such as methane, ethane, and ethylene, sulfur compounds, carbon monoxide, nitrogen compounds, chlorine compounds, cyanide compounds, etc. in addition to hydrogen, and aromatic hydrocarbons. If there are many substances that become poisonous substances for the catalyst used in the hydrogenation reaction, or substances that hinder the operation of the power generation device 4, these are previously determined using conventional techniques. It is preferable to reduce the concentration to less than that.

水素含有ガスに硫黄化合物が多く含まれる場合には、製油所、製鉄所等で通常行われる水素化脱硫、吸着脱硫、ソーダ洗浄、アミン洗浄等を行えばよく、水素含有ガス中の硫黄濃度を100モルppm以下、好ましくは50モルppm以下にすることが好ましい。   If the hydrogen-containing gas contains a large amount of sulfur compounds, hydrodesulfurization, adsorptive desulfurization, soda washing, amine washing, etc., usually performed at refineries, steelworks, etc., can be performed. It is preferably 100 mol ppm or less, preferably 50 mol ppm or less.

水素含有ガスにCOが多く含まれる場合は、COシフト反応等によりCO2に変換して除去すればよく、水素含有ガス中のCO濃度を100体積ppm以下、好ましくは50体積ppm以下にすることが好ましい。 If the hydrogen-containing gas contains a large amount of CO, it may be removed by converting it into CO 2 by a CO shift reaction or the like, and the CO concentration in the hydrogen-containing gas should be 100 ppm by volume or less, preferably 50 ppm by volume or less. Is preferred.

また、塩化水素、塩素,HCN等の酸性ガスが水素含有ガスに含まれる場合には、通常水洗浄、アミン洗浄で除去する。除去した後の水素含有ガス中の塩素化合物濃度は塩素濃度として0.1モルppm以下であることが好ましく、シアン化合物濃度はCN濃度として0.1モルppm以下であることが好ましい。   Further, when an acid gas such as hydrogen chloride, chlorine, or HCN is contained in the hydrogen-containing gas, it is usually removed by water washing or amine washing. The chlorine compound concentration in the hydrogen-containing gas after removal is preferably 0.1 mol ppm or less as the chlorine concentration, and the cyan compound concentration is preferably 0.1 mol ppm or less as the CN concentration.

不飽和炭化水素は、芳香族炭化水素の水素化において同時に水素化され、飽和炭化水素に転化するので、反応効率上好ましくはないが、水素含有ガスに含まれていても良い。   Unsaturated hydrocarbons are simultaneously hydrogenated in the hydrogenation of aromatic hydrocarbons and converted to saturated hydrocarbons, which is not preferable in terms of reaction efficiency, but may be contained in a hydrogen-containing gas.

上記水素含有ガスには、主に水素と炭化水素が多く含まれる。水素含有ガス中の水素濃度は20〜80体積%の範囲が好ましく、飽和炭化水素濃度は10〜80体積%の範囲が好ましい。水素濃度が80体積%を超える高純度ガスの場合は、水素としての利用価値が高いため、石化製品の製造原料として直接用いることができる。一方、水素濃度が20体積%よりも低い場合は、炭化水素としての利用価値が高いため、水素製造用原料として用いることができる。なお、本発明のシステムは、水素としても炭化水素としても利用価値の低い水素含有ガスから有効に水素を取り出すのに特に好適である。   The hydrogen-containing gas contains mainly a large amount of hydrogen and hydrocarbons. The hydrogen concentration in the hydrogen-containing gas is preferably in the range of 20 to 80% by volume, and the saturated hydrocarbon concentration is preferably in the range of 10 to 80% by volume. In the case of a high-purity gas having a hydrogen concentration exceeding 80% by volume, the utility value as hydrogen is high, so that it can be directly used as a raw material for producing petrochemical products. On the other hand, when the hydrogen concentration is lower than 20% by volume, it can be used as a raw material for hydrogen production because of its high utility value as a hydrocarbon. The system of the present invention is particularly suitable for effectively extracting hydrogen from a hydrogen-containing gas having a low utility value as both hydrogen and hydrocarbon.

水素化装置1に供給される芳香族炭化水素としては、ベンゼン類、ナフタレン類が挙げられるが、安全性、取り扱い易さの観点から、置換基を持つものが好ましく、トルエン、エチルベンゼン、キシレン、ジエチルベンゼン、トリメチルベンゼン等のアルキルベンゼン、メチルナフタレン、エチルナフタレン、ジメチルナフタレン、ジエチルナフタレン等のアルキルナフタレン、及びこれらの混合物を用いることが好ましい。また、ヘキサン、ヘプタン等のパラフィン類や、シクロヘキサン、シクロペンタン等のナフテン類など、芳香族炭化水素の水素化反応に影響を及ぼさないものは、水素化装置1に供給される芳香族炭化水素中に含まれていても良い。   Aromatic hydrocarbons supplied to the hydrogenation apparatus 1 include benzenes and naphthalenes, but those having substituents are preferable from the viewpoint of safety and ease of handling, and toluene, ethylbenzene, xylene, diethylbenzene. It is preferable to use alkylbenzene such as trimethylbenzene, alkylnaphthalene such as methylnaphthalene, ethylnaphthalene, dimethylnaphthalene and diethylnaphthalene, and mixtures thereof. In addition, paraffins such as hexane and heptane, and naphthenes such as cyclohexane and cyclopentane, which do not affect the aromatic hydrocarbon hydrogenation reaction, are contained in the aromatic hydrocarbon supplied to the hydrogenator 1. May be included.

芳香族炭化水素の水素化装置1は、固定床でも、流動床でも、懸濁床でもよい。例えば、ベンゼンからシクロヘキサンを製造するプロセスとしては商用プロセスが既に存在し、従来技術に基づき、同様に水素化反応で発生する熱を水蒸気、油等の熱媒体を介して除去するような装置を使用することが好ましい。反応熱を除去しない場合、コーキングの恐れがあるからである。なお、熱媒体に蓄積した熱は、脱水素反応装置3に供給され、吸熱反応である芳香族炭化水素水素化物の脱水素反応に必要な熱の一部として使われる。   The aromatic hydrocarbon hydrogenation apparatus 1 may be a fixed bed, a fluidized bed, or a suspended bed. For example, a commercial process already exists as a process for producing cyclohexane from benzene, and based on the conventional technology, an apparatus that similarly removes the heat generated in the hydrogenation reaction through a heat medium such as water vapor or oil is used. It is preferable to do. This is because if the reaction heat is not removed, there is a risk of coking. The heat accumulated in the heat medium is supplied to the dehydrogenation reactor 3 and used as part of the heat necessary for the dehydrogenation reaction of the aromatic hydrocarbon hydride that is an endothermic reaction.

水素化に用いる触媒は、一般的に用いられるものでよく、白金、パラジウム、ルテニウム、ロジウム、イリジウム、ニッケル、コバルト、鉄、レニウム、バナジウム、クロム、タングステン、モリブデン及び銅からなる群から選定される少なくとも1種の金属を、活性炭、ゼオライト、チタニア、カーボンナノチューブ、モレキュラーシーブ、ジルコニア、メソ細孔シリカ多孔質材料、アルミナ及びシリカからなる群から選定された少なくとも1種の担体に担持した金属担持触媒が用いられる。金属担体触媒における金属担持率は、好ましくは0.001〜10重量%であり、より好ましくは0.01〜5重量%である。水素含有ガスに硫黄化合物や一酸化炭素が含まれる場合には、これらに耐性のある触媒を選択することが好ましく、石油精製の脱硫・脱芳香族触媒としてよく用いられるパラジウム、ニッケル−モリブデン、ニッケル−タングステン等が特に好ましい。   The catalyst used for hydrogenation may be a commonly used catalyst and is selected from the group consisting of platinum, palladium, ruthenium, rhodium, iridium, nickel, cobalt, iron, rhenium, vanadium, chromium, tungsten, molybdenum and copper. A metal-supported catalyst in which at least one metal is supported on at least one support selected from the group consisting of activated carbon, zeolite, titania, carbon nanotube, molecular sieve, zirconia, mesoporous silica porous material, alumina and silica. Is used. The metal loading in the metal supported catalyst is preferably 0.001 to 10% by weight, more preferably 0.01 to 5% by weight. When the hydrogen-containing gas contains sulfur compounds or carbon monoxide, it is preferable to select catalysts that are resistant to these, and palladium, nickel-molybdenum, nickel, which are often used as desulfurization / dearomatic catalysts for petroleum refining. -Tungsten or the like is particularly preferred.

水素化反応の条件は、用いる水素含有ガスの組成及び芳香族炭化水素の組成により適宜選択されるが、反応温度が50〜500℃、好ましくは80〜350℃、水素分圧が0.1〜10MPa、好ましくは0.1〜5MPa、より好ましくは0.3〜2MPaの条件下にて行えばよい。水素化反応の後に残るガスの組成を制御するには、水素含有ガスと芳香族炭化水素の流量・流速や反応温度により水素化転化率を制御することが好ましく、例えば反応温度を下げると転化率を下げることができる。   The conditions for the hydrogenation reaction are appropriately selected depending on the composition of the hydrogen-containing gas used and the composition of the aromatic hydrocarbon. The reaction temperature is 50 to 500 ° C., preferably 80 to 350 ° C., and the hydrogen partial pressure is 0.1 to What is necessary is just to carry out on the conditions of 10 Mpa, Preferably it is 0.1-5 Mpa, More preferably, it is 0.3-2 Mpa. In order to control the composition of the gas remaining after the hydrogenation reaction, it is preferable to control the hydrogenation conversion rate according to the flow rate / flow rate of the hydrogen-containing gas and aromatic hydrocarbon, and the reaction temperature. Can be lowered.

水素化後は、気液分離装置2を介し、ガス分と液分とに分離する。ここで、気液分離装置2の運転温度は、使用する芳香族炭化水素及び生成する芳香族炭化水素水素化物の沸点に応じて適宜選択され、5〜50℃の範囲が好ましく、15〜35℃の範囲が更に好ましい。   After the hydrogenation, gas and liquid are separated through the gas-liquid separator 2. Here, the operating temperature of the gas-liquid separator 2 is appropriately selected according to the boiling point of the aromatic hydrocarbon to be used and the aromatic hydrocarbon hydride to be generated, and is preferably in the range of 5 to 50 ° C. The range of is more preferable.

気液分離装置2で分離されたガス分には、水素含有ガスから芳香族炭化水素の水素化反応及び不飽和炭化水素の水素化に用いられて減少した水素と、不飽和炭化水素の水素化で増加した飽和炭化水素と、その他の水素化に用いられなかったガス成分と、未反応の芳香族炭化水素のベーパーと、芳香族炭化水素の水素化で生成した芳香族炭化水素水素化物(ナフテン類)のベーパーが含まれる。該ガス分は、固体酸化物形燃料電池(SOFC)、溶融炭酸塩形燃料電池等の発電装置4に供給されるため、水素濃度が低く、運転に障害となるような物質の濃度が低いことが好ましい。そのため、水素濃度が20体積%未満、好ましくは10体積%以下で、硫黄化合物濃度が硫黄濃度として100モルppm以下で、CO濃度が100体積ppm以下で、塩素化合物濃度が塩素濃度として0.1モルppm以下で、シアン化合物濃度がCN濃度として0.1モルppm以下となるように、水素化反応の転化率を制御することが好ましい。   The gas component separated by the gas-liquid separator 2 includes hydrogen reduced from hydrogen-containing gas used for hydrogenation of aromatic hydrocarbons and hydrogenation of unsaturated hydrocarbons, and hydrogenation of unsaturated hydrocarbons. Of saturated hydrocarbons increased by the above, other gas components not used for hydrogenation, vapor of unreacted aromatic hydrocarbons, and aromatic hydrocarbon hydrides (naphthenes) produced by hydrogenation of aromatic hydrocarbons. ) Vapor. Since the gas is supplied to the power generation device 4 such as a solid oxide fuel cell (SOFC) or a molten carbonate fuel cell, the hydrogen concentration is low and the concentration of a substance that hinders operation is low. Is preferred. Therefore, the hydrogen concentration is less than 20 vol%, preferably 10 vol% or less, the sulfur compound concentration is 100 molppm or less as the sulfur concentration, the CO concentration is 100 volppm or less, and the chlorine compound concentration is 0.1 as the chlorine concentration. It is preferable to control the conversion rate of the hydrogenation reaction so that the cyanide concentration is 0.1 mol ppm or less as the CN concentration at mol ppm or less.

一方、気液分離装置2で分離された液分には、未反応の芳香族炭化水素と、芳香族炭化水素の水素化で生成した芳香族炭化水素水素化物(ナフテン類)とが含まれる。液分に含まれる芳香族炭化水素の水素化物は、使用する芳香族炭化水素によって異なり、例えば、メチルシクロヘキサン、エチルシクロヘキサン、ジメチルシクロヘキサン、ジエチルシクロヘキサン、トリメチルシクロヘキサン等のアルキルシクロヘキサン、メチルデカリン、エチルデカリン、ジメチルデカリン、ジエチルデカリン等のアルキルデカリン、及びこれらの混合物である。該液分は、主に脱水素装置3に供給されるが、必要に応じて水素化装置1にリサイクルしても良いし、溶剤や化学品の原料として用いても良い。   On the other hand, the liquid component separated by the gas-liquid separator 2 includes unreacted aromatic hydrocarbons and aromatic hydrocarbon hydrides (naphthenes) generated by hydrogenation of aromatic hydrocarbons. The hydride of aromatic hydrocarbon contained in the liquid component varies depending on the aromatic hydrocarbon used, for example, alkylcyclohexane such as methylcyclohexane, ethylcyclohexane, dimethylcyclohexane, diethylcyclohexane, trimethylcyclohexane, methyldecalin, ethyldecalin, Alkyl decalins such as dimethyl decalin and diethyl decalin, and mixtures thereof. The liquid component is mainly supplied to the dehydrogenation device 3, but may be recycled to the hydrogenation device 1 as needed, or may be used as a solvent or a raw material for chemicals.

気液分離装置2で分離されたガス分は、発電装置4に供給され、発電に利用される。発電装置4としては、水素、炭化水素、二酸化炭素、一酸化炭素等を含む混合ガスを原料に発電できるものとして、改質器を具える燃料電池が好ましく、例えば、改質器を内蔵する固体酸化物形燃料電池(SOFC)、溶融炭酸塩形燃料電池等が挙げられる。なお、改質器を内蔵する燃料電池には、必要に応じて、脱硫装置、予備改質装置を設けることが好ましい。供給されるガス分中の硫黄濃度が50モルppb以上ある場合には、酸化鉄、酸化亜鉛、ゼオライト、活性炭等の吸着剤を用いて脱硫し、燃料電池に供給されるガス分中の硫黄濃度が50モルppb以下となるようにすることが好ましい。また、供給されるガス分中にC2以上の炭化水素が含まれる場合には、コーキングの要因となりやすいので、予備改質を行い、C2以上の炭化水素が燃料電池に供給されないようにすることが好ましい。   The gas component separated by the gas-liquid separator 2 is supplied to the power generator 4 and used for power generation. As the power generation device 4, a fuel cell including a reformer is preferable as a power source capable of generating a mixed gas containing hydrogen, hydrocarbons, carbon dioxide, carbon monoxide and the like as a raw material. Examples thereof include an oxide fuel cell (SOFC) and a molten carbonate fuel cell. In addition, it is preferable to provide a desulfurization apparatus and a pre-reformer as needed in the fuel cell incorporating the reformer. When the sulfur concentration in the supplied gas component is 50 mol ppb or more, desulfurization using an adsorbent such as iron oxide, zinc oxide, zeolite, activated carbon, etc., and the sulfur concentration in the gas component supplied to the fuel cell Is preferably 50 mol ppb or less. Further, when the gas component to be supplied contains hydrocarbons of C2 or higher, it is likely to cause coking. Therefore, preliminary reforming is performed so that hydrocarbons of C2 or higher are not supplied to the fuel cell. preferable.

予備改質器及び燃料電池内の改質器に用いる改質用触媒としては、水蒸気改質用触媒として一般に知られる触媒を用いればよく、例えば、Ni、Ru、Rh等の金属をアルミナ、ジルコニア、セリア等の担体に担持したものが用いられる。   As the reforming catalyst used in the pre-reformer and the reformer in the fuel cell, a catalyst generally known as a steam reforming catalyst may be used. For example, a metal such as Ni, Ru, Rh, etc. may be alumina, zirconia. A material supported on a carrier such as ceria is used.

改質反応は、反応温度が400〜900℃、反応圧力が常圧〜3MPa、GHSVが500〜500000、S/Cが0.5〜3の条件で行うことが好ましい。   The reforming reaction is preferably performed under the conditions of a reaction temperature of 400 to 900 ° C., a reaction pressure of normal pressure to 3 MPa, a GHSV of 500 to 500,000, and an S / C of 0.5 to 3.

SOFC、溶融炭酸塩形燃料電池により発電した電気は、装置を設置した工場やコミュニテイーに提供され、家庭・ビル・事業所等で使用したり、電気自動車に供給することも出来る。   Electricity generated by SOFC and molten carbonate fuel cells is provided to factories and communities where the equipment is installed, and can be used in homes, buildings, offices, etc., or supplied to electric vehicles.

脱水素装置3には、触媒を充填し、芳香族炭化水素水素化物を供給して脱水素反応を行わせる。脱水素反応器は、芳香族炭化水素水素化物を液体で供給する方式及び予熱して気体で供給する方式のいずれをとることも出来るが、特には、固定床式反応器に気体で供給することが好ましい。   The dehydrogenation apparatus 3 is filled with a catalyst, and an aromatic hydrocarbon hydride is supplied to cause a dehydrogenation reaction. The dehydrogenation reactor can take either a method of supplying an aromatic hydrocarbon hydride as a liquid or a method of supplying it as a gas after preheating, and in particular, supplying a gas to a fixed bed reactor. Is preferred.

脱水素反応に用いる触媒は、白金、ルテニウム、パラジウム、ロジウム、スズ、レニウム及びゲルマニウムよりなる群から選択される少なくとも1種の金属を多孔質担体に担持したものである。多孔質担体は、粒状でもプレート状でもよい。脱水素反応器に、粒状触媒を充填する固定床を用いる場合には、反応器に供給する芳香族炭化水素水素化物の種類により、平均細孔径を選択することが好ましい。すなわち、1環のシクロヘキサン類を用いる場合には、特に40〜80Åの平均細孔径を持つ触媒が好ましく、2環のデカリン類を用いる場合には、特に65〜130Åの平均細孔径を持つ触媒を選択することが好ましく、いずれも好ましい細孔径をもつ細孔容量が全細孔容量の50%以上であることが好ましい。   The catalyst used for the dehydrogenation reaction is one in which at least one metal selected from the group consisting of platinum, ruthenium, palladium, rhodium, tin, rhenium and germanium is supported on a porous carrier. The porous carrier may be granular or plate-shaped. When a fixed bed filled with a particulate catalyst is used for the dehydrogenation reactor, it is preferable to select an average pore size depending on the type of aromatic hydrocarbon hydride supplied to the reactor. That is, a catalyst having an average pore diameter of 40 to 80 mm is particularly preferred when using one-ring cyclohexanes, and a catalyst having an average pore diameter of 65 to 130 mm is particularly preferred when using two-ring decalins. Preferably, the pore volume having a preferable pore diameter is preferably 50% or more of the total pore volume.

これらの平均細孔径および細孔容量の比率を制御するには、触媒の担体としてAl23あるいはSiO2が好ましく、それぞれ単独で用いてもよいし、適当な割合で両者を組み合わせて用いてもかまわない。芳香族炭化水素水素化物が1環と2環の混合物である場合は、その組成により、好ましい平均細孔径をもつ触媒を混合して用いても良い。 In order to control the ratio of the average pore diameter and the pore volume, Al 2 O 3 or SiO 2 is preferably used as the catalyst support, and each may be used alone or in combination at an appropriate ratio. It doesn't matter. When the aromatic hydrocarbon hydride is a mixture of one ring and two rings, a catalyst having a preferable average pore diameter may be mixed and used depending on the composition.

金属担持率は、好ましくは0.001〜10質量%であり、より好ましくは0.01〜5質量%である。金属担持率が0.001質量%未満では十分な脱水素反応が得られず、一方、10質量%を超えて担持しても、金属の増量に見合う効果が得られない。   The metal loading is preferably 0.001 to 10% by mass, more preferably 0.01 to 5% by mass. If the metal loading is less than 0.001% by mass, a sufficient dehydrogenation reaction cannot be obtained. On the other hand, even if it exceeds 10% by mass, an effect commensurate with the increase in the amount of metal cannot be obtained.

脱水素反応は、上記脱水素用触媒の存在下、LHSVが0.5〜4で、反応温度が100〜450℃、好ましくは250℃〜450℃で、反応圧力が常圧〜2MPaで、水素を流通することにより実施される。水素流通量は、水素/芳香族炭化水素水素化物のモル比で0.01〜10の範囲が好ましい。水素を流通させて脱水素反応を行うと、水素を流通させない場合に比べ、副反応を抑えることが出来、水素を効率的に製造できるだけでなく、脱水素反応後に回収される油を再度水素化して芳香族炭化水素水素化物として再利用する際に含まれる不純物を少なくすることが出来るので好ましい。さらに、水素を効率的に製造するには転化率90%以上になるように反応条件を選択することが好ましい。   In the dehydrogenation reaction, in the presence of the dehydrogenation catalyst, LHSV is 0.5 to 4, the reaction temperature is 100 to 450 ° C., preferably 250 to 450 ° C., the reaction pressure is normal pressure to 2 MPa, hydrogen It is carried out by distributing. The hydrogen flow rate is preferably in the range of 0.01 to 10 in terms of hydrogen / aromatic hydrocarbon hydride molar ratio. When hydrogen is circulated and the dehydrogenation reaction is performed, side reactions can be suppressed compared to when hydrogen is not circulated, and not only hydrogen can be produced efficiently, but also the oil recovered after the dehydrogenation reaction is hydrogenated again. Therefore, it is preferable because impurities contained in the reuse as an aromatic hydrocarbon hydride can be reduced. Furthermore, in order to produce hydrogen efficiently, it is preferable to select reaction conditions so that the conversion rate is 90% or more.

脱水素反応後は、気液分離装置5を介して、ガス分と液分とに分離する。ここで、気液分離装置5の運転温度は、芳香族炭化水素及び該芳香族炭化水素の水素化物の沸点に応じて適宜選択され、5〜50℃の範囲が好ましく、15〜35℃の範囲が更に好ましい。   After the dehydrogenation reaction, it is separated into a gas component and a liquid component via the gas-liquid separator 5. Here, the operating temperature of the gas-liquid separator 5 is appropriately selected according to the boiling point of the aromatic hydrocarbon and the hydride of the aromatic hydrocarbon, preferably in the range of 5 to 50 ° C, and in the range of 15 to 35 ° C. Is more preferable.

気液分離装置5で分離されたガス分は、水素化装置1に供給された水素含有ガスに比べ、高純度化された水素となる。ガス分には気液分離の温度によって、芳香族炭化水素、芳香族炭化水素水素化物、分解物のメタン等が含まれる場合があるため、水素の用途によっては、さらに精製して用いることが好ましい。精製の方法としては一般に行われる方法を採用すればよく、例えば、水素分離膜、吸着剤、PSA、TSA(Temperature Swing Adsorption)等により精製することができる。   The gas component separated by the gas-liquid separator 5 becomes highly purified hydrogen as compared with the hydrogen-containing gas supplied to the hydrogenator 1. Depending on the gas-liquid separation temperature, the gas component may contain aromatic hydrocarbons, aromatic hydrocarbon hydrides, decomposed methane, etc., so it is preferable to further refine and use depending on the use of hydrogen. . As a purification method, a generally used method may be employed. For example, the purification may be performed using a hydrogen separation membrane, an adsorbent, PSA, TSA (Temperature Swing Adsorption), or the like.

一方、気液分離装置5で分離された液分には芳香族炭化水素が主に含まれるが、未反応の芳香族炭化水素水素化物、分解物のパラフィン等が含まれる場合がある。なお、液分は、水素化装置1に供給して再び水素含有ガスとの反応に用いられることが好ましい。水素含有ガスの流量や組成が変動し調整が必要な場合は、当該液分の一部を溶剤や化学品の原料として取り出しても良い。   On the other hand, the liquid separated by the gas-liquid separator 5 mainly contains aromatic hydrocarbons, but may contain unreacted aromatic hydrocarbons, decomposed paraffins, and the like. The liquid component is preferably supplied to the hydrogenation apparatus 1 and used again for the reaction with the hydrogen-containing gas. When the flow rate or composition of the hydrogen-containing gas varies and adjustment is required, a part of the liquid may be taken out as a solvent or a chemical raw material.

脱水素装置3における脱水素反応は吸熱反応であるので、外部より熱を供給する必要があるが、その熱源の全量あるいは一部として、水素化装置1の廃熱及び発電装置4の廃熱を利用する。なお、発電装置4が改質器を具える燃料電池の場合は、水素化装置1で発生した廃熱の全部と発電装置4で発生した廃熱の一部を脱水素装置3の熱源に利用し、発電装置4で発生した廃熱の残部を改質器の熱源に利用することが好ましい。発電装置4や水素化装置1の廃熱の利用の仕方は、特に限定されず、例えば、図2に示すように、発電装置4からの排ガスを多管式脱水素反応器を具える脱水素装置3の上部に吹き込む方式、あるいは、図3に示すように、発電装置4からの排ガスを用い熱交換器6を介して芳香族炭化水素水素化物を加熱する方式をとることが出来る。更に好ましくは、図4に示すように、水素化装置1及び脱水素装置3が一体となり、熱の需給を効率よく行える方式が好ましい。   Since the dehydrogenation reaction in the dehydrogenation device 3 is an endothermic reaction, it is necessary to supply heat from the outside. Use. When the power generation device 4 is a fuel cell including a reformer, all of the waste heat generated in the hydrogenation device 1 and part of the waste heat generated in the power generation device 4 are used as a heat source for the dehydrogenation device 3. And it is preferable to utilize the remainder of the waste heat which generate | occur | produced in the electric power generating apparatus 4 for the heat source of a reformer. The method of using the waste heat of the power generation device 4 or the hydrogenation device 1 is not particularly limited. For example, as shown in FIG. 2, the dehydrogenation provided with a multi-tubular dehydrogenation reactor is performed on the exhaust gas from the power generation device 4. A method of blowing into the upper part of the device 3 or a method of heating the aromatic hydrocarbon hydride through the heat exchanger 6 using the exhaust gas from the power generation device 4 as shown in FIG. More preferably, as shown in FIG. 4, a system in which the hydrogenation device 1 and the dehydrogenation device 3 are integrated so that heat supply and demand can be efficiently performed is preferable.

図4は、本発明の水素製造システムの好適態様の一例であり、該システムは、水素化反応と脱水素反応との両方を行える複合反応器7を具え、水素化と脱水素が同じ反応器内で行われるため、効率よく水素化の反応熱を脱水素反応に供給することができる。また、図4に示す水素製造システムは、発電装置としてSOFC 8を備え、SOFC 8の廃熱は熱交換器9を介して水素化反応用原料混合物及び芳香族炭化水素水素化物の加熱に用いられる。また、該システムは、複合反応器7の脱水素反応器部分の出口に水素分離膜10を具え、脱水素反応生成物のうち、水素は水素分離膜10を透過してシステムの外に取り出され、その他の成分は気液分離装置11を介してガス分と液分とに分離される。なお、水素含有ガスの導入口は、複合反応器7の水素化反応器部分に設けるが、必要に応じてSOFC 8にも設けてもよい。また、図4に示すシステムは、更に、熱交換器12,13,14を具え、熱交換器12においては、水素化反応生成物及びその液分とSOFC供給用空気との間の熱交換を行い、熱交換器13においては、水素化反応用原料混合物と水素分離膜を透過できなかった脱水素反応生成物との熱交換を行い、熱交換器14においては、水素含有ガスと高純度水素との熱交換を行い、システム全体の熱効率を更に向上させている。   FIG. 4 shows an example of a preferred embodiment of the hydrogen production system of the present invention, which system comprises a composite reactor 7 capable of both hydrogenation and dehydrogenation, and the same hydrogenation and dehydrogenation reactor. Therefore, the reaction heat of hydrogenation can be efficiently supplied to the dehydrogenation reaction. The hydrogen production system shown in FIG. 4 includes SOFC 8 as a power generator, and the waste heat of SOFC 8 is used for heating the raw material mixture for the hydrogenation reaction and the aromatic hydrocarbon hydride via the heat exchanger 9. . In addition, the system includes a hydrogen separation membrane 10 at the outlet of the dehydrogenation reactor portion of the composite reactor 7, and among the dehydrogenation reaction products, hydrogen permeates the hydrogen separation membrane 10 and is taken out of the system. The other components are separated into a gas component and a liquid component via the gas-liquid separator 11. The hydrogen-containing gas inlet is provided in the hydrogenation reactor portion of the composite reactor 7, but may be provided in the SOFC 8 as necessary. The system shown in FIG. 4 further includes heat exchangers 12, 13, and 14. In the heat exchanger 12, heat exchange is performed between the hydrogenation reaction product and its liquid component and the SOFC supply air. In the heat exchanger 13, heat exchange is performed between the hydrogenation reaction raw material mixture and the dehydrogenation reaction product that could not pass through the hydrogen separation membrane. In the heat exchanger 14, the hydrogen-containing gas and the high-purity hydrogen The heat efficiency of the entire system is further improved.

図5は、水素化反応と脱水素反応とを同じ反応器内で行えるシェル&チューブタイプの反応器の一例であり、該反応器は、図4中の複合反応器7として好適に使用することができる。ここでは、図5に示すチューブ15側に脱水素反応用触媒を充填し、シェル16側に水素化触媒を充填する。このとき、図6に示すように、図7に示すウィープホール17を具えたチムニー18をチューブ15と交互に配置すると気液の分散がよくなり、水素化反応を効率よく行うことができる。   FIG. 5 is an example of a shell-and-tube type reactor in which hydrogenation reaction and dehydrogenation reaction can be performed in the same reactor, and the reactor is preferably used as the combined reactor 7 in FIG. Can do. Here, the dehydrogenation reaction catalyst is filled on the tube 15 side shown in FIG. 5, and the hydrogenation catalyst is filled on the shell 16 side. At this time, as shown in FIG. 6, if the chimneys 18 having the weep holes 17 shown in FIG. 7 are alternately arranged with the tubes 15, gas-liquid dispersion is improved, and the hydrogenation reaction can be performed efficiently.

本発明の方式によると、定常状態では、外部から別のエネルギーを供給することなく、水素化装置1、脱水素装置3、発電装置4を運転することができる。さらに、水素含有ガスの流量や組成が変動したときに、装置間の熱バランスをうまくとって運転することができる。   According to the method of the present invention, in a steady state, the hydrogenation device 1, the dehydrogenation device 3, and the power generation device 4 can be operated without supplying another energy from the outside. Further, when the flow rate or composition of the hydrogen-containing gas is changed, the operation can be performed with a good heat balance between the apparatuses.

例として、水素化装置1の廃熱が脱水素装置3へ供給され、発電装置4の廃熱が脱水素装置3、発電装置4内に内蔵された改質器及びその他の熱利用先へ供給されている場合において、水素化装置1へ供給される水素含有ガスの流量が変動した際の廃熱利用の配分について説明する。まず、水素化装置1に供給される水素含有ガスの組成が変わらず流量が増加した場合は、水素量が増加するので、水素を効率よく取り出すために水素化装置1に供給する芳香族炭化水素の量を増加させると、反応熱が大きくなり、水素化装置1から隣接する脱水素装置3に供給できる熱量が徐々に多くなる。しかしながら、脱水素装置3に供給される芳香族炭化水素水素化物は、気液分離器2を介した後に再び予熱されてから供給されることもあり、その量は時間的にかなり遅れて増えてくる。そのため、過渡期には脱水素装置3にそれ以前の定常状態以上の熱量が水素化装置1から供給されることになる。そこで、廃熱供給先が複数ある発電装置4から脱水素装置3へ供給される熱量を減らし、その他の供給先の配分を多くすることにより、脱水素装置3に過剰に熱が供給されないようにすればよい。   As an example, the waste heat of the hydrogenation device 1 is supplied to the dehydrogenation device 3, and the waste heat of the power generation device 4 is supplied to the dehydrogenation device 3, a reformer built in the power generation device 4 and other heat utilization destinations. In this case, the distribution of the use of waste heat when the flow rate of the hydrogen-containing gas supplied to the hydrogenation apparatus 1 fluctuates will be described. First, when the flow rate increases without changing the composition of the hydrogen-containing gas supplied to the hydrogenation apparatus 1, the amount of hydrogen increases, so that the aromatic hydrocarbons supplied to the hydrogenation apparatus 1 in order to efficiently extract hydrogen When the amount of is increased, the heat of reaction increases, and the amount of heat that can be supplied from the hydrogenation device 1 to the adjacent dehydrogenation device 3 gradually increases. However, the aromatic hydrocarbon hydride supplied to the dehydrogenation unit 3 may be supplied after being preheated again after passing through the gas-liquid separator 2, and the amount thereof increases considerably with time. come. For this reason, during the transition period, the dehydrogenation apparatus 3 is supplied with a heat amount equal to or greater than the previous steady state from the hydrogenation apparatus 1. Therefore, by reducing the amount of heat supplied from the power generation device 4 having a plurality of waste heat supply destinations to the dehydrogenation device 3 and increasing the distribution of other supply destinations, the heat is not supplied to the dehydrogenation device 3 excessively. do it.

一方、気液分離後、発電装置4に供給されるガス分は比較的早く増加し、まずは発電装置4に内蔵された改質器に供給されるガス分の量が増える。しかしながら、改質器から発電装置4内の燃料電池に供給される改質ガスの量が増加してくるまでには時間がかかるため、過渡的には改質器に供給している燃料電池の廃熱の熱量が、改質器に必要な熱量よりも少なくなる。そこで、燃料電池からの廃熱は、それ以前の定常状態に比べて改質器への熱供給量を増やし、改質反応が十分に起こるようにすればよい。このように過渡期における脱水素装置3への熱供給に関しては、それ以前の定常状態に比べ、水素化装置1からの熱供給が増加し、発電装置4内の燃料電池からの熱供給が減少する。また、発電装置4内の燃料電池から改質器への熱供給は、それ以前の定常状態に比べ増加する。そのため、この間特段のエネルギーを追加することなく、装置間の熱バランスをうまくとって運転することができる。やがて、燃料電池に供給される改質ガスの量が増えるに伴って燃料電池の発電量は多くなり、廃熱も増加する。一方で、脱水素装置3への液分流量もやがて増加し、反応を十分に進行させるためには脱水素装置3に必要な熱量が増加するので、燃料電池からの廃熱利用を増加させればよい。こうして、新たな定常状態に移行するが、この間特段のエネルギーを追加することなく、水素化装置1で発生する熱と発電装置4で発生する熱を有効に利用することができる。   On the other hand, after gas-liquid separation, the amount of gas supplied to the power generator 4 increases relatively quickly, and firstly the amount of gas supplied to the reformer built in the power generator 4 increases. However, since it takes time until the amount of the reformed gas supplied from the reformer to the fuel cell in the power generation device 4 increases, the fuel cell that is transiently supplied to the reformer The amount of waste heat is less than the amount of heat required for the reformer. Therefore, the waste heat from the fuel cell may be increased in the amount of heat supplied to the reformer as compared with the previous steady state so that the reforming reaction occurs sufficiently. As described above, regarding the heat supply to the dehydrogenation apparatus 3 in the transition period, the heat supply from the hydrogenation apparatus 1 increases and the heat supply from the fuel cell in the power generation apparatus 4 decreases compared to the previous steady state. To do. In addition, the heat supply from the fuel cell in the power generation device 4 to the reformer increases compared to the previous steady state. Therefore, it is possible to operate with good heat balance between the devices without adding special energy during this period. Eventually, as the amount of reformed gas supplied to the fuel cell increases, the amount of power generated by the fuel cell increases and the waste heat also increases. On the other hand, the liquid flow rate to the dehydrogenation device 3 will eventually increase, and the amount of heat required for the dehydrogenation device 3 to increase the reaction sufficiently increases, so the use of waste heat from the fuel cell can be increased. That's fine. In this way, although it shifts to a new steady state, the heat generated in the hydrogenation device 1 and the heat generated in the power generation device 4 can be effectively utilized without adding special energy during this period.

逆に、水素含有ガスの組成が変わらず流量が減った場合は、水素量が減るので、例えば、水素化装置1に供給する芳香族炭化水素の量を減らすことで、水素化装置1で発生する熱量が徐々に減ることになる。ここで、脱水素装置3においては、まだ液分の流量が多く反応量がほぼ持続されているため、脱水素装置3に必要な熱量も殆ど変わらないことから、水素化装置1で発生する熱量が減る分、定常状態に比べて過渡的に水素化装置1から脱水素装置3に供給する熱量が不足する。しかしながら、残ガス分の量は早めに減るため、改質に必要な熱量は比較的応答よく減少する。そのため、電池内部の改質器と脱水素装置3とに供給している燃料電池の廃熱の供給割合を調整して、脱水素装置3への廃熱供給量を増加させることができる。従って、前述の水素化装置1から脱水素装置3に供給する熱量が不足した分、燃料電池の廃熱からの熱の供給量を増加させて補うことができる。やがて、改質器からの改質ガスの量が減っていき、徐々に発電量も下がり、燃料電池の廃熱の熱量も減少する。一方で、徐々に脱水素装置3への液分流量も減って、脱水素反応に必要な熱量も減少することとなり、装置間の熱バランスをうまくとって運転することが可能となる。   On the contrary, when the flow rate is reduced without changing the composition of the hydrogen-containing gas, the amount of hydrogen is reduced. For example, the amount of aromatic hydrocarbons supplied to the hydrogenation device 1 is reduced, thereby generating in the hydrogenation device 1. The amount of heat is gradually reduced. Here, in the dehydrogenation apparatus 3, the flow rate of the liquid is still large and the reaction amount is almost maintained, so that the amount of heat necessary for the dehydrogenation apparatus 3 hardly changes, and therefore the amount of heat generated in the hydrogenation apparatus 1. As a result, the amount of heat supplied from the hydrogenation device 1 to the dehydrogenation device 3 is insufficient compared to the steady state. However, since the amount of residual gas is reduced early, the amount of heat required for reforming is relatively responsively reduced. Therefore, the amount of waste heat supplied to the dehydrogenation device 3 can be increased by adjusting the supply ratio of the waste heat of the fuel cell supplied to the reformer inside the battery and the dehydrogenation device 3. Therefore, the amount of heat supplied from the waste heat of the fuel cell can be compensated for by the amount of heat supplied from the hydrogenation device 1 to the dehydrogenation device 3 being insufficient. Eventually, the amount of reformed gas from the reformer decreases, the amount of power generation gradually decreases, and the amount of waste heat of the fuel cell also decreases. On the other hand, the liquid flow rate to the dehydrogenation device 3 gradually decreases, and the amount of heat necessary for the dehydrogenation reaction also decreases, so that it is possible to operate with good heat balance between the devices.

以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明は下記の実施例に何ら限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples.

水素化装置と、気液分離装置と、脱水素装置と、熱交換器と、脱硫器を備え改質器を内蔵したSOFCとを具える水素製造システムを組み立てた。該システムの水素化装置にNi−Mo触媒を充填し、水素50体積%、メタン30体積%、エタン20体積%、硫黄化合物濃度が硫黄濃度として3モルppm(H2S5体積ppm)、塩素化合物濃度が塩素濃度として0.1モルppm未満(塩化水素濃度0.1体積ppm未満)、シアン化合物濃度がCN濃度として0.1モルppm未満(HCN濃度0.1体積ppm未満)の水素含有ガスAを0.31Nm3/hの流量で、トルエンを226mL/hの流量で供給し、2MPa、260℃で水素化反応を行ったところ、原料の水素含有ガスAに含まれていた水素のうち90%が使われ、トルエンの転化率は98%であった。このとき水素化反応の反応熱は424kJ/hであり、該反応熱を脱水素反応へ利用した。なお、熱交換のときの放熱ロスが10%あるため、脱水素装置へ供給されたのは381kJ/hであった。 A hydrogen production system comprising a hydrogenation device, a gas-liquid separation device, a dehydrogenation device, a heat exchanger, and an SOFC equipped with a desulfurizer and incorporating a reformer was assembled. The hydrogenation device of the system is filled with Ni-Mo catalyst, 50% by volume of hydrogen, 30% by volume of methane, 20% by volume of ethane, the sulfur compound concentration is 3 mol ppm (H 2 S 5 ppm by volume), chlorine compound Hydrogen-containing gas with a chlorine concentration of less than 0.1 mol ppm (hydrogen chloride concentration of less than 0.1 vol ppm) and a cyanide concentration of CN concentration of less than 0.1 mol ppm (HCN concentration of less than 0.1 vol ppm) When A was supplied at a flow rate of 0.31 Nm 3 / h and toluene was supplied at a flow rate of 226 mL / h and a hydrogenation reaction was carried out at 2 MPa and 260 ° C., 90% of the hydrogen contained in the raw material hydrogen-containing gas A was 90%. % Was used, and the conversion of toluene was 98%. At this time, the reaction heat of the hydrogenation reaction was 424 kJ / h, and this heat of reaction was used for the dehydrogenation reaction. In addition, since there was a 10% heat loss during heat exchange, 381 kJ / h was supplied to the dehydrogenation apparatus.

次に、上記システムの気液分離装置において、反応ガスを30℃で気液分離すると、ガス分Bの組成は、水素8.9体積%、メタン53.4体積%、エタン35.7体積%、硫黄化合物濃度が硫黄濃度として6モルppm(H2S9体積ppm)、メチルシクロヘキサン1.9体積%、塩素化合物濃度が塩素濃度として0.1モルppm未満(塩化水素濃度0.1体積ppm未満)、シアン化合物濃度がCN濃度として0.1モルppm未満(HCN濃度0.1体積ppm未満)、流量は0.17Nm3/hとなった。ガス分Bはその組成から1141kJ/molである。一方、液分Bの組成はメチルシクロヘキサン98%、トルエン2%となり、流量は268mL/hとなった。 Next, in the gas-liquid separator of the above system, when the reaction gas is gas-liquid separated at 30 ° C., the composition of the gas component B is 8.9% by volume of hydrogen, 53.4% by volume of methane, and 35.7% by volume of ethane. The sulfur compound concentration is 6 mol ppm (H 2 S 9 vol ppm) as the sulfur concentration, 1.9 vol% methylcyclohexane, the chlorine compound concentration is less than 0.1 mol ppm (the hydrogen chloride concentration is less than 0.1 vol ppm) ), The cyanide concentration was less than 0.1 mol ppm as the CN concentration (HCN concentration less than 0.1 volume ppm), and the flow rate was 0.17 Nm3 / h. The gas content B is 1141 kJ / mol from the composition. On the other hand, the composition of the liquid B was 98% methylcyclohexane and 2% toluene, and the flow rate was 268 mL / h.

ガス分Bを脱硫器つきSOFCに供給したところ、総合効率75%のSOFCから電気と熱として合計6497kJ/hのエネルギーを取り出せた。このうち1498kJ/hの熱はガス分Bを改質するのに使われ、126kJ/hの熱は熱交換器を介して液分Bの気化と脱水素反応に足らない熱量として使われ、78kJ/hの熱は熱交換器を介して水素化装置に投入するトルエンの気化に使われた。   When the gas component B was supplied to the SOFC with a desulfurizer, a total of 6497 kJ / h of energy was extracted from the SOFC with 75% overall efficiency as electricity and heat. Of this, 1498 kJ / h of heat is used to reform the gas component B, and 126 kJ / h of heat is used as a heat amount that is insufficient for vaporization and dehydrogenation of the component B via a heat exchanger. The / h heat was used to vaporize toluene that was fed into the hydrogenator via a heat exchanger.

液分BをPt触媒を充填した脱水素装置に供給し、0.3MPa、320℃で反応させ、反応ガスを30℃で気液分離した。得られたガス分Cは水素98.1体積%、トルエン1.9体積%、流量が0.14Nm3/hであり、一方、液分Cはトルエン100%であった。   Liquid B was supplied to a dehydrogenation apparatus filled with a Pt catalyst, reacted at 0.3 MPa and 320 ° C., and the reaction gas was gas-liquid separated at 30 ° C. The obtained gas C was 98.1% by volume of hydrogen, 1.9% by volume of toluene, and the flow rate was 0.14 Nm 3 / h, while the liquid C was 100% of toluene.

液分Bの脱水素反応に必要な反応熱は424kJ/hであったが、水素化反応装置から熱交換後供給された381kJ/hと、発電装置からの熱の一部で熱交換により液分Bを加熱したことにより、十分に足りた。発電装置側から脱水素反応および液分B、トルエンの気化に使われた204kJ/hを別途灯油の燃焼により得ようとすると、放熱ロス10%として、6.4mL/h必要になるが、それが不要になった。また、水素化装置から発生するガス分Bの代わりに都市ガスを使う場合、0.22Nm3/h必要になるが、それが不要になった。   The reaction heat required for the dehydrogenation reaction of the liquid B was 424 kJ / h. However, 381 kJ / h supplied after the heat exchange from the hydrogenation reactor and a part of the heat from the power generation device were used for the heat exchange. Heating the minute B was sufficient. If 204 kJ / h used for the dehydrogenation reaction and the vaporization of B and toluene from the power generator side is obtained separately by burning kerosene, a heat dissipation loss of 10% is required, but 6.4 mL / h is required. Is no longer needed. Further, when city gas is used instead of the gas B generated from the hydrogenation device, 0.22 Nm 3 / h is required, but this is not necessary.

次に、上記の状態から、水素含有ガスAの流量が10%増加したので、水素を有効に取り出すため、トルエンの流量も徐々に10%増加させた。これにより、水素化装置の発熱量は466kJ/hに増加し、熱交換器を介して脱水素装置に供給される熱も420kJ/hとなった。また、SOFCに供給されるガス分Bも早く応答して10%増加したため、SOFCで発生するエネルギーは10%増加し、7143kJ/hとなった。このうち1648kJ/hの熱は増量したガス分Bを改質するのに使われ、86kJ/hの熱は増量したトルエンの気化に使われた。液分Bが10%増加するのに要した時間はガス分Bが10%増加するのに要した時間よりも長いため、脱水素反応に必要な熱量は過渡期しばらくの間424kJ/hのままであり、増量していない液分Bの気化と脱水素反応に足らない熱量としてSOFCから供給される熱は、変動前の126kJ/hから82kJ/hへいったん低下した。その後、徐々に液分Bも増量し、増量が完了すると、脱水素反応に必要な熱量は466kJ/hとなり、SOFCのエネルギーのうち138kJ/hが液分Bの気化と脱水素反応に足らない熱量として使われるようになった。変動が完了したとき、ガス分Cの生成量は10%増加し、流量が0.15Nm3/hとなった。   Next, since the flow rate of the hydrogen-containing gas A increased by 10% from the above state, the flow rate of toluene was gradually increased by 10% in order to effectively extract hydrogen. Thereby, the calorific value of the hydrogenation device increased to 466 kJ / h, and the heat supplied to the dehydrogenation device via the heat exchanger also became 420 kJ / h. In addition, the gas component B supplied to the SOFC quickly responded and increased by 10%, so the energy generated in the SOFC increased by 10% to 7143 kJ / h. Of this, 1648 kJ / h of heat was used to reform the increased amount of gas B, and 86 kJ / h of heat was used to vaporize the increased amount of toluene. Since the time required for the liquid B to increase by 10% is longer than the time required for the gas B to increase by 10%, the amount of heat required for the dehydrogenation remains at 424 kJ / h for a while during the transition period. The heat supplied from the SOFC as the amount of heat that is insufficient for the vaporization and dehydrogenation of the liquid B, which has not increased, temporarily decreased from 126 kJ / h before the fluctuation to 82 kJ / h. Thereafter, the amount of liquid B is gradually increased. When the increase is completed, the amount of heat required for the dehydrogenation reaction is 466 kJ / h, and 138 kJ / h of the SOFC energy is insufficient for vaporization of liquid B and the dehydrogenation reaction. It came to be used as a heat quantity. When the variation was completed, the amount of gas C produced increased by 10% and the flow rate became 0.15 Nm3 / h.

本発明の水素製造システムの一例の概略フローを示す。An outline flow of an example of a hydrogen production system of the present invention is shown. 発電装置からの廃熱を脱水素装置の熱源として利用する方法の一例を示す概略図である。It is the schematic which shows an example of the method of utilizing the waste heat from an electric power generating apparatus as a heat source of a dehydrogenation apparatus. 発電装置からの廃熱を脱水素装置の熱源として利用する方法の他の例を示す概略図である。It is the schematic which shows the other example of the method of utilizing the waste heat from an electric power generating apparatus as a heat source of a dehydrogenation apparatus. 水素化装置及び発電装置からの廃熱を脱水素装置の熱源として利用する方法の好適例を示す概略図である。It is the schematic which shows the suitable example of the method of utilizing the waste heat from a hydrogenation apparatus and an electric power generating apparatus as a heat source of a dehydrogenation apparatus. シェル&チューブタイプの反応器の一例の断面図である。It is sectional drawing of an example of a shell & tube type reactor. 図5のVI−VI線に沿う断面図である。It is sectional drawing which follows the VI-VI line of FIG. チムニーの側面図である。It is a side view of a chimney.

符号の説明Explanation of symbols

1 水素化装置
2,5,11 気液分離装置
3 脱水素装置
4 発電装置
6,9,12,13,14 熱交換器
7 複合反応器
8 SOFC
10 水素分離膜
15 チューブ
16 シェル
17 ウィープホール
18 チムニー
DESCRIPTION OF SYMBOLS 1 Hydrogenation device 2, 5, 11 Gas-liquid separation device 3 Dehydrogenation device 4 Power generation device 6, 9, 12, 13, 14 Heat exchanger 7 Combined reactor 8 SOFC
10 Hydrogen separation membrane 15 Tube 16 Shell 17 Weep hole 18 Chimney

Claims (5)

水素化装置と、気液分離装置と、脱水素装置と、発電装置とを具え、
前記水素化装置に水素含有ガスと芳香族炭化水素を供給して芳香族炭化水素を水素化し、
該水素化装置の出口から流出する水素化反応生成物を前記気液分離装置でガス分と液分とに分離し、
該気液分離装置で分離された液分中の芳香族炭化水素水素化物を前記脱水素装置で脱水素して芳香族炭化水素と水素を生成させ、
前記気液分離装置で分離されたガス分を前記発電装置に供給して発電を行う水素製造システムにおいて、
前記水素化装置で発生した廃熱の少なくとも一部と前記発電装置で発生した廃熱の少なくとも一部を前記脱水素装置の熱源に利用することを特徴とする水素製造システム。
Comprising a hydrogenation device, a gas-liquid separation device, a dehydrogenation device, and a power generation device;
Hydrogenating aromatic hydrocarbons by supplying a hydrogen-containing gas and aromatic hydrocarbons to the hydrogenator,
The hydrogenation reaction product flowing out from the outlet of the hydrogenation device is separated into a gas component and a liquid component by the gas-liquid separator,
Aromatic hydrocarbons in the liquid separated by the gas-liquid separator are dehydrogenated by the dehydrogenator to produce aromatic hydrocarbons and hydrogen,
In the hydrogen production system for generating power by supplying the gas component separated by the gas-liquid separator to the power generator,
A hydrogen production system, wherein at least a part of waste heat generated in the hydrogenation device and at least a part of waste heat generated in the power generation device are used as a heat source of the dehydrogenation device.
前記発電装置が、改質器を具えた燃料電池であることを特徴とする請求項1に記載の水素製造システム。   The hydrogen generation system according to claim 1, wherein the power generation device is a fuel cell including a reformer. 前記燃料電池が、固体酸化物形燃料電池又は溶融炭酸塩形燃料電池であることを特徴とする請求項2に記載の水素製造システム。   The hydrogen production system according to claim 2, wherein the fuel cell is a solid oxide fuel cell or a molten carbonate fuel cell. 前記水素含有ガスは、水素濃度が20〜80体積%で、飽和炭化水素濃度が10〜80体積%で、硫黄化合物濃度が硫黄濃度として100モルppm以下で、CO濃度が100体積ppm以下で、塩素化合物濃度が塩素濃度として0.1モルppm以下で、シアン化合物濃度がCN濃度として0.1モルppm以下であることを特徴とする請求項1に記載の水素製造システム。   The hydrogen-containing gas has a hydrogen concentration of 20 to 80 vol%, a saturated hydrocarbon concentration of 10 to 80 vol%, a sulfur compound concentration of 100 mol ppm or less as a sulfur concentration, and a CO concentration of 100 vol ppm or less, The hydrogen production system according to claim 1, wherein the chlorine compound concentration is 0.1 mol ppm or less as a chlorine concentration, and the cyanide concentration is 0.1 mol ppm or less as a CN concentration. 前記水素含有ガスは、水素濃度が20体積%未満になるまで前記芳香族炭化水素の水素化に水素が用いられることを特徴とする請求項4に記載の水素製造システム。   5. The hydrogen production system according to claim 4, wherein the hydrogen-containing gas uses hydrogen for hydrogenation of the aromatic hydrocarbon until the hydrogen concentration becomes less than 20% by volume.
JP2008068286A 2008-03-17 2008-03-17 Hydrogen production system Active JP5288840B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008068286A JP5288840B2 (en) 2008-03-17 2008-03-17 Hydrogen production system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008068286A JP5288840B2 (en) 2008-03-17 2008-03-17 Hydrogen production system

Publications (2)

Publication Number Publication Date
JP2009221057A true JP2009221057A (en) 2009-10-01
JP5288840B2 JP5288840B2 (en) 2013-09-11

Family

ID=41238252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008068286A Active JP5288840B2 (en) 2008-03-17 2008-03-17 Hydrogen production system

Country Status (1)

Country Link
JP (1) JP5288840B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011251916A (en) * 2010-05-31 2011-12-15 Hitachi Ltd System for dehydrogenating organic hydride
JP2012206909A (en) * 2011-03-30 2012-10-25 Chiyoda Kako Kensetsu Kk Hybrid type hydrogen production and power generation system
WO2012147157A1 (en) * 2011-04-26 2012-11-01 株式会社日立製作所 Energy storage/supply apparatus
WO2015019608A1 (en) * 2013-08-06 2015-02-12 千代田化工建設株式会社 Hydrogen supply system and hydrogen supply method
JP2015030652A (en) * 2013-08-06 2015-02-16 千代田化工建設株式会社 Hydrogen supply system
WO2016006692A1 (en) * 2014-07-11 2016-01-14 株式会社東芝 Apparatus and method for hydrogen production using high-temperature water vapor electrolysis
JP2016040217A (en) * 2014-08-13 2016-03-24 Jx日鉱日石エネルギー株式会社 Dehydrogenation system, and operating method of dehydrogenation system
JP2016189288A (en) * 2015-03-30 2016-11-04 Jxエネルギー株式会社 Power generation system serving as hydrogen generator
WO2021186924A1 (en) * 2020-03-19 2021-09-23 株式会社Ihi Hydrogen production apparatus
WO2021193767A1 (en) * 2020-03-27 2021-09-30 Eneos株式会社 Hydrogen supply system

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61201601A (en) * 1985-03-04 1986-09-06 Nippon Steel Corp Purification, storage, and regeneration of hydrogen from hydrogen-containing gaseous mixture
JPH0624703A (en) * 1990-11-16 1994-02-01 Texaco Dev Corp Preparation of high purity hydrogen
JP2001068138A (en) * 1999-08-30 2001-03-16 Toyota Autom Loom Works Ltd Hydrogen feeding system for fuel cell, fuel recycle method, movable body for liquid transportation, oil feeding facility and fuel recycle system
JP2003007321A (en) * 2001-04-03 2003-01-10 Masaru Ichikawa Direct reforming combined system of hybrid fuel cell using low-grade hydrocarbon
JP2004071450A (en) * 2002-08-08 2004-03-04 Daikin Ind Ltd Fuel cell power generation system
JP2004513860A (en) * 2000-10-12 2004-05-13 レール・リキード−ソシエテ・アノニム・ア・ディレクトワール・エ・コンセイユ・ドゥ・スールベイランス・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Hydrodehalogenation method using nickel-containing catalyst
JP2004288458A (en) * 2003-03-20 2004-10-14 Honda Motor Co Ltd Thermoelectric conversion device
JP2006127942A (en) * 2004-10-29 2006-05-18 Tokai Carbon Co Ltd Catalyst carrier for fuel cell and its manufacturing method
JP2006143507A (en) * 2004-11-18 2006-06-08 Jfe Engineering Kk Method for selectively recovering hydrogen from hydrogen-containing mixed gas
JP2006221850A (en) * 2005-02-08 2006-08-24 Japan Energy Corp Energy station
JP2007099748A (en) * 2005-02-18 2007-04-19 Mitsubishi Chemicals Corp Method for producing aromatic compound and method for producing hydrogenated aromatic compound

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61201601A (en) * 1985-03-04 1986-09-06 Nippon Steel Corp Purification, storage, and regeneration of hydrogen from hydrogen-containing gaseous mixture
JPH0624703A (en) * 1990-11-16 1994-02-01 Texaco Dev Corp Preparation of high purity hydrogen
JP2001068138A (en) * 1999-08-30 2001-03-16 Toyota Autom Loom Works Ltd Hydrogen feeding system for fuel cell, fuel recycle method, movable body for liquid transportation, oil feeding facility and fuel recycle system
JP2004513860A (en) * 2000-10-12 2004-05-13 レール・リキード−ソシエテ・アノニム・ア・ディレクトワール・エ・コンセイユ・ドゥ・スールベイランス・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Hydrodehalogenation method using nickel-containing catalyst
JP2003007321A (en) * 2001-04-03 2003-01-10 Masaru Ichikawa Direct reforming combined system of hybrid fuel cell using low-grade hydrocarbon
JP2004071450A (en) * 2002-08-08 2004-03-04 Daikin Ind Ltd Fuel cell power generation system
JP2004288458A (en) * 2003-03-20 2004-10-14 Honda Motor Co Ltd Thermoelectric conversion device
JP2006127942A (en) * 2004-10-29 2006-05-18 Tokai Carbon Co Ltd Catalyst carrier for fuel cell and its manufacturing method
JP2006143507A (en) * 2004-11-18 2006-06-08 Jfe Engineering Kk Method for selectively recovering hydrogen from hydrogen-containing mixed gas
JP2006221850A (en) * 2005-02-08 2006-08-24 Japan Energy Corp Energy station
JP2007099748A (en) * 2005-02-18 2007-04-19 Mitsubishi Chemicals Corp Method for producing aromatic compound and method for producing hydrogenated aromatic compound

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011251916A (en) * 2010-05-31 2011-12-15 Hitachi Ltd System for dehydrogenating organic hydride
JP2012206909A (en) * 2011-03-30 2012-10-25 Chiyoda Kako Kensetsu Kk Hybrid type hydrogen production and power generation system
WO2012147157A1 (en) * 2011-04-26 2012-11-01 株式会社日立製作所 Energy storage/supply apparatus
JPWO2012147157A1 (en) * 2011-04-26 2014-07-28 株式会社日立製作所 Energy storage and supply equipment
US10131593B2 (en) 2013-08-06 2018-11-20 Chiyoda Corporation Systems and methods for producing hydrogen from a hydrocarbon and using the produced hydrogen in a hydrogenation reaction
WO2015019608A1 (en) * 2013-08-06 2015-02-12 千代田化工建設株式会社 Hydrogen supply system and hydrogen supply method
JP2015030652A (en) * 2013-08-06 2015-02-16 千代田化工建設株式会社 Hydrogen supply system
WO2016006692A1 (en) * 2014-07-11 2016-01-14 株式会社東芝 Apparatus and method for hydrogen production using high-temperature water vapor electrolysis
JP2016020517A (en) * 2014-07-11 2016-02-04 株式会社東芝 Hydrogen production system and method using high temperature steam electrolysis
JP2016040217A (en) * 2014-08-13 2016-03-24 Jx日鉱日石エネルギー株式会社 Dehydrogenation system, and operating method of dehydrogenation system
JP2016189288A (en) * 2015-03-30 2016-11-04 Jxエネルギー株式会社 Power generation system serving as hydrogen generator
WO2021186924A1 (en) * 2020-03-19 2021-09-23 株式会社Ihi Hydrogen production apparatus
JPWO2021186924A1 (en) * 2020-03-19 2021-09-23
JP7315092B2 (en) 2020-03-19 2023-07-26 株式会社Ihi Hydrogen production equipment
AU2021239327B2 (en) * 2020-03-19 2023-08-24 Ihi Corporation Hydrogen production apparatus
WO2021193767A1 (en) * 2020-03-27 2021-09-30 Eneos株式会社 Hydrogen supply system
CN115335321A (en) * 2020-03-27 2022-11-11 引能仕株式会社 Hydrogen supply system

Also Published As

Publication number Publication date
JP5288840B2 (en) 2013-09-11

Similar Documents

Publication Publication Date Title
JP5288840B2 (en) Hydrogen production system
Armor The multiple roles for catalysis in the production of H2
TWI633049B (en) Parallel preparation of hydrogen, carbon monoxide and a carbon-comprising product
Guandalini et al. Comparative assessment and safety issues in state-of-the-art hydrogen production technologies
NO336963B1 (en) Process for the production of hydrocarbons
MX2014007345A (en) Process and system for conversion of carbon dioxide to carbon monoxide.
US20230295517A1 (en) Process for synthesising hydrocarbons
JP5036969B2 (en) Energy station
JP5107234B2 (en) Liquid fuel synthesis system
JP5138586B2 (en) Liquid fuel synthesis system
Shah et al. Hydrogen from natural gas
JP5364716B2 (en) Hydrocarbon synthesis reaction apparatus, hydrocarbon synthesis reaction system, and hydrocarbon synthesis method
RU2617499C2 (en) Method for producing paraffinic products
JP5065952B2 (en) Hydrogen-containing gas utilization system
GB2614780A (en) Method for retrofitting a hydrogen production unit
CN117677686A (en) Apparatus and method for producing synthetic fuel without discharging carbon dioxide
JP2003249254A (en) Cogeneration system of electric power, hydrogen, and aromatic hydrocarbon
WO2023203895A1 (en) Fuel production apparatus and fuel production method
RU2776173C1 (en) Method for producing liquid hydrocarbons using the fischer-tropsch process integrated in petroleum refining plants
JP5298133B2 (en) Hydrocarbon synthesis reaction apparatus, hydrocarbon synthesis reaction system, and hydrocarbon synthesis method
JP2005200254A (en) Method for selectively recovering hydrogen from mixed gas containing hydrogen gas
JP2006143507A (en) Method for selectively recovering hydrogen from hydrogen-containing mixed gas
JP6153810B2 (en) Hydrogen supply system
CN117683563A (en) Process for preparing hydrogen by reforming diesel oil
JP2006008453A (en) Hydrogen production system and hydrogen production method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100831

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130604

R150 Certificate of patent or registration of utility model

Ref document number: 5288840

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250