WO2012147157A1 - Energy storage/supply apparatus - Google Patents

Energy storage/supply apparatus Download PDF

Info

Publication number
WO2012147157A1
WO2012147157A1 PCT/JP2011/060137 JP2011060137W WO2012147157A1 WO 2012147157 A1 WO2012147157 A1 WO 2012147157A1 JP 2011060137 W JP2011060137 W JP 2011060137W WO 2012147157 A1 WO2012147157 A1 WO 2012147157A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
storage
supply
supply device
energy
Prior art date
Application number
PCT/JP2011/060137
Other languages
French (fr)
Japanese (ja)
Inventor
石川 敬郎
雅史 能島
島田 敦史
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2011/060137 priority Critical patent/WO2012147157A1/en
Priority to JP2013511817A priority patent/JPWO2012147157A1/en
Publication of WO2012147157A1 publication Critical patent/WO2012147157A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • H01M8/04208Cartridges, cryogenic media or cryogenic reservoirs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/10Combinations of wind motors with apparatus storing energy
    • F03D9/19Combinations of wind motors with apparatus storing energy storing chemical energy, e.g. using electrolysis
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/02Preparation of oxygen
    • C01B13/0203Preparation of oxygen from inorganic compounds
    • C01B13/0207Water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/22Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2220/00Application
    • F05B2220/61Application for hydrogen and/or oxygen production
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an energy storage and supply device.
  • hydrogen that exists indefinitely in the natural world is attracting attention.
  • a method has been proposed in which hydrogen is produced from water by electrolysis of water using natural energy (for example, wind power, solar power, etc.) having a large fluctuation, and the obtained hydrogen is stored and supplied.
  • natural energy for example, wind power, solar power, etc.
  • a specific storage method for example, a method has been proposed in which hydrogen is physically adsorbed on a carrier, compressed or cooled and stored in a liquid state, and then hydrogen is supplied as necessary.
  • a method has been proposed in which hydrogen is chemically stored by reacting with natural gas or the like, and further hydrogen is supplied by a reformer or the like (that is, extracted and used outside).
  • Patent Document 1 in a hydrogen storage station in which a large amount of hydrogen is stored, hydrogen is stored in a hydrogen storage alloy, and the hydrogen storage alloy in which the hydrogen is stored is transported by a vehicle.
  • a hydrogen supply system is described.
  • Patent Document 2 discloses a hydrogen reaction apparatus provided with a heater for heating a hydrogen storage body or a hydrogen supply body before a hydrogen addition reaction or a dehydrogenation reaction, and for a hydrogen addition reaction in the hydrogen reaction apparatus.
  • a hydrogen storage and supply system is described that includes a hydrogen supply device that supplies hydrogen to the battery and a power generation device that generates power using hydrogen generated by a dehydrogenation reaction in the hydrogen reaction device.
  • Patent Document 3 discloses a hydrogen production device that produces hydrogen, a hydrogen compression device that compresses the produced hydrogen to a predetermined pressure, a hydrogen supply device that supplies compressed high-pressure hydrogen to a hydrogen consuming engine, Combustion turbine power generation device that covers part or all of the power consumed by the high-pressure hydrogen supply system, and a part of the amount of heat required for the dehydrogenation reaction using the high-temperature exhaust gas of the combustion turbine power generation device as a heat source
  • a high-pressure hydrogen supply system is described that includes a heat exchanger that covers the whole.
  • the amount of wind power generation is large in spring, but the demand for power is small, so it becomes surplus as natural energy.
  • summer there is a large amount of natural energy generated from sunlight and the like, but the demand for power increases. Therefore, if the natural energy in spring can be stored and the power demand in summer can be supplemented, the natural energy can be used effectively and the grid power can be operated stably.
  • natural energy such as wind power and sunlight has a large variation in the amount of energy obtained depending on the season, time zone, and the like. That is, the amount of natural energy varies instantaneously (short-term) and in the long-term, such as between seasons, although it depends on weather conditions. Therefore, it is preferable to level the power using the storage battery as described above.
  • the storage density of natural energy tends to be low. Therefore, when trying to store natural energy for several days or months, an enormous storage battery capacity may be required, and there is a problem that an extremely large installation area of the storage facility may be required.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide an energy storage and supply device that can level out long-term natural energy fluctuations at low cost and can supplement conventional energy that may be insufficient. Is to provide.
  • an energy storage and supply device capable of leveling long-term natural energy fluctuations at low cost and supplementing conventional energy that may be insufficient.
  • FIG. 1 is a diagram schematically illustrating an outline of an energy storage and supply device 100 according to the first embodiment.
  • the energy storage and supply device 100 according to the first embodiment can store natural energy and supply it to the outside as electric power.
  • the energy storage and supply apparatus 100 includes three systems: a fuel storage and supply system 101, a fuel storage and regeneration system 102, and a fluctuating power compatible water electrolysis manufacturing system 103.
  • the fuel storage and supply system 101 includes a hydrogen storage body 1011, a dehydrogenation body 1012, and a generator fuel 1013.
  • the hydrogen storage body 1011 and the dehydrogenation body 1012 form a pair, and dehydrogenation body 1012 is obtained by desorbing hydrogen from the hydrogen storage body 1011.
  • the hydrogen storage body 1011 is obtained by adding hydrogen to the dehydrogenated body 1012.
  • hydrogen Since hydrogen is in a gaseous state at normal temperature and pressure, its density is small and its storage volume is enormous. However, by using the hydrogen storage body 1011 and the dehydrogenation body 1012, for example, hydrogen can be stored in a liquid state, storage efficiency can be increased, and loss of natural energy can be reduced. Further, since the hydrogen storage body 1011 is in a liquid state, there is an advantage that handling such as transportability becomes easy.
  • Such a hydrogen storage body 1011 is not particularly limited as long as hydrogen can be desorbed, but handling such as transportability is easy, the reactivity is higher, and the amount of desorbed hydrogen is high. From the viewpoint of many, compounds that are liquid at normal temperature and pressure are preferable, and among them, methylcyclohexane (corresponding dehydrogenated body 1012 is toluene), 2-methylnonahydronaphthalene (corresponding dehydrogenated body 1012 is 1-methylnaphthalene).
  • an alicyclic compound (corresponding dehydrogenated body 1012 is, for example, one or more compounds selected from the group consisting of benzene, cyclohexene, cyclopentene, etc.), more preferably methylcyclohexane. Therefore, in the energy storage and supply apparatus according to the first embodiment, methylcyclohexane is used as the hydrogen storage body 1011 and toluene is used as the dehydrogenation body 1012.
  • a compound that becomes a liquid under the conditions for desorbing hydrogen from the hydrogen storage body 1011 and the conditions for adding hydrogen to the dehydrogenation body 1012 is also suitable, even if it is solid or gas at normal temperature and pressure. Can be used.
  • Specific examples of such a hydrogen storage body 1011 include decahydronaphthalene (corresponding dehydrogenated body 1012 is naphthalene) and the like.
  • the hydrogen storage body 1011 may be used individually by 1 type, and may use 2 or more types by arbitrary ratios and combinations.
  • the dehydrogenation body 1012 may be used individually by 1 type, and may use 2 or more types by arbitrary ratios and combinations.
  • the generator fuel 1013 is a fuel for operating the generator 1022 described later. Therefore, the generator fuel 1013 varies depending on the type of the generator 1022, and examples thereof include gasoline, light oil, kerosene, heavy oil, biofuel, alcohol, city gas, natural gas, and liquefied propane gas. Further, the type of the generator fuel 1013 varies depending on the type of the generator 1022 as described above. For example, when the generator 1022 is a diesel engine, the generator fuel 1013 is usually light oil.
  • the fuel storage and regeneration system 102 includes a hydrogen storage and supply device 1021 as a hydrogen storage and supply unit, and a generator 1022 as a heat supply unit.
  • the hydrogen storage and supply device 1021 manufactures the hydrogen storage body 1011 by reacting the hydrogen produced by the electric power from the natural energy and the dehydrogenated body 1012 in the water electrolysis apparatus 1031 described later when storing natural energy. It is. Heat necessary for this reaction (that is, addition reaction of hydrogen to the dehydrogenated body 1012) is supplied by the generator 1022.
  • the hydrogen storage and supply device 1021 uses the heat supplied from the generator 1022 when supplying the natural energy to the outside (that is, when supplying the natural energy to the outside). Also, hydrogen is desorbed from the product to produce the dehydrogenated body 1012. The obtained hydrogen is supplied to the generator 1022.
  • a catalyst such as platinum is provided inside the hydrogen storage and supply device 1021 in order to facilitate the above reaction.
  • a catalyst such as platinum is provided inside the hydrogen storage and supply device 1021 in order to facilitate the above reaction.
  • a material in which platinum is supported on alumina is used as the catalyst.
  • Such a catalyst can be produced, for example, by mixing platinum with an alumina thin film obtained by anodizing foil-like aluminum. Since foil-like aluminum has a small heat capacity, the catalyst can be easily heated, and the reaction rate can be kept high even in an endothermic reaction such as a dehydrogenation reaction. In addition, by using such a catalyst, the same catalyst can be used for desorption and addition of hydrogen.
  • the reaction conditions at the time of desorption and addition of hydrogen in the hydrogen storage and supply device 1021 are not particularly limited.
  • the temperature at which hydrogen is desorbed from the hydrogen storage body 1011 is about 300 ° C. to 400 ° C.
  • the temperature at which hydrogen is added to the dehydrogenation body 1012 is about 150 ° C. to 200 ° C. be able to.
  • the generator 1022 uses the generator fuel 1013 to supply heat to the hydrogen storage and supply device 1021 and to generate electric power to be supplied to the outside.
  • the generator 1022 is a diesel engine, for example, but any generator can be used as long as it can supply heat to the hydrogen storage and supply device 1021 using hydrogen and oxygen.
  • a polymer electrolyte fuel cell, an oxide fuel cell, an engine generator in which a generator is connected to a power shaft generated by an internal combustion engine, a turbine generator, or the like can be used. These may be used in combination of two or more kinds.
  • the generator 1022 is supplied with oxygen produced by a water electrolyzer 1031 (described later) during storage of natural energy. That is, as described above, when the natural energy stored as the hydrogen storage body 1011 is supplied to the outside, hydrogen using the hydrogen storage body 1011 is supplied from the hydrogen storage supply apparatus 1021 to the generator 1022. It has become. On the other hand, oxygen is supplied from the water electrolyzer 1031 when storing natural energy.
  • the hydrogen storage and supply apparatus 1021 uses the following: The reaction is performed. C 7 H 14 ⁇ C 7 H 8 + 3H 2 ⁇ 205 kJ (1)
  • the amount of heat necessary to advance the equation (1) can be obtained by adding hydrogen to the generator fuel 1013 and burning hydrogen. Therefore, there is an advantage that the amount of generator fuel 1013 used can be reduced, and the power generation cost can be reduced when generating power using natural energy. Further, for example, when power demand is strong in summer, winter, etc., a large amount of power can be supplied to the outside.
  • the reaction of adding hydrogen to toluene that is, the reaction in the left direction of the formula (1) is an exothermic reaction. Therefore, a certain amount of heat is required to advance the reaction, but a smaller amount of heat is required than in the case of the hydrogen desorption reaction (endothermic reaction). Therefore, oxygen is supplied to the generator 1022 and combustion of the generator fuel is promoted, so that a sufficient amount of heat can be obtained as compared with the case where oxygen is not supplied.
  • the operation efficiency, the exhaust characteristics, etc. of the generator 1022 can be improved.
  • the generator 1022 does not necessarily have to be activated at all times, and the remaining heat after the generator 1022 is stopped may be supplied to the hydrogen storage and supply device 1021.
  • the fluctuating power-compatible water electrolysis hydrogen production system 103 includes a water electrolysis apparatus 1031 and a power generation apparatus 1032 as hydrogen oxygen production means.
  • the water electrolysis apparatus 1031 produces hydrogen and oxygen by electrolyzing water using the electric power obtained by the power generation apparatus 1032 (that is, using natural energy).
  • the conditions at the time of electrolysis are not particularly limited as long as water can be electrolyzed to such an extent that hydrogen and oxygen can be produced.
  • electrolysis (solid polymer type) using a solid polymer electrolyte such as Nafion (registered trademark) may be used.
  • electrolysis using a solid oxide (solid oxide type) may be employed.
  • hydrogen produced in the water electrolysis apparatus 1031 is supplied to the hydrogen storage and supply apparatus 1021 and oxygen is supplied to the generator 1022.
  • the power generation device 1032 converts natural energy from the outside into electric power.
  • the specific configuration of the power generation device 1032 is not particularly limited, and may be set as appropriate according to the type of natural energy.
  • the power generation device 1032 is a solar cell, a solar power generation system, or the like.
  • the type of natural energy is not particularly limited, and examples thereof include sunlight, wind power, hydropower, and geothermal heat.
  • Each of the means described above is configured to be provided one by one in FIG. 1, but may be configured to provide two or more if necessary.
  • the power generation device 1032 When natural energy is supplied to the power generation device 1032, the power generation device 1032 generates electric power. And the water electrolyzer 1031 electrolyzes water using the generated electric power, and produces hydrogen and oxygen.
  • Oxygen produced in the water electrolyzer 1031 is supplied to the generator 1022, and combustion of the generator fuel 1013 in the generator 1022 is promoted. Therefore, the generator 1022 can be operated efficiently, and as a result, power can be generated more efficiently than in the past. Further, the consumption of the generator fuel 1013 can be reduced.
  • the hydrogen produced in the water electrolysis apparatus 1031 is supplied to the hydrogen storage and supply apparatus 1021. Then, the hydrogen supplied to the hydrogen storage and supply device 1021 is added to the dehydrogenation body 1012 under predetermined reaction conditions, and the hydrogen storage body 1011 is manufactured. For this addition reaction, heat supplied from the generator 1022 supplied with oxygen is used. In this way, hydrogen and oxygen are produced from natural energy, and the obtained hydrogen can be stored using the obtained oxygen.
  • the heat for manufacturing the hydrogen storage body 1011 may be less than the heat for desorbing hydrogen from the hydrogen storage body 1011. This means that, for example, in the spring season, autumn season, etc., the power demand itself is small and the amount of power supplied to the outside is small, so that the amount of generator fuel 1013 itself is small. That is, both heat generation and power generation meet demand.
  • the hydrogen storage body 1011 is supplied to the hydrogen storage and supply device 1021.
  • the generator 1022 that is operating using the generator fuel 1013 supplies heat to the hydrogen storage and supply device 1021.
  • hydrogen is desorbed from the hydrogen storage body 1011 in the hydrogen storage and supply device 1021 to obtain hydrogen.
  • the obtained hydrogen is supplied to the generator 1022 as described above.
  • the generator 1022 can burn the hydrogen obtained together with the generator fuel 1013 and obtain hydrogen from the hydrogen storage body 1011 using a smaller amount of the generator fuel 1013 than when hydrogen is not supplied. Therefore, the generator 1022 can be operated using a small amount of generator fuel 1013 to generate power. In other words, by using natural energy, it is possible to generate power more efficiently than before. Again, heat generation and power generation meet the demand.
  • the energy storage and supply device 100 has the above-described configuration.
  • the energy storage and supply apparatus 100 is configured to use the hydrogen and oxygen produced in the water electrolysis apparatus 1031 to make the electric power supplied to the outside meet the external demand. Therefore, for example, in spring and autumn when the amount of power demand is relatively small, hydrogen is produced by wind power generation or the like to store natural energy as a hydrogen storage body, and in summer and winter when the amount of power demand is relatively large, In addition, the shortage of power can be compensated by using natural energy stored in autumn. By doing in this way, appropriate electric power supply according to an electric power demand is attained throughout the year. Further, the use of the generator fuel 1013 can be leveled.
  • FIG. 2 is a diagram schematically illustrating a specific configuration of the energy storage and supply device 100 according to the first embodiment, and arrows in the diagram indicate the flow directions of the respective flow-throughs (liquid or gas). Yes.
  • the energy storage and supply device 100 includes at least a power generation device 1, a water electrolysis device 2, a generator 3, and a hydrogen storage and supply device 4.
  • 2 further includes a cooler 5, a methylcyclohexane tank (MCH tank) 6, a toluene tank 7, a pump 8, a flow meter / density meter. 9, a fuel tank 11, a water tank 12, valves V 21 to V 25 for adjusting the flow rate of each pipe, and a four-way valve D.
  • MCH tank methylcyclohexane tank
  • the power generator 1 is the same as the power generator 1032 shown in FIG. Therefore, the description is omitted.
  • the water electrolysis apparatus 2 is the same as the water electrolysis apparatus 1031 shown in FIG. Therefore, the detailed description is abbreviate
  • a plurality of water electrolyzers 2 are provided together with the control circuit.
  • control is performed so that the power generation device 1 (solar cell) is connected to a large number of water electrolysis devices 2 to produce more hydrogen and oxygen. Can do.
  • the power generator 1 is connected to a small number of water electrolyzers 2 to ensure the minimum power required for water electrolysis so that hydrogen and oxygen can be produced more reliably. It becomes possible to control. That is, natural energy can be stored without waste.
  • the generator 3 is the same as the generator 1022 shown in FIG. Therefore, the detailed description is abbreviate
  • the generator 3 in the energy storage and supply device 100 according to the first embodiment includes an intake port (not shown), and is configured such that oxygen produced in the water electrolysis apparatus 2 is supplied to the intake port. ing.
  • the generator 3 is provided with an exhaust pipe 3a through which the generated high-temperature exhaust gas flows.
  • the exhaust pipe 3 a is provided so as to penetrate the hydrogen storage and supply device 4, and heat can be supplied to the hydrogen storage and supply device 4 by allowing the high-temperature exhaust gas to flow through the exhaust pipe 3 a.
  • the generator 3 according to the first embodiment is configured such that the oxygen concentration inside the generator 3 is larger than the hydrogen concentration because oxygen is supplied during storage of natural energy. ing.
  • the hydrogen concentration inside the generator 3 is configured to be higher than the oxygen concentration.
  • the hydrogen storage and supply device 4 is the same as the hydrogen storage and supply device 1021 shown in FIG. Therefore, the detailed description is abbreviate
  • the hydrogen storage and supply device 4 according to the first embodiment includes a fuel supply port (not shown), and hydrogen produced in the water electrolyzer 2 is supplied to the fuel supply port.
  • the hydrogen storage and supply device 4 is provided with a supply port (not shown) for supplying methylcyclohexane and toluene, and the supply port is connected to the MCH tank 6 and the toluene tank 7 via a four-way valve D. Has been. Then, by operating the four-way valve D, methylcyclohexane or toluene is supplied to the hydrogen storage and supply device 4 through the supply port.
  • only one hydrogen storage and supply device 4 is provided.
  • two hydrogen storage and supply devices 4 may be provided. By comprising in this way, it can provide as the hydrogen storage and supply apparatus 4 for adding hydrogen to a dehydrogenation body, and the hydrogen storage and supply apparatus 4 for desorbing hydrogen from a hydrogen storage body. Storage and supply can be performed simultaneously.
  • the cooler 5 is connected to the MCH tank 6 and the toluene tank 7 through the four-way valve D, the hydrogen storage and supply device 4 through the valve 24, and the generator 3 through the valve V25. .
  • the cooler 5 cools a mixed gas of methylcyclohexane or toluene discharged from the hydrogen storage and supply device 4 (a compound discharged at the time of storage and supply of natural energy is different) and hydrogen.
  • methylcyclohexane or toluene is in a liquid state. Then, methylcyclohexane or toluene in a liquid state is accommodated in an MCH tank 6 or a toluene tank 7 described later via a four-way valve D.
  • the generator 3 can generate power more efficiently.
  • the cooler 5 is not particularly limited, and any known cooler may be used.
  • the MCH tank 6 contains methylcyclohexane as a hydrogen storage body.
  • the MCH tank 6 is connected to the hydrogen storage and supply device 4 through a four-way valve D by piping.
  • a sensor (not shown) is provided inside the MCH tank 6 for managing the remaining amount and composition of methylcyclohexane.
  • the size of the MCH tank 6 is not particularly limited, and may be appropriately determined in consideration of the overall size of the energy storage and supply device 100, the installation area, the amount of methylcyclohexane accommodated, and the like.
  • the material constituting the MCH tank 6 is not particularly limited, and a material that does not corrode or deteriorate due to methylcyclohexane may be arbitrarily selected.
  • the toluene tank 7 stores toluene as a dehydrogenated body.
  • the toluene tank 7 is connected to the hydrogen storage and supply device 4 through a four-way valve D by piping.
  • a sensor (not shown) for managing the remaining amount of toluene and managing the composition is provided inside the toluene tank 7.
  • the size of the toluene tank 7 is not particularly limited as in the case of the MCH tank 6. Moreover, the material which comprises the toluene tank 7 is not restrict
  • the remaining amount management is also performed by measuring the supply amount and the recovery amount in real time by the flow meter / density meter 9. Moreover, by installing a liquid level sensor (not shown) in each tank, it is possible to prevent air from entering the hydrogen storage and supply device 4.
  • composition management the density difference between methylcyclohexane and toluene is measured by the flow meter / density meter 9, and the toluene composition in the flowing liquid is measured in real time.
  • the energy storage supply apparatus 100 which concerns on 1st Embodiment, it controls so that toluene concentration may be 10 weight% or less at the time of natural energy storage, and it controls so that toluene concentration may be 90 weight% or more at the time of natural energy supply. is doing.
  • the pump 8 is provided in the middle of the piping from the MCH tank 6 and the toluene tank 7 to the hydrogen storage and supply device 4. As described above, the pump 8 supplies methylcyclohexane from the MCH tank 6 and toluene from the toluene tank 7 to the hydrogen storage and supply device 4 via the four-way valve D and the valve 23. That is, the pump 8 has a function of supplying (transporting) each liquid from each tank to the hydrogen storage and supply device 4.
  • the specific configuration of the pump 8 is not particularly limited, and any known pump may be used.
  • the flow meter / density meter 9 is provided in the middle of the piping from the MCH tank 6 and the toluene tank 7 to the hydrogen storage and supply device 4 and measures the flow rate and density of each liquid transported by the pump 8.
  • Specific configurations of the flow meter and the density meter are not particularly limited, and any known flow meter and density meter may be used.
  • the four-way valve D is provided in the middle of the piping from the MCH tank 6 and the toluene tank 7 to the hydrogen storage and supply device 4, and switches whether methylcyclohexane or toluene is supplied to the hydrogen storage and supply device 4. Specifically, during storage of natural energy, the toluene tank 7 and the hydrogen storage and supply device 4 are connected via a pump 8 and a flow meter / density meter 9. Further, the hydrogen storage and supply device 4 and the MCH tank 6 are connected via the cooler 5. Further, when supplying natural energy to the outside, the MCH tank 6 and the hydrogen storage and supply device 4 are connected via a pump 8 and a flow meter / density meter 9.
  • the hydrogen storage and supply device 4 and the toluene tank 7 are connected via the cooler 5. That is, by operating the four-way valve D, it is possible to select whether to supply methylcyclohexane or toluene to the hydrogen storage and supply means 4.
  • the specific configuration of the four-way valve D is not particularly limited, and any known four-way valve may be used.
  • the fuel tank 11 is connected to the generator 3 by a pipe and accommodates the fuel of the generator 3 (generator fuel).
  • a sensor (not shown) for managing the remaining amount of generator fuel is provided inside the fuel tank 11. Since the generator fuel is as described above, the description thereof is omitted.
  • the specific configuration of the fuel tank 11 is not particularly limited, and any known fuel tank may be used.
  • the water tank 12 is connected to the water electrolyzer 2 by piping and contains water supplied to the water electrolyzer 2.
  • a sensor (not shown) for managing the remaining amount of water is provided inside the water tank 12.
  • the specific configuration of the water tank 12 is not particularly limited, and any known water tank may be used.
  • the specific configuration of the energy storage and supply device 100 according to the first embodiment is as described above. Next, the operation of each means will be described with reference to the configuration shown in FIG. First, the operation when storing natural energy in spring and autumn will be described.
  • solar power or wind power is used as natural energy, and electric power is generated by the power generation device 1 (for example, a solar battery and a wind power generator). And water is electrolyzed in the water electrolyzer 4 with the generated electric power. The amount of water decreases as the electrolysis of water proceeds, but the reduced amount is newly supplied from the water tank 12 as appropriate.
  • Hydrogen produced in the water electrolysis apparatus 2 joins with toluene passed through the valve V22 through the toluene tank 7 through the four-way valve D, the pump 8, the flowmeter / density meter 9 and the valve V23. It is supplied to the hydrogen storage and supply device 4.
  • the four-way valve D connects the toluene tank 7 and the hydrogen storage / supply device 4 via the pump 8 and the flow meter / density meter 9, and connects the hydrogen storage / supply device 4 and the MCH tank 6. Yes.
  • the hydrogen and toluene supplied to the hydrogen storage and supply device 4 undergo an addition reaction by the heat supplied from the generator 3 to produce methylcyclohexane.
  • the produced methylcyclohexane (in the gaseous state) and surplus hydrogen that has not been used for the addition reaction reach the cooler 5 via the valve V24 (however, when the supply amount of toluene is excessive, the surplus hydrogen is Does not occur.)
  • the cooler 5 methylcyclohexane is cooled to be in a liquid state, and the methylcyclohexane in a liquid state is accommodated in the MCH tank 6 through the four-way valve D. This methylcyclohexane is stored for summer and winter.
  • hydrogen in the gaseous state is supplied to the generator 3 via the valve V25. By doing in this way, even when hydrogen becomes surplus, natural energy can be utilized more wastefully.
  • the oxygen produced in the water electrolysis apparatus 2 is supplied to the generator 3 via the valve V21 and promotes combustion of the generator fuel (accommodated in the fuel tank 11) in the generator 3.
  • the generator fuel accommodated in the fuel tank 11
  • power generation can be performed more efficiently.
  • combustion temperature becomes high by supplying oxygen, when it dislikes that combustion temperature becomes high, it is not necessary to supply oxygen.
  • the generator 3 is started using the generator fuel supplied from the fuel tank 11.
  • methylcyclohexane is supplied from the MCH tank 6 to the hydrogen storage and supply device 4 through the four-way valve D, the pump 8, the flow meter / density meter 9, and the valve V23.
  • the MCH tank 6 and the hydrogen storage and supply device 4 are connected via the pump 8 and the flow meter / density meter 9 by the four-way valve D, and the hydrogen storage and supply device 4 and the toluene tank 7 are connected. Yes.
  • the methylcyclohexane supplied to the hydrogen storage and supply device 4 is desorbed by the heat generated by the generator 3, and becomes a mixed gas of toluene and hydrogen in a gaseous state. Then, the mixed gas reaches the cooler 5 via the valve V24. The mixed gas that has reached the cooler 5 is cooled and the toluene becomes a liquid state. The toluene in the liquid state is stored in the toluene tank 7 through the four-way valve D, and the hydrogen in the gaseous state is supplied to the generator 3 through the valve V25. To be supplied.
  • the hydrogen supplied to the generator 3 is used for combustion, the amount of generator fuel from the fuel tank 11 combusted by the generator 3 can be reduced. Therefore, it is possible to efficiently generate power with a smaller amount of generator fuel. Also, hydrogen can improve combustibility due to its characteristics.
  • the energy storage and supply device 100 has been described above with reference to FIGS. 1 and 2.
  • the energy flow when storing natural energy using the energy storage and supply apparatus 100 and the energy flow when supplying natural energy are shown separately in FIGS.
  • the catalyst function provided in the hydrogen storage and supply device 4 may deteriorate with time. In such a case, the catalyst function is restored by performing the catalyst regeneration operation. This operation is shown in FIG.
  • 3 and 4 are obtained by dividing the one shown in FIG. 2 into a natural energy storage time and a supply time. Therefore, the description is omitted. 3 and 4, the heat exchange between the generator 3 and the hydrogen storage and supply device 4 is omitted.
  • natural energy can be stored without waste.
  • it is possible to appropriately respond to fluctuations in power demand between seasons, and leveling of output power and stable supply are possible.
  • toluene is used as a dehydrogenation body.
  • an example using an engine generator using toluene as a fuel further is an energy storage and supply according to the second embodiment.
  • the system 200 will be described with reference to FIG.
  • FIG. 6 the same reference numerals as those shown in FIGS. 1 to 5 denote the same components, and the detailed description thereof will be omitted.
  • FIG. 6 is a diagram schematically illustrating the configuration of the energy storage and supply device 200 according to the second embodiment.
  • the basic configuration of the energy storage and supply device 200 is the same as that of the energy storage and supply device 100. Accordingly, differences from the energy storage and supply device 100 will be described below.
  • the solid line indicates the flow when supplying natural energy
  • the dotted line indicates the flow when storing natural energy. Therefore, the embodiment shown in FIG. 6 can be suitably used for supplementing long-term energy such as weekly, monthly, and seasonal fluctuations.
  • the engine 14 is connected to the generator 3, and the generator 14 generates power when the engine 14 is driven.
  • the engine 14 is supplied with oxygen from the water electrolysis device 2 and hydrogen from the hydrogen storage and supply device 4, as in the energy storage and supply device 100.
  • toluene is also supplied from the toluene tank 7.
  • Toluene has an octane number of 120, which is higher than that of gasoline for spark ignition. When the octane number is high, knocking is less likely to occur, so the engine 14 can be operated under high compression ratio conditions, thereby improving thermal efficiency.
  • the compression ratio is about 13 at the maximum, but it is possible to operate at a compression ratio of about 15 by using toluene.
  • the theoretical cycle is an Otto cycle
  • the higher the compression ratio the better the thermal efficiency.
  • the power generation efficiency of the power generator 3 connected to the engine 14 is increased by using toluene generated by the dehydrogenation reaction (or used as a raw material).
  • the dehydrogenator and the generator fuel it is not necessary to provide each storage tank separately, and the installation area of the energy storage and supply device 200 can be reduced.
  • the procurement cost can be reduced.
  • the power stabilizer 13 stabilizes the power supplied from the power generator 1 and supplies it to the water electrolyzer 2.
  • the specific configuration of the power stabilizer 13 is not particularly limited, and examples thereof include a rectifier, a converter, an inverter, a capacitor, and a storage battery.
  • the turbo 15 is provided by being connected to the exhaust system of the engine 14, and by using the supercharged exhaust pressure, it is possible to perform small and highly efficient power generation. Further, the heat generated in the engine 14 is supplied to the hydrogen storage and supply device 4, and the surplus heat is used as heat generated from the heater 18 as an external heat supply means. This heat can be used not only for heating but also for hot water supply. By doing in this way, the heat
  • exhaust gas is supplied from the engine 14 to the heating fresh water generator 16 via the turbo 15.
  • exhaustion as the heat
  • exhaustion can be returned to the water tank 12 via the filter 17.
  • FIG. By comprising in this way, the quantity of the water consumed with the energy storage supply apparatus 200 whole can be reduced, and electric power generation cost can be reduced.
  • FIG. 7 is a diagram schematically illustrating the configuration of the energy storage and supply device according to the third embodiment.
  • the basic configuration of the energy storage and supply device 300 is the same as that of the energy storage and supply device 100. Accordingly, differences from the energy storage and supply device 100 will be described below.
  • the energy storage and supply device 30 includes a methylcyclohexane tank 201, a flow meter 202, a low pressure pump 203, high pressure pumps 204 and 205, coolers 206, 206, 206, and 206, and an air supply port. 207, nitrogen supply port 208, hydrogen storage and supply device 209, cooler 210, toluene tank 211, hydrogen flow meter 212, engine 213, generator 214, light oil tank 215, radiator 216, The battery 217, the power generation device 218, the light oil pump 219, the injector 220, the air filter 221, the hydrogen oxygen production device (water electrolysis device) 223, and the trap 224 are configured.
  • each device is connected by a pipe, and bubbles V1 to V18 for controlling the flow rate of gas or liquid flowing through each pipe are provided at the positions shown in FIG.
  • the valves V9, V11, V15, and V16 have a function as a switching valve that controls the flow rate and switches the piping to be communicated.
  • Water is electrolyzed in the water electrolyzer 223 by the power generated by supplying natural energy to the power generator 218 and the power generated by the generator 214.
  • Oxygen generated by electrolyzing water is supplied to the engine 213 through a valve V16 and the like.
  • the valve V9 and the valve V18 are not communicated with each other, and the valve V15 and the valve V18 are communicated with each other via the valve V16.
  • the combustion of light oil is promoted by the oxygen supplied to the engine 213.
  • the generator 214 connected to the engine 213 can generate power efficiently.
  • the heat generated in the engine 213 is supplied to the hydrogen storage and supply device 209 and used for the addition reaction of hydrogen to toluene.
  • methylcyclohexane generated by adding hydrogen to toluene is converted into a liquid state by the cooler 210 and then stored in the methylcyclohexane tank 201 via the valve V ⁇ b> 11 or the like.
  • the valve V11 allows the cooler 210 and the methylcyclohexane tank 201 to communicate with each other, and the cooler 210 and the toluene tank 211 do not communicate with each other.
  • valve V9 and the valve V18 are communicated with each other via the valve V16, and the valve V15 and the valve V18 are not communicated with each other. Therefore, oxygen produced by electrolysis of water is discharged from the valve V15 to the outside as surplus oxygen.
  • the valve V11 is configured such that the cooler 210 and the methylcyclohexane tank 201 are not communicated with each other, and the cooler 210 and the toluene tank 211 are communicated with each other. By switching each valve in this way, hydrogen desorbed from methylcyclohexane in the hydrogen storage and supply device 209 is supplied to the engine 213. As a result, the generator 214 connected to the engine 213 can generate power efficiently.
  • the energy storage and supply device 300 uses a diesel engine as the engine 213 connected to the generator 214 and uses the heat discharged from the engine 213 to advance the reaction by the hydrogen storage and supply device 209.
  • the output of the electric power generated by the generator 214 can be increased, and furthermore, the light oil to be used can be reduced.
  • a diesel engine is used as the engine 213 in the energy storage and supply device 300.
  • biodiesel oil can be used in addition to light oil as fuel for driving the diesel engine.
  • a gas engine can be used instead of a diesel engine.
  • a gas engine for example, city gas, biogas, or the like can be used as a fuel for driving the gas engine.
  • Power generation device Water electrolysis device (hydrogen oxygen production means) 3 Generator (heat supply means) 4 Hydrogen storage and supply equipment (hydrogen storage and supply means) 6 MCH tank (hydrogen storage body storage means) 7 Toluene tank (dehydrogenation storage means) 18 Heater (external heat supply means) DESCRIPTION OF SYMBOLS 100 Energy storage supply apparatus 200 Energy storage supply apparatus 201 MCH tank (hydrogen storage body storage means) 209 Hydrogen storage and supply device (hydrogen storage and supply means) 211 Toluene tank (dehydrogenated substance storage means) 214 Generator (heat supply means) 218 Power generation device 223 Water electrolysis device (hydrogen oxygen production means) 300 Energy storage and supply device 1011 Hydrogen storage body 1012 Dehydrogenation body 1021 Hydrogen storage and supply device (hydrogen storage and supply means) 1022 Generator (heat supply means) 1031 Water electrolysis device (hydrogen oxygen production means) 1032 power generator

Abstract

[Problem] To provide a low-cost energy storage/supply apparatus whereby natural long-term energy fluctuations can be leveled out at a low cost, and a possible shortage of conventional energy can be compensated for. [Solution] An energy storage/supply apparatus (100), characterized by comprising: a hydrogen- and oxygen-production means (1031) for using natural energy to produce hydrogen and oxygen; a hydrogen storage/supply means (1021) for adding the hydrogen produced in the hydrogen- and oxygen-production means (1031) to a dehydrogenation element (1012) to produce a hydrogen storage element (1011), and desorbing the hydrogen from the hydrogen storage element (1011) to produce the dehydrogenation element (1012); and a heat supply means (1022) for supplying heat to the hydrogen storage/supply means (1021).

Description

エネルギ貯蔵供給装置Energy storage and supply equipment
 本発明は、エネルギ貯蔵供給装置に関する。 The present invention relates to an energy storage and supply device.
 近年、地球資源の枯渇及び環境破壊等への対策が大きな課題とされており、再生可能エネルギによるゼロエミッション型社会の構築が求められている。このような課題を解決するために、例えば風力、太陽光等の自然エネルギ、自然界に存在する未だ利用されていないエネルギ等の活用が促進されている。しかしながら、例えば風力、太陽光等は、例えば季節、時間帯等によって得られるエネルギ量の変動が大きく、大規模な発電設備を設置する場合、電力系統へ直接接続することが困難な場合がある。そこで、これらの自然エネルギを利用する際には、例えば鉛蓄電池、リチウムイオン二次電池等の蓄電池を用いて電力を平準化することが好ましい。 In recent years, countermeasures against global resource depletion and environmental destruction have become major issues, and the construction of a zero-emission society using renewable energy is required. In order to solve such a problem, utilization of natural energy such as wind power and sunlight, energy that is not yet used in the natural world, and the like is promoted. However, for example, wind power, sunlight, and the like have large fluctuations in the amount of energy obtained depending on, for example, the season, time zone, etc., and when installing a large-scale power generation facility, it may be difficult to connect directly to the power system. Therefore, when using these natural energies, it is preferable to level the power using a storage battery such as a lead storage battery or a lithium ion secondary battery.
 貯蔵可能なエネルギであって化石燃料の代替エネルギとして、自然界に無限に存在する水素が注目されている。例えば、変動の大きな自然エネルギ由来電力(例えば風力、太陽光由来電力等)を用いた水の電気分解により水から水素を製造して、得られた水素を貯蔵及び供給する方法が提案されている。具体的な貯蔵方法として、例えば、水素を担体に物理吸着させたり、圧縮若しくは冷却して液体状態で貯蔵したりして、その後必要に応じて水素を供給する方法が提案されている。また、天然ガス等と反応させて水素を化学的に貯蔵して、さらに改質器等によって水素を供給する(即ち外部へ取り出して利用する)方法も提案されている。 As an alternative energy to fossil fuels that can be stored, hydrogen that exists indefinitely in the natural world is attracting attention. For example, a method has been proposed in which hydrogen is produced from water by electrolysis of water using natural energy (for example, wind power, solar power, etc.) having a large fluctuation, and the obtained hydrogen is stored and supplied. . As a specific storage method, for example, a method has been proposed in which hydrogen is physically adsorbed on a carrier, compressed or cooled and stored in a liquid state, and then hydrogen is supplied as necessary. In addition, a method has been proposed in which hydrogen is chemically stored by reacting with natural gas or the like, and further hydrogen is supplied by a reformer or the like (that is, extracted and used outside).
 これらに関連する技術として、例えば特許文献1には、水素を大量に貯蔵した水素貯蔵ステ-ションにおいて、水素吸蔵合金に水素を吸蔵させ、前記水素が吸蔵された水素吸蔵合金を車両で運搬する給水素システムが記載されている。また、特許文献2には、水素貯蔵体又は水素供給体を、水素付加反応の前又は脱水素反応の前に加熱するヒータを備えた水素反応装置と、水素反応装置内における水素付加反応のために水素を供給する水素供給装置と、水素反応装置内における脱水素反応によって生成された水素を利用して発電する発電装置と、を備える水素貯蔵供給システムが記載されている。 As a technology related to these, for example, in Patent Document 1, in a hydrogen storage station in which a large amount of hydrogen is stored, hydrogen is stored in a hydrogen storage alloy, and the hydrogen storage alloy in which the hydrogen is stored is transported by a vehicle. A hydrogen supply system is described. Further, Patent Document 2 discloses a hydrogen reaction apparatus provided with a heater for heating a hydrogen storage body or a hydrogen supply body before a hydrogen addition reaction or a dehydrogenation reaction, and for a hydrogen addition reaction in the hydrogen reaction apparatus. A hydrogen storage and supply system is described that includes a hydrogen supply device that supplies hydrogen to the battery and a power generation device that generates power using hydrogen generated by a dehydrogenation reaction in the hydrogen reaction device.
 さらに、特許文献3には、水素を製造する水素製造装置と、製造された水素を所定の圧力まで圧縮する水素圧縮装置と、圧縮された高圧水素を水素消費機関に供給する水素供給装置と、当該高圧水素の供給システムで消費する電力の一部又は全部を賄う燃焼タービン発電装置と、水素製造装置に組み込まれ、燃焼タービン発電装置の高温排ガスを熱源として脱水素反応に要する熱量の一部又は全部を賄う熱交換器とを備えている高圧水素の供給システムが記載されている。 Further, Patent Document 3 discloses a hydrogen production device that produces hydrogen, a hydrogen compression device that compresses the produced hydrogen to a predetermined pressure, a hydrogen supply device that supplies compressed high-pressure hydrogen to a hydrogen consuming engine, Combustion turbine power generation device that covers part or all of the power consumed by the high-pressure hydrogen supply system, and a part of the amount of heat required for the dehydrogenation reaction using the high-temperature exhaust gas of the combustion turbine power generation device as a heat source A high-pressure hydrogen supply system is described that includes a heat exchanger that covers the whole.
特開平07-112796号公報Japanese Patent Application Laid-Open No. 07-1212796 特開2002-184436号公報JP 2002-184436 A 特開2004-197705号公報JP 2004-197705 A
 例えば、春には風力発電量が多いが、電力需要が少ないので自然エネルギとしては余剰となる。一方、夏には太陽光等由来の自然エネルギ発電量も多いが、電力需要も多くなる。そのため、春の自然エネルギを貯蔵し、夏の電力需要を補完できれば、自然エネルギを有効に活用できるとともに、系統電力を安定して運用することができる。 For example, the amount of wind power generation is large in spring, but the demand for power is small, so it becomes surplus as natural energy. On the other hand, in summer, there is a large amount of natural energy generated from sunlight and the like, but the demand for power increases. Therefore, if the natural energy in spring can be stored and the power demand in summer can be supplemented, the natural energy can be used effectively and the grid power can be operated stably.
 しかしながら、前記のように、例えば風力、太陽光等の自然エネルギは、例えば季節、時間帯等によって得られるエネルギ量の変動が大きい。即ち、自然エネルギ量は、気象状況にもよるが、瞬間的(短期的)に変動、及び、季節間等の長期的に変動している。そのため、前記のように蓄電池を用いて電力を平準化することが好ましいが、自然エネルギの貯蔵に際しては、自然エネルギの貯蔵密度が低い傾向にあるという課題がある。従って、数日若しくは数ヶ月間の自然エネルギを貯蔵しようとすると、膨大な蓄電池容量が必要となることがあり、極めて広大な貯蔵設備の設置面積が必要になることがあるという課題がある。 However, as described above, for example, natural energy such as wind power and sunlight has a large variation in the amount of energy obtained depending on the season, time zone, and the like. That is, the amount of natural energy varies instantaneously (short-term) and in the long-term, such as between seasons, although it depends on weather conditions. Therefore, it is preferable to level the power using the storage battery as described above. However, when storing natural energy, there is a problem that the storage density of natural energy tends to be low. Therefore, when trying to store natural energy for several days or months, an enormous storage battery capacity may be required, and there is a problem that an extremely large installation area of the storage facility may be required.
 また、例えば特許文献1に記載の技術によっては、脱水素反応の際に大量の熱エネルギが必要となることがある。そのため、熱エネルギを供給するための発電装置の装置規模が大きくなったり、熱エネルギを供給するための燃料コストが増加したりすることがあるという課題がある。 For example, depending on the technique described in Patent Document 1, a large amount of heat energy may be required for the dehydrogenation reaction. Therefore, there is a problem that the scale of the power generation device for supplying thermal energy may increase, or the fuel cost for supplying thermal energy may increase.
 さらに、例えば特許文献2に記載の技術によっても、依然として熱エネルギが大量に必要になることがある。従って、前記特許文献1に記載の発明と同様に、熱エネルギを供給するための発電装置の装置規模が大きくなったり、熱エネルギを供給するための燃料コストが増加したりすることがあるという課題がある。 Furthermore, even with the technique described in Patent Document 2, for example, a large amount of thermal energy may still be required. Therefore, similarly to the invention described in Patent Document 1, there is a problem that the scale of the power generation device for supplying thermal energy may increase, or the fuel cost for supplying thermal energy may increase. There is.
 本発明は上記課題を解決するべく為されたものであり、その目的は、低コストで長期の自然エネルギ変動を平準化するとともに、不足しうる従来のエネルギを補うことが可能なエネルギ貯蔵供給装置を提供することにある。 SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problems, and an object of the present invention is to provide an energy storage and supply device that can level out long-term natural energy fluctuations at low cost and can supplement conventional energy that may be insufficient. Is to provide.
 本発明者らは前記課題を解決するために鋭意検討を行った結果、水の電気分解によって発生する水素を、少なくとも自然エネルギの貯蔵時に利用することにより前記課題を解決することができることを見出し、本発明を完成させた。 As a result of intensive studies to solve the above problems, the present inventors have found that the above problems can be solved by using hydrogen generated by electrolysis of water at least during storage of natural energy, The present invention has been completed.
 本発明によれば、低コストで長期の自然エネルギ変動を平準化するとともに、不足しうる従来のエネルギを補うことが可能なエネルギ貯蔵供給装置を提供することができる。 According to the present invention, it is possible to provide an energy storage and supply device capable of leveling long-term natural energy fluctuations at low cost and supplementing conventional energy that may be insufficient.
第1実施形態に係るエネルギ貯蔵供給装置の概要を模式的に表す図である。It is a figure which represents typically the outline | summary of the energy storage supply apparatus which concerns on 1st Embodiment. 第1実施形態に係るエネルギ貯蔵供給装置の具体的な構成を模式的に表す図である。It is a figure which represents typically the specific structure of the energy storage supply apparatus which concerns on 1st Embodiment. 第1実施形態に係るエネルギ貯蔵供給装置において、自然エネルギを貯蔵する際のエネルギのフローを模式的に表す図である。In the energy storage supply apparatus concerning a 1st embodiment, it is a figure showing typically the flow of energy at the time of storing natural energy. 第1実施形態に係るエネルギ貯蔵供給装置において、貯蔵された自然エネルギを外部へ供給する際のエネルギのフローを模式的に表す図である。It is a figure showing typically the flow of energy at the time of supplying the stored natural energy outside in the energy storage supply device concerning a 1st embodiment. 第1実施形態に係るエネルギ貯蔵供給装置において、水素貯蔵供給装置内の触媒を再生する際の空気のフローを模式的に表す図である。In the energy storage and supply apparatus which concerns on 1st Embodiment, it is a figure which represents typically the flow of the air at the time of reproducing | regenerating the catalyst in a hydrogen storage and supply apparatus. 第2実施形態に係るエネルギ貯蔵供給装置の構成を模式的に表す図である。It is a figure which represents typically the structure of the energy storage supply apparatus which concerns on 2nd Embodiment. 第3実施形態に係るエネルギ貯蔵供給装置の構成を模式的に表す図である。It is a figure which represents typically the structure of the energy storage supply apparatus which concerns on 3rd Embodiment.
 以下、図面を参照しながら本実施形態を説明するが、本発明はその要旨を損なわない範囲で任意に変更して実施可能である。 Hereinafter, the present embodiment will be described with reference to the drawings, but the present invention can be arbitrarily modified and implemented without departing from the scope of the present invention.
[1.第1実施形態]
[1-1.概要]
<構成>
 はじめに、図1を参照しながら第1実施形態に係るエネルギ貯蔵供給装置の概要を説明する。図1は、第1実施形態に係るエネルギ貯蔵供給装置100の概要を模式的に表す図である。図1に示すように、第1実施形態に係るエネルギ貯蔵供給装置100は、自然エネルギを貯蔵し、電力として外部へ供給可能なものである。そして、エネルギ貯蔵供給装置100は、燃料貯蔵供給システム101、燃料備蓄回生システム102及び変動電力対応水電気分解製造システム103の3つのシステムにより構成される。
[1. First Embodiment]
[1-1. Overview]
<Configuration>
First, an outline of the energy storage and supply device according to the first embodiment will be described with reference to FIG. FIG. 1 is a diagram schematically illustrating an outline of an energy storage and supply device 100 according to the first embodiment. As shown in FIG. 1, the energy storage and supply device 100 according to the first embodiment can store natural energy and supply it to the outside as electric power. The energy storage and supply apparatus 100 includes three systems: a fuel storage and supply system 101, a fuel storage and regeneration system 102, and a fluctuating power compatible water electrolysis manufacturing system 103.
(燃料貯蔵供給システム101)
 燃料貯蔵供給システム101は、水素貯蔵体1011、脱水素体1012及び発電機燃料1013を含むものである。水素貯蔵体1011及び脱水素体1012は対になるものであり、水素貯蔵体1011から水素を脱離することにより、脱水素体1012が得られる。一方で、脱水素体1012に対して水素を付加することにより、水素貯蔵体1011が得られるようになっている。そして、これら水素の脱離及び付加反応は、後記する水素貯蔵供給装置1021において行われるようになっている。
(Fuel storage and supply system 101)
The fuel storage and supply system 101 includes a hydrogen storage body 1011, a dehydrogenation body 1012, and a generator fuel 1013. The hydrogen storage body 1011 and the dehydrogenation body 1012 form a pair, and dehydrogenation body 1012 is obtained by desorbing hydrogen from the hydrogen storage body 1011. On the other hand, the hydrogen storage body 1011 is obtained by adding hydrogen to the dehydrogenated body 1012. These hydrogen desorption and addition reactions are performed in a hydrogen storage and supply apparatus 1021 described later.
 水素は常温常圧においては気体状態であるため、密度が小さく、貯蔵体積が膨大なものとなる。しかしながら、水素貯蔵体1011及び脱水素体1012を用いることにより、例えば液体状態で水素を貯蔵することが可能となり、貯蔵効率を高めることができ、自然エネルギの損失を減少させることができる。また、水素貯蔵体1011は液体状態であるため、運搬性等の取扱いが容易になるという利点もある。 Since hydrogen is in a gaseous state at normal temperature and pressure, its density is small and its storage volume is enormous. However, by using the hydrogen storage body 1011 and the dehydrogenation body 1012, for example, hydrogen can be stored in a liquid state, storage efficiency can be increased, and loss of natural energy can be reduced. Further, since the hydrogen storage body 1011 is in a liquid state, there is an advantage that handling such as transportability becomes easy.
 このような水素貯蔵体1011としては、水素が脱離されうるものであれば特に制限は無いが、運搬性等の取扱いが容易である、反応性がより高い、脱離される水素の物質量が多い等の観点から、常温常圧で液体である化合物が好ましく、中でも、メチルシクロヘキサン(対応する脱水素体1012はトルエン)、2-メチルノナヒドロナフタレン(対応する脱水素体1012は1-メチルナフタレン)及び脂環式化合物(対応する脱水素体1012は、例えばベンゼン、シクロヘキセン、シクロペンテン等)からなる群より選ばれる1種以上の化合物がより好ましく、メチルシクロヘキサンが特に好ましい。従って、第1実施形態に係るエネルギ貯蔵供給装置においては、水素貯蔵体1011としてメチルシクロヘキサンを、脱水素体1012としてトルエンを用いている。 Such a hydrogen storage body 1011 is not particularly limited as long as hydrogen can be desorbed, but handling such as transportability is easy, the reactivity is higher, and the amount of desorbed hydrogen is high. From the viewpoint of many, compounds that are liquid at normal temperature and pressure are preferable, and among them, methylcyclohexane (corresponding dehydrogenated body 1012 is toluene), 2-methylnonahydronaphthalene (corresponding dehydrogenated body 1012 is 1-methylnaphthalene). ) And an alicyclic compound (corresponding dehydrogenated body 1012 is, for example, one or more compounds selected from the group consisting of benzene, cyclohexene, cyclopentene, etc.), more preferably methylcyclohexane. Therefore, in the energy storage and supply apparatus according to the first embodiment, methylcyclohexane is used as the hydrogen storage body 1011 and toluene is used as the dehydrogenation body 1012.
 ただし、常温常圧では固体若しくは気体であっても、水素貯蔵体1011から水素を脱離する際の条件、並びに、脱水素体1012に水素を付加する際の条件において、液体となる化合物も好適に用いることができる。このような水素貯蔵体1011の具体例としては、デカヒドロナフタレン(対応する脱水素体1012はナフタレン)等が挙げられる。 However, a compound that becomes a liquid under the conditions for desorbing hydrogen from the hydrogen storage body 1011 and the conditions for adding hydrogen to the dehydrogenation body 1012 is also suitable, even if it is solid or gas at normal temperature and pressure. Can be used. Specific examples of such a hydrogen storage body 1011 include decahydronaphthalene (corresponding dehydrogenated body 1012 is naphthalene) and the like.
 なお、水素貯蔵体1011は1種を単独で用いてもよく、2種以上を任意の比率及び組み合わせで用いてもよい。また、脱水素体1012も1種を単独で用いてもよく、2種以上を任意の比率及び組み合わせで用いてもよい。 In addition, the hydrogen storage body 1011 may be used individually by 1 type, and may use 2 or more types by arbitrary ratios and combinations. Moreover, the dehydrogenation body 1012 may be used individually by 1 type, and may use 2 or more types by arbitrary ratios and combinations.
 発電機燃料1013は、後記する発電機1022を運転するための燃料である。従って、発電機燃料1013としては、発電機1022の種類によって異なるが、例えばガソリン、軽油、灯油、重油、バイオ燃料、アルコール、都市ガス、天然ガス、液化プロパンガス等が挙げられる。また、発電機燃料1013の種類は、前記のように発電機1022の種類によっても異なり、例えば発電機1022がディーゼルエンジンである場合、発電機燃料1013は通常は軽油となる。 The generator fuel 1013 is a fuel for operating the generator 1022 described later. Therefore, the generator fuel 1013 varies depending on the type of the generator 1022, and examples thereof include gasoline, light oil, kerosene, heavy oil, biofuel, alcohol, city gas, natural gas, and liquefied propane gas. Further, the type of the generator fuel 1013 varies depending on the type of the generator 1022 as described above. For example, when the generator 1022 is a diesel engine, the generator fuel 1013 is usually light oil.
(燃料備蓄回生システム102)
 燃料備蓄回生システム102は、水素貯蔵供給手段としての水素貯蔵供給装置1021、及び、熱供給手段としての発電機1022を含むものである。
(Fuel storage and regeneration system 102)
The fuel storage and regeneration system 102 includes a hydrogen storage and supply device 1021 as a hydrogen storage and supply unit, and a generator 1022 as a heat supply unit.
 水素貯蔵供給装置1021は、自然エネルギの貯蔵時には、後記する水電気分解装置1031において自然エネルギからの電力で製造された水素と脱水素体1012とを反応させて、水素貯蔵体1011を製造するものである。この反応(即ち、脱水素体1012への水素の付加反応)時に必要な熱は、発電機1022によって供給されるようになっている。 The hydrogen storage and supply device 1021 manufactures the hydrogen storage body 1011 by reacting the hydrogen produced by the electric power from the natural energy and the dehydrogenated body 1012 in the water electrolysis apparatus 1031 described later when storing natural energy. It is. Heat necessary for this reaction (that is, addition reaction of hydrogen to the dehydrogenated body 1012) is supplied by the generator 1022.
 また、水素貯蔵供給装置1021は、自然エネルギの電力として外部への供給時(即ち、自然エネルギの外部への供給時)には、発電機1022から供給される熱を利用して水素貯蔵体1011から水素を脱離させ、脱水素体1012を製造するものでもある。そして、得られた水素は発電機1022に供給されるようになっている。 In addition, the hydrogen storage and supply device 1021 uses the heat supplied from the generator 1022 when supplying the natural energy to the outside (that is, when supplying the natural energy to the outside). Also, hydrogen is desorbed from the product to produce the dehydrogenated body 1012. The obtained hydrogen is supplied to the generator 1022.
 なお、水素貯蔵供給装置1021内部には、前記の反応を進行させ易くするために、白金等の触媒が備えられている。水素貯蔵供給装置1021内部における触媒の担持方法に特に制限は無いが、第1実施形態に係るエネルギ貯蔵供給装置100においては、アルミナに白金を担持したものを触媒として用いている。 In addition, a catalyst such as platinum is provided inside the hydrogen storage and supply device 1021 in order to facilitate the above reaction. Although there is no particular limitation on the method for supporting the catalyst inside the hydrogen storage and supply device 1021, in the energy storage and supply device 100 according to the first embodiment, a material in which platinum is supported on alumina is used as the catalyst.
 このような触媒は、例えば、箔状のアルミニウムを陽極酸化して得られたアルミナ薄膜に対して、白金を混合することにより製造することができる。箔状のアルミニウムは熱容量が小さいため触媒の加熱が容易であり、脱水素反応のような吸熱反応でも反応速度を大きく保つことができる。また、このような触媒を用いることにより、水素の脱離及び付加の際に同一の触媒を用いることもできる。 Such a catalyst can be produced, for example, by mixing platinum with an alumina thin film obtained by anodizing foil-like aluminum. Since foil-like aluminum has a small heat capacity, the catalyst can be easily heated, and the reaction rate can be kept high even in an endothermic reaction such as a dehydrogenation reaction. In addition, by using such a catalyst, the same catalyst can be used for desorption and addition of hydrogen.
 水素貯蔵供給装置1021における水素の脱離及び付加時の反応条件は特に制限されない。例えば、水素を水素貯蔵体1011から脱離させるときの温度としては300℃以上400℃以下程度、また、水素を脱水素体1012に付加するときの温度としては150℃以上200℃以下程度とすることができる。 The reaction conditions at the time of desorption and addition of hydrogen in the hydrogen storage and supply device 1021 are not particularly limited. For example, the temperature at which hydrogen is desorbed from the hydrogen storage body 1011 is about 300 ° C. to 400 ° C., and the temperature at which hydrogen is added to the dehydrogenation body 1012 is about 150 ° C. to 200 ° C. be able to.
 発電機1022は、発電機燃料1013を用いて水素貯蔵供給装置1021に熱を供給するとともに、外部へ供給する電力を発電するものである。第1実施形態では、発電機1022は例えばディーゼルエンジンであるが、水素及び酸素を利用して水素貯蔵供給装置1021に熱を供給可能なものであれば、任意のものを用いることができる。発電機1022としては、例えば固体高分子型燃料電池、酸化物型燃料電池、内燃機関エンジンで発生する動力を動力軸に発電機を接続したエンジン発電機、タービン発電機等を用いることができる。また、これらは2種以上を任意に組み合わせて併用してもよい。 The generator 1022 uses the generator fuel 1013 to supply heat to the hydrogen storage and supply device 1021 and to generate electric power to be supplied to the outside. In the first embodiment, the generator 1022 is a diesel engine, for example, but any generator can be used as long as it can supply heat to the hydrogen storage and supply device 1021 using hydrogen and oxygen. As the generator 1022, for example, a polymer electrolyte fuel cell, an oxide fuel cell, an engine generator in which a generator is connected to a power shaft generated by an internal combustion engine, a turbine generator, or the like can be used. These may be used in combination of two or more kinds.
 また、発電機1022においては、自然エネルギの貯蔵時に水電気分解装置1031(後記する)において製造された酸素が供給されるようになっている。即ち、前記のように、水素貯蔵体1011として貯蔵しておいた自然エネルギの外部への供給時には、水素貯蔵体1011を用いた水素が水素貯蔵供給装置1021から発電機1022に供給されるようになっている。一方で、自然エネルギの貯蔵時には、水電気分解装置1031から酸素が供給されるようになっている。 Also, the generator 1022 is supplied with oxygen produced by a water electrolyzer 1031 (described later) during storage of natural energy. That is, as described above, when the natural energy stored as the hydrogen storage body 1011 is supplied to the outside, hydrogen using the hydrogen storage body 1011 is supplied from the hydrogen storage supply apparatus 1021 to the generator 1022. It has become. On the other hand, oxygen is supplied from the water electrolyzer 1031 when storing natural energy.
 水素貯蔵体1011としてメチルシクロヘキサン(C14)を、脱水素体1012としてトルエン(C)を用いて水素(H)を製造する場合、水素貯蔵供給装置1021においては、以下のような反応が行われている。
   C14→C+3H-205kJ ・・・式(1)
In the case where hydrogen (H 2 ) is produced using methylcyclohexane (C 7 H 14 ) as the hydrogen storage body 1011 and toluene (C 7 H 8 ) as the dehydrogenation body 1012, the hydrogen storage and supply apparatus 1021 uses the following: The reaction is performed.
C 7 H 14 → C 7 H 8 + 3H 2 −205 kJ (1)
 式(1)記載のように、メチルシクロヘキサンからトルエンを製造する際(つまり水素を製造する際)には、前記の反応は吸熱反応となる。そのため、前記のように、発電機1022において発生した熱を水素貯蔵供給装置1021に供給し、当該熱によって式(1)記載の反応を進行させるようにしている。熱は発電機燃料1013を燃焼させることにより生じさせているが、前記のように、水素貯蔵供給装置1021において製造された水素が発電機1022に供給されるため、供給された水素も燃焼させることができる。 As described in formula (1), when toluene is produced from methylcyclohexane (that is, when hydrogen is produced), the above reaction is an endothermic reaction. Therefore, as described above, the heat generated in the generator 1022 is supplied to the hydrogen storage and supply device 1021, and the reaction described in the formula (1) is advanced by the heat. Heat is generated by burning the generator fuel 1013. As described above, since the hydrogen produced in the hydrogen storage and supply device 1021 is supplied to the generator 1022, the supplied hydrogen is also burned. Can do.
 即ち、発電機1022において、前記式(1)を進行させるための必要な熱量を、発電機燃料1013に加えて水素を燃焼することにより得ることができる。そのため、使用される発電機燃料1013の量を削減することができ、自然エネルギを利用した発電に際して、発電コストが削減できるという利点がある。また、例えば夏場、冬場等の電力需要が旺盛なときに、多くの電力を外部に供給することができる。 That is, in the generator 1022, the amount of heat necessary to advance the equation (1) can be obtained by adding hydrogen to the generator fuel 1013 and burning hydrogen. Therefore, there is an advantage that the amount of generator fuel 1013 used can be reduced, and the power generation cost can be reduced when generating power using natural energy. Further, for example, when power demand is strong in summer, winter, etc., a large amount of power can be supplied to the outside.
 また、トルエンに水素を付加させる反応、即ち、前記式(1)の左方向への反応においては発熱反応となる。そのため、反応を進行させるためにある程度の熱を要するが、前記の水素脱離反応(吸熱反応)の場合よりも、少ない熱の供給量で済む。従って、発電機1022に酸素が供給され、発電機燃料の燃焼が促進されることで、酸素を供給しない場合と比較して十分な量の熱を得ることができる。このように、製造された酸素を発電機1022に供給することにより、発電機1022の例えば運転効率、排気特性等を向上させることができる。 In addition, the reaction of adding hydrogen to toluene, that is, the reaction in the left direction of the formula (1) is an exothermic reaction. Therefore, a certain amount of heat is required to advance the reaction, but a smaller amount of heat is required than in the case of the hydrogen desorption reaction (endothermic reaction). Therefore, oxygen is supplied to the generator 1022 and combustion of the generator fuel is promoted, so that a sufficient amount of heat can be obtained as compared with the case where oxygen is not supplied. Thus, by supplying the produced oxygen to the generator 1022, for example, the operation efficiency, the exhaust characteristics, etc. of the generator 1022 can be improved.
 なお、発電機1022は、常に起動しておく必要は必ずしもなく、発電機1022を停止させた後の余熱を水素貯蔵供給装置1021に供給するようにしてもよい。 Note that the generator 1022 does not necessarily have to be activated at all times, and the remaining heat after the generator 1022 is stopped may be supplied to the hydrogen storage and supply device 1021.
(変動電力対応水電気分解水素製造システム103)
 変動電力対応水電気分解水素製造システム103は、水素酸素製造手段としての水電気分解装置1031、及び発電装置1032を含むものである。
(Water electrolysis hydrogen production system 103 for variable power)
The fluctuating power-compatible water electrolysis hydrogen production system 103 includes a water electrolysis apparatus 1031 and a power generation apparatus 1032 as hydrogen oxygen production means.
 水電気分解装置1031は、発電装置1032により得られた電力を用いて(即ち自然エネルギを用いて)水を電気分解することにより、水素及び酸素を製造するものである。電気分解時の条件は、水素及び酸素を製造できる程度に水を電気分解することができる限り、特に制限されない。ただし、より効率良く水素及び酸素を製造する観点から、例えば水酸化ナトリウム、水酸化カリウム等を含む水溶液を電気分解(アルカリ電解型)することが好ましい。また、ナフィオン(登録商標)等の固体高分子電解質を用いた電気分解(固体高分子型)としてもよい。さらに、固体酸化物を用いた電気分解(固体酸化物型)としてもよい。 The water electrolysis apparatus 1031 produces hydrogen and oxygen by electrolyzing water using the electric power obtained by the power generation apparatus 1032 (that is, using natural energy). The conditions at the time of electrolysis are not particularly limited as long as water can be electrolyzed to such an extent that hydrogen and oxygen can be produced. However, from the viewpoint of more efficiently producing hydrogen and oxygen, it is preferable to electrolyze (alkali electrolytic type) an aqueous solution containing, for example, sodium hydroxide, potassium hydroxide and the like. Alternatively, electrolysis (solid polymer type) using a solid polymer electrolyte such as Nafion (registered trademark) may be used. Furthermore, electrolysis using a solid oxide (solid oxide type) may be employed.
 そして、前記のように、水電気分解装置1031において製造された水素は水素貯蔵供給装置1021に、酸素は発電機1022に供給されるようになっている。 As described above, hydrogen produced in the water electrolysis apparatus 1031 is supplied to the hydrogen storage and supply apparatus 1021 and oxygen is supplied to the generator 1022.
 発電装置1032は、外部からの自然エネルギを電力に変換するものである。発電装置1032の具体的な構成は特に制限されず、自然エネルギの種類に応じて適宜設定すればよい。例えば、自然エネルギとして太陽光を用いる場合、発電装置1032としては太陽電池、太陽光発電システム等となる。 The power generation device 1032 converts natural energy from the outside into electric power. The specific configuration of the power generation device 1032 is not particularly limited, and may be set as appropriate according to the type of natural energy. For example, when sunlight is used as natural energy, the power generation device 1032 is a solar cell, a solar power generation system, or the like.
 自然エネルギの種類も特に制限されず、例えば太陽光、風力、水力、地熱等が挙げられる。 The type of natural energy is not particularly limited, and examples thereof include sunlight, wind power, hydropower, and geothermal heat.
 以上説明した各手段は、図1においては1つずつ設けられる構成としているが、必要に応じて2つ以上設ける構成としてもよい。 Each of the means described above is configured to be provided one by one in FIG. 1, but may be configured to provide two or more if necessary.
<動作>
 次に、前記構成を有するエネルギ貯蔵供給装置100において、自然エネルギの貯蔵、及び外部へ供給する際の各手段の動作について説明する。ここでは、電力需要が旺盛な夏場のために、春場に自然エネルギを水素として貯蔵し、水素として貯蔵された自然エネルギを電力需要が旺盛な夏場に発電用の燃料として利用するものとする。
<Operation>
Next, in the energy storage and supply apparatus 100 having the above-described configuration, the operation of each unit when storing natural energy and supplying it to the outside will be described. Here, it is assumed that natural energy is stored as hydrogen in the spring in the summer when electricity demand is strong, and the natural energy stored as hydrogen is used as a fuel for power generation in summer when electricity demand is strong.
 はじめに、自然エネルギの貯蔵時の動作について説明する。 First, the operation during storage of natural energy will be described.
 自然エネルギが発電装置1032に供給されると、発電装置1032は電力を発電する。そして、発電された電力を用いて、水電気分解装置1031が水を電気分解し、水素及び酸素を製造する。 When natural energy is supplied to the power generation device 1032, the power generation device 1032 generates electric power. And the water electrolyzer 1031 electrolyzes water using the generated electric power, and produces hydrogen and oxygen.
 水電気分解装置1031において製造された酸素は発電機1022に供給され、発電機1022における発電機燃料1013の燃焼が促進される。従って、発電機1022を効率良く運転することができ、その結果、従来よりも効率良く発電を行うことができる。また、発電機燃料1013の消費量を減少させることができる。 Oxygen produced in the water electrolyzer 1031 is supplied to the generator 1022, and combustion of the generator fuel 1013 in the generator 1022 is promoted. Therefore, the generator 1022 can be operated efficiently, and as a result, power can be generated more efficiently than in the past. Further, the consumption of the generator fuel 1013 can be reduced.
 一方で、水電気分解装置1031において製造された水素は水素貯蔵供給装置1021に供給される。そして、水素貯蔵供給装置1021に供給された水素は、所定の反応条件下で脱水素体1012に対して付加され、水素貯蔵体1011が製造される。この付加反応には、前記酸素が供給された発電機1022から供給された熱が利用される。このようにして、自然エネルギから水素及び酸素を製造し、得られた酸素を利用して、得られた水素を貯蔵することができるようになっている。
 ちなみに、水素貯蔵体1011を製造するときの熱は、水素貯蔵体1011から水素を脱離させるときの熱よりも少なくて済む。このことは、例えば春場、秋場等は電力需要自体が少なく、外部へ供給する電力量も少なくて済むため、発電機燃料1013の使用量自体も少なくて済むことになる。つまり、熱の発生と発電とが、ともに需要に見合ったものとなる。
On the other hand, the hydrogen produced in the water electrolysis apparatus 1031 is supplied to the hydrogen storage and supply apparatus 1021. Then, the hydrogen supplied to the hydrogen storage and supply device 1021 is added to the dehydrogenation body 1012 under predetermined reaction conditions, and the hydrogen storage body 1011 is manufactured. For this addition reaction, heat supplied from the generator 1022 supplied with oxygen is used. In this way, hydrogen and oxygen are produced from natural energy, and the obtained hydrogen can be stored using the obtained oxygen.
Incidentally, the heat for manufacturing the hydrogen storage body 1011 may be less than the heat for desorbing hydrogen from the hydrogen storage body 1011. This means that, for example, in the spring season, autumn season, etc., the power demand itself is small and the amount of power supplied to the outside is small, so that the amount of generator fuel 1013 itself is small. That is, both heat generation and power generation meet demand.
 次に、自然エネルギの外部への供給時(即ち、貯蔵された自然エネルギの利用時)の動作について説明する。 Next, the operation when supplying natural energy to the outside (that is, when using stored natural energy) will be described.
 はじめに、水素貯蔵体1011が水素貯蔵供給装置1021に供給される。そして、発電機燃料1013を用いて運転している発電機1022が、水素貯蔵供給装置1021に熱を供給する。その結果、水素貯蔵供給装置1021において水素貯蔵体1011から水素が脱離され、水素が得られる。得られた水素は、前記のように発電機1022に供給される。そして、発電機1022は、発電機燃料1013とともに得られた水素を燃焼させ、水素が供給されないときよりも少ない量の発電機燃料1013を用いて、水素貯蔵体1011から水素を得ることができる。従って、少ない量の発電機燃料1013を用いて発電機1022を運転して発電することができる、換言すれば、自然エネルギを用いることにより、従来よりも効率良く発電を行うことができる。そして、ここでも、熱の発生と発電とが需要に見合ったものとなる。 First, the hydrogen storage body 1011 is supplied to the hydrogen storage and supply device 1021. The generator 1022 that is operating using the generator fuel 1013 supplies heat to the hydrogen storage and supply device 1021. As a result, hydrogen is desorbed from the hydrogen storage body 1011 in the hydrogen storage and supply device 1021 to obtain hydrogen. The obtained hydrogen is supplied to the generator 1022 as described above. The generator 1022 can burn the hydrogen obtained together with the generator fuel 1013 and obtain hydrogen from the hydrogen storage body 1011 using a smaller amount of the generator fuel 1013 than when hydrogen is not supplied. Therefore, the generator 1022 can be operated using a small amount of generator fuel 1013 to generate power. In other words, by using natural energy, it is possible to generate power more efficiently than before. Again, heat generation and power generation meet the demand.
 第1実施形態に係るエネルギ貯蔵供給装置100は、前記構成を有する。換言すれば、エネルギ貯蔵供給装置100は、水電気分解装置1031において製造された水素及び酸素を用いて、外部へ供給される電力を外部の需要に見合ったものとするように構成されている。従って、例えば、電力需要量の比較的少ない春及び秋には、風力発電等によって水素を製造して水素貯蔵体として自然エネルギを貯蔵し、電力需要量の比較的多い夏及び冬には、春及び秋に貯蔵した自然エネルギを利用して電力の不足分を補うことができる。このようにすることにより、一年を通じて、電力需要に応じた適切な電力供給が可能となる。また、発電機燃料1013の使用も平準化することができる。 The energy storage and supply device 100 according to the first embodiment has the above-described configuration. In other words, the energy storage and supply apparatus 100 is configured to use the hydrogen and oxygen produced in the water electrolysis apparatus 1031 to make the electric power supplied to the outside meet the external demand. Therefore, for example, in spring and autumn when the amount of power demand is relatively small, hydrogen is produced by wind power generation or the like to store natural energy as a hydrogen storage body, and in summer and winter when the amount of power demand is relatively large, In addition, the shortage of power can be compensated by using natural energy stored in autumn. By doing in this way, appropriate electric power supply according to an electric power demand is attained throughout the year. Further, the use of the generator fuel 1013 can be leveled.
[1-2.具体的な構成]
 次に、第1実施形態に係るエネルギ貯蔵供給装置100の具体的な構成(例えば配管、バルブ等を含む構成)を、図2を参照しながら説明する。図2は、第1実施形態に係るエネルギ貯蔵供給装置100の具体的な構成を模式的に表す図であり、図中の矢印は各通流物(液体若しくは気体)の流れの向きを表している。
[1-2. Specific configuration]
Next, a specific configuration (for example, a configuration including piping, valves, and the like) of the energy storage and supply device 100 according to the first embodiment will be described with reference to FIG. FIG. 2 is a diagram schematically illustrating a specific configuration of the energy storage and supply device 100 according to the first embodiment, and arrows in the diagram indicate the flow directions of the respective flow-throughs (liquid or gas). Yes.
 図2に示すように、第1実施形態に係るエネルギ貯蔵供給装置100は、発電装置1と、水電気分解装置2と、発電機3と、水素貯蔵供給装置4と、を少なくとも備えている。また、図2に示す第1実施形態に係るエネルギ貯蔵供給装置100は、さらに、冷却器5と、メチルシクロヘキサンタンク(MCHタンク)6と、トルエンタンク7と、ポンプ8と、流量計・密度計9と、燃料タンク11と、水タンク12と、各配管の流量を調整するバルブV21~V25と、四方弁Dと、を備えている。 As shown in FIG. 2, the energy storage and supply device 100 according to the first embodiment includes at least a power generation device 1, a water electrolysis device 2, a generator 3, and a hydrogen storage and supply device 4. 2 further includes a cooler 5, a methylcyclohexane tank (MCH tank) 6, a toluene tank 7, a pump 8, a flow meter / density meter. 9, a fuel tank 11, a water tank 12, valves V 21 to V 25 for adjusting the flow rate of each pipe, and a four-way valve D.
 発電装置1は、図1に示す発電装置1032と同じものである。従って、その説明を省略する。 The power generator 1 is the same as the power generator 1032 shown in FIG. Therefore, the description is omitted.
 水電気分解装置2は、図1に示す水電気分解装置1031と同じものである。従って、その詳細な説明は省略する。ただし、図2おいては図示していないが、第1実施形態に係るエネルギ貯蔵供給装置100においては、制御回路とともに、水電気分解装置2が複数設けられている。このような構成にすることにより、例えば、晴れた日には、多数の水電気分解装置2に発電装置1(太陽電池)が接続されてより多くの水素及び酸素を製造するように制御することができる。また、雨の日には、少数の水電気分解装置2に発電装置1が接続され、水の電気分解に最低限必要な電力を確保することにより、より確実に水素及び酸素を製造するように制御することが可能となる。即ち、自然エネルギを無駄なく貯蔵することが可能となる。 The water electrolysis apparatus 2 is the same as the water electrolysis apparatus 1031 shown in FIG. Therefore, the detailed description is abbreviate | omitted. However, although not shown in FIG. 2, in the energy storage and supply device 100 according to the first embodiment, a plurality of water electrolyzers 2 are provided together with the control circuit. By adopting such a configuration, for example, on a sunny day, control is performed so that the power generation device 1 (solar cell) is connected to a large number of water electrolysis devices 2 to produce more hydrogen and oxygen. Can do. In addition, on a rainy day, the power generator 1 is connected to a small number of water electrolyzers 2 to ensure the minimum power required for water electrolysis so that hydrogen and oxygen can be produced more reliably. It becomes possible to control. That is, natural energy can be stored without waste.
 発電機3は、図1に示す発電機1022と同じものである。従って、その詳細な説明は省略する。ただし、第1実施形態に係るエネルギ貯蔵供給装置100における発電機3は吸気口(図示しない)を備え、当該吸気口に、水電気分解装置2において製造された酸素が供給されるように構成されている。また、発電機3には、発生した高温排気ガスを通流する排気管3aが設けられている。排気管3aは水素貯蔵供給装置4を貫通するように設けられており、排気管3aを高温排気ガスが通流することにより、水素貯蔵供給装置4に熱を供給することができる。 The generator 3 is the same as the generator 1022 shown in FIG. Therefore, the detailed description is abbreviate | omitted. However, the generator 3 in the energy storage and supply device 100 according to the first embodiment includes an intake port (not shown), and is configured such that oxygen produced in the water electrolysis apparatus 2 is supplied to the intake port. ing. Further, the generator 3 is provided with an exhaust pipe 3a through which the generated high-temperature exhaust gas flows. The exhaust pipe 3 a is provided so as to penetrate the hydrogen storage and supply device 4, and heat can be supplied to the hydrogen storage and supply device 4 by allowing the high-temperature exhaust gas to flow through the exhaust pipe 3 a.
 また、第1実施形態に係る発電機3においては、前記のように、自然エネルギの貯蔵時には酸素が供給されるため、発電機3内部での酸素濃度が水素濃度よりも大きくなるように構成されている。一方で、自然エネルギの外部への供給時には、水素が供給されるため、発電機3内部での水素濃度が酸素濃度よりも大きくなるように構成されている。 Further, as described above, the generator 3 according to the first embodiment is configured such that the oxygen concentration inside the generator 3 is larger than the hydrogen concentration because oxygen is supplied during storage of natural energy. ing. On the other hand, since hydrogen is supplied when natural energy is supplied to the outside, the hydrogen concentration inside the generator 3 is configured to be higher than the oxygen concentration.
 水素貯蔵供給装置4は、図1に示す水素貯蔵供給装置1021と同じものである。従って、その詳細な説明は省略する。ただし、第1実施形態に係る水素貯蔵供給装置4は燃料供給口(図示しない)を備え、当該燃料供給口に、水電気分解装置2において製造された水素が供給されるようになっている。 The hydrogen storage and supply device 4 is the same as the hydrogen storage and supply device 1021 shown in FIG. Therefore, the detailed description is abbreviate | omitted. However, the hydrogen storage and supply device 4 according to the first embodiment includes a fuel supply port (not shown), and hydrogen produced in the water electrolyzer 2 is supplied to the fuel supply port.
 さらに、水素貯蔵供給装置4には、メチルシクロヘキサン及びトルエンが供給される供給口(図示しない)が設けられ、当該供給口と、MCHタンク6及びトルエンタンク7とが、四方弁Dを介して接続されている。そして、四方弁Dが操作されることにより、前記供給口を介してメチルシクロヘキサン若しくはトルエンが水素貯蔵供給装置4に供給されるようになっている。 Furthermore, the hydrogen storage and supply device 4 is provided with a supply port (not shown) for supplying methylcyclohexane and toluene, and the supply port is connected to the MCH tank 6 and the toluene tank 7 via a four-way valve D. Has been. Then, by operating the four-way valve D, methylcyclohexane or toluene is supplied to the hydrogen storage and supply device 4 through the supply port.
 なお、図2においては、水素貯蔵供給装置4を1つのみ設ける構成にしているが、2つ設ける構成にしてもよい。このように構成することで、水素を脱水素体に付加するための水素貯蔵供給装置4と、水素を水素貯蔵体から脱離するための水素貯蔵供給装置4として設けることができ、自然エネルギの貯蔵と供給とを同時に行うことが可能となる。 In FIG. 2, only one hydrogen storage and supply device 4 is provided. However, two hydrogen storage and supply devices 4 may be provided. By comprising in this way, it can provide as the hydrogen storage and supply apparatus 4 for adding hydrogen to a dehydrogenation body, and the hydrogen storage and supply apparatus 4 for desorbing hydrogen from a hydrogen storage body. Storage and supply can be performed simultaneously.
 冷却器5は、四方弁Dを介してMCHタンク6及びトルエンタンク7と、バルブ24を介して水素貯蔵供給装置4と、また、バルブV25を介して発電機3と接続されているものである。また、冷却器5は、水素貯蔵供給装置4から排出されるメチルシクロヘキサン若しくはトルエン(自然エネルギの貯蔵時と供給時とで排出される化合物が異なる。)、並びに水素の混合ガスを冷却することにより、メチルシクロヘキサン若しくはトルエンを液体状態にするようになっている。そして、液体状態になったメチルシクロヘキサン若しくはトルエンは、四方弁Dを介して、後記するMCHタンク6若しくはトルエンタンク7に収容されるようになっている。 The cooler 5 is connected to the MCH tank 6 and the toluene tank 7 through the four-way valve D, the hydrogen storage and supply device 4 through the valve 24, and the generator 3 through the valve V25. . The cooler 5 cools a mixed gas of methylcyclohexane or toluene discharged from the hydrogen storage and supply device 4 (a compound discharged at the time of storage and supply of natural energy is different) and hydrogen. In addition, methylcyclohexane or toluene is in a liquid state. Then, methylcyclohexane or toluene in a liquid state is accommodated in an MCH tank 6 or a toluene tank 7 described later via a four-way valve D.
 このように、水素貯蔵供給装置4とMCHタンク6トルエンタンク7との間に冷却器等の水素分離機を設けることにより、発電機3がより効率良く発電を行うことができる。 Thus, by providing a hydrogen separator such as a cooler between the hydrogen storage and supply device 4 and the MCH tank 6 and the toluene tank 7, the generator 3 can generate power more efficiently.
 なお、前記ガスを冷却しても水素は依然として気体状態であるため、水素のみをバルブ25を介して発電機3に供給することができるようになっている。なお、冷却器5の具体的な構成は特に制限されず、公知の任意の冷却器を用いればよい。 Note that even when the gas is cooled, hydrogen is still in a gaseous state, so that only hydrogen can be supplied to the generator 3 via the valve 25. The specific configuration of the cooler 5 is not particularly limited, and any known cooler may be used.
 MCHタンク6は、水素貯蔵体としてのメチルシクロヘキサンを収容するものである。MCHタンク6は、四方弁Dを介して水素貯蔵供給装置4と配管により接続されている。そして、MCHタンク6の内部には、メチルシクロヘキサンの残量管理及び組成管理を行うためのセンサ(図示しない)が設けられている。 The MCH tank 6 contains methylcyclohexane as a hydrogen storage body. The MCH tank 6 is connected to the hydrogen storage and supply device 4 through a four-way valve D by piping. A sensor (not shown) is provided inside the MCH tank 6 for managing the remaining amount and composition of methylcyclohexane.
 MCHタンク6の大きさは特に制限されず、エネルギ貯蔵供給装置100全体の大きさ、設置面積、メチルシクロヘキサンの収容量等を考慮して、適宜決定すればよい。また、MCHタンク6を構成する材料も特に制限されず、メチルシクロヘキサンによって腐食、劣化等しない材料を任意に選定すればよい。 The size of the MCH tank 6 is not particularly limited, and may be appropriately determined in consideration of the overall size of the energy storage and supply device 100, the installation area, the amount of methylcyclohexane accommodated, and the like. The material constituting the MCH tank 6 is not particularly limited, and a material that does not corrode or deteriorate due to methylcyclohexane may be arbitrarily selected.
 トルエンタンク7は、脱水素体としてのトルエンを収容するものである。トルエンタンク7は、四方弁Dを介して水素貯蔵供給装置4と配管により接続されている。そして、トルエンタンク7の内部には、トルエンの残量管理及び組成管理を行うためのセンサ(図示しない)が設けられている。 The toluene tank 7 stores toluene as a dehydrogenated body. The toluene tank 7 is connected to the hydrogen storage and supply device 4 through a four-way valve D by piping. A sensor (not shown) for managing the remaining amount of toluene and managing the composition is provided inside the toluene tank 7.
 トルエンタンク7の大きさも、前記MCHタンク6と同様に特に制限されない。また、トルエンタンク7を構成する材料も特に制限されず、トルエンによって腐食、劣化等しない材料を任意に選定すればよい。 The size of the toluene tank 7 is not particularly limited as in the case of the MCH tank 6. Moreover, the material which comprises the toluene tank 7 is not restrict | limited in particular, What is necessary is just to select the material which does not corrode, deteriorate, etc. with toluene arbitrarily.
 また、前記残量管理及び組成管理を行う各センサに加えて、残量管理は、流量計・密度計9によって供給量及び回収量をリアルタイムに計測しても行われている。また、各タンク内に液面センサ(図示しない)を設置することで、水素貯蔵供給装置4内に空気が混入することを防止することができる。 Further, in addition to the sensors for performing the remaining amount management and the composition management, the remaining amount management is also performed by measuring the supply amount and the recovery amount in real time by the flow meter / density meter 9. Moreover, by installing a liquid level sensor (not shown) in each tank, it is possible to prevent air from entering the hydrogen storage and supply device 4.
 さらに、組成管理は、流量計・密度計9によりメチルシクロヘキサンとトルエンとの密度差を測定し、通流している液体におけるトルエン組成をリアルタイムに計測する。そして、第1実施形態に係るエネルギ貯蔵供給装置100においては、自然エネルギ貯蔵時にはトルエン濃度を10重量%以下となるように制御し、自然エネルギ供給時にはトルエン濃度が90重量%以上となるように制御している。 Furthermore, in composition management, the density difference between methylcyclohexane and toluene is measured by the flow meter / density meter 9, and the toluene composition in the flowing liquid is measured in real time. And in the energy storage supply apparatus 100 which concerns on 1st Embodiment, it controls so that toluene concentration may be 10 weight% or less at the time of natural energy storage, and it controls so that toluene concentration may be 90 weight% or more at the time of natural energy supply. is doing.
 ポンプ8は、MCHタンク6及びトルエンタンク7から水素貯蔵供給装置4への配管の途中に設けられているものである。このように、ポンプ8は、四方弁D及びバルブ23を介して、MCHタンク6からメチルシクロヘキサンを、また、トルエンタンク7からトルエンを、水素貯蔵供給装置4に供給するようになっている。即ち、ポンプ8は、各タンクから各液体を水素貯蔵供給装置4に供給する(輸送する)機能を有しているものである。ポンプ8の具体的な構成は特に制限されず、公知の任意のポンプを用いればよい。 The pump 8 is provided in the middle of the piping from the MCH tank 6 and the toluene tank 7 to the hydrogen storage and supply device 4. As described above, the pump 8 supplies methylcyclohexane from the MCH tank 6 and toluene from the toluene tank 7 to the hydrogen storage and supply device 4 via the four-way valve D and the valve 23. That is, the pump 8 has a function of supplying (transporting) each liquid from each tank to the hydrogen storage and supply device 4. The specific configuration of the pump 8 is not particularly limited, and any known pump may be used.
 流量計・密度計9は、MCHタンク6及びトルエンタンク7から水素貯蔵供給装置4への配管の途中に設けられ、ポンプ8によって輸送される各液体の流量及び密度を測定するものである。流量計及び密度計の具体的な構成は特に制限されず、公知の任意の流量計及び密度計を用いればよい。 The flow meter / density meter 9 is provided in the middle of the piping from the MCH tank 6 and the toluene tank 7 to the hydrogen storage and supply device 4 and measures the flow rate and density of each liquid transported by the pump 8. Specific configurations of the flow meter and the density meter are not particularly limited, and any known flow meter and density meter may be used.
 四方弁Dは、MCHタンク6及びトルエンタンク7から水素貯蔵供給装置4への配管の途中に設けられ、メチルシクロヘキサン及びトルエンのいずれを水素貯蔵供給装置4に供給するかを切り替えるものである。具体的には、自然エネルギの貯蔵時には、トルエンタンク7と水素貯蔵供給装置4とがポンプ8及び流量計・密度計9を介して接続されるようになっている。また、水素貯蔵供給装置4とMCHタンク6とが冷却器5を介して接続されるようになっている。さらに、自然エネルギの外部への供給時には、MCHタンク6と水素貯蔵供給装置4とがポンプ8及び流量計・密度計9を介して接続されるようになっている。また、水素貯蔵供給装置4とトルエンタンク7とが冷却器5を介して接続されるようになっている。即ち、四方弁Dが操作されることにより、水素貯蔵供給手段4にメチルシクロヘキサン若しくはトルエンのいずれを供給するかを選択することができる。 The four-way valve D is provided in the middle of the piping from the MCH tank 6 and the toluene tank 7 to the hydrogen storage and supply device 4, and switches whether methylcyclohexane or toluene is supplied to the hydrogen storage and supply device 4. Specifically, during storage of natural energy, the toluene tank 7 and the hydrogen storage and supply device 4 are connected via a pump 8 and a flow meter / density meter 9. Further, the hydrogen storage and supply device 4 and the MCH tank 6 are connected via the cooler 5. Further, when supplying natural energy to the outside, the MCH tank 6 and the hydrogen storage and supply device 4 are connected via a pump 8 and a flow meter / density meter 9. Further, the hydrogen storage and supply device 4 and the toluene tank 7 are connected via the cooler 5. That is, by operating the four-way valve D, it is possible to select whether to supply methylcyclohexane or toluene to the hydrogen storage and supply means 4.
 四方弁Dの具体的な構成は特に制限されず、公知の任意の四方弁を用いればよい。 The specific configuration of the four-way valve D is not particularly limited, and any known four-way valve may be used.
 燃料タンク11は、発電機3と配管により接続され、発電機3の燃料(発電機燃料)を収容するものである。そして、燃料タンク11の内部には、発電機燃料の残量管理を行うためのセンサ(図示しない)が設けられている。発電機燃料については前記の通りであるため、その説明を省略する。燃料タンク11の具体的な構成は特に制限されず、公知の任意の燃料タンクを用いればよい。 The fuel tank 11 is connected to the generator 3 by a pipe and accommodates the fuel of the generator 3 (generator fuel). A sensor (not shown) for managing the remaining amount of generator fuel is provided inside the fuel tank 11. Since the generator fuel is as described above, the description thereof is omitted. The specific configuration of the fuel tank 11 is not particularly limited, and any known fuel tank may be used.
 水タンク12は、水電気分解装置2に配管により接続され、水電気分解装置2に供給する水を収容するものである。そして、水タンク12の内部には、水の残量管理を行うためのセンサ(図示しない)が設けられている。水タンク12の具体的な構成は特に制限されず、公知の任意の水タンクを用いればよい。 The water tank 12 is connected to the water electrolyzer 2 by piping and contains water supplied to the water electrolyzer 2. A sensor (not shown) for managing the remaining amount of water is provided inside the water tank 12. The specific configuration of the water tank 12 is not particularly limited, and any known water tank may be used.
 第1実施形態に係るエネルギ貯蔵供給装置100の具体的な構成は以上の通りであるが、次に、それぞれの手段の動作について、図2に示す構成に即して説明する。はじめに、春場や秋場における自然エネルギの貯蔵時の動作について説明する。 The specific configuration of the energy storage and supply device 100 according to the first embodiment is as described above. Next, the operation of each means will be described with reference to the configuration shown in FIG. First, the operation when storing natural energy in spring and autumn will be described.
 例えば太陽光、風力等を自然エネルギとして用い、発電装置1(例えば太陽電池及び風力発電機等)によって電力を発電する。そして、発電された電力により、水電気分解装置4において水を電気分解する。水の電気分解が進行するに従って水量が減少するが、減少分は適宜水タンク12から新たに供給される。 For example, solar power or wind power is used as natural energy, and electric power is generated by the power generation device 1 (for example, a solar battery and a wind power generator). And water is electrolyzed in the water electrolyzer 4 with the generated electric power. The amount of water decreases as the electrolysis of water proceeds, but the reduced amount is newly supplied from the water tank 12 as appropriate.
 水電気分解装置2において製造された水素はバルブV22を介し、途中でトルエンタンク7から四方弁D、ポンプ8、流量計・密度計9及びバルブV23を介して通液されたトルエンと合流し、水素貯蔵供給装置4に供給される。この際、四方弁Dによって、トルエンタンク7と水素貯蔵供給装置4とがポンプ8及び流量計・密度計9を介して接続され、また、水素貯蔵供給装置4とMCHタンク6とが接続されている。そして、水素貯蔵供給装置4に供給された水素及びトルエンは、発電機3から供給された熱によって付加反応が進行し、メチルシクロヘキサンが生成する。 Hydrogen produced in the water electrolysis apparatus 2 joins with toluene passed through the valve V22 through the toluene tank 7 through the four-way valve D, the pump 8, the flowmeter / density meter 9 and the valve V23. It is supplied to the hydrogen storage and supply device 4. At this time, the four-way valve D connects the toluene tank 7 and the hydrogen storage / supply device 4 via the pump 8 and the flow meter / density meter 9, and connects the hydrogen storage / supply device 4 and the MCH tank 6. Yes. The hydrogen and toluene supplied to the hydrogen storage and supply device 4 undergo an addition reaction by the heat supplied from the generator 3 to produce methylcyclohexane.
 その後、生成したメチルシクロヘキサン(気体状態)及び付加反応に用いられなかった余剰の水素はバルブV24を介して冷却器5に到達する(ただし、トルエンの供給量が過剰である場合、余剰の水素は発生しない。)。冷却器5においてメチルシクロヘキサンが冷却されて液体状態になり、液体状態になったメチルシクロヘキサンは四方弁Dを介してMCHタンク6に収容される。このメチルシクロヘキサンは、夏場や冬場のために貯蔵される。一方で、冷却器5において冷却されても気体状態の水素は、バルブV25を介して発電機3に供給される。このようにすることで、水素が余剰となった場合でも、自然エネルギをより無駄無く利用することができる。 Thereafter, the produced methylcyclohexane (in the gaseous state) and surplus hydrogen that has not been used for the addition reaction reach the cooler 5 via the valve V24 (however, when the supply amount of toluene is excessive, the surplus hydrogen is Does not occur.) In the cooler 5, methylcyclohexane is cooled to be in a liquid state, and the methylcyclohexane in a liquid state is accommodated in the MCH tank 6 through the four-way valve D. This methylcyclohexane is stored for summer and winter. On the other hand, even when cooled in the cooler 5, hydrogen in the gaseous state is supplied to the generator 3 via the valve V25. By doing in this way, even when hydrogen becomes surplus, natural energy can be utilized more wastefully.
 一方、水電気分解装置2において製造された酸素は、バルブV21を介して発電機3に供給され、発電機3における発電機燃料(燃料タンク11に収容されている)の燃焼を促進させる。その結果、より効率良く発電を行うことができる。なお、酸素を供給することにより燃焼温度が高くなるが、燃焼温度が高くなることを嫌う場合には、酸素を供給しなくてもよい。 On the other hand, the oxygen produced in the water electrolysis apparatus 2 is supplied to the generator 3 via the valve V21 and promotes combustion of the generator fuel (accommodated in the fuel tank 11) in the generator 3. As a result, power generation can be performed more efficiently. In addition, although combustion temperature becomes high by supplying oxygen, when it dislikes that combustion temperature becomes high, it is not necessary to supply oxygen.
 次に、夏場や冬場における自然エネルギの外部への供給時の動作について説明する。 Next, the operation when supplying natural energy to the outside in summer and winter will be described.
 はじめに、燃料タンク11から供給される発電機燃料を用いて、発電機3を起動する。この時、MCHタンク6から、四方弁D、ポンプ8、流量計・密度計9及びバルブV23を介して、メチルシクロヘキサンが水素貯蔵供給装置4に供給される。この際、四方弁Dによって、MCHタンク6と水素貯蔵供給装置4とがポンプ8及び流量計・密度計9を介して接続され、また、水素貯蔵供給装置4とトルエンタンク7とが接続されている。 First, the generator 3 is started using the generator fuel supplied from the fuel tank 11. At this time, methylcyclohexane is supplied from the MCH tank 6 to the hydrogen storage and supply device 4 through the four-way valve D, the pump 8, the flow meter / density meter 9, and the valve V23. At this time, the MCH tank 6 and the hydrogen storage and supply device 4 are connected via the pump 8 and the flow meter / density meter 9 by the four-way valve D, and the hydrogen storage and supply device 4 and the toluene tank 7 are connected. Yes.
 水素貯蔵供給装置4に供給されたメチルシクロヘキサンは、発電機3で生成した熱によって水素が脱離し、気体状態のトルエンと水素との混合ガスとなる。そして、当該混合ガスは、バルブV24を介して冷却器5に到達する。冷却器5に到達した混合ガスは冷却されてトルエンが液体状態になり、液体状態のトルエンは四方弁Dを介してトルエンタンク7に収容され、気体状態の水素はバルブV25を介して発電機3に供給される。 The methylcyclohexane supplied to the hydrogen storage and supply device 4 is desorbed by the heat generated by the generator 3, and becomes a mixed gas of toluene and hydrogen in a gaseous state. Then, the mixed gas reaches the cooler 5 via the valve V24. The mixed gas that has reached the cooler 5 is cooled and the toluene becomes a liquid state. The toluene in the liquid state is stored in the toluene tank 7 through the four-way valve D, and the hydrogen in the gaseous state is supplied to the generator 3 through the valve V25. To be supplied.
 発電機3に供給された水素は燃焼に供されるため、発電機3で燃焼される燃料タンク11からの発電機燃料の量を減少させることができる。従って、より少ない量の発電機燃料によって効率良く発電を行うことができる。また、水素は、その特性から燃焼性を改善できる。 Since the hydrogen supplied to the generator 3 is used for combustion, the amount of generator fuel from the fuel tank 11 combusted by the generator 3 can be reduced. Therefore, it is possible to efficiently generate power with a smaller amount of generator fuel. Also, hydrogen can improve combustibility due to its characteristics.
 以上、図1及び図2を用いて、第1実施形態に係るエネルギ貯蔵供給装置100を説明した。エネルギ貯蔵供給装置100を用い自然エネルギ貯蔵時のエネルギのフロー、及び、自然エネルギ供給時のエネルギのフローを、それぞれ分けて、図3及び図4に示す。なお、水素貯蔵供給装置4内に設けられた触媒は、経時とともに触媒機能が低下することがある。そのような場合に触媒再生操作を行うことにより、触媒機能が回復する。この操作を図5に示す。 The energy storage and supply device 100 according to the first embodiment has been described above with reference to FIGS. 1 and 2. The energy flow when storing natural energy using the energy storage and supply apparatus 100 and the energy flow when supplying natural energy are shown separately in FIGS. In addition, the catalyst function provided in the hydrogen storage and supply device 4 may deteriorate with time. In such a case, the catalyst function is restored by performing the catalyst regeneration operation. This operation is shown in FIG.
 図3及び図4に示すものは、図2に示すものを自然エネルギ貯蔵時と供給時とに分けたものである。従って、その説明を省略する。また、図3及び図4においては、発電機3及び水素貯蔵供給装置4間の熱の授受を省略して記載している。 3 and 4 are obtained by dividing the one shown in FIG. 2 into a natural energy storage time and a supply time. Therefore, the description is omitted. 3 and 4, the heat exchange between the generator 3 and the hydrogen storage and supply device 4 is omitted.
 また、図5に示すように、水素貯蔵供給装置4から排出されるガスの組成を監視し、水素貯蔵供給装置4内に設けられた触媒の触媒性能が低下したことが判明した場合には、空気を水素貯蔵供給装置4に適宜供給することにより、触媒に付着した炭素が酸化され、二酸化炭素を含有する空気として排出される。この操作により、触媒性能を初期状態まで回復させることができる。 Further, as shown in FIG. 5, when the composition of the gas discharged from the hydrogen storage and supply device 4 is monitored and it is found that the catalyst performance of the catalyst provided in the hydrogen storage and supply device 4 has deteriorated, By appropriately supplying air to the hydrogen storage and supply device 4, the carbon adhering to the catalyst is oxidized and discharged as air containing carbon dioxide. By this operation, the catalyst performance can be restored to the initial state.
<まとめ>
 前記のように、第1実施形態に係るエネルギ貯蔵供給装置100によれば、自然エネルギを無駄なく貯蔵することができる。特に、例えば季節間での電力需要の変動に対しても適切に対応でき、出力電力の平準化及び安定供給が可能となる。さらに、従来よりも、発電コストを抑制しつつ、自然エネルギを無駄無く用いて発電を行うことが可能となる。
<Summary>
As described above, according to the energy storage and supply device 100 according to the first embodiment, natural energy can be stored without waste. In particular, for example, it is possible to appropriately respond to fluctuations in power demand between seasons, and leveling of output power and stable supply are possible. Furthermore, it is possible to generate power using natural energy without waste while suppressing the power generation cost as compared with the prior art.
[2.第2実施形態]
 前記した第1実施形態に係るエネルギ貯蔵供給装置100において、トルエンは脱水素体として用いたが、トルエンをさらに燃料として利用したエンジン発電機を用いた例を、第2実施形態に係るエネルギ貯蔵供給システム200として、図6を参照しながら説明する。なお、図6において、図1~図5において示した符号と同じ符号を付しているものは同じものを表すものとし、その詳細な説明は省略する。
[2. Second Embodiment]
In the energy storage and supply apparatus 100 according to the first embodiment described above, toluene is used as a dehydrogenation body. However, an example using an engine generator using toluene as a fuel further is an energy storage and supply according to the second embodiment. The system 200 will be described with reference to FIG. In FIG. 6, the same reference numerals as those shown in FIGS. 1 to 5 denote the same components, and the detailed description thereof will be omitted.
 ただし、図6及び以下の記載においては、図示及び説明の便宜上、エンジン及び発電機を別体のものとして設けている。即ち、図6に示す発電機3とエンジン14とを含むものが、図2における発電機3としてのエンジン発電機に相当する。従って、第2実施形態において「エンジンに供給される」とは、第1実施形態における「発電機に供給される」と同義であるものとする。 However, in FIG. 6 and the following description, for convenience of illustration and description, the engine and the generator are provided separately. That is, what includes the generator 3 and the engine 14 shown in FIG. 6 corresponds to the engine generator as the generator 3 in FIG. Therefore, “supplied to the engine” in the second embodiment is synonymous with “supplied to the generator” in the first embodiment.
 図6は、第2実施形態に係るエネルギ貯蔵供給装置200の構成を模式的に表す図である。エネルギ貯蔵供給装置200の基本的な構成は、エネルギ貯蔵供給装置100と同様である。従って、エネルギ貯蔵供給装置100と異なる点について、以下で説明する。 FIG. 6 is a diagram schematically illustrating the configuration of the energy storage and supply device 200 according to the second embodiment. The basic configuration of the energy storage and supply device 200 is the same as that of the energy storage and supply device 100. Accordingly, differences from the energy storage and supply device 100 will be described below.
 なお、図6中、実線は自然エネルギの供給時のフロー、点線は自然エネルギの貯蔵時のフローを示している。従って、図6に示す実施形態は、週ごと、月ごと及び季節変動等の長期エネルギの補完に好適に用いることができる。 In FIG. 6, the solid line indicates the flow when supplying natural energy, and the dotted line indicates the flow when storing natural energy. Therefore, the embodiment shown in FIG. 6 can be suitably used for supplementing long-term energy such as weekly, monthly, and seasonal fluctuations.
 エンジン14は発電機3と接続され、エンジン14が駆動することによって発電機3において発電が行われる。そして、エンジン14には、エネルギ貯蔵供給装置100と同様に、水電気分解装置2からの酸素が、水素貯蔵供給装置4からは水素が供給されるようになっている。ただし、エネルギ貯蔵供給装置200においては、さらに、トルエンタンク7からトルエンが供給されるようにもなっている。 The engine 14 is connected to the generator 3, and the generator 14 generates power when the engine 14 is driven. The engine 14 is supplied with oxygen from the water electrolysis device 2 and hydrogen from the hydrogen storage and supply device 4, as in the energy storage and supply device 100. However, in the energy storage and supply apparatus 200, toluene is also supplied from the toluene tank 7.
 トルエンはオクタン価が120であり、火花点火用燃料のガソリンと比較してオクタン価が高い。オクタン価が高いとノッキングが起こりにくくなるため、エンジン14を高圧縮比条件で運転することができ、それにより熱効率が向上する。 Toluene has an octane number of 120, which is higher than that of gasoline for spark ignition. When the octane number is high, knocking is less likely to occur, so the engine 14 can be operated under high compression ratio conditions, thereby improving thermal efficiency.
 さらに、一般的な火花点火エンジンの場合、圧縮比が13程度が最大であるが、トルエンを用いることで圧縮比を15程度にて運転することが可能となる。火花点火エンジンの場合、理論サイクルがオットーサイクルであることから、圧縮比が高いほど熱効率は向上する。このため、脱水素反応により発生した(或いは原料として用いた)トルエンを用いることで、エンジン14に接続された発電機3の発電効率が高くなる。また、脱水素体と発電機燃料とを同じものとすることで、それぞれの貯蔵タンクを別体に設ける必要が無く、エネルギ貯蔵供給装置200の設置面積を小さなものにすることができる。さらに、脱水素体と発電機燃料とを別々に調達する必要が無くなるため、調達コストを削減することもできる。 Furthermore, in the case of a general spark ignition engine, the compression ratio is about 13 at the maximum, but it is possible to operate at a compression ratio of about 15 by using toluene. In the case of a spark ignition engine, since the theoretical cycle is an Otto cycle, the higher the compression ratio, the better the thermal efficiency. For this reason, the power generation efficiency of the power generator 3 connected to the engine 14 is increased by using toluene generated by the dehydrogenation reaction (or used as a raw material). Further, by making the dehydrogenator and the generator fuel the same, it is not necessary to provide each storage tank separately, and the installation area of the energy storage and supply device 200 can be reduced. Furthermore, since it is not necessary to procure the dehydrogenator and the generator fuel separately, the procurement cost can be reduced.
 電力安定器13は、発電装置1から供給される電力を安定化して水電気分解装置2に供給するものである。電力安定器13の具体的な構成は特に制限されず、例えば整流器、コンバータ、インバータ、コンデンサ、蓄電池等が挙げられる。 The power stabilizer 13 stabilizes the power supplied from the power generator 1 and supplies it to the water electrolyzer 2. The specific configuration of the power stabilizer 13 is not particularly limited, and examples thereof include a rectifier, a converter, an inverter, a capacitor, and a storage battery.
 ターボ15は、エンジン14の排気系に接続されて設けられるもので、過給排気圧を利用することにより、小型かつ高効率な発電を行うことが可能となる。また、エンジン14において発生した熱は、水素貯蔵供給装置4へ供給されるほか、余剰の熱は外部熱供給手段としての暖房器18から発せられる熱として利用している。この熱は、暖房用として用いることができるほか、給湯用としても用いることができる。このようにすることで、エネルギ貯蔵供給装置200から排出される熱も無駄にすること無く利用できる。 The turbo 15 is provided by being connected to the exhaust system of the engine 14, and by using the supercharged exhaust pressure, it is possible to perform small and highly efficient power generation. Further, the heat generated in the engine 14 is supplied to the hydrogen storage and supply device 4, and the surplus heat is used as heat generated from the heater 18 as an external heat supply means. This heat can be used not only for heating but also for hot water supply. By doing in this way, the heat | fever discharged | emitted from the energy storage supply apparatus 200 can be utilized without wasting.
 また、エンジン14からは、ターボ15を介して暖房造水装置16に排気が供給されるようになっている。これにより、排気の熱を暖房器18の熱として利用するとともに、排気に含まれる水分を濾過器17を介して水タンク12に戻すことができる。このように構成することで、エネルギ貯蔵供給装置200全体で消費される水の量を減少させることができ、発電コストを削減することができる。 Further, exhaust gas is supplied from the engine 14 to the heating fresh water generator 16 via the turbo 15. Thereby, while using the heat | fever of exhaust_gas | exhaustion as the heat | fever of the heater 18, the water | moisture content contained in exhaust_gas | exhaustion can be returned to the water tank 12 via the filter 17. FIG. By comprising in this way, the quantity of the water consumed with the energy storage supply apparatus 200 whole can be reduced, and electric power generation cost can be reduced.
[3.第3実施形態]
 次に、第3実施形態に係るエネルギ貯蔵供給装置300の構成について、図7を参照しながら説明する。図7は、第3実施形態に係るエネルギ貯蔵供給装置の構成を模式的に表す図である。エネルギ貯蔵供給装置300の基本的な構成は、エネルギ貯蔵供給装置100と同様である。従って、エネルギ貯蔵供給装置100と異なる点について、以下で説明する。
[3. Third Embodiment]
Next, the configuration of the energy storage and supply device 300 according to the third embodiment will be described with reference to FIG. FIG. 7 is a diagram schematically illustrating the configuration of the energy storage and supply device according to the third embodiment. The basic configuration of the energy storage and supply device 300 is the same as that of the energy storage and supply device 100. Accordingly, differences from the energy storage and supply device 100 will be described below.
 なお、第2実施形態と同様に、図7及び以下の記載においては、図示及び説明の便宜上、エンジン及び発電機を別体のものとして設けている。即ち、図7に示す発電機214とエンジン213とを含むものが、図2における発電機3としてのエンジン発電機に相当する。従って、第3実施形態において「エンジンに供給される」とは、第1実施形態における「発電機に供給される」と同義であるものとする。 As in the second embodiment, in FIG. 7 and the following description, for convenience of illustration and description, the engine and the generator are provided separately. That is, what includes the generator 214 and the engine 213 shown in FIG. 7 corresponds to the engine generator as the generator 3 in FIG. Therefore, “supplied to the engine” in the third embodiment is synonymous with “supplied to the generator” in the first embodiment.
 第3実施形態に係るエネルギ貯蔵供給装置30は、メチルシクロヘキサンタンク201と、流量計202と、低圧ポンプ203と、高圧ポンプ204,205と、冷却器206,206,206,206と、エア供給口207と、窒素供給口208と、水素貯蔵供給装置209と、冷却器210と、トルエンタンク211と、水素流量計212と、エンジン213と、発電機214と、軽油タンク215と、ラジエータ216と、バッテリ217と、発電装置218と、軽油ポンプ219と、インジェクタ220と、エアフィルタ221と、水素酸素製造装置(水電気分解装置)223と、トラップ224と、を備えて構成されている。 The energy storage and supply device 30 according to the third embodiment includes a methylcyclohexane tank 201, a flow meter 202, a low pressure pump 203, high pressure pumps 204 and 205, coolers 206, 206, 206, and 206, and an air supply port. 207, nitrogen supply port 208, hydrogen storage and supply device 209, cooler 210, toluene tank 211, hydrogen flow meter 212, engine 213, generator 214, light oil tank 215, radiator 216, The battery 217, the power generation device 218, the light oil pump 219, the injector 220, the air filter 221, the hydrogen oxygen production device (water electrolysis device) 223, and the trap 224 are configured.
 また、各装置は配管によって接続され、図7に示す位置に、各配管を通流する気体又は液体の流量を制御するバブルV1~V18が設けられている。ただし、バルブV9,V11,V15,V16は、流量を制御するとともに、連通する配管を切り替える切り替えバルブとしての機能も有している。 Further, each device is connected by a pipe, and bubbles V1 to V18 for controlling the flow rate of gas or liquid flowing through each pipe are provided at the positions shown in FIG. However, the valves V9, V11, V15, and V16 have a function as a switching valve that controls the flow rate and switches the piping to be communicated.
 はじめに、自然エネルギの貯蔵時の動作について説明する。
 発電装置218に自然エネルギが供給されて発電された電力と、発電機214において発電された電力とにより、水電気分解装置223において水が電気分解される。水が電気分解されて発生した酸素はバルブV16等を介してエンジン213に供給される。この際、バルブV9とバルブV18とは連通されておらず、バルブV15とバルブV18とがバルブV16を介して連通されるようになっている。そして、エンジン213に供給された酸素により、軽油の燃焼が促進される。その結果、エンジン213に接続された発電機214において、効率良く発電することが可能となる。
First, the operation during storage of natural energy will be described.
Water is electrolyzed in the water electrolyzer 223 by the power generated by supplying natural energy to the power generator 218 and the power generated by the generator 214. Oxygen generated by electrolyzing water is supplied to the engine 213 through a valve V16 and the like. At this time, the valve V9 and the valve V18 are not communicated with each other, and the valve V15 and the valve V18 are communicated with each other via the valve V16. The combustion of light oil is promoted by the oxygen supplied to the engine 213. As a result, the generator 214 connected to the engine 213 can generate power efficiently.
 また、エンジン213において発生した熱は水素貯蔵供給装置209に供給され、水素のトルエンへの付加反応に用いられる。そして、水素貯蔵供給装置209において、水素がトルエンに付加されて生成したメチルシクロヘキサンは、冷却器210により液体状態に変換された後、バルブV11等を介してメチルシクロヘキサンタンク201に収容される。この際、バルブV11は、冷却器210とメチルシクロヘキサンタンク201とを連通するようになっており、冷却器210とトルエンタンク211とは連通されないようになっている。 The heat generated in the engine 213 is supplied to the hydrogen storage and supply device 209 and used for the addition reaction of hydrogen to toluene. In the hydrogen storage and supply device 209, methylcyclohexane generated by adding hydrogen to toluene is converted into a liquid state by the cooler 210 and then stored in the methylcyclohexane tank 201 via the valve V <b> 11 or the like. At this time, the valve V11 allows the cooler 210 and the methylcyclohexane tank 201 to communicate with each other, and the cooler 210 and the toluene tank 211 do not communicate with each other.
 次に、自然エネルギの外部への供給時の動作について説明する。
 基本的には、前記「自然エネルギの貯蔵時の動作」の逆の動作が行われる。具体的には、バルブV9とバルブV18とがバルブV16を介して連通されるようになっており、バルブV15とバルブV18とは連通されないようになっている。従って、水の電気分解によって製造された酸素は、余剰酸素としてバルブV15から外部へ排出される。また、バルブV11は、冷却器210とメチルシクロヘキサンタンク201とは連通されないようになっており、冷却器210とトルエンタンク211とが連通されるようになっている。このように各バルブが切り替わることで、水素貯蔵供給装置209においてメチルシクロヘキサンから脱離した水素がエンジン213に供給されるようになっている。その結果、エンジン213に接続された発電機214が効率良く発電することが可能となる。
Next, the operation at the time of supplying natural energy to the outside will be described.
Basically, the reverse operation of the “operation when storing natural energy” is performed. Specifically, the valve V9 and the valve V18 are communicated with each other via the valve V16, and the valve V15 and the valve V18 are not communicated with each other. Therefore, oxygen produced by electrolysis of water is discharged from the valve V15 to the outside as surplus oxygen. Further, the valve V11 is configured such that the cooler 210 and the methylcyclohexane tank 201 are not communicated with each other, and the cooler 210 and the toluene tank 211 are communicated with each other. By switching each valve in this way, hydrogen desorbed from methylcyclohexane in the hydrogen storage and supply device 209 is supplied to the engine 213. As a result, the generator 214 connected to the engine 213 can generate power efficiently.
 以上のように、バルブV16が操作されることにより、水素若しくは酸素が、エンジン213に設けられた供給口(図示しない)を介してエンジン213に供給されるようになっている。 As described above, by operating the valve V16, hydrogen or oxygen is supplied to the engine 213 through a supply port (not shown) provided in the engine 213.
 エネルギ貯蔵供給装置300は、発電機214に接続されたエンジン213としてディーゼルエンジンを用い、エンジン213から排出された熱を利用して水素貯蔵供給装置209による反応を進行させている。このようにエネルギ貯蔵供給装置300を構成することにより、発電機214において発電される電力の出力を高出力化することができ、さらには、使用する軽油を削減することができる。 The energy storage and supply device 300 uses a diesel engine as the engine 213 connected to the generator 214 and uses the heat discharged from the engine 213 to advance the reaction by the hydrogen storage and supply device 209. By configuring the energy storage and supply device 300 as described above, the output of the electric power generated by the generator 214 can be increased, and furthermore, the light oil to be used can be reduced.
 なお、エネルギ貯蔵供給装置300においては、エンジン213としてディーゼルエンジンを用いた例を説明したが、ディーゼルエンジンを駆動する燃料として軽油の他にもバイオディーゼル油を用いることもできる。また、エンジン213として、ディーゼルエンジンの代わりに、ガスエンジンを用いる事もできる。エンジン213としてガスエンジンを用いる場合、ガスエンジンを駆動する燃料としては、例えば都市ガス、バイオガス等を用いることができる。 In the energy storage and supply device 300, an example in which a diesel engine is used as the engine 213 has been described. However, biodiesel oil can be used in addition to light oil as fuel for driving the diesel engine. As the engine 213, a gas engine can be used instead of a diesel engine. When a gas engine is used as the engine 213, for example, city gas, biogas, or the like can be used as a fuel for driving the gas engine.
1    発電装置
2    水電気分解装置(水素酸素製造手段)
3    発電機(熱供給手段)
4    水素貯蔵供給装置(水素貯蔵供給手段)
6    MCHタンク(水素貯蔵体貯蔵手段)
7    トルエンタンク(脱水素体貯蔵手段)
18   暖房器(外部熱供給手段)
100  エネルギ貯蔵供給装置
200  エネルギ貯蔵供給装置
201  MCHタンク(水素貯蔵体貯蔵手段)
209  水素貯蔵供給装置(水素貯蔵供給手段)
211  トルエンタンク(脱水素体貯蔵手段)
214  発電機(熱供給手段)
218  発電装置
223  水電気分解装置(水素酸素製造手段)
300  エネルギ貯蔵供給装置
1011 水素貯蔵体
1012 脱水素体
1021 水素貯蔵供給装置(水素貯蔵供給手段)
1022 発電機(熱供給手段)
1031 水電気分解装置(水素酸素製造手段)
1032 発電装置
1 Power generation device 2 Water electrolysis device (hydrogen oxygen production means)
3 Generator (heat supply means)
4 Hydrogen storage and supply equipment (hydrogen storage and supply means)
6 MCH tank (hydrogen storage body storage means)
7 Toluene tank (dehydrogenation storage means)
18 Heater (external heat supply means)
DESCRIPTION OF SYMBOLS 100 Energy storage supply apparatus 200 Energy storage supply apparatus 201 MCH tank (hydrogen storage body storage means)
209 Hydrogen storage and supply device (hydrogen storage and supply means)
211 Toluene tank (dehydrogenated substance storage means)
214 Generator (heat supply means)
218 Power generation device 223 Water electrolysis device (hydrogen oxygen production means)
300 Energy storage and supply device 1011 Hydrogen storage body 1012 Dehydrogenation body 1021 Hydrogen storage and supply device (hydrogen storage and supply means)
1022 Generator (heat supply means)
1031 Water electrolysis device (hydrogen oxygen production means)
1032 power generator

Claims (12)

  1.  自然エネルギを貯蔵し、電力として外部へ供給可能なエネルギ貯蔵供給装置であって、
     前記自然エネルギを用いて水素及び酸素を製造する水素酸素製造手段と、
     該水素酸素製造手段において製造された前記水素を脱水素体に付加して水素貯蔵体を製造するとともに、該水素貯蔵体から前記水素を脱離して前記脱水素体を製造する水素貯蔵供給手段と、
     該水素貯蔵供給手段に熱を供給する熱供給手段と、
    を備え、
     前記自然エネルギの貯蔵時には、少なくとも、前記水素酸素製造手段において製造された前記水素を前記水素貯蔵供給手段に供給し、
     前記自然エネルギの電力としての外部への供給時には、少なくとも、前記水素貯蔵供給手段において脱離された前記水素を前記熱供給手段に供給するように構成されていることを特徴とする、エネルギ貯蔵供給装置。
    An energy storage and supply device capable of storing natural energy and supplying it to the outside as electric power,
    Hydrogen oxygen production means for producing hydrogen and oxygen using the natural energy;
    A hydrogen storage and supply means for producing the hydrogen storage body by adding the hydrogen produced in the hydrogen oxygen production means to a dehydrogenation body, and producing the dehydrogenation body by desorbing the hydrogen from the hydrogen storage body; ,
    Heat supply means for supplying heat to the hydrogen storage supply means;
    With
    When storing the natural energy, at least supply the hydrogen produced in the hydrogen oxygen production means to the hydrogen storage supply means,
    An energy storage and supply system configured to supply at least the hydrogen desorbed in the hydrogen storage and supply unit to the heat supply unit when supplying the natural energy to the outside as power. apparatus.
  2.  前記熱供給手段がエンジン発電機であることを特徴とする請求の範囲第1項に記載のエネルギ貯蔵供給装置。 The energy storage and supply device according to claim 1, wherein the heat supply means is an engine generator.
  3.  前記脱水素体がトルエンであり、前記水素貯蔵体がメチルシクロヘキサンであることを特徴とする、請求の範囲第1項又は第2項に記載のエネルギ貯蔵供給装置。 3. The energy storage and supply device according to claim 1 or 2, wherein the dehydrogenation body is toluene and the hydrogen storage body is methylcyclohexane.
  4.  前記熱供給手段が吸気口を備え、
     該吸気口に、前記水素酸素製造手段において製造された前記酸素が供給されるように構成されていることを特徴とする、請求の範囲第1項又は第2項に記載のエネルギ貯蔵供給装置。
    The heat supply means comprises an inlet;
    The energy storage and supply device according to claim 1 or 2, wherein the oxygen produced by the hydrogen oxygen producing means is supplied to the intake port.
  5.  前記水素貯蔵供給手段が燃料供給口を備え、
     該燃料供給口に、前記水素酸素製造手段において製造された前記水素が供給されるように構成されていることを特徴とする、請求の範囲第1項又は第2項に記載のエネルギ貯蔵供給装置。
    The hydrogen storage and supply means comprises a fuel supply port;
    3. The energy storage and supply device according to claim 1, wherein the hydrogen produced by the hydrogen-oxygen producing means is supplied to the fuel supply port. .
  6.  前記熱供給手段において、自然エネルギの貯蔵時には酸素濃度が水素濃度よりも大きくなるように構成され、自然エネルギの電力としての外部への供給時には水素濃度が酸素濃度よりも大きくなるように構成されていることを特徴とする、請求の範囲第1項又は第2項に記載のエネルギ貯蔵供給装置。 In the heat supply means, the oxygen concentration is configured to be greater than the hydrogen concentration when storing natural energy, and the hydrogen concentration is configured to be greater than the oxygen concentration when supplying natural energy to the outside. The energy storage and supply device according to claim 1 or 2, characterized by comprising:
  7.  前記水素貯蔵体が、メチルシクロヘキサン、2-メチルノナヒドロナフタレン及び脂環式化合物からなる群より選ばれる1種以上の化合物であることを特徴とする、請求の範囲第1項又は第2項に記載のエネルギ貯蔵供給装置。 The hydrogen storage body is one or more compounds selected from the group consisting of methylcyclohexane, 2-methylnonahydronaphthalene, and alicyclic compounds. The energy storage and supply device described.
  8.  前記水素貯蔵供給手段に、前記水素貯蔵体及び前記脱水素体が供給される供給口が設けられ、
     前記供給口と、前記水素貯蔵体が貯蔵されている水素貯蔵体貯蔵手段、及び、前記脱水素体が貯蔵されている脱水素体貯蔵手段とは、切り替えバルブを介して接続され、
     前記切り替えバルブが操作されることにより、前記供給口を介して前記水素貯蔵体若しくは前記脱水素体が供給されるように構成されていることを特徴とする、請求の範囲第1項又は第2項に記載のエネルギ貯蔵供給装置。
    The hydrogen storage and supply means is provided with a supply port through which the hydrogen storage body and the dehydrogenation body are supplied,
    The supply port, the hydrogen storage body storing means storing the hydrogen storage body, and the dehydrogenating body storage means storing the dehydrogenated body are connected via a switching valve,
    The structure according to claim 1 or 2, wherein the hydrogen storage body or the dehydrogenation body is supplied through the supply port when the switching valve is operated. The energy storage and supply device according to Item.
  9.  前記熱供給手段に、前記水素及び酸素が供給される供給口が設けられ、
     前記供給口に接続された切り替えバルブが操作されることにより、前記水素若しくは前記酸素が前記熱供給手段に供給されるように構成されていることを特徴とする、請求の範囲第1項又は第2項に記載のエネルギ貯蔵供給装置。
    The heat supply means is provided with a supply port to which the hydrogen and oxygen are supplied,
    2. The structure according to claim 1, wherein the hydrogen or the oxygen is supplied to the heat supply means by operating a switching valve connected to the supply port. The energy storage and supply device according to Item 2.
  10.  前記水素酸素製造手段において製造された水素及び酸素を用いて、外部へ供給される前記電力の平準化を行うように構成されていることを特徴とする、請求の範囲第1項又は第2項に記載のエネルギ貯蔵供給装置。 The structure according to claim 1 or 2, characterized in that the electric power supplied to the outside is leveled using hydrogen and oxygen produced in the hydrogen oxygen production means. The energy storage and supply device described in 1.
  11.  前記熱供給手段がタービン発電機であることを特徴とする請求の範囲第1項又は第2項に記載のエネルギ貯蔵供給装置。 3. The energy storage and supply device according to claim 1 or 2, wherein the heat supply means is a turbine generator.
  12.  外部へ熱を供給する外部熱供給手段を備えていることを特徴とする、請求の範囲第1項又は第2項に記載のエネルギ貯蔵供給装置。 3. The energy storage and supply device according to claim 1 or 2, further comprising external heat supply means for supplying heat to the outside.
PCT/JP2011/060137 2011-04-26 2011-04-26 Energy storage/supply apparatus WO2012147157A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2011/060137 WO2012147157A1 (en) 2011-04-26 2011-04-26 Energy storage/supply apparatus
JP2013511817A JPWO2012147157A1 (en) 2011-04-26 2011-04-26 Energy storage and supply equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/060137 WO2012147157A1 (en) 2011-04-26 2011-04-26 Energy storage/supply apparatus

Publications (1)

Publication Number Publication Date
WO2012147157A1 true WO2012147157A1 (en) 2012-11-01

Family

ID=47071699

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/060137 WO2012147157A1 (en) 2011-04-26 2011-04-26 Energy storage/supply apparatus

Country Status (2)

Country Link
JP (1) JPWO2012147157A1 (en)
WO (1) WO2012147157A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015113240A (en) * 2013-12-09 2015-06-22 千代田化工建設株式会社 Hydrogen production system, hydrogen storage and transportation system provided with the same, and hydrogen production method
WO2016006692A1 (en) * 2014-07-11 2016-01-14 株式会社東芝 Apparatus and method for hydrogen production using high-temperature water vapor electrolysis
JP2016098387A (en) * 2014-11-19 2016-05-30 株式会社東芝 Hydrogen production apparatus, hydrogen production method, and electric power storage system
CN113249736A (en) * 2021-04-22 2021-08-13 浙江大学 Water electrolysis hydrogen and heat cogeneration system and method integrating renewable energy
JPWO2021192156A1 (en) * 2020-03-26 2021-09-30

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005203266A (en) * 2004-01-16 2005-07-28 Kansai Electric Power Co Inc:The Hydrogen production method and hydrogen production system
JP2009007647A (en) * 2007-06-29 2009-01-15 Hitachi Ltd Organic hydride manufacturing apparatus and distributed power supply and automobile using the same
JP2009221057A (en) * 2008-03-17 2009-10-01 Japan Energy Corp Hydrogen production system
JP2010163358A (en) * 2010-02-15 2010-07-29 Hitachi Ltd Hydrogen supply apparatus and method for supplying hydrogen

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10164776A (en) * 1996-11-26 1998-06-19 Ishikawajima Harima Heavy Ind Co Ltd Power supply method and device
JP2000054173A (en) * 1998-08-07 2000-02-22 Matsushita Electric Ind Co Ltd Battery by water electrolysis
JP2002095167A (en) * 2000-09-14 2002-03-29 Matsushita Electric Ind Co Ltd Surplus power storing supplying apparatus
JP2002369413A (en) * 2001-06-05 2002-12-20 Takuma Abe Greenhouse effect gas exhaust suppressing type power generation/supply system
JP2004316662A (en) * 2003-04-10 2004-11-11 Kansai Electric Power Co Inc:The Hydrogen supply/storage device
JP4907210B2 (en) * 2006-03-30 2012-03-28 千代田化工建設株式会社 Hydrogen storage and transport system
KR20070106472A (en) * 2006-04-29 2007-11-01 어플라이드 머티어리얼스, 인코포레이티드 Methods and apparatus for maintaining inkjet print heads using parking structures with spray mechanisms

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005203266A (en) * 2004-01-16 2005-07-28 Kansai Electric Power Co Inc:The Hydrogen production method and hydrogen production system
JP2009007647A (en) * 2007-06-29 2009-01-15 Hitachi Ltd Organic hydride manufacturing apparatus and distributed power supply and automobile using the same
JP2009221057A (en) * 2008-03-17 2009-10-01 Japan Energy Corp Hydrogen production system
JP2010163358A (en) * 2010-02-15 2010-07-29 Hitachi Ltd Hydrogen supply apparatus and method for supplying hydrogen

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015113240A (en) * 2013-12-09 2015-06-22 千代田化工建設株式会社 Hydrogen production system, hydrogen storage and transportation system provided with the same, and hydrogen production method
WO2016006692A1 (en) * 2014-07-11 2016-01-14 株式会社東芝 Apparatus and method for hydrogen production using high-temperature water vapor electrolysis
JP2016020517A (en) * 2014-07-11 2016-02-04 株式会社東芝 Hydrogen production system and method using high temperature steam electrolysis
JP2016098387A (en) * 2014-11-19 2016-05-30 株式会社東芝 Hydrogen production apparatus, hydrogen production method, and electric power storage system
JPWO2021192156A1 (en) * 2020-03-26 2021-09-30
WO2021192156A1 (en) * 2020-03-26 2021-09-30 株式会社日立製作所 Fuel production device
JP7253670B2 (en) 2020-03-26 2023-04-06 株式会社日立製作所 fuel production equipment
US11732624B2 (en) 2020-03-26 2023-08-22 Hitachi, Ltd. Fuel production device
CN113249736A (en) * 2021-04-22 2021-08-13 浙江大学 Water electrolysis hydrogen and heat cogeneration system and method integrating renewable energy

Also Published As

Publication number Publication date
JPWO2012147157A1 (en) 2014-07-28

Similar Documents

Publication Publication Date Title
Mohammadi et al. A comprehensive review on coupling different types of electrolyzer to renewable energy sources
Singla et al. Hydrogen fuel and fuel cell technology for cleaner future: a review
Egeland-Eriksen et al. Hydrogen-based systems for integration of renewable energy in power systems: Achievements and perspectives
Kotowicz et al. Efficiency of the power-to-gas-to-liquid-to-power system based on green methanol
AU2010245500B8 (en) Combined plant
Li et al. Numerical assessment of a hybrid energy generation process and energy storage system based on alkaline fuel cell, solar energy and Stirling engine
Coelho et al. Concentrated solar power for renewable electricity and hydrogen production from water—a review
JP6072491B2 (en) Renewable energy storage system
JP5618952B2 (en) Renewable energy storage system
Ouyang et al. Waste heat cascade utilisation of solid oxide fuel cell for marine applications
WO2012147157A1 (en) Energy storage/supply apparatus
CN112259758B (en) Zero-emission marine combined cooling heating and power unit and using method thereof
Züttel et al. Future Swiss Energy Economy: the challenge of storing renewable energy
Luo et al. Cogeneration: Another way to increase energy efficiency of hybrid renewable energy hydrogen chain–A review of systems operating in cogeneration and of the energy efficiency assessment through exergy analysis
Zhang et al. Review on integrated green hydrogen polygeneration system——Electrolysers, modelling, 4 E analysis and optimization
Migliardini et al. Hydrogen and proton exchange membrane fuel cells for clean road transportation
ES2325848B1 (en) HYDROGEN AND ELECTRICAL ENERGY PRODUCTION SYSTEM FROM PHOTOVOLTAIC ENERGY.
Chen et al. Transient analysis of a green hydrogen production and storage system using Alkaline electrolyzer
Cheng et al. Analysis of Hydrogen Production Potential from Water Electrolysis in China
Ali et al. Solar energy supported hydrogen production: A theoretical case study
CN115084580A (en) Renewable energy in-situ energy storage system and method based on reversible solid oxide battery
Bastien et al. Hydrogen production from renewable energy sources
CN218243019U (en) Power conversion and utilization system based on renewable energy
Sharma et al. New Technology for Harnessing Energy: Future of Hydrogen
Bilal et al. Solar hydrogen production for fuel cell use: Experimental approach

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11864190

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013511817

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11864190

Country of ref document: EP

Kind code of ref document: A1