JP4907210B2 - Hydrogen storage and transport system - Google Patents

Hydrogen storage and transport system Download PDF

Info

Publication number
JP4907210B2
JP4907210B2 JP2006095282A JP2006095282A JP4907210B2 JP 4907210 B2 JP4907210 B2 JP 4907210B2 JP 2006095282 A JP2006095282 A JP 2006095282A JP 2006095282 A JP2006095282 A JP 2006095282A JP 4907210 B2 JP4907210 B2 JP 4907210B2
Authority
JP
Japan
Prior art keywords
hydrogen
catalyst
dehydrogenation
reaction
aromatic compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006095282A
Other languages
Japanese (ja)
Other versions
JP2007269522A (en
Inventor
佳己 岡田
裕明 西島
信博 恩田
伸二 兵藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Corp
Original Assignee
Chiyoda Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Corp filed Critical Chiyoda Corp
Priority to JP2006095282A priority Critical patent/JP4907210B2/en
Publication of JP2007269522A publication Critical patent/JP2007269522A/en
Application granted granted Critical
Publication of JP4907210B2 publication Critical patent/JP4907210B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)

Description

芳香族化合物(水素貯蔵体)の水素化反応を行って水素化芳香族化合物(水素供給体)を製造する水添反応装置を備えた水素貯蔵システムと、得られた水素化芳香族化合物を水素利用場所まで輸送を行う水素化芳香族化合物輸送手段と、輸送された水素化芳香族化合物の脱水素反応により水素及び芳香族化合物を製造する脱水素反応装置を備えた水素供給システムと、回収された芳香族化合物を再び水素貯蔵システムまで輸送する回収芳香族輸送手段を備え、水素により芳香族化合物の水素化反応を行って水素化芳香族化合物を製造し、水素を貯蔵及び/又は移送を行った後に、脱水素反応装置において水素化芳香族化合物の脱水素反応により水素を製造して利用に供する有機ケミカルハイドライド法による水素の貯蔵輸送システムであり、脱水素反応装置に利用される脱水素触媒及び水添装置に利用される水添触媒の性能を長期に亘って安定的に維持できるようにした水素の貯蔵輸送システムに関する。   Hydrogen storage system equipped with hydrogenation reaction device for producing hydrogenated aromatic compound (hydrogen supplier) by carrying out hydrogenation reaction of aromatic compound (hydrogen store), and hydrogenated aromatic compound obtained as hydrogen A hydrogen supply system comprising a hydrogenated aromatic compound transport means for transporting to a use site, a dehydrogenation reaction apparatus for producing hydrogen and an aromatic compound by a dehydrogenation reaction of the transported hydrogenated aromatic compound, and a recovered The recovered aromatic transport means transports the recovered aromatic compound to the hydrogen storage system again, hydrogenates the aromatic compound with hydrogen to produce the hydrogenated aromatic compound, and stores and / or transfers hydrogen. And a hydrogen storage and transport system by an organic chemical hydride method for producing and using hydrogen by dehydrogenation of a hydrogenated aromatic compound in a dehydrogenation reactor, The performance of the hydrogenation catalyst utilized in the dehydrogenation catalyst and hydrogenated apparatus utilized in the hydrogen reactor regarding storage transport system hydrogens can be maintained stably for a long period of time.

近年、定置型燃料電池、水素自動車、燃料電池自動車等の水素エネルギー利用技術の開発や実用化が進み、これらの定置型燃料電池、水素自動車、燃料電池自動車等にその燃料としての水素を供給するための水素貯蔵・輸送技術の開発が精力的に進められている。また、燃料電池自動車に水素を供給するインフラとしては水素ステーションの開発が実証段階にあり、水素ステーションはメタノールやナフサ等の化石燃料をステーション内で改質して水素を得るオンサイト型水素ステーションと電解副生水素等の水素を圧縮又は液化してステーションに輸送するオフサイト型水素ステーションとに大別される。   In recent years, development and practical application of hydrogen energy utilization technology for stationary fuel cells, hydrogen vehicles, fuel cell vehicles, etc. has progressed, and hydrogen as fuel is supplied to these stationary fuel cells, hydrogen vehicles, fuel cell vehicles, etc. Development of hydrogen storage and transport technology is underway. In addition, the development of a hydrogen station as an infrastructure for supplying hydrogen to fuel cell vehicles is in the demonstration stage. The hydrogen station is an on-site hydrogen station that obtains hydrogen by reforming fossil fuels such as methanol and naphtha in the station. It is roughly classified into an off-site type hydrogen station that compresses or liquefies hydrogen such as electrolytic byproduct hydrogen and transports it to the station.

しかしながら、前者のオンサイト型水素ステーションでは、改質時に一酸化炭素(CO)が多量に副生するため、最終的に相当量の二酸化炭素(CO2)が不可避的に排出されるという問題点がある。そして、一次エネルギーを二次エネルギーである水素に転換して利用する大きな目的は、硫黄化合物や窒素化合物の排出抑制ばかりではなく、温暖化ガスである炭酸ガスの排出抑制にもあり、むしろ炭酸ガスの排出抑制がその第1目的と考えられる。従って、化石燃料を地理的に分散した水素ステーションで改質することは、二酸化炭素排出抑制の観点から好ましくない。 However, in the former on-site hydrogen station, a large amount of carbon monoxide (CO) is by-produced during reforming, so that a considerable amount of carbon dioxide (CO 2 ) is inevitably discharged in the end. There is. And the main purpose of converting primary energy to secondary energy hydrogen is not only to suppress the emission of sulfur compounds and nitrogen compounds, but also to suppress the emission of carbon dioxide, which is a warming gas. It is considered that the first purpose is to control the emission of methane. Therefore, reforming fossil fuels at geographically dispersed hydrogen stations is not preferable from the viewpoint of suppressing carbon dioxide emissions.

また、後者のオフサイト型水素ステーションでは、水素が外部から輸送されるが、この際の方法としては水素の輸送方法として、これまでに実用化されている圧縮水素法又は液体水素法が検討されている。圧縮水素については、近年、700気圧の高圧容器による水素輸送も検討されるに至っているが、非常な高圧を利用するため潜在的な危険性が高いと考えられる他、700気圧の高圧においても体積貯蔵密度が十分ではない。また、液体水素は−253℃の超低温を維持する必要があるため、同様に潜在的な危険性が高いと考えられると共に、ボイルオフによる水素のロスが大きい点が課題とされている。このため、貯蔵効率が高く、潜在的な危険性が少ない水素貯蔵輸送技術を目指した研究開発が精力的に行われている。   In the latter off-site type hydrogen station, hydrogen is transported from the outside. As a method for transporting hydrogen, a compressed hydrogen method or a liquid hydrogen method that has been put into practical use has been studied. ing. As for compressed hydrogen, hydrogen transport using a 700 atm high pressure vessel has recently been studied. However, the use of extremely high pressure is considered to be potentially dangerous, and the volume is also high at 700 atm high pressure. Storage density is not enough. In addition, since liquid hydrogen needs to maintain an ultra-low temperature of −253 ° C., it is considered to have high potential danger as well, and the problem is that hydrogen loss due to boil-off is large. For this reason, research and development aimed at hydrogen storage and transport technology with high storage efficiency and low potential danger has been vigorously conducted.

近年、これらの研究開発がなされている水素貯蔵輸送技術の中で、有機ケミカルハイドライド法が着目されている。有機ケミカルハイドライド法は、トルエン等の芳香族を、貯蔵する水素による化学反応によって水素化したメチルシクロヘキサン(MCH)等の水素化芳香族化合物に転換し、常温・常圧の化学品の液体状態として水素の貯蔵輸送を行い、使用場所で脱水素反応を行って水素を発生させる水素エネルギーの貯蔵・輸送方法である。常温・常圧で液体状態の化学品として水素の貯蔵・輸送が可能なため、既存のインフラストラクチュアを利用できる部分が多いほか、潜在的な危険性が少なく、圧縮水素法や液体水素法に比べて体積貯蔵密度や質量貯蔵密度が共に高い方法である。「水素エネルギー最先端技術」(太田時男監修)NTS出版社(1995)には、この方法が、カナダの豊富な水力による電力を利用して水素を製造し、大西洋を横断してヨーロッパに輸送するユーロ・ケベック計画のなかで、トルエンを水添してメチルシクロヘキサンとして輸送することができる、MTH法として検討されたことが紹介されている。   In recent years, the organic chemical hydride method has attracted attention among the hydrogen storage and transport technologies that have been researched and developed. The organic chemical hydride method converts aromatics such as toluene into hydrogenated aromatic compounds such as methylcyclohexane (MCH) that have been hydrogenated by chemical reactions with stored hydrogen, resulting in a liquid state of chemical products at room temperature and pressure. This is a method for storing and transporting hydrogen energy in which hydrogen is stored and transported and hydrogen is generated by dehydrogenation at the place of use. Since hydrogen can be stored and transported as a chemical at room temperature and normal pressure, there are many parts where existing infrastructure can be used, and there is less potential danger, compared to the compressed hydrogen method and liquid hydrogen method. Both volume storage density and mass storage density are high. "Hydrogen Energy Cutting Edge Technology" (supervised by Tokio Ota) NTS Publishing Co. (1995) uses this method to produce hydrogen using abundant hydroelectric power from Canada and transport it across Europe to Europe. In the Euro-Québec project, it was introduced that the MTH method was studied, which can be hydrogenated and transported as methylcyclohexane.

しかるに、このようなMTH方式においては、水素を貯蔵するためにトルエン等の芳香族化合物を水素化して水素化芳香族化合物とする芳香族化合物の水素化反応と、この水素化芳香族化合物から水素を取り出すために行われる水素化芳香族化合物の脱水素反応とが必要であり、前者の芳香族化合物の水素化反応については工業化実績も多く技術的に容易であるが、後者の水素化芳香族化合物の脱水素反応については安定して性能を維持する触媒がなかったために、ユーロ・ケベック計画におけるMTH方式による水素エネルギーの貯蔵輸送システムについては技術的に確立されなかった。   However, in such an MTH system, a hydrogenation reaction of an aromatic compound to hydrogenate an aromatic compound such as toluene to form a hydrogenated aromatic compound and hydrogen from the hydrogenated aromatic compound to store hydrogen. Dehydrogenation of the hydrogenated aromatic compound is required to remove the hydrogen, and the hydrogenation reaction of the former aromatic compound is technically easy with many industrial achievements, but the latter hydrogenated aromatic Since there was no catalyst that stably maintained the performance of the dehydrogenation reaction of the compound, the hydrogen energy storage and transport system based on the MTH method in the Euro-Québec project was not technically established.

J.Catalysis, 88, 150 (1984)、AIChE Journal,31,(12),1997 (1985)、Ind.Eng.Chem.Fundam.,24,(4),433(1985)、J.Catalysis, 107, (2),490 (1987)には当時の脱水素触媒は炭素析出による活性劣化が顕著なため数時間〜数十時間の触媒寿命であったことが記載されている。しかしながら、特開2005-211,845号公報に開示された長期間に亘って安定的に作動する脱水素触媒の開発によって本方法の技術的確立に目処が立ち、その触媒性能等については「配管技術」第47巻第10号12-16(2005)、「ファインケミカル」Vol.35, No.1, 5-13(2006)、PETROTECH, Vol.29, No.2, 34-41(2006)に有機ケミカルハイドライド法(OCH法:Organic Chemical Hydride Method)として紹介されている。   J. Catalysis, 88, 150 (1984), AIChE Journal, 31, (12), 1997 (1985), Ind. Eng. Chem. Fundam., 24, (4), 433 (1985), J. Catalysis, 107 , (2), 490 (1987) describe that the dehydrogenation catalyst at that time had a catalyst life of several hours to several tens of hours due to remarkable deterioration of activity due to carbon deposition. However, the development of a dehydrogenation catalyst that operates stably over a long period of time disclosed in Japanese Patent Application Laid-Open No. 2005-211,845 has a prospect for technical establishment of this method. Vol. 35, No. 12, 16-16 (2005), “Fine Chemical” Vol. 35, No. 1, 5-13 (2006), PETROTECH, Vol. 29, No. 2, 34-41 (2006) It is introduced as the hydride method (OCH method: Organic Chemical Hydride Method).

また、特開2004-299,924号公報は、吸熱反応である脱水素反応に必要な熱を触媒に効率よく与えることを目的とした、多管式熱交換器型反応器に熱媒体を導入する反応器を開示している。更に、燃料電池自動車は5kgの水素を搭載して500kmの連続走行を開発目標として開発が進められているが、700気圧の圧縮水素法による水素搭載においても500kmの連続走行が困難なため、水素の搭載方法について見直しが必要とも言われている。   Japanese Patent Laid-Open No. 2004-299,924 discloses a reaction in which a heat medium is introduced into a multi-tube heat exchanger type reactor for the purpose of efficiently giving heat necessary for a dehydrogenation reaction which is an endothermic reaction to a catalyst. A vessel is disclosed. In addition, fuel cell vehicles are being developed with a development target of 500 km continuous running with 5 kg of hydrogen. However, it is difficult to run 500 km continuously with hydrogen using the compressed hydrogen method at 700 atm. It is said that it is necessary to review the mounting method.

更に、特開2005-216,774号公報は、燃料電池自動車に有機ハイドライドを直接搭載しオンボードで水素を発生させる場合のシステムについて開示している。OCH法によると、5kgの水素を貯蔵するために必要な、メチルシクロヘキサン(MCH)は110Lで、脱水素後に回収されるトルエン量は90Lである。常温・常圧の液体として車載するので、タンクの形状は自由な形状を利用できると共に、毎時1kgの水素を発生させるために必要な脱水素触媒は11Lでよい。脱水素反応には300〜320℃の反応温度による入熱が必要であるが、燃料電池で発電した電力によってこれを賄った場合、必要な理論電力は、約10KWhとされている。   Further, JP-A-2005-216,774 discloses a system in which organic hydride is directly mounted on a fuel cell vehicle and hydrogen is generated on-board. According to the OCH method, methylcyclohexane (MCH) required for storing 5 kg of hydrogen is 110 L, and the amount of toluene recovered after dehydrogenation is 90 L. Since it is mounted on the vehicle as a liquid at normal temperature and normal pressure, the shape of the tank can be used freely, and the dehydrogenation catalyst required to generate 1 kg of hydrogen per hour may be 11 L. The dehydrogenation reaction requires heat input at a reaction temperature of 300 to 320 ° C. When this is covered by the power generated by the fuel cell, the required theoretical power is about 10 KWh.

しかしながら、優れた触媒性能を水素ステーションやオンボード型燃料電池自動車等において、実用的に発揮させるためには、工業的規模で水素が貯蔵された水素化芳香族類を原料とした場合に、その中に含有される不純物が脱水素触媒の寿命に与える影響を把握すると共に、触媒劣化の原因となる不純物を効率よく除去する具体的手段を持つことが必要であり、その確立が望まれていた。   However, in order to demonstrate excellent catalytic performance practically in hydrogen stations, on-board fuel cell vehicles, etc., when hydrogenated aromatics that store hydrogen on an industrial scale are used as raw materials, It is necessary to grasp the influence of impurities contained in the catalyst on the life of the dehydrogenation catalyst, and to have specific means for efficiently removing impurities that cause catalyst deterioration, and the establishment of such means was desired. .

J.Catalysis, 88, 150 (1984)J. Catalysis, 88, 150 (1984) AIChE Journal,31AIChE Journal, 31 Ind.Eng.Chem.Fundam.,24,(4),433(1985)Ind.Eng.Chem.Fundam., 24, (4), 433 (1985) J.Catalysis, 107, (2),490 (1987)J. Catalysis, 107, (2), 490 (1987) 特開2005-211,845号公報Japanese Unexamined Patent Publication No. 2005-211,845 特開2004-299,924号公報JP 2004-299,924 特開2005-216,774号公報JP 2005-216,774

そこで、本発明者らは、水素の貯蔵効率が高く、常温・常圧の液体として水素貯蔵が可能で、潜在的な危険性が少ない等の利点を損なうことなく、また、反応装置の構造や制御を複雑化させることなく容易に水素の貯蔵輸送を図ることができる有機ケミカルハイドライド法による水素の貯蔵輸送システムを長期間に亘り安定的に運転できるようにすることを目的として、工業的に水添反応を実施した際の製品中の不純物が脱水素触媒の寿命に与える影響を定量的に検討すると共に、不純物の効率的な除去方法を鋭意検討した結果、芳香族化合物を水素化する水添反応装置、得られた水素化芳香族化合物を貯蔵・輸送する水素貯蔵・移送装置、水素化芳香族化合物を脱水素する脱水素反応装置、及び得られた芳香族化合物を貯蔵・輸送する芳香族化合物貯蔵・移送装置からなるシステムに、触媒の被毒物質となって脱水素反応及び水添反応を阻害する特定の阻害物質の蒸留装置等の除去装置を設置することで、容易に反応阻害物質を除去することができ、これによって水添反応に供する触媒及び脱水素反応に供する触媒を長期に亘り安定的に作動させ、水素の貯蔵輸送システムを長期間に亘り安定的に運転できることを見出し、本発明を完成した。   Therefore, the present inventors have a high storage efficiency of hydrogen, can store hydrogen as a liquid at normal temperature and normal pressure, and without losing the advantages such as less potential danger. In order to make it possible to stably operate a hydrogen storage and transport system using an organic chemical hydride method that can easily store and transport hydrogen without complicating control over a long period of time, As a result of quantitatively examining the effect of impurities in the product on the life of the dehydrogenation catalyst when conducting a hydrogenation reaction, and intensive investigations on an efficient method for removing impurities, hydrogenation for hydrogenating aromatic compounds Reactor, hydrogen storage / transfer device for storing / transporting the obtained hydrogenated aromatic compound, dehydrogenation reaction device for dehydrogenating the hydrogenated aromatic compound, and aroma for storing / transporting the obtained aromatic compound By installing a removal device such as a distillation device for the specific inhibitor which becomes a poison for the catalyst and inhibits the dehydrogenation reaction and hydrogenation reaction in the system consisting of the compound storage and transfer device, it is easy to inhibit the reaction. It is found that the catalyst for the hydrogenation reaction and the catalyst for the dehydrogenation reaction can be stably operated for a long period of time, and the hydrogen storage and transport system can be stably operated for a long period of time. The present invention has been completed.

従って、本発明の目的は、水素の貯蔵効率が高く、常温・常圧の液体として水素貯蔵が可能であって潜在的な危険性が少ない等の利点を損なうことなく、また、反応装置の構造や制御を複雑化させることなく、有機ケミカルハイドライド法(OCH法)により容易に水素エネルギーの貯蔵輸送ができるシステムを提供することにある。   Accordingly, an object of the present invention is to reduce the advantages such as high hydrogen storage efficiency, hydrogen storage as a liquid at normal temperature and normal pressure, and less potential danger, and the structure of the reactor. It is an object of the present invention to provide a system capable of easily storing and transporting hydrogen energy by an organic chemical hydride method (OCH method) without complicating control and control.

また、本発明の他の目的は、水添反応に供する触媒及び脱水素反応に供する触媒の被毒物質となって脱水素反応及び水添反応を阻害する阻害物質を特定し、これらを効率的に除去する蒸留装置等の除去装置をシステムに備えることによって、水添反応及び脱水素反応に供する触媒の長寿命化を図り、長期に亘って安価に運転できる水素エネルギーの貯蔵輸送システムを提供することにある。   In addition, another object of the present invention is to identify an inhibitor that becomes a poisoning substance for a catalyst used in a hydrogenation reaction and a catalyst used in a dehydrogenation reaction and inhibits the dehydrogenation reaction and the hydrogenation reaction. By providing the system with a removal device such as a distillation device that removes the catalyst, the life of the catalyst used in the hydrogenation reaction and dehydrogenation reaction is extended, and a hydrogen energy storage and transportation system that can be operated at low cost over a long period of time is provided. There is.

すなわち、本発明は、芳香族化合物(水素貯蔵体)の水素化反応を行って水素化芳香族化合物(水素供給体)を製造する水添反応装置を備えた水素貯蔵システムと、得られた水素化芳香族化合物を水素利用場所まで輸送を行う水素化芳香族化合物輸送手段と、輸送された水素化芳香族化合物の脱水素反応により水素及び芳香族化合物を製造する脱水素反応装置を備えた水素供給システムと、回収された芳香族化合物を再び水素貯蔵システムまで輸送する回収芳香族輸送手段を備え、水素により芳香族化合物の水素化反応を行って水素化芳香族化合物を製造し、水素を貯蔵及び/又は移送を行った後に、脱水素反応装置において水素化芳香族化合物の脱水素反応により水素を製造して利用に供する有機ケミカルハイドライド法による水素の貯蔵輸送システムにおいて
前記水素貯蔵体として利用される芳香族化合物が単環芳香族類又は2環芳香族類であると共に、前記脱水素触媒が、表面積150m 2 /g以上、細孔容積0.40cm 3 /g以上、平均細孔径90〜300Å、及び全細孔容積に対して平均細孔径±30Åの細孔が占める割合が50%以上である多孔性γ-アルミナ担体に、白金、パラジウム、ロジウム、イリジウム及びルテニウムから選ばれた少なくとも1種の触媒金属を担持させた触媒であり、
前記システム内には、前記水添反応装置の後段に、システム系内で生成して上記脱水素反応装置に利用される脱水素触媒及び/又は水添装置に利用される水添触媒の被毒物質となって脱水素反応及び/又は水添反応を阻害する反応阻害物質を除去すると共に、このシステム系内の反応阻害物質濃度を100ppm以下に維持する反応阻害物質除去装置が設けられている水素の貯蔵輸送システムである。
That is, the present invention relates to a hydrogen storage system equipped with a hydrogenation reaction apparatus for producing a hydrogenated aromatic compound (hydrogen supply body) by performing a hydrogenation reaction of an aromatic compound (hydrogen storage body), and the obtained hydrogen Hydrogen equipped with hydrogenated aromatic compound transport means for transporting the hydrogenated aromatic compound to a place where hydrogen is used, and a dehydrogenation reactor for producing hydrogen and the aromatic compound by dehydrogenation of the transported hydrogenated aromatic compound A supply system and a recovered aromatic transport means for transporting the recovered aromatic compound back to the hydrogen storage system are provided. Hydrogenated aromatic compounds are produced by hydrogen to produce hydrogenated aromatic compounds, and hydrogen is stored. Storage of hydrogen by an organic chemical hydride method in which hydrogen is produced by dehydrogenation reaction of a hydrogenated aromatic compound in a dehydrogenation reactor after being transferred and / or used. In the transmission system,
The aromatic compound used as the hydrogen storage is a monocyclic aromatic or a bicyclic aromatic, and the dehydrogenation catalyst has a surface area of 150 m 2 / g or more and a pore volume of 0.40 cm 3 / g or more. Further, platinum, palladium, rhodium, iridium and ruthenium are added to a porous γ-alumina support having an average pore diameter of 90 to 300 mm and a ratio of pores having an average pore diameter of ± 30 mm to the total pore volume of 50% or more. A catalyst supporting at least one kind of catalytic metal selected from
Within the system, downstream of the hydrogenation reactor, poisoning of hydrogenation catalyst generated in the system-based is used in the dehydrogenation catalyst and / or hydrogenated apparatus utilized in the dehydrogenation reactor to remove the reaction inhibiting substance inhibiting dehydrogenation and / or hydrogenation reaction I Do with the substance, the reaction inhibiting substance removing device is provided to maintain the reaction inhibiting substance concentration in the system based on 100ppm or less Hydrogen storage and transport system .

また、本発明は、水添装置に利用される水添触媒としてニッケル、白金、パラジウム、ロジウム、イリジウム、及びルテニウムから選ばれた少なくとも1種の触媒活性金属をアルミナ、シリカアルミナ、及びシリカから選ばれた触媒担体に担持させた水添触媒を用い、また、脱水素装置に利用される脱水素触媒としてニッケル、白金、パラジウム、ロジウム、イリジウム、及びルテニウムから選ばれた少なくとも1種の触媒活性金属をアルミナ、シリカアルミナ、及びシリカから選ばれた触媒担体に担持させた脱水素触媒を用い、水素貯蔵体として利用される芳香族化合物としてトルエン、ベンゼン等の単環芳香族類又はナフタレン等の2環芳香族類を用いた水素の貯蔵輸送システムである。 Further, in the present invention, at least one catalytically active metal selected from nickel, platinum, palladium, rhodium, iridium, and ruthenium is selected from alumina, silica alumina, and silica as a hydrogenation catalyst used in the hydrogenation apparatus. At least one catalytically active metal selected from nickel, platinum, palladium, rhodium, iridium, and ruthenium as a dehydrogenation catalyst used in a dehydrogenation apparatus. Using a dehydrogenation catalyst that is supported on a catalyst carrier selected from alumina, silica alumina, and silica, and aromatic compounds used as hydrogen storage materials such as monocyclic aromatics such as toluene and benzene, or 2 such as naphthalene This is a hydrogen storage and transport system using ring aromatics.

更に、本発明は、水素貯蔵体として利用される芳香族化合物がトルエン、ベンゼン等の単環芳香族類である場合には、6員環化合物の2量体又は3量体以上の重合生成物及び5員環化合物の2量体又は3量体以上の重合生成物が反応阻害物質であり、水素貯蔵体として利用される芳香族化合物がナフタレン等の2環芳香族類の場合には、6員環化合物の2量体又は3量体以上の重合生成物及び5員環化合物の2量体又は3量体以上の重合生成物に加えて2環芳香族類の2量体又は3量体以上の重合生成物が反応阻害物質であることを特定し、これらの反応阻害物質を理論段数2〜4段の簡便な蒸留装置によって系外に除去することにより、系内の反応阻害物質の濃度を100ppm以下、好ましくは50ppm以下、更に好ましくは10ppm以下に抑制して脱水素反応を行う、有機ケミカルハイドライド法による水素の貯蔵輸送システムである。 Furthermore, in the present invention, when the aromatic compound used as a hydrogen storage material is a monocyclic aromatic compound such as toluene or benzene, a polymerization product of a dimer or trimer of a 6-membered ring compound In addition, when a dimer of a 5-membered ring compound or a polymerization product of a trimer or more is a reaction inhibitor and the aromatic compound used as a hydrogen reservoir is a bicyclic aromatic compound such as naphthalene, 6 In addition to a dimer or trimer polymerization product of a membered ring compound and a dimer or trimer or higher polymerization product of a five membered ring compound, a dimer or trimer of a bicyclic aromatic compound The concentration of the reaction inhibitory substance in the system is determined by specifying that the above polymerization products are reaction inhibitory substances and removing these reaction inhibitory substances outside the system using a simple distillation apparatus having 2 to 4 theoretical plates. To 100 ppm or less, preferably 50 ppm or less, more preferably 10 ppm or less Performing dehydrogenation Te, a storage transportation system of hydrogen by an organic chemical hydride method.

更にまた、本発明は、脱水素反応装置に利用される脱水素触媒が、表面積150m2/g以上、細孔容積0.40cm3/g以上、平均細孔径90〜300Å、及び全細孔容積に対して平均細孔径±30Åの細孔が占める割合が50%以上である多孔性γ-アルミナ担体に、白金、パラジウム、ロジウム、イリジウム及びルテニウムから選ばれた少なくとも1種の触媒金属を担持させた脱水素触媒であり、必要によりこの多孔性γ-アルミナ担体には、触媒金属に加えて、アルカリ性金属を担持させた脱水素触媒を用いる有機ケミカルハイドライド法による水素の貯蔵輸送システムである。 Furthermore, in the present invention, the dehydrogenation catalyst used in the dehydrogenation reactor has a surface area of 150 m 2 / g or more, a pore volume of 0.40 cm 3 / g or more, an average pore diameter of 90 to 300 kg, and a total pore volume. On the other hand, a porous γ-alumina carrier in which the proportion of pores having an average pore diameter of ± 30 mm is 50% or more is loaded with at least one catalyst metal selected from platinum, palladium, rhodium, iridium and ruthenium. If necessary, this porous γ-alumina support is a system for storing and transporting hydrogen by an organic chemical hydride method using a dehydrogenation catalyst supporting an alkali metal in addition to a catalyst metal.

本発明において、芳香族化合物(水素貯蔵体)の水素化反応を行って常温・常圧で液体の水素化芳香族化合物(水素供給体)を生成する水添反応装置は、好ましくは容易に水素を得ることができて水素を供給することができる水素供給機関に付設されるのがよく、例えば、水力、風力、地熱等の自然エネルギーや石炭、石油、天然ガス等の化石燃料等の一次エネルギーの入手が容易で、水の電気分解設備や、水蒸気改質装置等の水素が副生する装置を備えた水素副生設備や、オフサイト型水素ステーションに水素を供給するために設けられた水素製造設備等を備えた水素供給機関に付設される。   In the present invention, the hydrogenation reaction apparatus that performs a hydrogenation reaction of an aromatic compound (hydrogen storage body) to generate a liquid hydrogenated aromatic compound (hydrogen supply body) at room temperature and normal pressure is preferably hydrogen It is often attached to a hydrogen supply engine that can supply hydrogen and supply hydrogen, for example, primary energy such as natural energy such as hydropower, wind power and geothermal, and fossil fuel such as coal, oil and natural gas. Is easy to obtain, hydrogen electrolysis equipment, hydrogen by-product equipment equipped with hydrogen by-product equipment such as steam reformer, and hydrogen provided to supply hydrogen to off-site hydrogen stations It is attached to a hydrogen supply engine equipped with manufacturing facilities.

この水添反応装置においては、水素貯蔵体である芳香族化合物を水素により水素化して水素供給体である水素化芳香族化合物とすることにより、一旦水素を常温・常圧で液体の水素化芳香族化合物として貯蔵する。この芳香族化合物の水素化反応は、例えば、ベンゼン、トルエン、キシレン、ナフタレン、メチルナフタレン、アントラセン等の芳香族化合物を150℃以上250℃以下、好ましくは160℃以上220℃以下、圧力0.1MP以上5MP以下、好ましくは0.5MP以上3MP以下の条件で水素と共に水素化触媒と接触させることにより行われ、ここで用いる水素化触媒としては、代表的には、白金、ニッケル、パラジウム、ロジウム、イリジウム、ルテニウム等の活性金属をアルミナ、シリカ又はシリカアルミナ等の担体に担持した触媒等を例示することができる。   In this hydrogenation reactor, the hydrogenated aromatic compound is hydrogenated with hydrogen to form a hydrogenated aromatic compound that is a hydrogen supplier. Store as a family compound. The hydrogenation reaction of this aromatic compound is carried out, for example, with an aromatic compound such as benzene, toluene, xylene, naphthalene, methylnaphthalene, anthracene, etc. at 150 ° C. to 250 ° C., preferably 160 ° C. to 220 ° C., pressure 0.1 MP It is carried out by contacting with a hydrogenation catalyst together with hydrogen under the conditions of 5MP or less, preferably 0.5MP or more and 3MP or less. As the hydrogenation catalyst used here, typically, platinum, nickel, palladium, rhodium, Examples thereof include a catalyst in which an active metal such as iridium or ruthenium is supported on a support such as alumina, silica, or silica alumina.

また、水素化芳香族化合物の脱水素反応により水素及び芳香族化合物を製造する脱水素反応装置は、好ましくは水素を消費する水素消費機関に付設されるのがよく、例えば、水素を燃料として発電する燃料電池を備えた発電設備や、定置型燃料電池、水素自動車、燃料電池自動車等に燃料として水素を供給する水素ステーション等の水素消費機関に付設される。   In addition, a dehydrogenation reaction apparatus for producing hydrogen and an aromatic compound by dehydrogenation of a hydrogenated aromatic compound is preferably attached to a hydrogen consuming engine that consumes hydrogen, for example, power generation using hydrogen as a fuel. It is attached to a hydrogen consuming engine such as a power generation facility equipped with a fuel cell, a hydrogen station that supplies hydrogen as a fuel to a stationary fuel cell, a hydrogen vehicle, a fuel cell vehicle, and the like.

そして、本発明においては、水添反応装置で得られた水素化芳香族化合物は、水素エネルギーの貯蔵輸送を図るために、脱水素反応装置での脱水素反応に先駆けて、水素貯蔵・移送装置により貯蔵され、及び/又は、移送される。この水素貯蔵・移送装置により行われる貯蔵及び/又は移送の手段は、具体的には、水素貯蔵場所での貯蔵タンク、及び輸送手段である移送車両や移送船舶に付設された貯蔵タンク、更には移送先での貯蔵タンクによって構成される場合のほか、水素貯蔵場所における水素貯蔵システムと水素供給場所における水素供給システムの間を結ぶパイプライン等の配管によって輸送することも可能である。また、水素貯蔵システムと水素供給システムの設置場所は必ずしも異なる敷地である必要はなく、同一の敷地内で水素の貯蔵輸送が必要な場合には、両システムは同じ敷地内に付設されても良い。   In the present invention, the hydrogenated aromatic compound obtained in the hydrogenation reaction apparatus is used to store and transport hydrogen energy prior to the dehydrogenation reaction in the dehydrogenation reaction apparatus. Stored and / or transported. Specifically, the storage and / or transfer means performed by the hydrogen storage / transfer apparatus includes a storage tank at a hydrogen storage place, a storage tank attached to a transfer vehicle or a transfer ship as a transport means, and In addition to the case where the storage tank is configured at the transfer destination, it is also possible to transport by a pipe such as a pipeline connecting the hydrogen storage system in the hydrogen storage place and the hydrogen supply system in the hydrogen supply place. In addition, the hydrogen storage system and the hydrogen supply system need not be installed at different sites. If hydrogen storage and transportation is required on the same site, both systems may be installed on the same site. .

本発明において、上記脱水素反応装置においては、水素化芳香族化合物(水素供給体)の脱水素反応により水素及び芳香族化合物を製造し、水素については水素消費機関で利用すると共に芳香族化合物(水素貯蔵体)については芳香族化合物貯蔵・移送装置に回収される。この水素化芳香族化合物の脱水素反応は、例えば、シクロヘキサン、メチルシクロヘキサン、ジメチルシクロヘキサン、テトラリン、デカリン、メチルデカリン、テトラデカヒドロアントラセン等の水素化芳香族化合物、好ましくはシクロヘキサン、メチルシクロヘキサン、デカリン又はメチルデカリンを200℃以上350℃以下、好ましくは280℃以上330℃以下の条件で脱水素触媒と接触させることにより行われる。   In the present invention, in the dehydrogenation reaction apparatus, hydrogen and an aromatic compound are produced by a dehydrogenation reaction of a hydrogenated aromatic compound (hydrogen supplier), and the hydrogen is used in a hydrogen consuming engine and an aromatic compound ( Hydrogen storage body) is recovered by the aromatic compound storage / transfer device. This dehydrogenation reaction of the hydrogenated aromatic compound is performed by, for example, a hydrogenated aromatic compound such as cyclohexane, methylcyclohexane, dimethylcyclohexane, tetralin, decalin, methyldecalin, tetradecahydroanthracene, preferably cyclohexane, methylcyclohexane, decalin or It is carried out by bringing methyl decalin into contact with a dehydrogenation catalyst at 200 ° C. or higher and 350 ° C. or lower, preferably 280 ° C. or higher and 330 ° C. or lower.

本発明においては、この水素化芳香族化合物の脱水素反応に用いる脱水素触媒として、表面積150m2/g以上、細孔容積0.40cm3/g以上、平均細孔径90〜300Å、及び全細孔容積に対して平均細孔径±30Åの細孔が占める割合が50%以上である多孔性γ-アルミナ担体に、白金、パラジウム、ロジウム、イリジウム及びルテニウムから選ばれた少なくとも1種の触媒金属を担持させた触媒が用いられる。 In the present invention, the dehydrogenation catalyst used for the dehydrogenation reaction of this hydrogenated aromatic compound is a surface area of 150 m 2 / g or more, a pore volume of 0.40 cm 3 / g or more, an average pore diameter of 90 to 300 mm, At least one catalyst metal selected from platinum, palladium, rhodium, iridium and ruthenium is added to a porous γ-alumina support in which the proportion of pores having an average pore diameter of ± 30 mm with respect to the pore volume is 50% or more. A supported catalyst is used.

本発明で用いる脱水素触媒において、触媒担体として用いる多孔性γ-アルミナ担体は、表面積が150m2/g以上、好ましくは200m2/g以上であり、細孔容積が0.40cm3/g以上、好ましくは0.65cm3/g以上であり、平均細孔径が90Å以上300Å以下、好ましくは90Å以上200Å以下であり、平均細孔径±30Åの細孔の占有率が50%以上、好ましくは80%以上であるのがよく、表面積が150m2/g未満であると触媒化後の活性が十分ではなく、細孔容積が0.40cm3/g未満であると活性金属成分の均一な担持が困難であり、平均細孔径が90Åより小さいと表面積は大きくなるが、細孔容積が極端に小さくなり、反対に平均細孔径が300Åより大きいと表面積が極端に小さくなり、細孔容積も極端に大きくなるため、これらの相関を総合的に考慮した結果、平均細孔径が90Å〜300Åが適当である。また、平均細孔径±30Åの細孔の占有率が50%未満であると、触媒性能において本発明の効果が少なくなる。 In the dehydrogenation catalyst used in the present invention, the porous γ-alumina support used as the catalyst support has a surface area of 150 m 2 / g or more, preferably 200 m 2 / g or more, and a pore volume of 0.40 cm 3 / g or more. , Preferably 0.65 cm 3 / g or more, an average pore diameter of 90 to 300 mm, preferably 90 to 200 mm, and an occupation ratio of pores having an average pore diameter of ± 30 mm is 50% or more, preferably 80 When the surface area is less than 150 m 2 / g, the activity after the catalyst is not sufficient, and when the pore volume is less than 0.40 cm 3 / g, the active metal component is uniformly supported. When the average pore diameter is smaller than 90 mm, the surface area becomes large, but the pore volume becomes extremely small. On the contrary, when the average pore diameter is larger than 300 mm, the surface area becomes extremely small, and the pore volume becomes extremely small. These will grow As a result of comprehensively considering the above correlation, an average pore diameter of 90 to 300 mm is appropriate. Further, when the occupation ratio of pores having an average pore diameter of ± 30 mm is less than 50%, the effect of the present invention is reduced in catalyst performance.

このような特定の物理性状を有するアルミナ担体を特段に用いる理由は、細孔分布が均一に制御され、細孔の大きさが担体全体を通じて90〜300Åの範囲に集中したアルミナ担体を用いることによって、白金やカリウムの含浸が均一に行われて分散状態が良好になるためである。アルミナ担体の細孔分布制御は元来、反応基質や生成物の拡散を良好にすることを目的に、主として大きな分子サイズを持つ重質油等を対象としたプロセスの触媒担体に対して行われていた。しかしながら、最近アルミナ担体の細孔分布を均一に制御することによって、表面を担持金属で被覆したり、担持金属の含浸を良好に実施できるメリットが見い出されている(岡田佳巳、今川健一、浅岡佐知夫、石油学会誌、Vol.44, No.5, 277-285 (2001))。   The reason for using such an alumina carrier having specific physical properties is that the pore distribution is uniformly controlled and the pore size is concentrated in the range of 90 to 300 mm throughout the carrier. This is because impregnation with platinum or potassium is performed uniformly and the dispersion state is improved. The pore distribution control of the alumina support is originally performed on the catalyst support of the process mainly for heavy oils with a large molecular size for the purpose of improving the diffusion of reaction substrates and products. It was. However, recently, it has been found that by uniformly controlling the pore distribution of the alumina support, the surface can be coated with a supported metal and the impregnation of the supported metal can be carried out satisfactorily (Yoshiaki Okada, Kenichi Imagawa, Sachio Asaoka) , Journal of Petroleum Society, Vol.44, No.5, 277-285 (2001)).

本発明の脱水素触媒を完成させるに当り、細孔分布を均一に制御していないアルミナ担体とpHスイング操作によって細孔分布を均一に制御したアルミナ担体を用いて触媒を調製し、白金の分散度と反応成績を検討した結果、アルミナ担体の細孔分布を制御した触媒の方が分散度及び反応成績共に優れていることを見出し、特定の物理性状を有するアルミナ担体を採用するに至った。   In completing the dehydrogenation catalyst of the present invention, a catalyst was prepared using an alumina support in which the pore distribution was not uniformly controlled and an alumina support in which the pore distribution was uniformly controlled by pH swing operation. As a result of examining the degree of reaction and the reaction results, it was found that the catalyst with controlled pore distribution of the alumina support was superior in both the degree of dispersion and the reaction result, and the alumina support having specific physical properties was adopted.

このような特定の物理的性状を有する多孔性γ-アルミナ担体は、例えば特公平6-72,005号公報に開示されているように、アルミニウム塩の中和により生成した水酸化アルミニウムのスラリーを濾過洗浄し、得られたアルミナヒドロゲルを脱水乾燥した後、400〜800℃で1〜6時間程度焼成することにより得られるものであり、好ましくはアルミナヒドロゲルのpH値をアルミナヒドロゲル溶解pH領域とベーマイトゲル沈殿pH領域との間で交互に変動させると共に少なくともいずれか一方のpH領域から他方のpH領域へのpH変動に際してアルミナヒドロゲル形成物質を添加してアルミナヒドロゲルの結晶を成長させるpHスイング工程を経て得られたものであるのがよい。このpHスイング工程を経て得られた多孔性γ-アルミナ担体は、細孔分布の均一性に優れ成形後のアルミナ担体ペレットにおいても物理性状のばらつきが少なく、個々のペレット毎の物理性状が安定しているという点で優れている。   Such a porous γ-alumina carrier having specific physical properties is obtained by filtering and washing a slurry of aluminum hydroxide produced by neutralization of an aluminum salt, as disclosed in, for example, Japanese Patent Publication No. 6-72,005. The obtained alumina hydrogel is dehydrated and dried and then calcined at 400 to 800 ° C. for about 1 to 6 hours. Preferably, the pH value of the alumina hydrogel is adjusted to the alumina hydrogel dissolution pH region and the boehmite gel precipitation. It is obtained through a pH swing process in which an alumina hydrogel-forming substance is added to grow an alumina hydrogel crystal when the pH is changed between at least one of the pH ranges and from one pH range to the other. It is good to be. The porous γ-alumina support obtained through this pH swing process is excellent in the uniformity of pore distribution, there is little variation in physical properties even in the alumina support pellets after molding, and the physical properties of each pellet are stable. It is excellent in that it is.

そして、このような特定の物理性状を有する多孔性γ-アルミナ担体に担持させる触媒金属は、白金、パラジウム、ロジウム、イリジウム及びルテニウムから選ばれた1種又は2種以上の金属であって、好ましくは白金であり、その担持量については、例えば触媒金属が白金である場合、0.3重量%以上2.0重量%以下、好ましくは0.5重量%以上1.0重量%以下である。この白金の担持量が0.3重量%より少ないと活性が低いという問題があり、反対に、2.0重量%より多くなると白金の粒子径が大きくなり、選択性が低下すると共にシンタリングしやすく劣化し易いという問題がある。   The catalyst metal supported on the porous γ-alumina carrier having such specific physical properties is preferably one or more metals selected from platinum, palladium, rhodium, iridium and ruthenium, Is platinum, and for example, when the catalyst metal is platinum, it is 0.3 wt% or more and 2.0 wt% or less, preferably 0.5 wt% or more and 1.0 wt% or less. If the supported amount of platinum is less than 0.3% by weight, there is a problem that the activity is low. On the other hand, if it is more than 2.0% by weight, the particle size of platinum becomes large, the selectivity is lowered and sintering is performed. There is a problem that it is easy to deteriorate.

また、白金やパラジウム等の貴金属類をアルミナ担体に含浸担持する場合において、含浸水溶液のpHによって焼成担持後の貴金属類の分散度が異なることが挙げられる。特定の物理性状を有するアルミナ担体を用いる本触媒系において、その最適なpHの範囲は、1.8〜3.0の範囲である。含浸溶液のpH値が1.8より低い場合には、担持後の貴金属類の分散度が低く、pH値が3.0より高い場合も分散度は低下する。このことは、含浸時のpH値によりアルミナ担体への金属化合物分子の吸着力が異なり、焼成時にシンタリングして粒子成長する際に大きな影響を与えていると推定される。   In addition, when the noble metal such as platinum or palladium is impregnated and supported on the alumina support, the degree of dispersion of the noble metal after the firing and supporting varies depending on the pH of the impregnating aqueous solution. In the present catalyst system using an alumina support having specific physical properties, the optimum pH range is in the range of 1.8 to 3.0. When the pH value of the impregnation solution is lower than 1.8, the degree of dispersion of the noble metals after loading is low, and when the pH value is higher than 3.0, the degree of dispersion also decreases. This is presumed that the adsorption force of the metal compound molecules on the alumina support differs depending on the pH value at the time of impregnation, and has a great influence on sintering during particle growth.

また、貴金属の分散度は、その後のアルカリ金属の担持によって低下する傾向があるが、貴金属の含浸時のpH値を1.8〜3.0の範囲に調整して含浸することで、アルカリ金属の担持による貴金属分散度の低下を最小限にとどめることができる。これらにより、触媒化後の貴金属の分散度を70%以上、より好ましくは80%以上に高分散することが可能である。   Further, the degree of dispersion of the noble metal tends to decrease due to the subsequent supporting of the alkali metal, but the alkali metal is adjusted by adjusting the pH value at the time of impregnation with the noble metal to the range of 1.8 to 3.0. It is possible to minimize the decrease in the degree of dispersion of the noble metal due to the loading of. As a result, the degree of dispersion of the noble metal after the catalyst can be highly dispersed to 70% or more, more preferably 80% or more.

上記のように分散度が高い貴金属粒子のサイズは10Å以下であり、70%の分散度では7Å以下となる。この様に小さな貴金属粒子のクラスターでは、平面を形成する白金原子の数は少なく、水素化芳香族類の分子サイズを考慮すると、これらの芳香族類の分子が平面的に吸着してしまう貴金属表面の平面は著しく少ないものと考えられる。従って、芳香族類の炭素原子が複数吸着することが著しく少ないためにこれらの分解反応を抑制することができるものと推定される。   As described above, the size of the noble metal particles having a high degree of dispersion is 10 mm or less, and when the degree of dispersion is 70%, the size is 7 mm or less. In such a cluster of small noble metal particles, the number of platinum atoms forming the plane is small, and considering the molecular size of hydrogenated aromatics, the surface of the noble metal on which these aromatic molecules adsorb in a plane The plane is considered to be extremely few. Therefore, it is presumed that these decomposition reactions can be suppressed because the adsorption of a plurality of aromatic carbon atoms is extremely small.

一般的に、改質触媒や脱水素触媒では、白金等の貴金属粒子をレニウムやスズ等の第2金属成分でバイメタル化して白金等の分解活性を有する原子の連続的な配列を断つことによって、原料や生成物の炭素原子の平面的な吸着を阻害して分解反応を抑制することが行われるが、本発明に係る触媒系は貴金属粒子が高分散状態で粒子径が十分に小さいため、バイメタル化を行わなくとも分解反応を抑制することが可能と考えられる。   In general, in reforming catalysts and dehydrogenation catalysts, noble metal particles such as platinum are bimetalized with a second metal component such as rhenium or tin to cut off the continuous arrangement of atoms having decomposition activity such as platinum, Although the planar adsorption of carbon atoms of raw materials and products is inhibited to suppress the decomposition reaction, the catalyst system according to the present invention is a bimetal because noble metal particles are highly dispersed and the particle diameter is sufficiently small. It is considered possible to suppress the decomposition reaction without performing the conversion.

また、本発明の脱水素触媒において、アルカリ金属を担持させる理由は、アルミナ上の酸点をマスキングして、アルミナ表面での分解反応を抑制することが目的である。アルミナ上の残留酸点は貴金属類の担持量によって変動すると考えられ、貴金属類の担持量が多くなるとマスキングに必要なアルカリ金属の量は減少する。従って、白金の高分散状態が実現されていれば、アルカリ金属によるマスキングを実施しない場合でも、ある程度の性能は確保される。しかしながら、水素化芳香族類は脱水素後に、回収され再び水素化原料として利用されることから、少しでも分解によるロスを低減させる必要があり、この観点からアルカリ金属を担持することがより望ましい。   The reason for supporting the alkali metal in the dehydrogenation catalyst of the present invention is to mask the acid sites on the alumina to suppress the decomposition reaction on the alumina surface. The residual acid point on alumina is considered to vary depending on the amount of noble metal supported, and the amount of alkali metal necessary for masking decreases as the amount of noble metal supported increases. Therefore, if a highly dispersed state of platinum is realized, a certain level of performance is ensured even when masking with an alkali metal is not performed. However, since hydrogenated aromatics are recovered after dehydrogenation and used again as a hydrogenation raw material, it is necessary to reduce the loss due to decomposition as much as possible. From this viewpoint, it is more desirable to support an alkali metal.

更に、多孔性γ-アルミナ担体に担持させるアルカリ性金属は、具体的にはリチウム、ナトリウム、カリウム、ルビジウム、セシウム、ベリリウム、マグネシウム、カルシウム、ストロンチウム及びバリウムを包含する周期律表の第1A族及び第2A族の金属元素であって、好ましくはカリウムであり、その担持量については、例えばアルカリ性金属がカリウムである場合、0.001重量%以上1.0重量%以下、好ましくは0.005重量%以上0.5重量%以下である。このアルカリ性金属の担持量が0.001重量%より少ないと実質的に効果が得られないという問題があり、反対に、1.0重量%より多くなると過剰となって活性が低下するという問題がある。   Further, the alkaline metal supported on the porous γ-alumina support specifically includes Group 1A and Group 1 of the periodic table including lithium, sodium, potassium, rubidium, cesium, beryllium, magnesium, calcium, strontium, and barium. Group 2A metal element, preferably potassium, and the supported amount is, for example, 0.001 wt% or more and 1.0 wt% or less, preferably 0.005 wt% when the alkaline metal is potassium. The content is 0.5% by weight or less. When the amount of the alkaline metal supported is less than 0.001% by weight, there is a problem that the effect is not substantially obtained. On the other hand, when the amount is more than 1.0% by weight, there is a problem that the activity is reduced due to excess. is there.

本発明の脱水素触媒は、上記の多孔性γ-アルミナ担体に上記の触媒金属の溶液を含浸させ、乾燥したのち焼成して触媒金属担持焼成物とし、この触媒金属担持焼成物を還元しない状態でアルカリ性金属の溶液を含浸させて乾燥し、次いで得られたアルカリ性金属担持乾燥物を、焼成することなく、直接に最終的な水素還元を実施することにより製造される。   The dehydrogenation catalyst of the present invention is obtained by impregnating the above porous γ-alumina carrier with the above catalyst metal solution, drying and calcining to obtain a catalyst metal-supported calcined product, in a state where the catalyst metal-supported calcined product is not reduced. The alkaline metal solution is impregnated and dried, and then the obtained dried alkali metal-supported product is directly subjected to final hydrogen reduction without firing.

ここで、多孔性γ-アルミナ担体に含浸させる触媒金属の化合物の溶液としては、触媒金属の塩化物、臭化物、アンモニウム塩、カルボニル化合物、アミン及びアンミン錯体やアセチルアセトナト錯体等の各種の錯体化合物等を挙げることができ、例えば触媒金属が白金である場合、塩化白金酸、アセチルアセトナト白金、白金酸アンモニウム塩、臭化白金酸、二塩化白金、四塩化白金水和物、二塩化カルボニル白金二塩化物、ジニトロジアミン白金酸塩等の白金化合物が挙げられる。また、触媒金属を担持させる際には、多孔性γ-アルミナ担体に上記の触媒金属の化合物の溶液を含浸させた後、好ましくは50℃以上200℃以下、0.5時間以上48時間以下の条件で乾燥し、次いで、好ましくは350℃以上600℃以下、0.5時間以上48時間以下、より好ましくは350℃以上450℃以下の温度で0.5時間以上5時間以下の条件で焼成するのがよい。   Here, the catalyst metal compound solution impregnated in the porous γ-alumina support includes various complex compounds such as chloride, bromide, ammonium salt, carbonyl compound, amine, ammine complex and acetylacetonato complex of the catalyst metal. For example, when the catalyst metal is platinum, chloroplatinic acid, acetylacetonatoplatinum, platinum platinum ammonium salt, bromoplatinic acid, platinum dichloride, platinum tetrachloride hydrate, carbonyl platinum dichloride Examples thereof include platinum compounds such as dichloride and dinitrodiamine platinate. When the catalyst metal is supported, the porous γ-alumina carrier is impregnated with the solution of the above-mentioned catalyst metal compound, and is preferably 50 ° C. or more and 200 ° C. or less, preferably 0.5 hours or more and 48 hours or less. And then baking is preferably performed at a temperature of 350 ° C. to 600 ° C., 0.5 hour to 48 hours, more preferably 350 ° C. to 450 ° C. for 0.5 hour to 5 hours. It is good.

また、多孔性γ-アルミナ担体に触媒金属を担持させて得られた触媒金属担持焼成物にアルカリ性金属を担持させる際に用いるアルカリ性金属の化合物としては、アルカリ性金属の塩化物、臭化物、ヨウ化物、硝酸塩、硫酸塩、酢酸塩、プロピオン酸塩等を例示でき、好ましくは水溶性のもの及び/又はアセトン等の有機溶媒に可溶のものがよく、例えば、塩化カリウム、臭化カリウム、ヨウ化カリウム、硝酸カリウム、硫酸カリウム、酢酸カリウム、プロピオン酸カリウム、塩化ルビジウム、臭化ルビジウム、ヨウ化ルビジウム、硝酸ルビジウム、硫酸ルビジウム、酢酸ルビジウム、プロピオン酸ルビジウム、塩化リチウム、臭化リチウム、ヨウ化リチウム、硝酸リチウム、硫酸リチウム、酢酸リチウム、プロピオン酸リチウム、塩化セシウム、臭化セシウム、ヨウ化セシウム、硝酸セシウム、硫酸セシウム、酢酸セシウム、プロピオン酸セシウム、塩化マグネシウム、臭化マグネシウム、ヨウ化マグネシウム、硝酸マグネシウム、硫酸マグネシウム、酢酸マグネシウム、プロピオン酸マグネシウム、塩化カルシウム、臭化カルシウム、ヨウ化カルシウム、硝酸カルシウム、硫酸カルシウム、酢酸カルシウム、プロピオン酸カルシウム等を挙げることができる。   In addition, as an alkaline metal compound used when an alkali metal is supported on a catalyst metal-supported fired product obtained by supporting a catalyst metal on a porous γ-alumina carrier, an alkali metal chloride, bromide, iodide, Examples thereof include nitrates, sulfates, acetates, propionates and the like, preferably those which are soluble in water and / or soluble in organic solvents such as acetone, such as potassium chloride, potassium bromide, potassium iodide. , Potassium nitrate, potassium sulfate, potassium acetate, potassium propionate, rubidium chloride, rubidium bromide, rubidium iodide, rubidium nitrate, rubidium sulfate, rubidium acetate, rubidium propionate, lithium chloride, lithium bromide, lithium iodide, lithium nitrate , Lithium sulfate, lithium acetate, lithium propionate, cesium chloride , Cesium bromide, cesium iodide, cesium nitrate, cesium sulfate, cesium acetate, cesium propionate, magnesium chloride, magnesium bromide, magnesium iodide, magnesium nitrate, magnesium sulfate, magnesium acetate, magnesium propionate, calcium chloride, odor Calcium iodide, calcium iodide, calcium nitrate, calcium sulfate, calcium acetate, calcium propionate and the like can be mentioned.

また、触媒金属担持焼成物にアルカリ性金属を担持させる際には、アルカリ性金属の化合物の溶液を含浸させた後、室温以上200℃以下及び0.5時間以上48時間以内、好ましくは50℃以上150℃以下及び0.5時間以上24時間以内、より好ましくは80℃以上120℃以下及び0.5時間以上5時間以内の乾燥条件で乾燥するのがよい。   Further, when the alkaline metal is supported on the catalyst metal-supported fired product, after impregnating the alkaline metal compound solution, the temperature is from room temperature to 200 ° C. and from 0.5 hour to 48 hours, preferably from 50 ° C. to 150 ° C. It is preferable to dry under the drying conditions of not more than 0 ° C. and not less than 0.5 hours and not more than 24 hours, more preferably not less than 80 ° C. and not more than 120 ° C. and not less than 0.5 hours and not more than 5 hours.

触媒金属担持焼成物にアルカリ性金属を含浸させ、乾燥して得られたアルカリ性金属担持乾燥物については、次に焼成することなく直接に最終的な水素還元を行うが、この水素還元の還元条件は、水素ガスの雰囲気下に、350℃以上600℃以下及び0.5時間以上48時間以下、好ましくは350℃以上550℃以下及び3時間以上24時間以下で行うのがよい。このアルカリ性金属担持乾燥物の水素還元に先駆けて焼成を行うと、活性、選択性及び寿命の触媒性能が低くなるという問題が生じ、また、この水素還元時の温度が350℃未満であると十分に白金が還元されないという問題があり、反対に、600℃を超えると還元時に白金粒子がシンタリングして金属分散度が低下するという問題が生じる。   The alkaline metal-supported dried product obtained by impregnating the catalyst metal-supported fired product with an alkaline metal and drying is directly subjected to final hydrogen reduction without firing, and the reduction conditions for this hydrogen reduction are as follows. In an atmosphere of hydrogen gas, it is preferably performed at 350 ° C. to 600 ° C. and 0.5 hours to 48 hours, preferably 350 ° C. to 550 ° C. and 3 hours to 24 hours. Firing prior to the hydrogen reduction of the alkaline metal-supported dry matter causes a problem that the catalytic performance of activity, selectivity and life is lowered, and it is sufficient that the temperature during the hydrogen reduction is less than 350 ° C. On the other hand, there is a problem that platinum is not reduced. On the other hand, when the temperature exceeds 600 ° C., platinum particles are sintered at the time of reduction, and the metal dispersibility is lowered.

白金等の貴金属類を含浸した後に、焼成のみを行って還元を行わずにアルカリ金属を含浸乾燥し、焼成を行わずに直接に水素還元を行い、白金の還元とアルカリ金属化合物の分解を行うことによって、性能が高い触媒が調製できる理由については、現時点において明確に解明されてはいないが、次のように推定される。   After impregnating with noble metals such as platinum, perform calcination only, impregnate and dry with alkali metal without reduction, perform direct hydrogen reduction without calcination, reduce platinum and decompose alkali metal compounds The reason why a catalyst with high performance can be prepared is not clearly clarified at this time, but is presumed as follows.

白金等の貴金属を含浸後に焼成することは、貴金属化合物類の分解を行うと同時に貴金属種を担体に固定化することを意味している。この後にアルカリ金属化合物は一般的には水溶液の状態で含浸されるので、このときに還元状態の白金を水と接触させることは好ましくなく、水によって金属状態の白金が酸化され、不働態被膜が生じることは明白と考えられる。従って、白金は還元されることなく、空気焼成によって酸化物として固定された状態でアルカリ金属化合物の含浸を行うことが好ましい。   Firing after impregnation with a noble metal such as platinum means that the noble metal compound is decomposed and at the same time the noble metal species is immobilized on the support. After this, since the alkali metal compound is generally impregnated in the state of an aqueous solution, it is not preferable to contact the reduced platinum with water at this time. The metallic platinum is oxidized by the water, and the passive film is formed. What happens is considered obvious. Therefore, it is preferable to impregnate the alkali metal compound in a state in which platinum is not reduced but is fixed as an oxide by air baking.

続いて、アルカリ金属化合物の分解固定化の工程が必要であるが、この場合に空気焼成して固定化してから水素還元する方法よりも、乾燥のみにとどめて直接に水素還元を実施する方が高い触媒性能を発現することができる。この理由は、還元雰囲気で分解した方が、アルカリ金属種が1%以下の少量であるにもかかわらず、アルミナの酸点を良好にマスキングすることができるためと考えられる。アルカリ金属の役割は白金担持後に残留するアルミナ担体表面上の酸点をマスキングして水素化芳香族類の分解を抑制することにある。両方の調製方法で同様に調製した触媒の性能を比較すると後者の選択性が高く、酸点が良好にマスキングされていることを支持する結果となる。   Subsequently, a step of decomposing and fixing the alkali metal compound is necessary. In this case, it is better to carry out the hydrogen reduction directly by drying only than the method of hydrogen reduction after air baking and fixing. High catalytic performance can be expressed. The reason for this is considered to be that when the decomposition is performed in a reducing atmosphere, the acid sites of alumina can be masked well despite the amount of alkali metal species being 1% or less. The role of the alkali metal is to suppress the decomposition of hydrogenated aromatics by masking the acid sites on the surface of the alumina support remaining after platinum is supported. Comparing the performance of the catalysts prepared in the same way with both preparation methods, the latter is highly selective and supports the fact that the acid sites are well masked.

また、本発明において、水素貯蔵体として用いる芳香族類は、トルエン、ベンゼン等の単環芳香族類及び/又はナフタレン等の2環芳香族類である。これらの芳香族類の水添プロセスは、航空用燃料としてのナフタレンからのデカリン製造、化学品及び工業溶剤用途としてのベンゼンやトルエンの水添による、シクロヘキサンやメチルシクロヘキサンの製造プロセス等として既に数十年前から工業化され、現在に至っている。これらの水添反応に利用される触媒は、活性金属として主としてニッケル、白金が用い、これら以外の金属としてパラジウム、ロジウム、イリジウム等を用いて、スラリー床や固定床の反応方式で実施され、その触媒寿命は通常1〜3年とされている。   In the present invention, the aromatics used as the hydrogen reservoir are monocyclic aromatics such as toluene and benzene and / or bicyclic aromatics such as naphthalene. Hydrogenation processes of these aromatics are already several dozens such as production of decalin from naphthalene as a fuel for aviation and hydrogenation of benzene and toluene as chemicals and industrial solvents. It has been industrialized for many years and has reached the present day. The catalyst used for these hydrogenation reactions is mainly carried out in a slurry bed or fixed bed reaction system using nickel, platinum as active metals and palladium, rhodium, iridium, etc. as other metals. The lifetime is usually 1 to 3 years.

一方、水添反応によって水素が貯蔵された、メチルシクロヘキサン等の水素化芳香族化合物の脱水素反応は、これまでに工業化された実績はなく、有機ケミカルハイドライド法による水素貯蔵輸送システムの確立には、長期に亘って安定して作動する脱水素触媒が必要であった。前述の特開2005-211,845号公報に開示された脱水素触媒は、簡便な固定床にて安定に作動する触媒であり。活性金属として、白金、パラジウム、ロジウム、イリジウム等を用い、より好ましくは白金を用いて、特定の物理性状を有するγ−アルミナ担体に白金化合物の水溶液を含浸する際のpH値をコントロールすることによって、白金を高度に分散させる触媒である。また、アルミナ上の酸点で起こる分解反応を抑制する目的でアルカリ金属、好ましくはカリウムを添加することで酸点のマスキングを行い、分解反応を抑制する様に触媒設計されている。   On the other hand, the dehydrogenation reaction of hydrogenated aromatic compounds such as methylcyclohexane, in which hydrogen is stored by hydrogenation reaction, has not been industrialized so far, and it is necessary to establish a hydrogen storage and transport system by the organic chemical hydride method. Therefore, a dehydrogenation catalyst that operates stably over a long period of time has been required. The dehydrogenation catalyst disclosed in the aforementioned JP-A-2005-211,845 is a catalyst that operates stably in a simple fixed bed. By using platinum, palladium, rhodium, iridium, etc. as the active metal, and more preferably using platinum, by controlling the pH value when impregnating an aqueous solution of a platinum compound onto a γ-alumina carrier having specific physical properties. It is a catalyst for highly dispersing platinum. Further, for the purpose of suppressing the decomposition reaction occurring at the acid sites on the alumina, the catalyst is designed to suppress the decomposition reaction by masking the acid sites by adding an alkali metal, preferably potassium.

上記の触媒を320℃、常圧の条件下でメチルシクロヘキサン(MCH)を供給すると、速やかに脱水素反応が進行し、LHSV=2.0h-1の供給速度においても、MCH転化率95%以上、トルエン選択率99.9%以上、水素発生速度1000Ncc-H2/h/cc-catの性能を長期に亘って維持することが可能である。しかしながら、実用化の際の脱水素原料となるMCHは、様々な不純物を含んでおり、これらの不純物が脱水素触媒の寿命に与える影響を把握して、寿命に影響を与える不純物を除去する手段を持つことが必要である。また、既存の水添プラントに用いられる触媒の寿命は、通常1〜3年であり、工業的に十分な寿命を有しているが、本水素貯蔵輸送システムにおいては、水素貯蔵体に用いる芳香族類を繰り返し利用するため、脱水素反応ばかりでなく、水添反応に供する触媒の寿命にも影響すると考えられる。 When methylcyclohexane (MCH) is supplied to the above catalyst at 320 ° C. and atmospheric pressure, the dehydrogenation reaction proceeds rapidly, and the MCH conversion rate is 95% or more even at the supply rate of LHSV = 2.0 h −1. In addition, it is possible to maintain the performance of a toluene selectivity of 99.9% or more and a hydrogen generation rate of 1000 Ncc-H 2 / h / cc-cat over a long period of time. However, MCH, which is a raw material for dehydrogenation in practical use, contains various impurities. Means for grasping the influence of these impurities on the life of the dehydrogenation catalyst and removing impurities that affect the life It is necessary to have Further, the life of a catalyst used in an existing hydrogenation plant is usually 1 to 3 years and has an industrially sufficient life. In this hydrogen storage and transport system, the aroma used for a hydrogen storage body is used. Since the group is repeatedly used, it is considered that not only the dehydrogenation reaction but also the life of the catalyst used for the hydrogenation reaction is affected.

水添反応と脱水素反応を比較した場合、水添反応の場合は水素分圧が非常に高く、熱力学的に水添反応側に反応が進行する条件で実施されるため、不純物が同程度存在しても、触媒上に残留しにくいために触媒寿命に与える影響は脱水素反応に比べて小さい。しかしながら、既存の水添プラントのように原料が一度だけ反応器を通過するプロセスに比べて、同一の芳香族原料を繰り返し利用する、本法の水素貯蔵輸送システムでは、不純物が系内に蓄積するために水添触媒の寿命に対しても影響を与えることが考えられる。脱水素反応の場合は、熱力学的に脱水素反応側に反応が進行する条件で実施するため、不純物が脱水素される場合には触媒上に残留しやすく、残留した不純物は、重合、分解、脱水素反応等を複雑に繰り返して、最終的に水素がはがされた炭素質となって、触媒上に沈積して触媒活性を劣化させるコーキング反応に繋がり易いことから、触媒寿命が不純物に影響されやすい。従って、第1に脱水素触媒の寿命を延命するため、また、第2に水添触媒の寿命を延命させるために、これらの劣化に影響する不純物が系内に蓄積することを防止する必要がある。   When comparing hydrogenation reaction and dehydrogenation reaction, hydrogen partial pressure is very high in hydrogenation reaction, and it is carried out under conditions where the reaction proceeds thermodynamically to the hydrogenation reaction side, so the impurities are about the same. Even if it exists, since it does not remain on the catalyst, the influence on the catalyst life is small compared to the dehydrogenation reaction. However, in the hydrogen storage and transport system of the present method, in which the same aromatic raw material is repeatedly used compared to a process in which the raw material passes through the reactor only once as in an existing hydrogenation plant, impurities accumulate in the system. Therefore, it can be considered that the life of the hydrogenation catalyst is also affected. In the case of a dehydrogenation reaction, the reaction is carried out under conditions where the reaction proceeds thermodynamically toward the dehydrogenation reaction side. Therefore, when impurities are dehydrogenated, they tend to remain on the catalyst, and the remaining impurities are polymerized and decomposed. Since the dehydrogenation reaction is repeated in a complicated manner, the carbon is finally stripped of hydrogen and is likely to cause a coking reaction that deposits on the catalyst and degrades the catalytic activity. It is easily affected. Therefore, firstly, in order to extend the life of the dehydrogenation catalyst, and secondly, in order to extend the life of the hydrogenation catalyst, it is necessary to prevent accumulation of impurities that affect these deteriorations in the system. is there.

工業水添プロセスの製品中に含まれる不純物は、原料となる芳香族に元々含まれている不純物と、水添反応によって新たに生成する不純物とがあるが、ここでは、これらをまとめて水添反応によって生成する不純物として定義する。   Impurities contained in products of industrial hydrogenation processes include impurities originally contained in aromatics as raw materials and impurities newly generated by hydrogenation reactions. It is defined as an impurity generated by the reaction.

これらの工業水添プロセスによって生成する不純物とその生成経路について、図1を用いて説明する。図1は水素貯蔵体としての芳香族にトルエンを用いて水添反応を行い製造されるメチルシクロヘキサン(MCH)の場合の製品中の不純物とその生成経路を示している。   The impurities produced by these industrial hydrogenation processes and their production paths will be described with reference to FIG. FIG. 1 shows impurities in a product and a production route thereof in the case of methylcyclohexane (MCH) produced by hydrogenating an aromatic as a hydrogen reservoir using toluene.

水添触媒の活性金属上又は担体として用いるアルミナ、シリカアルミナの酸点で、第1段階として起こる副反応は、側鎖のメチル基が脱離する分解反応と、芳香環が開裂する分解反応である。メチル基が脱離する経路の場合、第1にメチル基は水添されてメタンとなり、メチル基が脱離したベンゼン環は同様に水添されてシクロヘキサンとなる。しかしながら、脱離したメチル基が原料MCHに付加する反応も進行し、ジメチルシクロヘキサン類、及びトリメシルシクロヘキサン類が生成する。更にこれらが分解重合することによって、2環の生成物であるビシクロヘキシル類が生成する。   The side reactions that occur as the first step at the acid sites of the alumina and silica alumina used on the active metal of the hydrogenation catalyst or as a support are the decomposition reaction in which the methyl group of the side chain is eliminated and the decomposition reaction in which the aromatic ring is cleaved. is there. In the route where the methyl group is eliminated, first, the methyl group is hydrogenated to methane, and the benzene ring from which the methyl group is eliminated is similarly hydrogenated to cyclohexane. However, the reaction in which the eliminated methyl group is added to the raw material MCH also proceeds to produce dimethylcyclohexanes and trimesylcyclohexanes. Furthermore, they undergo decomposition polymerization to produce bicyclohexyls, which are bicyclic products.

一方、原料MCHの第1段階の分解反応が芳香環の開裂である場合、C7の鎖状炭化水素となり、これらが水添されて相当する鎖状パラフィンが生成される。これらの反応は2つに大別され、1つは、再環化して5員環を形成する場合と、もう1つは付近化分解する場合がある。5員環化合物は、前述の原料MCHのようにメチル基が付加したり、これらが重合して5員環の2環化合物を生成すると考えられる。また、鎖状炭化水素類は、分解、異性化、重合等を繰り返し、最終的にはC9までの鎖状炭化水素類のパラフィン類が不純物として存在する。 On the other hand, when the first stage decomposition reaction of the raw material MCH is cleavage of an aromatic ring, it becomes C 7 chain hydrocarbons, which are hydrogenated to produce corresponding chain paraffins. These reactions are roughly divided into two cases, one being recyclized to form a 5-membered ring and the other being near-decomposed. The 5-membered ring compound is considered to have a methyl group added as in the above-mentioned raw material MCH or polymerize to form a 5-membered bicyclic compound. In addition, chain hydrocarbons are repeatedly decomposed, isomerized, polymerized, etc., and finally chain hydrocarbon paraffins up to C 9 are present as impurities.

水素貯蔵体として側鎖を持たないベンゼンを用いる場合は、図1の側鎖であるメチル基を除いた場合、及び水素貯蔵体としてナフタレン化合物等の2環の芳香族類を用いる場合の不純物は、芳香環部分を2環として考えればほぼ同一の経路にて各々の系の場合の不純物を想定することが可能である。   When benzene having no side chain is used as the hydrogen storage body, impurities when the methyl group as the side chain in FIG. 1 is removed and when bicyclic aromatics such as naphthalene compounds are used as the hydrogen storage body are as follows: If the aromatic ring portion is considered as two rings, it is possible to assume impurities in each system in almost the same route.

図1に示した水素貯蔵体として用いる芳香族がトルエンである場合、工業プロセスの製品MCH中には、最大約40種類の不純物が含まれる場合がある。これらの不純物の数は、原料トルエンの純度と水添反応条件とに左右され、プロセスによっては、半数以下の不純物に抑制できる水添プロセスも工業的に稼働している。   When the aromatic used as a hydrogen storage body shown in FIG. 1 is toluene, the product MCH of the industrial process may contain up to about 40 kinds of impurities. The number of these impurities depends on the purity of the raw material toluene and the hydrogenation reaction conditions, and depending on the process, hydrogenation processes that can be suppressed to less than half of the impurities are also operating industrially.

次に表1を用いて、約40種類の不純物をタイプ別に分類し、これらの化合物が脱水素反応の触媒寿命に影響するかどうかを説明する。約40種類の不純物はタイプ別に分類すると、鎖状炭化水素類、5員環を持つ環状化合物類、6員環を持つ環状化合物類、環状化合物類が重合した2環の重合生成物類に大別される。   Next, using Table 1, about 40 types of impurities are classified by type, and whether these compounds affect the catalyst life of the dehydrogenation reaction will be described. About 40 types of impurities can be classified by type into chain hydrocarbons, cyclic compounds with 5-membered rings, cyclic compounds with 6-membered rings, and bicyclic polymerization products in which cyclic compounds are polymerized. Separated.

鎖状炭化水素類は、水添反応プロセスで水添されたパラフィン類であり、常温で液体生成物として含まれる不純物はC5〜C9炭化水素類であり、気体生成物としてC2〜C4炭化水素類がある。鎖状炭化水素類がコーキングに繋がる前駆体としては、二重結合を2つ有するジエン類であり、ブタジエンが最もコーキングに繋がり易い化合物として知られている。しかしながら、鎖状炭化水素類は芳香族類に比べて、脱水素反応が進行しずらく、炭素数が多いほど脱水素反応が進行し易いことが知られている。ここで、不純物の中で最も炭素数が多い鎖状炭化水素類であるC9の鎖状炭化水素においても脱水素反応が進行するのは400℃程度以上であることから、これらのC2〜C9の鎖状炭化水素類は、350℃以下の反応条件では、脱水素触媒上で脱水素反応が進行しないことから不活性であり、脱水素触媒の寿命に影響することはない。 The chain hydrocarbons are paraffins hydrogenated in the hydrogenation reaction process, the impurities contained as liquid products at room temperature are C 5 to C 9 hydrocarbons, and C 2 to C as gas products. There are 4 hydrocarbons. The precursors in which chain hydrocarbons are linked to coking are dienes having two double bonds, and butadiene is known as the compound most likely to be linked to coking. However, it is known that chain hydrocarbons are more difficult to proceed with dehydrogenation than aromatics, and the greater the number of carbons, the easier the dehydrogenation reaction proceeds. Here, since the even dehydrogenation reaction in chain hydrocarbon of C 9 is the most number of carbon atoms is larger chain hydrocarbons in the impurity proceeds is not less than about 400 ° C., these C 2 ~ The chain hydrocarbons of C 9 are inactive because the dehydrogenation reaction does not proceed on the dehydrogenation catalyst under reaction conditions of 350 ° C. or lower, and do not affect the life of the dehydrogenation catalyst.

5員環を持つ環状化合物類も同様に水素化された化合物として不純物中に存在する。これらシクロペンタン化合物類は脱水素反応が進行するとシクロペンタジエンとなり、コーキングの前駆体として著名な化合物となる。しかしながら、シクロペンタン類も5員環化合物であることから、6員環化合物であるMCH類に比べて脱水素反応は進行しずらく、350℃以下の反応温度では脱水素反応が進行しないことから不活性であり、脱水素触媒の寿命には影響しない。しかしながら、5員環化合物類が重合した2環化合物は単環の場合に比べて、分解重合し易いほか、脱水素反応も進行し易くなるため、2次的に脱水素触媒の劣化に影響することが想定される。従って、水添プロセスを選定する際には、5員環化合物の不純物類が少ないプロセスを採用することが好ましい。   Cyclic compounds having a 5-membered ring are also present in the impurities as hydrogenated compounds. These cyclopentane compounds become cyclopentadiene as the dehydrogenation proceeds, and become prominent compounds as precursors for coking. However, since cyclopentanes are also 5-membered ring compounds, the dehydrogenation reaction is difficult to proceed as compared with MCHs that are 6-membered ring compounds, and the dehydrogenation reaction does not proceed at a reaction temperature of 350 ° C. or lower. It is inert and does not affect the life of the dehydrogenation catalyst. However, bicyclic compounds in which 5-membered ring compounds are polymerized are easier to decompose and polymerize than a single ring, and the dehydrogenation reaction also proceeds more easily. It is assumed that Therefore, when selecting a hydrogenation process, it is preferable to employ a process with few impurities of a 5-membered ring compound.

6員環の環状化合物類は基本的に脱水素原料となるMCHと同族の化合物類であり、これらはMCHと同様に水素貯蔵体となる。6員環化合物は側鎖の数が多いほど脱水素し易いため、これらの不純物の方が、MCHに優先されて脱水素反応が進行するためほぼ全量が、水素貯蔵体として利用される。しかしながら、側鎖が多いほど、分解重合反応も進行しやすく、5員環化合物と同様に分解重合した2環の化合物は、分解重合し易いほか、脱水素反応も進行し易くなるため、2次的に脱水素触媒の劣化に影響することが想定される。従って、水添プロセスを選定する際には、6員環化合物の不純物類も少ないプロセスを採用することが好ましい。   Six-membered cyclic compounds are basically compounds of the same family as MCH, which is a raw material for dehydrogenation, and these become a hydrogen storage body like MCH. Since the six-membered ring compound is more easily dehydrogenated as the number of side chains is larger, almost all of these impurities are used as a hydrogen reservoir because the dehydrogenation reaction proceeds with priority over MCH. However, the more the side chain, the easier the decomposition polymerization reaction proceeds, and the bicyclic compound decomposed and polymerized in the same manner as the five-membered ring compound easily decomposes and dehydrogenation easily proceeds. Therefore, it is assumed that the dehydrogenation catalyst is deteriorated. Therefore, when selecting a hydrogenation process, it is preferable to employ a process with few impurities of a 6-membered ring compound.

2環の重合生成物は、分解重合反応も進行しやすく、脱水素反応も進行し易くなるため、脱水素触媒の触媒寿命に直接的に影響する。2環の重合生成物は脱水素触媒上で更に分解重合して4環化合物等を形成すると考えられ、これらの化合物は重質であることから脱水素反応後に触媒上から脱離しにくく、触媒上に残留して、更に脱水素反応や分解反応が進行して炭素質に転換されてコーキングが進行する。   Since the bicyclic polymerization product easily proceeds with a decomposition polymerization reaction and also with a dehydrogenation reaction, it directly affects the catalyst life of the dehydrogenation catalyst. It is considered that the bicyclic polymerization product is further decomposed and polymerized on the dehydrogenation catalyst to form a tetracyclic compound and the like. Since these compounds are heavy, they are difficult to desorb from the catalyst after the dehydrogenation reaction. In addition, dehydrogenation reaction and decomposition reaction proceed to convert to carbonaceous matter and coking proceeds.

Figure 0004907210
Figure 0004907210

水素貯蔵体として、2環のナフタレン化合物類を利用した場合も同様であり、ナフタレン類が重合した4環の重合生成物は、同様に重質であることから脱水素反応後に触媒上から脱離しにくく、触媒上に残留して、更に脱水素反応や分解反応が進行して炭素質に転換されてコーキングが進行する。   The same applies to the case where bicyclic naphthalene compounds are used as the hydrogen storage body. Since the 4-ring polymerization product obtained by polymerizing naphthalene is also heavy, it desorbs from the catalyst after the dehydrogenation reaction. It is difficult to remain on the catalyst, and further, dehydrogenation reaction and decomposition reaction proceed to be converted into carbonaceous matter and coking proceeds.

上記より、脱水素触媒の寿命に直接的に影響する化合物類は、重合した多環化合物類と特定される。水素貯蔵体としてトルエンを利用した場合、工業水添プロセスの製品中に不純物として含まれる2環の重合生成物は、ビシクロヘキシル及びこれにメチル基が付加したアルキルビシクロヘキシル類である。5員環の環状化合物類が重合した2環の化合物類、及び6員環化合物と5員環化合物が重合した化合物類は、ガスクロマトグラフの定量分析において検出されない。これは、重合する前駆体であるシクロペンタン類の不純物量が非常に少ないために、これらが重合した生成物は更に量が少ないために検出されないものと考えられる。しかしながら、実際に不純物として比較的多量に製品中に含まれる6員環化合物の重合生成物だけでなく、5員環化合物の重合生成物も直接的に脱水素触媒の寿命に影響すると考えられることから、これらの重合生成物も系内から除去されることが好ましい。   From the above, compounds that directly affect the lifetime of the dehydrogenation catalyst are identified as polymerized polycyclic compounds. When toluene is used as the hydrogen storage body, the bicyclic polymerization products contained as impurities in the product of the industrial hydrogenation process are bicyclohexyl and alkylbicyclohexyls having a methyl group added thereto. Bicyclic compounds obtained by polymerizing 5-membered cyclic compounds and compounds obtained by polymerizing 6-membered cyclic compounds and 5-membered cyclic compounds are not detected in the quantitative analysis of the gas chromatograph. This is thought to be because the amount of impurities of cyclopentanes, which are precursors to be polymerized, is very small, and the products obtained by polymerization of these are not detected because the amount is even smaller. However, it is considered that not only the polymerization products of 6-membered ring compounds, but also the polymerization products of 5-membered ring compounds, which are contained in products in relatively large amounts as impurities, directly affect the life of the dehydrogenation catalyst. Therefore, it is preferable that these polymerization products are also removed from the system.

また、脱水素触媒の寿命に直接的に影響する2環の重合生成物は、脱水素反応中においても僅かながら生成する。例えば、水素貯蔵体として、メチルシクロヘキサンの単一成分を用いて連続的に脱水素反応を概ね6000時間程度以上継続すると、たとえこの際の脱水素反応を99重量%以上の選択性をもって実施しても、数十〜数百ppmのオーダーで脱水素副生物が生成し、この脱水素副生物が原因して炭素析出が進行して脱水素触媒の寿命が低下する。従って、水素貯蔵体を繰り返し利用する本法の水素貯蔵輸送システムにおいては、系内にこれらの脱水素触媒の寿命に直接影響し、また水添反応触媒の寿命にも影響すると考えられる反応阻害物質である2環の重合生成物を除去することにより、これらの重合生成物が系内に蓄積することを防止する必要がある。   In addition, a bicyclic polymerization product that directly affects the life of the dehydrogenation catalyst is slightly generated even during the dehydrogenation reaction. For example, when a dehydrogenation reaction is continuously performed for about 6000 hours or more continuously using a single component of methylcyclohexane as a hydrogen reservoir, the dehydrogenation reaction at this time is carried out with a selectivity of 99% by weight or more. However, dehydrogenation by-products are generated on the order of several tens to several hundred ppm, and carbon deposition proceeds due to the dehydrogenation by-products, thereby reducing the life of the dehydrogenation catalyst. Therefore, in the hydrogen storage and transport system of the present method that repeatedly uses a hydrogen storage body, reaction inhibitors that are considered to directly affect the life of these dehydrogenation catalysts in the system and also to the life of the hydrogenation reaction catalyst. It is necessary to prevent these polymerization products from accumulating in the system by removing the bicyclic polymerization products.

上記の、反応阻害物質の除去装置は、水添反応装置から水素貯蔵・移送装置を経て脱水素反応装置に至る水素化芳香族化合物の移動経路、及び/又は、脱水素反応装置から芳香族化合物貯蔵・移送装置を経て水添反応装置に至る芳香族化合物の移動経路に、好ましくは、水素貯蔵・移送装置から脱水素反応装置に至る水素化芳香族化合物の移動経路に、より好ましくは水添反応装置の直後に水添反応によって副生した反応阻害物質を除去する阻害物質除去装置を設けることができる。   The above-mentioned reaction inhibitor removal device is a transfer route of hydrogenated aromatic compounds from a hydrogenation reactor to a dehydrogenation reactor via a hydrogen storage / transfer device and / or an aromatic compound from the dehydrogenation reactor. The transfer route of the aromatic compound from the storage / transfer device to the hydrogenation reaction device, preferably the transfer route of the hydrogenated aromatic compound from the hydrogen storage / transfer device to the dehydrogenation reaction device, more preferably hydrogenation. Immediately after the reaction apparatus, an inhibitor removal apparatus for removing the reaction inhibition substance by-produced by the hydrogenation reaction can be provided.

ここで、阻害物質除去装置としては、反応阻害物質である重合生成物を分離除去できる装置であればよく、例えば、蒸留装置、吸着装置等を挙げることができる。水素貯蔵体としてトルエンを利用した場合、その水素化化合物であるMCHの沸点は101℃である。このとき反応阻害物質として除去すべきビシクロヘキシル類の2環化合物はの沸点は、アルキル基を有さないビシクロヘキシルで235℃、アルキル基を有するビシクロヘキシル類の沸点は240℃以上である。また、実際に含まれている量が微量なため検出されないと考えられる5員環の重合したビシクロペンタン類、及び5員環と6員環が重合した2環化合物の沸点はいずれも190℃以上である。   Here, the inhibitor removal device may be any device that can separate and remove the polymerization product as a reaction inhibitor, and examples thereof include a distillation device and an adsorption device. When toluene is used as the hydrogen storage body, the boiling point of MCH, which is the hydrogenated compound, is 101 ° C. At this time, the boiling point of the bicyclic compound of bicyclohexyls to be removed as a reaction inhibitor is 235 ° C. for bicyclohexyl having no alkyl group, and the boiling point of bicyclohexyls having an alkyl group is 240 ° C. or more. In addition, the boiling points of 5-membered polymerized bicyclopentanes which are considered to be undetectable because the amount actually contained are both 190 ° C. or higher, and the bicyclic compounds in which 5-membered and 6-membered rings are polymerized. It is.

このように、除去されるべき反応阻害物質が重合生成物であり、脱水素原料として用いられるMCHとの沸点差が、90℃程度もあり非常に大きいこと、及び水添反応が大きな発熱反応であって水添プロセスから過剰な反応熱を回収することができ、この熱エネルギーを反応阻害物質除去の際の熱エネルギーとして直接的に利用することが可能であることからも、反応阻害物質の除去方法としては好適には蒸留操作である。   Thus, the reaction inhibiting substance to be removed is a polymerization product, the boiling point difference from MCH used as a dehydrogenation raw material is about 90 ° C., and the hydrogenation reaction is a large exothermic reaction. Therefore, excess reaction heat can be recovered from the hydrogenation process, and this thermal energy can be directly used as heat energy when removing reaction inhibitors. The method is preferably a distillation operation.

工業水添プロセスの製品中に含まれる反応阻害物質を除去する蒸留操作について、蒸留計算を行い検討したところ、重合生成物が100ppm以下の製品の場合は理論段数2段の蒸留操作にて反応阻害物質の濃度を1ppm以下に低減することが可能であり、反応阻害物質の濃度が1000ppm以下の場合でも理論段数4段の蒸留操作によって反応阻害物質の濃度を1ppm以下に低減することが可能である。   Distillation calculations were conducted to examine the distillation operation to remove reaction inhibitors contained in products of industrial hydrogenation processes. When the product of polymerization was 100 ppm or less, reaction inhibition was achieved by distillation operation with two theoretical plates. The concentration of the substance can be reduced to 1 ppm or less, and even when the concentration of the reaction inhibitory substance is 1000 ppm or less, the concentration of the reaction inhibitory substance can be reduced to 1 ppm or less by a distillation operation with four theoretical plates. .

蒸留装置は、通常の蒸留装置でよく理論段数2〜4段の蒸留操作において塔効率を50%以上に設計されていれば良く、具体的な棚段数は3〜8段程度である。棚段の構成は特に制限されず、通常に利用される泡鐘トレイ、多孔板トレイ、バブルトレイ等でよく、コスト等から選定すればよく、必要に応じてラシヒリング等の充填物を利用してもよい。例えば、水素ステーションとして水素を利用する場合、水素ステーション30〜40箇所分の水素貯蔵を行う水添設備の規模は、7〜10万トン/年の規模が想定される。これらの蒸留装置を用いて10万トン/年の水添反応装置による製品中の反応阻害物を除去する蒸留装置部分の設備コストと用役コストの総額は供給水素1Nm3当たり、1〜2円/Nm3-H2と概算されることから、触媒を短期間で交換して操業するよりも安価で経済的な運転が可能となる。 The distillation apparatus may be a normal distillation apparatus, and it may be designed to have a column efficiency of 50% or more in a distillation operation with 2 to 4 theoretical plates, and the specific number of shelves is about 3 to 8 plates. The configuration of the shelf is not particularly limited, and may be a commonly used bubble bell tray, perforated plate tray, bubble tray, etc., and may be selected from the cost, etc., using a packing such as Raschig ring as necessary. Also good. For example, when hydrogen is used as a hydrogen station, the scale of hydrogenation equipment for storing hydrogen for 30 to 40 hydrogen stations is assumed to be 70,000 tons / year. The total equipment cost and service cost of the distillation unit that removes reaction inhibitors in the product by the hydrogenation reactor of 100,000 tons / year using these distillation units is 1-2 yen per 1Nm 3 of supplied hydrogen Since it is estimated to be / Nm 3 -H 2 , it is possible to operate cheaper and more economically than when the catalyst is replaced and operated in a short period of time.

また、蒸留操作を単蒸留とした場合は、設備コスト及び用役コストは低減されるが、反応阻害物質の除去率は比較的に低く、触媒の寿命は理論段数2〜4段で蒸留した場合に比べて短くなるため、触媒交換の頻度が多くなり経済的ではない。しかしながら、触媒の製造方法等の改良が進み、触媒のコストが安価に改良された場合は単段蒸留による反応阻害物質の除去も経済性を有する可能性はあると考えられる。   In addition, when the distillation operation is simple distillation, the equipment cost and utility cost are reduced, but the removal rate of the reaction inhibitor is relatively low, and the catalyst life is distilled with 2 to 4 theoretical plates. Therefore, the frequency of catalyst exchange is increased, which is not economical. However, if the catalyst production method is improved and the cost of the catalyst is improved at a low cost, the removal of the reaction inhibiting substance by single-stage distillation may be economical.

更に、蒸留操作以外の反応阻害物質除去方法として吸着除去が考えられる。吸着剤としては、ゼオライト、アルミナ、シリカアルミナ等の一般的な吸着剤の利用が考えられるが、これらの吸着剤によって反応阻害物質を十分に除去するためには相当量の吸着剤が必要であり、吸着カラムが大きな装置となるほか、吸着剤の再生に複数のカラムを設置する必要がある。また、これらの吸着操作と再生操作を連続的に切り替える操作が必要であり、操作が複雑となるほか設備コスト等を考慮すると蒸留操作が好適と考えられる。   Furthermore, adsorption removal can be considered as a method for removing a reaction inhibitor other than the distillation operation. As the adsorbent, use of general adsorbents such as zeolite, alumina, silica alumina, etc. can be considered, but a considerable amount of adsorbent is necessary to sufficiently remove the reaction inhibitor by these adsorbents. In addition to the large adsorption column, it is necessary to install a plurality of columns for regeneration of the adsorbent. Further, an operation for continuously switching between the adsorption operation and the regeneration operation is necessary, and the operation is complicated. In addition, the distillation operation is considered preferable in consideration of the equipment cost and the like.

この阻害物質除去装置においては、脱水素反応阻害物質を分離除去して可及的に、好ましくは脱水素反応阻害物質を100ppm以下、より好ましくは50ppm以下、更に好ましくは10ppm以下にまで低減するのがよく、これによって脱水素触媒は8000時間以上にも及ぶ連続的な脱水素反応を行うことが可能となる。   In this inhibitor removal apparatus, the dehydrogenation inhibitor is separated and removed, and the dehydrogenation inhibitor is preferably reduced to 100 ppm or less, more preferably 50 ppm or less, and even more preferably 10 ppm or less. This makes it possible for the dehydrogenation catalyst to perform a continuous dehydrogenation reaction over 8000 hours.

本発明の水素の貯蔵輸送システムによれば、その脱水素反応装置における水素化芳香族化合物の脱水素反応において、290〜350℃という比較的低い反応温度で90%以上という高い水素化芳香族化合物の転化率を達成することができ、しかも、98%以上の高い反応選択性を有し、長期に亘って安定的にこの水素化芳香族化合物の脱水素反応を行うことができ、結果として、高い水素の貯蔵効率で潜在的な危険性が少なく、また、反応装置の構造や制御を複雑化させることなく、OCH法により容易にかつ効率良く水素エネルギーを貯蔵輸送できるシステムを提供することができる。   According to the hydrogen storage and transport system of the present invention, in a dehydrogenation reaction of a hydrogenated aromatic compound in the dehydrogenation reactor, a high hydrogenated aromatic compound of 90% or more at a relatively low reaction temperature of 290 to 350 ° C. In addition, it has a high reaction selectivity of 98% or more, and can stably carry out the dehydrogenation reaction of this hydrogenated aromatic compound over a long period of time. It is possible to provide a system capable of storing and transporting hydrogen energy easily and efficiently by the OCH method without complicating the structure and control of the reactor with high hydrogen storage efficiency and less potential danger. .

また、本発明の水素の貯蔵輸送システムにおいて、水添反応によって生成した不純物のうち、脱水素触媒および水素貯蔵体を繰り返し利用する際の水添触媒の寿命に直接影響を与える重合生成物の反応阻害物質を除去する装置を設けることにより、この水素移動媒体循環路中での反応阻害物質の蓄積が防止され、脱水素触媒及び水添触媒の長寿命化が達成され、長期に亘って安価に運転可能な水素貯蔵輸送システムを構築することができる。   In the hydrogen storage and transport system of the present invention, among the impurities generated by the hydrogenation reaction, the reaction of the polymerization product that directly affects the life of the hydrogenation catalyst when the dehydrogenation catalyst and the hydrogen storage body are repeatedly used. By providing an apparatus for removing the inhibitory substance, accumulation of reaction inhibitory substance in the hydrogen transfer medium circulation path is prevented, and the life of the dehydrogenation catalyst and the hydrogenation catalyst is extended. An operable hydrogen storage and transport system can be constructed.

以下、添付図面に示す本発明の構成例とこれらの構成例の脱水素反応器で用いる脱水素触媒の製造例及びその性能試験例、更に工業水添反応プロセスによる不純物の中で代表的な化合物を多量に添加して脱水素触媒の寿命に与える影響を定量的に検討した反応試験例、及び阻害物質の除去を蒸留操作にて行った場合の蒸留計算例に基づいて、本発明の好適な実施の形態を具体的に説明する。   Hereinafter, examples of the present invention shown in the attached drawings, examples of production of dehydrogenation catalysts used in the dehydrogenation reactors of these examples and performance test examples, and representative compounds among impurities produced by industrial hydrogenation reaction processes Based on the reaction test example in which the effect on the life of the dehydrogenation catalyst by adding a large amount is added, and the distillation calculation example in the case where the inhibitor is removed by distillation operation, the preferred embodiment of the present invention The embodiment will be specifically described.

〔構成例1〕
図2に本発明における有機ケミカルハイドライド法による水素の貯蔵輸送システムの基本構成を説明するための構成例1が示されている。この構成例1の水素の貯蔵輸送システムS1は、水素製造場所に設置される水素貯蔵システムS2と水素利用場所に設置される水素供給システムS3から構成される。
[Configuration example 1]
FIG. 2 shows a configuration example 1 for explaining a basic configuration of a hydrogen storage and transport system by the organic chemical hydride method in the present invention. The hydrogen storage and transport system S 1 of Configuration Example 1 includes a hydrogen storage system S 2 installed at a hydrogen production site and a hydrogen supply system S 3 installed at a hydrogen utilization site.

水素貯蔵システムS2では、水素製造装置S4によって製造された水素を用いて芳香族化合物の水素化反応を行い、水素を常温・常圧で液体状態の水素化芳香族化合物として貯蔵する機能を有する水添反応装置(水添反応器)1と、得られた水素化芳香族化合物中に生成する反応阻害物質を除去する除去装置1aと、反応阻害物質が除去された水素化芳香族化合物を貯蔵する水素化芳香族タンク1b及び水素供給システムS3から回収された芳香族を貯蔵する回収芳香族タンク1cから構成される。水素貯蔵システムS2で水素が貯蔵され、反応阻害物質が除去された水素化芳香族は、常温・常圧の液体化学品として水素化芳香族輸送手段3によって水素利用場所に設置される水素供給システムS3まで輸送される。この輸送手段3は、海上輸送の場合はケミカルタンカー等の船舶、陸上輸送の場合はケミカルローリー等の車両、又はパイプライン等の海底及び又は地下等に付設された配管を通じて輸送する手段でも良い。 The hydrogen storage system S 2 performs a hydrogenation reaction of an aromatic compound using hydrogen produced by the hydrogen production apparatus S 4 , and stores hydrogen as a hydrogenated aromatic compound in a liquid state at normal temperature and pressure. A hydrogenation reaction apparatus (hydrogenation reactor) 1, a removal apparatus 1 a for removing a reaction inhibitor produced in the obtained hydrogenated aromatic compound, and a hydrogenated aromatic compound from which the reaction inhibition substance has been removed. composed of recovered aromatic tank 1c for storing aromatics recovered from hydrogenated aromatic tank 1b and the hydrogen supply system S 3 for storage. Hydrogenated aromatics from which hydrogen has been stored in the hydrogen storage system S 2 and from which reaction-inhibiting substances have been removed are supplied as hydrogen chemicals at room temperature and atmospheric pressure by the hydrogenated aromatic transport means 3 as a hydrogen chemical supply site. It is transported to the system S 3. The transportation means 3 may be a means for transportation through a ship such as a chemical tanker in the case of sea transportation, a vehicle such as a chemical lorry in the case of land transportation, or a pipe attached to the sea floor such as a pipeline and / or underground.

水素供給システムS3は、水素化芳香族タンク2a、脱水素反応装置(脱水素反応器)2、水素分離装置2b、及び回収芳香族タンク2cから構成される。水素利用場所に輸送された水素化芳香族は、水素供給システムS3を構成する水素化芳香族タンク2aに貯蔵され、その必要量が脱水素反応装置(脱水素反応器)2によって脱水素反応に供されて、必要量の水素を発生させる。この脱水素装置2における脱水素反応器には、その反応管に表面積150m2/g以上、細孔容積0.40cm3/g以上、平均細孔径90〜300Å、及び全細孔容積に対して平均細孔径±30Åの細孔が占める割合が50%以上である多孔性γ-アルミナ担体に、白金、パラジウム、ロジウム、イリジウム及びルテニウムから選ばれた少なくとも1種の触媒金属を担持させた脱水素触媒が充填されている。脱水素反応装置2で脱水素された反応生成物は、主として発生水素と芳香族化合物であり、これらは、水素分離装置2bによって、分離され水素は必要な純度まで精製される。本システムにおける脱水素反応器2は充填された脱水素触媒の選択率が非常に高く98%以上であるため、水素分離装置2bでは、気液分離後の気体に含まれる芳香族、未反応水素化芳香族等の蒸気成分を吸着装置等にて除去する簡便な操作で高純度の水素を得ることが可能である。また、供給水素が高圧の必要がある場合は、水素分離装置2bの後段に昇圧装置及び高圧タンクが設置され昇圧後に水素が供給される。 Hydrogen supply system S 3 is hydrogenated aromatic tank 2a, the dehydrogenation reactor (dehydrogenation reactor) 2, the hydrogen separator 2b, and a from the recovery aromatic tank 2c. Hydrogenated aromatic which have been transported to the hydrogen utilization location is stored in the hydrogenated aromatic tank 2a constituting the hydrogen supply system S 3, the required amount of the dehydrogenation reactor (dehydrogenation reactor) 2 by dehydrogenation To generate the required amount of hydrogen. In the dehydrogenation reactor in this dehydrogenation apparatus 2, the reaction tube has a surface area of 150 m 2 / g or more, a pore volume of 0.40 cm 3 / g or more, an average pore diameter of 90 to 300 mm, and a total pore volume. Dehydrogenation in which at least one catalyst metal selected from platinum, palladium, rhodium, iridium and ruthenium is supported on a porous γ-alumina carrier in which the proportion of pores with an average pore diameter of ± 30 mm is 50% or more Packed with catalyst. The reaction product dehydrogenated by the dehydrogenation reactor 2 is mainly generated hydrogen and an aromatic compound, and these are separated by the hydrogen separator 2b, and the hydrogen is purified to the required purity. Since the dehydrogenation reactor 2 in this system has a very high selectivity of the charged dehydrogenation catalyst and is 98% or more, the hydrogen separation device 2b uses aromatic and unreacted hydrogen contained in the gas after gas-liquid separation. It is possible to obtain high-purity hydrogen by a simple operation of removing vapor components such as fluorinated aromatics with an adsorption device or the like. When the supplied hydrogen needs to be at a high pressure, a booster and a high-pressure tank are installed at the subsequent stage of the hydrogen separator 2b, and hydrogen is supplied after the pressure is increased.

水素分離装置2bで分離された脱水素反応後の芳香族は回収されて、回収芳香族タンク2cに貯蔵された後、回収芳香族輸送手段4によって水素貯蔵システムS2を構成する回収芳香族タンク1cに貯蔵される。このように回収された芳香族は再び、水添反応装置1によって水素貯蔵体として再利用されるが、脱水素反応にて生成する微量の反応阻害物、及び再度水添反応によって生成する反応阻害物は、再び反応阻害物質除去装置1aによって除去されるため、系内に蓄積することなく水素貯蔵体としての芳香族は繰り返し利用することが可能である。 Aromatic after dehydrogenation separated by the hydrogen separator 2b is recovered, after being stored in the recovery aromatic tank 2c, recovered aromatic tank constituting the hydrogen storage system S 2 by recovering aromatic transporting means 4 Stored in 1c. The aromatic thus recovered is reused again as a hydrogen storage by the hydrogenation reaction apparatus 1, but a trace amount of reaction inhibitor generated in the dehydrogenation reaction and reaction inhibition generated again by the hydrogenation reaction. Since the substances are removed again by the reaction inhibitor removing apparatus 1a, the aromatic as a hydrogen storage body can be repeatedly used without accumulating in the system.

〔脱水素反応器で用いる脱水素触媒〕
次に、上記の水素貯蔵輸送システムを構成する脱水素反応器2で使用する脱水素触媒について、その製造例を具体的に説明する。
[Dehydrogenation catalyst used in dehydrogenation reactor]
Next, a production example of the dehydrogenation catalyst used in the dehydrogenation reactor 2 constituting the hydrogen storage and transport system will be specifically described.

(製造例)
特公平6-72,005号公報中の実施例1に記載されるようにして、γーアルミナ担体を製造した。この方法のあらましを述べると、熱希硫酸中に激しく撹拌しながら瞬時にアルミン酸ソーダ水溶液を加えることにより水酸化アルミニウムスラリーの懸濁液(pH10)を得、これを種子水酸化アルミニウムとして、撹拌を続けながら熱希硫酸とアルミン酸ソーダ水溶液を交互に一定時間おいて加える操作を繰り返し、ろ過洗浄ケーキを得、これを押し出し成形して乾燥した後、500℃で3時間焼成するというものである。
(Production example)
A γ-alumina support was produced as described in Example 1 of JP-B-6-72,005. The outline of this method is as follows. Aqueous sodium aluminate aqueous solution is added instantaneously with vigorous stirring in hot dilute sulfuric acid to obtain an aluminum hydroxide slurry suspension (pH 10), which is used as seed aluminum hydroxide and stirred. The operation of adding hot dilute sulfuric acid and sodium aluminate aqueous solution alternately for a certain time while repeating the above is repeated to obtain a filter washed cake, which is extruded and dried, and then baked at 500 ° C. for 3 hours. .

このようなpHスイングの操作(pHスイング法)によって得られるγ-アルミナ(担体A)の性状は典型的には下記の表1の通りである。また、細孔分布を制御していないアルミナ担体の例として、一般に用いられる市販のγ-アルミナ担体(担体B)の性状も表2に合わせて示した。また、図3にこれらのアルミナ担体の細孔分布を水銀圧入法によって測定した結果を示す。   The properties of γ-alumina (support A) obtained by such pH swing operation (pH swing method) are typically as shown in Table 1 below. Further, as an example of an alumina carrier whose pore distribution is not controlled, the properties of a commercially available γ-alumina carrier (carrier B) generally used are also shown in Table 2. FIG. 3 shows the results of measuring the pore distribution of these alumina carriers by the mercury intrusion method.

Figure 0004907210
Figure 0004907210

上記のように調製した表面積240m2/g、細孔容積0.713cm3/g、平均細孔径119Å、及び平均細孔径±30Åの占有率が90%の物理的性状を有する多孔性γ-アルミナ担体20gに、pH値が2.0になるように調製した0.4wt%-塩化白金酸水溶液79gを添加し、3時間放置して含浸させた後、デカンテーションにより水を除去し、次いで120℃で3時間乾燥させてからマッフル炉により空気流通下に400℃で3時間焼成した。 Porous γ-alumina having a physical property of 90% occupancy with a surface area of 240 m 2 / g, a pore volume of 0.713 cm 3 / g, an average pore diameter of 119 mm, and an average pore diameter of ± 30 mm prepared as described above. To 20 g of support, 79 g of 0.4 wt% -chloroplatinic acid aqueous solution prepared so as to have a pH value of 2.0 was added, left to stand for 3 hours to impregnate, water was removed by decantation, and then 120 ° C. And then baked at 400 ° C. for 3 hours in an air stream in a muffle furnace.

得られた焼成物をデシケーター中で常温まで冷却した後、これに0.52wt%-硝酸カリウム水溶液10gを添加し、3時間放置して含浸せしめ、次いでエバポレーターにより水分を除去した後、120℃で3時間乾燥させ、水素流通下に400℃で15時間還元し、脱水素触媒を調製した。この脱水素触媒の白金の担持量は0.6重量%であり、カリウムの担持量は0.1重量%である。   The obtained fired product was cooled to room temperature in a desiccator, then added with 10 g of a 0.52 wt% -potassium nitrate aqueous solution, allowed to stand for 3 hours and then impregnated, and then water was removed by an evaporator, and then at 120 ° C. for 3 hours. The mixture was dried and reduced at 400 ° C. for 15 hours under a hydrogen flow to prepare a dehydrogenation catalyst. The supported amount of platinum in this dehydrogenation catalyst is 0.6% by weight, and the supported amount of potassium is 0.1% by weight.

また、上記の細孔制御した担体Aを用いて、上記の手順で、白金とカリウムを担持して触媒化した触媒No.1と、白金のみを担持した後にカリウムは担持せずに水素還元を実施して白金のみを担持した触媒No.2を調製して、白金の分散度を測定した。   In addition, using the above-mentioned carrier A with controlled pores, the catalyst No. 1 catalyzed by supporting platinum and potassium in the above procedure, and hydrogen reduction without supporting potassium after supporting only platinum. The catalyst No. 2 carrying only platinum was prepared and the dispersion degree of platinum was measured.

更に、細孔分布がブロードな市販のアルミナ担体Bを用いて、白金及びカリウムの担持を同様の手順で調製した触媒No.3(白金0.6重量%、カリウム0.1重量%)について分散度を同様に測定した。   Furthermore, using a commercially available alumina support B having a broad pore distribution, the dispersity of catalyst No. 3 (0.6 wt% platinum, 0.1 wt% potassium) prepared by the same procedure for supporting platinum and potassium was the same. It was measured.

分散度の測定はCOのパルス吸着法によって実施した。即ち、白金の格子定数面積a2に対し、COが1分子吸着するものとして金属表面積を算出した。また、白金の担持量を0.6重量%として金属分散度及び粒子径を求めた。測定には全自動触媒ガス吸着量測定装置(大倉理研社製:R6015)を用いて行った。結果を表3に示す。 The degree of dispersion was measured by the CO pulse adsorption method. That is, the metal surface area was calculated on the assumption that one molecule of CO adsorbs to the lattice constant area a 2 of platinum. Further, the metal dispersity and the particle diameter were determined with the amount of platinum supported being 0.6% by weight. The measurement was performed using a fully automatic catalyst gas adsorption amount measuring device (Okura Riken Co., Ltd .: R6015). The results are shown in Table 3.

Figure 0004907210
Figure 0004907210

表3から明らかなように、担体Aを用いて調製した触媒は担体Bを用いた場合に比べて白金の分散度が著しく高く、粒子径も小さいことがわかる。また担体Aを用いた触媒において、白金のみを担持した触媒に比べてカリウムも担持した触媒は白金の分散度が低下する傾向がある。   As is apparent from Table 3, the catalyst prepared using the carrier A has a significantly higher degree of platinum dispersion and a smaller particle size than the case where the carrier B is used. Further, in the catalyst using the carrier A, the degree of dispersion of platinum tends to be lower in a catalyst supporting potassium as compared with a catalyst supporting platinum alone.

(性能試験例1)
内径12.6mmφ×300mmサイズで、反応管断面の中心に外形1/8インチの熱電対用保護管を備えたステンレス製反応管の長さ方向の中心に、触媒層の中心が位置するように、上記で得られたNo.1又はNo.3の脱水素触媒10ccを充填し、触媒層の上側に予熱層として1mmφの球状α-アルミナビーズ10ccを充填し、それぞれNo.1又はNo.3の脱水素触媒が充填された固定床脱水素反応器(No.1反応器及びNo.3反応器)を作製した。
(Performance Test Example 1)
The center of the catalyst layer is positioned in the center of the length direction of a stainless steel reaction tube with an inner diameter of 12.6 mmφ × 300 mm and a 1/8 inch thermocouple protection tube at the center of the reaction tube cross section. No. 1 or No. 3 dehydrogenation catalyst 10 cc obtained above was filled, and 1 mmφ spherical α-alumina beads 10 cc were filled as a preheating layer on the upper side of the catalyst layer. The fixed bed dehydrogenation reactors (No. 1 reactor and No. 3 reactor) filled with the above dehydrogenation catalyst were prepared.

これらNo.1及びNo.3の固定床脱水素反応器を用い、次のようにしてメチルシクロヘキサン(MCH)の脱水素反応における触媒性能を調べた。
すなわち、水素流通下に触媒層の中心温度が320℃になるまで反応器を昇温し、次いで水素の流量をLHSV=5.0(50cc/hr)に調整した後、反応器に高速液体クロマトグラフィ(HPLC)用送液ポンプ(HPLCポンプ)を用いてメチルシクロヘキサン(MCH)をLHSV=2.0(20cc/hr)で供給し、MCHと水素の供給ガス中の水素濃度が20mol%になるように水素の供給量を調節した。なお、MCHの供給に当っては、予め予熱器により300℃に加熱してから供給した。
Using these No. 1 and No. 3 fixed-bed dehydrogenation reactors, the catalyst performance in the dehydrogenation reaction of methylcyclohexane (MCH) was examined as follows.
That is, the temperature of the reactor was raised until the center temperature of the catalyst layer reached 320 ° C. under the flow of hydrogen, and then the flow rate of hydrogen was adjusted to LHSV = 5.0 (50 cc / hr), and then high-performance liquid chromatography was performed in the reactor. (HPLC) Using a liquid feed pump (HPLC pump), methylcyclohexane (MCH) is supplied at LHSV = 2.0 (20 cc / hr) so that the hydrogen concentration in the supply gas of MCH and hydrogen is 20 mol%. The supply amount of hydrogen was adjusted. In addition, in supplying MCH, it was supplied after being heated to 300 ° C. by a preheater in advance.

反応器での脱水素反応は連続運転で行い、1300時間経過時に水素の供給量を供給ガス中の水素濃度が5mol%になるように調節し、その後も引き続き脱水素反応を継続した。
反応管の出口には気液分離器を設け、この脱水素反応により生成したトルエン等の液状生成物と水素ガス等の気体とを分離し、回収された液状生成物と気体とを各々ガスクロマトグラフィで分析した。
The dehydrogenation reaction in the reactor was carried out continuously, and the hydrogen supply amount was adjusted so that the hydrogen concentration in the supply gas became 5 mol% after 1300 hours had elapsed, and the dehydrogenation reaction was continued thereafter.
A gas-liquid separator is provided at the outlet of the reaction tube to separate the liquid product such as toluene and gas such as hydrogen gas generated by this dehydrogenation reaction, and the recovered liquid product and gas are each subjected to gas chromatography. Analyzed with

反応開始100時間経過後と6000時間後におけるMCH転化率(%)、トルエン選択率(%)、及び水素発生量(Ncc/h/cc-cat)を求めた。結果を表4に示す。   MCH conversion (%), toluene selectivity (%), and hydrogen generation amount (Ncc / h / cc-cat) after 100 hours and 6000 hours from the start of the reaction were determined. The results are shown in Table 4.

Figure 0004907210
Figure 0004907210

この表4に示す結果から明らかなように、本発明の実施例に係る脱水素触媒を用いたNo.1反応器の場合には、従来の触媒No.3を用いたNo.3反応器の場合に比べて、6000時間に亘って安定的に、また、選択性良く水素を製造することができ、反応阻害物質を含まないで純度が高いメチルシクロヘキサンを用いれば、有機ケミカルハイドライド法(OCH法)の利点を損なうことなく、容易に水素エネルギーの貯蔵輸送システムが構築できることがわかる。   As is apparent from the results shown in Table 4, in the case of the No. 1 reactor using the dehydrogenation catalyst according to the example of the present invention, the No. 3 reactor using the conventional catalyst No. 3 is used. Compared to the case, hydrogen can be produced stably over 6000 hours with good selectivity, and if methylcyclohexane having a high purity without containing a reaction inhibitor is used, an organic chemical hydride method (OCH method) It can be seen that a hydrogen energy storage and transport system can be easily constructed without impairing the advantages of

(性能試験例2〜4)
不純物のうち代表的な化合物である鎖状炭化水素、5員環環状化合物、2環の重合生成物を各々独立に多量に添加し、脱水素触媒の寿命に与える影響を検討した反応試験例2〜4を以下に示す。
(Performance Test Examples 2 to 4)
Reaction test example 2 in which a large amount of chain hydrocarbons, five-membered cyclic compounds, and two-ring polymerization products, which are representative compounds among impurities, were independently added to study the effect on the dehydrogenation catalyst life ~ 4 are shown below.

(性能試験例2)
触媒製造例におけるNo.1の触媒を用いて、性能試験例1と同様に改めて脱水素No.1を作製し、原料のメチルシクロヘキサン(MCH)に1.0%(10,000ppm)のn-ヘプタンを添加した混合溶液を原料に用いた以外は性能試験例1と同様に反応試験を実施して、n-ヘプタンが脱水素触媒の劣化に与える影響を確認した。ここで、n-ヘプタンを用いた理由は、工業水添プロセスによる製品MCH中の不純物に含まれる鎖状炭化水素のうち、直鎖状部分の炭素数が7であるものが最大であり、C8及びC9の直鎖を有する鎖状炭化水素類はほとんど含まれていないからである。結果を表5に示す。
(Performance test example 2)
Using the No. 1 catalyst in the catalyst production example, dehydrogenation No. 1 was prepared again in the same manner as in the performance test example 1, and 1.0% (10,000 ppm) of n-heptane was added to the raw material methylcyclohexane (MCH). A reaction test was carried out in the same manner as in Performance Test Example 1 except that the mixed solution added with was used as a raw material, and the influence of n-heptane on the deterioration of the dehydrogenation catalyst was confirmed. Here, the reason for using n-heptane is the largest among the chain hydrocarbons contained in the impurities in the product MCH by the industrial hydrogenation process, in which the straight chain portion has 7 carbon atoms, and C This is because chain hydrocarbons having a straight chain of 8 and C 9 are hardly contained. The results are shown in Table 5.

Figure 0004907210
Figure 0004907210

表5の結果から明らかなように、触媒性能は200時間の試験継続中に、特に劣化傾向は見られず、n-ヘプタンを添加しない場合の初期劣化の傾向とほぼ同一の傾向であった。また、反応生成物をガスクロマトグラフにて分析した結果において、不均化分解生成物、及び脱水素生成物は検出されないことから、320℃の反応温度においてn-ヘプタンは不活性であり、反応しないことから脱水素触媒の劣化に関与しないことがわかる。   As is apparent from the results in Table 5, the catalyst performance did not show any particular deterioration tendency during the 200-hour test, and showed almost the same tendency as the initial deterioration tendency when n-heptane was not added. Further, since the disproportionation decomposition product and the dehydrogenation product are not detected in the result of analyzing the reaction product by gas chromatography, n-heptane is inactive at the reaction temperature of 320 ° C. and does not react. This shows that it does not participate in the deterioration of the dehydrogenation catalyst.

(性能試験例3)
触媒製造例におけるNo.1の触媒を用いて、性能試験例1と同様に改めて脱水素No.1を作製し、原料のメチルシクロヘキサン(MCH)に1.0%(10,000ppm)のシクロペンタンを添加した混合溶液を原料に用いた以外は性能試験例1と同様に反応試験を実施して、シクロペンタンが脱水素触媒の劣化に与える影響を確認した。結果を表6に示す。
(Performance Test Example 3)
Using the No. 1 catalyst in the catalyst production example, dehydrogenation No. 1 was prepared in the same manner as in the performance test example 1, and 1.0% (10,000 ppm) of cyclopentane was added to the raw material methylcyclohexane (MCH). A reaction test was performed in the same manner as in Performance Test Example 1 except that the added mixed solution was used as a raw material, and the influence of cyclopentane on the deterioration of the dehydrogenation catalyst was confirmed. The results are shown in Table 6.

Figure 0004907210
Figure 0004907210

表6の結果から明らかなように、触媒性能は250時間の試験継続中、特に劣化傾向は認められず、シクロペンタンを添加しない場合の初期劣化とほぼ同一の傾向であった。また、反応生成物をガスクロマトグラフにて分析した結果において、分解生成物、及び脱水素生成物は検出されないことから、320℃の反応温度においてシクロペンタンは不活性であり、反応しないことから脱水素触媒の劣化に関与しないことがわかる。   As is clear from the results in Table 6, the catalyst performance did not show any particular deterioration tendency during the 250-hour test, and was almost the same tendency as the initial deterioration when no cyclopentane was added. Moreover, since the decomposition product and the dehydrogenation product are not detected in the result of analyzing the reaction product by gas chromatography, cyclopentane is inactive at the reaction temperature of 320 ° C. and does not react. It turns out that it does not participate in deterioration of a catalyst.

(性能試験例3)
触媒製造例におけるNo.1の触媒を用いて、性能試験例1と同様に改めて脱水素No.1を作製し、原料のメチルシクロヘキサン(MCH)に1.0%(10,000ppm)のビシクロヘキシルを添加した混合溶液を原料に用いた以外は性能試験例1と同様に反応試験を実施して、2環の重合生成物であるビシクロヘキシルが脱水素触媒の劣化に与える影響を確認した。結果を表7に示す。
(Performance Test Example 3)
Using the No. 1 catalyst in the catalyst production example, dehydrogenation No. 1 was prepared in the same manner as in the performance test example 1, and 1.0% (10,000 ppm) of bicyclohexyl was added to the raw material methylcyclohexane (MCH). A reaction test was performed in the same manner as in Performance Test Example 1 except that the added mixed solution was used as a raw material, and the influence of bicyclohexyl, which is a bicyclic polymerization product, on the deterioration of the dehydrogenation catalyst was confirmed. The results are shown in Table 7.

Figure 0004907210
Figure 0004907210

表7の結果から明らかなように、ビシクロヘキシルを添加した場合の触媒性能は、初期転化率がビシクロヘキシルを添加しない場合に比べて低く96%以下となる。これは、触媒の活性点にビシクロヘキシルが吸着して脱水素するためにMCHの脱水素が阻害されていることによる。また、450時間の試験においてMCH転化率は、95.9%から90.9%に顕著に劣化した。また、反応生成物をガスクロマトグラフにて分析した結果において、ビシクロヘキシルの脱水素生成物であるビフェニルが多量に検出されたほか、ビシクロヘキシルの分解重合生成物と考えられる原料には含まれない重質な複数の成分が痕跡量検出された。320℃の反応温度においてビシクロヘキシルは脱水素反応が進行すると共に、脱水素触媒上で分解重合等の反応により複数の重質成分を生成し、脱水素触媒の被毒を引き起こして、劣化に大きく影響することがわかる。   As is apparent from the results in Table 7, the catalyst performance when bicyclohexyl is added is lower than that when bicyclohexyl is not added and is 96% or less. This is because the dehydrogenation of MCH is hindered because bicyclohexyl is adsorbed on the active site of the catalyst and dehydrogenated. Further, the MCH conversion rate significantly deteriorated from 95.9% to 90.9% in the 450-hour test. In addition, as a result of analyzing the reaction product by gas chromatography, a large amount of biphenyl, which is a dehydrogenation product of bicyclohexyl, was detected, and a heavy component not included in the raw material considered to be a decomposition polymerization product of bicyclohexyl was detected. Trace amounts of several quality components were detected. At a reaction temperature of 320 ° C., bicyclohexyl undergoes a dehydrogenation reaction, and a plurality of heavy components are produced by a reaction such as decomposition polymerization on the dehydrogenation catalyst, which causes poisoning of the dehydrogenation catalyst and greatly deteriorates. You can see that it affects.

(計算例)
代表的な工業水添プロセスによる製品MCHの市販品を2種類入手して、その不純物の同定を行い、これらのうち36成分について蒸留計算を行った。
工業製品MCHの不純物は製造される水添プロセスと条件で大きく影響すると考えられることから、蒸留計算には比較的に不純物が多いA社のMCHと最も不純物が少ないと考えられるB社のMCHの2種類について実施した。
(Calculation example)
Two types of commercial products of product MCH obtained by a typical industrial hydrogenation process were obtained, the impurities were identified, and distillation calculation was performed on 36 of these components.
Since the impurities in the industrial product MCH are considered to have a large influence on the hydrogenation process and conditions to be produced, the MCH of Company A, which has a relatively large amount of impurities, and the MCH of Company B, which has the least amount of impurities, are used in the distillation calculation Two types were carried out.

A社の不純物組成は、B社に比べて不純物濃度が高く、C5〜C7の不純物濃度が4,385ppmであってC8〜C9の不純物が3,223ppmであり、また、反応阻害物質であるC12〜C14の濃度は70ppmである。B社のMCHは、C5〜C7の不純物濃度が95ppmであってC8〜C9の不純物が85ppmであり、また、反応阻害物質であるC12〜C14の濃度は850ppmである。これらの2種類のMCHについて、反応阻害物質であるC12〜C14が蒸留操作で完全に除去される場合の理論段数を求めたところ、A社のMCH組成に対しては2段、B社のMCH組成に対しては4段の結果が得られた。これらのA社のMCHに対して理論段2段で蒸留した場合の組成と、B社のMCHに対して理論段4段で蒸留した場合の各々の蒸留操作後の組成を、蒸留前の原料組成と共に、表8〜表10に示す。 A company impurity composition has a high impurity concentration as compared with Company B, an impurity is 3,223ppm of C 5 impurity concentration -C 7 is a 4,385ppm C 8 ~C 9, also, reaction inhibition the concentration of C 12 -C 14 is a substance is 70 ppm. B's MCH, the impurity concentration of C 5 -C 7 is impurity 85ppm of C 8 -C 9 a 95 ppm, The concentration of C 12 -C 14 which is a reaction inhibitor is 850 ppm. For these two types of MCH, the number of theoretical plates when C 12 to C 14 as reaction inhibitors are completely removed by distillation operation was determined. Four stages of results were obtained for each MCH composition. The composition when the MCH of Company A is distilled in two theoretical plates and the composition after the distillation operation when the MCH of Company B is distilled in four theoretical plates are the raw materials before distillation. It shows to Table 10 with Table 10 with a composition.

Figure 0004907210
Figure 0004907210

Figure 0004907210
Figure 0004907210

Figure 0004907210
Figure 0004907210

表8〜表10から明らかなように、反応阻害物質であるC12〜C14の重合生成物濃度が70ppmのA社のMCHの場合には、理論段数2段の蒸留でC12〜C14成分をほぼ完全に除去することが可能である。また、C12〜C14の重合生成物濃度が800ppm以上あるB社のMCHの場合でも理論段数4段の蒸留操作でほぼ完全に除去することが可能である。更にC12〜C14成分を多く含むMCHの場合は理論段を増やす必要があるが、設備コスト、用役コスト等の観点から好ましくないので、不純物が少ない水添プロダクトが得られるプロセスを選定することが好ましい。 As is apparent from Tables 8 to 10, in the case of MCH of Company A having a polymerization product concentration of C 12 to C 14 that is a reaction inhibitor of 70 ppm, C 12 to C 14 is obtained by distillation with two theoretical plates. It is possible to remove the components almost completely. Further, even in the case of BCH MCH having a C 12 to C 14 polymerization product concentration of 800 ppm or more, it can be almost completely removed by a distillation operation with 4 theoretical plates. Furthermore, in the case of MCH containing a large amount of C 12 to C 14 components, it is necessary to increase the number of theoretical stages, but this is not preferable from the viewpoints of equipment cost, utility cost, etc., so a process capable of obtaining a hydrogenated product with less impurities is selected. It is preferable.

本発明の水素利用の平準化システムは、芳香族化合物等の水素化反応と水素化芳香族化合物等の脱水素反応とを利用する有機ケミカルハイドライド法(OCH法)において、システムの安定的な稼働に最も影響する脱水素触媒の寿命に関する問題点を解決するものであり、水素の貯蔵効率が高く、常温・常圧の液体として水素貯蔵が可能であって潜在的な危険性が少ない等のOCH法の利点を損なうことなく、また、反応装置の構造や制御を複雑化させることなく、OCH法により容易に水素エネルギーの貯蔵輸送を図ることができるシステムを提供するもので、水素エネルギーの利用を図る上で極めて有用なものである。   The leveling system using hydrogen according to the present invention is a stable operation of an organic chemical hydride method (OCH method) using a hydrogenation reaction of an aromatic compound or the like and a dehydrogenation reaction of a hydrogenated aromatic compound or the like. OCH which has a high storage efficiency of hydrogen, can store hydrogen as a liquid at normal temperature and normal pressure, and has low potential danger. It provides a system that can easily store and transport hydrogen energy using the OCH method without compromising the advantages of the method and without complicating the structure and control of the reactor. It is extremely useful in planning.

また、このような水素エネルギーの貯蔵輸送システムにおいて、水素移動媒体循環路中に蒸留装置等の反応阻害物質を分離除去する阻害物質除去装置を設けることにより、容易にこの反応阻害物質を除去することができ、これによって、水素の貯蔵効率が高く、常温・常圧の液体として水素貯蔵が可能であって潜在的な危険性が少ない等の利点を損なうことなく、また、反応装置の構造や制御を複雑化させることなく、OCH法により容易に水素エネルギーの貯蔵輸送を図ることができるだけでなく、脱水素触媒及び水添触媒の長寿命化を図り、長期に亘って安価に運転できる水素エネルギーの貯蔵輸送システムを構築でき、その実用的価値の高いものである。   In addition, in such a hydrogen energy storage and transport system, an inhibitor removal device for separating and removing reaction inhibitors such as a distillation apparatus is provided in the hydrogen transfer medium circulation path so that the reaction inhibitor can be easily removed. As a result, hydrogen storage efficiency is high, hydrogen storage is possible as a liquid at normal temperature and pressure, and there is less potential danger. The structure and control of the reactor are not impaired. The hydrogen energy can be easily stored and transported by the OCH method without complicating the process, and the life of the dehydrogenation catalyst and the hydrogenation catalyst can be extended and the hydrogen energy can be operated at low cost over a long period of time. A storage and transportation system can be constructed, and its practical value is high.

図1は、反応阻害物質の検討対象となる工業水添プロセスによって製造されたメチルシクロヘキサン中の不純物とその生成経路を示した図である。FIG. 1 is a diagram showing impurities in methylcyclohexane produced by an industrial hydrogenation process to be examined for reaction inhibitors and their production paths.

図2は、本発明の有機ケミカルハイドライド法水素貯蔵輸送システムの構成を説明するための構成例のブロック図である。FIG. 2 is a block diagram of a configuration example for explaining the configuration of the organic chemical hydride method hydrogen storage and transport system of the present invention.

図3は、pHスイング法によって調製された特定の物理性状を有するアルミナ担体と細孔分布が制御されていない市販のアルミナ担体とについて測定された水銀圧入法による細孔分布図である。FIG. 3 is a pore distribution diagram by mercury porosimetry measured for an alumina carrier having specific physical properties prepared by the pH swing method and a commercially available alumina carrier whose pore distribution is not controlled.

符号の説明Explanation of symbols

1…水素の貯蔵輸送システム、S2…水素貯蔵システム、S3…水素供給システム、S4…水素製造装置、1…水添反応器(水添反応装置)、1a…反応阻害物質除去装置、1b…水素化芳香族タンクA、1c…回収芳香族タンクA、2…脱水素反応器(脱水素反応装置)、2a…水素化芳香族タンクB、2b…水素分離装置、2c…回収芳香族タンクB、3…水素化芳香族輸送手段、4…回収芳香族輸送手段。 S 1 ... hydrogen storage transportation systems, S 2 ... hydrogen storage systems, S 3 ... hydrogen supply system, S 4 ... hydrogen production device, 1 ... hydrogenation reactor (hydrogenation reactor), 1a ... reaction inhibiting substance removing device 1b ... hydrogenated aromatic tank A, 1c ... recovered aromatic tank A, 2 ... dehydrogenation reactor (dehydrogenation reactor), 2a ... hydrogenated aromatic tank B, 2b ... hydrogen separator, 2c ... recovered aroma Group tank B, 3... Hydrogenated aromatic transportation means, 4... Recovery aromatic transportation means.

Claims (13)

芳香族化合物(水素貯蔵体)の水素化反応を行って水素化芳香族化合物(水素供給体)を製造する水添反応装置を備えた水素貯蔵システムと、得られた水素化芳香族化合物を水素利用場所まで輸送を行う水素化芳香族化合物輸送手段と、輸送された水素化芳香族化合物の脱水素反応により水素及び芳香族化合物を製造する脱水素反応装置を備えた水素供給システムと、回収された芳香族化合物を再び水素貯蔵システムまで輸送する回収芳香族輸送手段を備え、水素により芳香族化合物の水素化反応を行って水素化芳香族化合物を製造し、水素を貯蔵及び/又は移送を行った後に、脱水素反応装置において水素化芳香族化合物の脱水素反応により水素を製造して利用に供する有機ケミカルハイドライド法による水素の貯蔵輸送システムにおいて
前記水素貯蔵体として利用される芳香族化合物が単環芳香族類又は2環芳香族類であると共に、前記脱水素触媒が、表面積150m 2 /g以上、細孔容積0.40cm 3 /g以上、平均細孔径90〜300Å、及び全細孔容積に対して平均細孔径±30Åの細孔が占める割合が50%以上である多孔性γ-アルミナ担体に、白金、パラジウム、ロジウム、イリジウム及びルテニウムから選ばれた少なくとも1種の触媒金属を担持させた触媒であり、
前記システム内には、前記水添反応装置の後段に、システム系内で生成して上記脱水素反応装置に利用される脱水素触媒及び/又は水添装置に利用される水添触媒の被毒物質となって脱水素反応及び/又は水添反応を阻害する反応阻害物質を除去すると共に、このシステム系内の反応阻害物質濃度を100ppm以下に維持する反応阻害物質除去装置が設けられていることを特徴とする水素の貯蔵輸送システム。
Hydrogen storage system equipped with hydrogenation reaction device for producing hydrogenated aromatic compound (hydrogen supplier) by carrying out hydrogenation reaction of aromatic compound (hydrogen store), and hydrogenated aromatic compound obtained as hydrogen A hydrogen supply system comprising a hydrogenated aromatic compound transport means for transporting to a use site, a dehydrogenation reaction apparatus for producing hydrogen and an aromatic compound by a dehydrogenation reaction of the transported hydrogenated aromatic compound, and a recovered The recovered aromatic transport means transports the recovered aromatic compound to the hydrogen storage system again, hydrogenates the aromatic compound with hydrogen to produce the hydrogenated aromatic compound, and stores and / or transfers hydrogen. after the, in the hydrogenation aromatics storage transport system of hydrogen by an organic chemical hydride method provided for use by producing hydrogen by dehydrogenation of the dehydrogenation reactor
The aromatic compound used as the hydrogen storage is a monocyclic aromatic or a bicyclic aromatic, and the dehydrogenation catalyst has a surface area of 150 m 2 / g or more and a pore volume of 0.40 cm 3 / g or more. Further, platinum, palladium, rhodium, iridium and ruthenium are added to a porous γ-alumina support having an average pore diameter of 90 to 300 mm and a ratio of pores having an average pore diameter of ± 30 mm to the total pore volume of 50% or more. A catalyst supporting at least one kind of catalytic metal selected from
Within the system, downstream of the hydrogenation reactor, poisoning of hydrogenation catalyst generated in the system-based is used in the dehydrogenation catalyst and / or hydrogenated apparatus utilized in the dehydrogenation reactor to remove the reaction inhibiting substance inhibiting dehydrogenation and / or hydrogenation reaction I Do with the substance, the reaction inhibiting substance removing device is provided to maintain the reaction inhibiting substance concentration in the system based on 100ppm or less A hydrogen storage and transport system.
水添触媒が、ニッケル、白金、パラジウム、ロジウム、イリジウム、及びルテニウムから選ばれた少なくとも1種の触媒活性金属をアルミナ、シリカアルミナ、及びシリカから選ばれた触媒担体に担持させた水添触媒である請求項1に記載の水素の貯蔵輸送システム。   The hydrogenation catalyst is a hydrogenation catalyst in which at least one catalytically active metal selected from nickel, platinum, palladium, rhodium, iridium, and ruthenium is supported on a catalyst carrier selected from alumina, silica alumina, and silica. The hydrogen storage and transport system according to claim 1. 脱水素触媒が、ニッケル、白金、パラジウム、ロジウム、イリジウム、及びルテニウムから選ばれた少なくとも1種の触媒活性金属をアルミナ、シリカアルミナ、及びシリカから選ばれた触媒担体に担持させた脱水素触媒である請求項1又は2に記載の水素の貯蔵輸送システム。   The dehydrogenation catalyst is a dehydrogenation catalyst in which at least one catalytically active metal selected from nickel, platinum, palladium, rhodium, iridium, and ruthenium is supported on a catalyst carrier selected from alumina, silica alumina, and silica. The hydrogen storage and transport system according to claim 1 or 2. 反応阻害物質除去装置が蒸留装置である請求項1〜3のいずれかに記載の水素の貯蔵輸送システム。 The hydrogen storage and transport system according to any one of claims 1 to 3 , wherein the reaction inhibitor removing device is a distillation device. 蒸留装置が理論段数2〜4段の機能を有する請求項に記載の水素の貯蔵輸送システム。 The hydrogen storage and transport system according to claim 4 , wherein the distillation apparatus has a function of 2 to 4 theoretical plates. 反応阻害物質は、水素貯蔵体として利用される芳香族化合物が単環芳香族類である場合には、6員環化合物の2量体又は3量体以上の重合生成物及び5員環化合物の2量体又は3量体以上の重合生成物であり、また、水素貯蔵体として利用される芳香族化合物が2環芳香族類の場合には、6員環化合物の2量体又は3量体以上の重合生成物及び5員環化合物の2量体又は3量体以上の重合生成物に加えて2環芳香族類の2量体又は3量体以上の重合生成物である請求項1〜5のいずれかに記載の水素の貯蔵輸送システム。 When the aromatic compound used as a hydrogen reservoir is a monocyclic aromatic, the reaction inhibitor is a dimer of a 6-membered ring compound or a polymerization product of a trimer or more and a 5-membered ring compound. A dimer or a trimer or higher polymerization product, and when the aromatic compound used as a hydrogen reservoir is a bicyclic aromatic compound, a dimer or trimer of a 6-membered ring compound In addition to the above-mentioned polymerization product and a dimer of a 5-membered ring compound or a polymerization product of a trimer or more, it is a bicyclic aromatic dimer or a polymerization product of a trimer or more . The hydrogen storage and transport system according to any one of 5 . 脱水素触媒は、多孔性γ-アルミナ担体に、触媒金属及びアルカリ性金属を担持させた触媒である請求項1〜6のいずれかに記載の水素の貯蔵輸送システム。 Dehydrogenation catalyst is a porous γ- alumina support, storage transport system of hydrogen according to claim 1, the catalytic metals and alkaline metals is a catalyst supported. 脱水素触媒は、多孔性γ-アルミナ担体に白金、パラジウム、ロジウム、イリジウム及びルテニウムから選ばれた少なくとも1種の触媒金属化合物の溶液を含浸させる際に、含浸溶液のpH値を1.8〜3.0の間に調整して行い、触媒化後の貴金属類の金属分散度が60%以上である請求項1〜7のいずれかに記載の水素の貯蔵輸送システム。 When the dehydrogenation catalyst impregnates a porous γ-alumina support with a solution of at least one catalytic metal compound selected from platinum, palladium, rhodium, iridium and ruthenium, the pH value of the impregnation solution is 1.8 to The hydrogen storage and transport system according to any one of claims 1 to 7 , wherein the hydrogen dispersibility of the noble metal after catalysis is 60% or more, adjusted to 3.0. 多孔性γ-アルミナ担体が、アルミナヒドロゲル合成時のスラリー水溶液のpH値をアルミナヒドロゲル溶解pH領域とベーマイトゲル沈殿pH領域との間で交互に変動させると共に、少なくともいずれか一方のpH領域から他方のpH領域へのpH変動に際してアルミナヒドロゲル原料物質を添加してアルミナヒドロゲルの結晶を成長させるpHスイング工程を経て得られたものである請求項1〜8のいずれかに記載の水素の貯蔵輸送システム。 The porous γ-alumina support alternately changes the pH value of the aqueous slurry during synthesis of the alumina hydrogel between the alumina hydrogel dissolution pH region and the boehmite gel precipitation pH region, and from at least one of the pH regions to the other. The hydrogen storage and transport system according to any one of claims 1 to 8 , wherein the hydrogen storage and transport system is obtained through a pH swing step in which an alumina hydrogel raw material is added to grow a crystal of alumina hydrogel upon pH change to a pH range. 触媒金属が白金である請求項1〜9のいずれかに記載の水素の貯蔵輸送システム。 Storage transportation system of hydrogen according to claim 1 the catalyst metal is platinum. アルカリ性金属がカリウムである請求項7〜10のいずれかに記載の水素の貯蔵輸送システム。 11. The hydrogen storage and transport system according to claim 7 , wherein the alkaline metal is potassium. 白金の担持量が0.3〜2.0重量%である請求項10又は11に記載の水素の貯蔵輸送システム。 The hydrogen storage and transport system according to claim 10 or 11 , wherein the supported amount of platinum is 0.3 to 2.0% by weight. カリウムの担持量が0.001〜1.0重量%である請求項11又は12に記載の水素の貯蔵輸送システム。 The hydrogen storage and transport system according to claim 11 or 12 , wherein the amount of potassium supported is 0.001 to 1.0% by weight.
JP2006095282A 2006-03-30 2006-03-30 Hydrogen storage and transport system Active JP4907210B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006095282A JP4907210B2 (en) 2006-03-30 2006-03-30 Hydrogen storage and transport system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006095282A JP4907210B2 (en) 2006-03-30 2006-03-30 Hydrogen storage and transport system

Publications (2)

Publication Number Publication Date
JP2007269522A JP2007269522A (en) 2007-10-18
JP4907210B2 true JP4907210B2 (en) 2012-03-28

Family

ID=38672703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006095282A Active JP4907210B2 (en) 2006-03-30 2006-03-30 Hydrogen storage and transport system

Country Status (1)

Country Link
JP (1) JP4907210B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015115101A1 (en) 2014-02-03 2015-08-06 千代田化工建設株式会社 Aromatic compound hydrogenation system and hydrogen storage/transport system equipped with same, and aromatic compound hydrogenation method
US10934164B2 (en) 2017-11-23 2021-03-02 Korea University Research And Business Foundation Liquid hydrogen storage material
US11035045B2 (en) 2014-11-21 2021-06-15 National University Corporation Yokohama National University Apparatus for producing organic hydride and method for producing organic hydride using same

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102105219B (en) * 2008-05-22 2013-07-31 陶氏环球技术有限责任公司 Metallic platinum on silica support catalyst and process for preparing it
JP5243860B2 (en) * 2008-06-27 2013-07-24 Jx日鉱日石エネルギー株式会社 Hydrogen production method
WO2010024975A1 (en) 2008-08-29 2010-03-04 Exxonmobil Chemical Patents Inc. Process for producing phenol
CN102753505A (en) 2010-02-05 2012-10-24 埃克森美孚化学专利公司 Cyclohexanone dehydrogenation catalyst and process
US20120271076A1 (en) 2010-02-05 2012-10-25 Soled Stuart L Iridium-Containing Catalysts, Their Production and Use
WO2011096990A2 (en) 2010-02-05 2011-08-11 Exxonmobil Chemical Patents Inc. Dehydrogenation catalyst and process
JP5737853B2 (en) * 2010-03-29 2015-06-17 千代田化工建設株式会社 Method for producing hydrogen for storage and transportation
CN102958886B (en) 2010-06-25 2015-07-22 埃克森美孚化学专利公司 Dehydrogenation process
WO2012147157A1 (en) * 2011-04-26 2012-11-01 株式会社日立製作所 Energy storage/supply apparatus
JPWO2014054778A1 (en) * 2012-10-04 2016-08-25 Jxエネルギー株式会社 Raw material oil for dehydrogenation system and dehydrogenation system
JP6072491B2 (en) * 2012-10-05 2017-02-01 株式会社日立製作所 Renewable energy storage system
DE102012221809A1 (en) * 2012-11-28 2014-05-28 Bayerische Motoren Werke Aktiengesellschaft Liquid compounds and processes for their use as hydrogen storage
JP6242666B2 (en) * 2013-11-20 2017-12-06 エイディシーテクノロジー株式会社 Hydrogen supply device
EP3323506A4 (en) 2015-07-15 2019-05-08 Furukawa Electric Co. Ltd. Nanocrystal complex catalyst for storing/supplying hydrogen, nanocrystal complex catalyst mixture for storing/supplying hydrogen, and method for supplying hydrogen
JP6757726B2 (en) 2015-07-15 2020-09-23 古河電気工業株式会社 Base-integrated nanocrystalline metal oxide complex-containing catalyst, its manufacturing method, and catalyst parts
JP6320356B2 (en) * 2015-07-21 2018-05-09 株式会社大内海洋コンサルタント Method for using power sailing ship and method for supplying and supplying hydrogen
JP6472100B2 (en) * 2017-10-30 2019-02-20 エイディシーテクノロジー株式会社 Hydrogen supply device
RU2763607C1 (en) * 2021-09-14 2021-12-30 Игорь Анатольевич Мнушкин Bound hydrogen marine transportation system
RU2768354C1 (en) * 2021-09-28 2022-03-23 Игорь Анатольевич Мнушкин Complex for production, storage and transportation of hydrogen
CN114001281A (en) * 2021-09-28 2022-02-01 中国石化工程建设有限公司 Hydrogen long-distance conveying system and combined process
RU2770042C1 (en) * 2021-12-23 2022-04-14 Игорь Анатольевич Мнушкин Marine bound hydrogen transportation system
CN116355650A (en) * 2021-12-28 2023-06-30 中国石油天然气股份有限公司 Organic liquid hydrogen storage material and preparation method thereof
JP2024039107A (en) * 2022-09-09 2024-03-22 千代田化工建設株式会社 Metal catalyst and method for hydrolysis of cyclic compounds using the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3165245B2 (en) * 1992-06-11 2001-05-14 住金ケミカル株式会社 Dehydrogenation method and apparatus
JPH11228456A (en) * 1998-02-16 1999-08-24 Mitsubishi Chemical Corp Co-production of cyclohexanol and cyclohexane
JP2003040601A (en) * 2001-07-27 2003-02-13 Kansai Electric Power Co Inc:The Method for supplying hydrogen
JP4652695B2 (en) * 2004-01-30 2011-03-16 千代田化工建設株式会社 Hydrogenated aromatic dehydrogenation catalyst and method for producing the same
JP2006076955A (en) * 2004-09-10 2006-03-23 Nippon Telegr & Teleph Corp <Ntt> Method for hydrogenation reaction and system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015115101A1 (en) 2014-02-03 2015-08-06 千代田化工建設株式会社 Aromatic compound hydrogenation system and hydrogen storage/transport system equipped with same, and aromatic compound hydrogenation method
US9919986B2 (en) 2014-02-03 2018-03-20 Chiyoda Corporation Hydrogenation system for aromatic compound, hydrogen storage and transportation system equipped with same, and process for hydrogenation of aromatic compound
US11035045B2 (en) 2014-11-21 2021-06-15 National University Corporation Yokohama National University Apparatus for producing organic hydride and method for producing organic hydride using same
US10934164B2 (en) 2017-11-23 2021-03-02 Korea University Research And Business Foundation Liquid hydrogen storage material

Also Published As

Publication number Publication date
JP2007269522A (en) 2007-10-18

Similar Documents

Publication Publication Date Title
JP4907210B2 (en) Hydrogen storage and transport system
EP2598434B1 (en) An improved process for the storage delivery of hydrogen using catalyst
KR100967597B1 (en) Dehydrogenation catalyst composition
JP4652695B2 (en) Hydrogenated aromatic dehydrogenation catalyst and method for producing the same
US20160045899A1 (en) Dehydrogenation catalyst for naphthenic hydrocarbons, method for producing dehydrogenation catalyst for naphthenic hydrocarbons, system for producing hydrogen, and method for producing hydrogen
Furusawa et al. Preparation of Ru/ZrO2 catalysts by NaBH4 reduction and their catalytic activity for NH3 decomposition to produce H2
TWI814286B (en) Hydrogen refueling station and hydrogen generation method
US6498280B1 (en) Catalyst comprising an element from groups 8, 9 or 10 with good accessibility, and its use in a paraffin dehydrogenation process
JP2007076982A (en) Hydrogen production system and power generation system
González-Marcos et al. Use of test reactions for the characterisation of bimetallic Pt-Sn/Al2O3 catalysts
JP2006225169A (en) Hydrogen production apparatus and method
JP2006272324A (en) Catalyst for producing hydrogen and method for producing hydrogen
JP4740564B2 (en) Hydrogen purification method
WO2016158437A1 (en) Dehydrogenation catalyst for hydrocarbons, hydrogen production system, and hydrogen production method
JP5000202B2 (en) Catalyst for producing hydrogen and method for producing hydrogen
JP2016209786A (en) Dehydrogenation catalyst, production system of hydrogen and method for producing hydrogen
KR100305482B1 (en) Catalyst for Dehydrogenation with Macropores
JP7466634B2 (en) Eggshell-type platinum-supported alumina catalyst, its manufacturing method, and its use
CN112237936B (en) Liquid phase dehydrogenation catalyst
WO2022219821A1 (en) Platinum-supporting alumina catalyst, method for producing same, and method for dehydrogenating hydrogenated aromatic compounds using platinum-supporting alumina catalyst
JP2000053978A (en) Synthesis of methane-rich gas from hydrocarbon- containing compound and production of sng or city gas
JP2017081774A (en) Dehydrogenation catalyst, manufacturing method of dehydrogenation catalyst, dehydrogenation reactor, manufacturing method of dehydrogenation reactor, manufacturing system of hydrogen and manufacturing method of hydrogen
WO2021138223A1 (en) High activity reforming catalyst formulation and process for low temperature steam reforming of hydrocarbons to produce hydrogen
JP6268110B2 (en) Process for producing hydrocarbons
CN112521243A (en) Method and system for long-period running toluene-methanol methylation reaction

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4907210

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S303 Written request for registration of pledge or change of pledge

Free format text: JAPANESE INTERMEDIATE CODE: R316303

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S303 Written request for registration of pledge or change of pledge

Free format text: JAPANESE INTERMEDIATE CODE: R316303

S803 Written request for registration of cancellation of provisional registration

Free format text: JAPANESE INTERMEDIATE CODE: R316803

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250