JPWO2014054778A1 - Raw material oil for dehydrogenation system and dehydrogenation system - Google Patents

Raw material oil for dehydrogenation system and dehydrogenation system Download PDF

Info

Publication number
JPWO2014054778A1
JPWO2014054778A1 JP2014539843A JP2014539843A JPWO2014054778A1 JP WO2014054778 A1 JPWO2014054778 A1 JP WO2014054778A1 JP 2014539843 A JP2014539843 A JP 2014539843A JP 2014539843 A JP2014539843 A JP 2014539843A JP WO2014054778 A1 JPWO2014054778 A1 JP WO2014054778A1
Authority
JP
Japan
Prior art keywords
mass
raw material
membered ring
saturated
feedstock
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014539843A
Other languages
Japanese (ja)
Inventor
愛 蓑田
愛 蓑田
瀬川 敦司
敦司 瀬川
佑一朗 平野
佑一朗 平野
正典 廣瀬
正典 廣瀬
壱岐 英
英 壱岐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
JXTG Nippon Oil and Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JXTG Nippon Oil and Energy Corp filed Critical JXTG Nippon Oil and Energy Corp
Publication of JPWO2014054778A1 publication Critical patent/JPWO2014054778A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/22Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds
    • C01B3/24Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons
    • C01B3/26Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons using catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0266Processes for making hydrogen or synthesis gas containing a decomposition step
    • C01B2203/0277Processes for making hydrogen or synthesis gas containing a decomposition step containing a catalytic decomposition step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • C01B2203/1058Nickel catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1252Cyclic or aromatic hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1081Alkanes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/30Aromatics

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

飽和六員環成分を含む脱水素システム用原料油であって、水素化された状態において、シクロヘキサン、メチルシクロヘキサン及びジメチルシクロヘキサンからなる群より選ばれる少なくとも1種の飽和六員環成分を含み、当該原料油全体の質量を基準として、前記飽和六員環成分の二量体の割合が0.3質量%未満である、脱水素システム用原料油が開示される。A feedstock for a dehydrogenation system containing a saturated six-membered ring component, comprising at least one saturated six-membered ring component selected from the group consisting of cyclohexane, methylcyclohexane and dimethylcyclohexane in a hydrogenated state, A feedstock for a dehydrogenation system is disclosed in which the ratio of the dimer of the saturated six-membered ring component is less than 0.3% by mass based on the mass of the entire feedstock.

Description

本発明は、脱水素システム用原料油、及び脱水素システムに関する。   The present invention relates to a feedstock for a dehydrogenation system and a dehydrogenation system.

水素は、石油精製、化学工業などをはじめとしてあらゆる産業分野において広く用いられているが、特に近年、将来のエネルギーとして注目されてきており、燃料電池を中心に水素の利用に関する研究が進められている。   Hydrogen is widely used in various industrial fields including the petroleum refining and chemical industries, but in recent years it has attracted attention as a future energy, and research on the use of hydrogen has been promoted mainly in fuel cells. Yes.

しかし、水素ガスは熱量あたりの体積が大きく、また液化に必要なエネルギーも大きいため、そのまま貯蔵、輸送することは難しいという問題がある。従って、燃料電池自動車のような移動体又は分散電源として燃料電池を用いるために、水素を効率的に輸送及び貯蔵する技術が求められている。   However, hydrogen gas has a problem that it is difficult to store and transport as it is because it has a large volume per calorie and requires a large amount of energy for liquefaction. Therefore, in order to use a fuel cell as a mobile body such as a fuel cell vehicle or a distributed power source, a technology for efficiently transporting and storing hydrogen is required.

水素ガスをコンパクトに運搬する技術として、有機ハイドライドの利用が検討されている。例えば、水素化反応/脱水素反応の対を構成するシクロヘキサン及びデカリンなどの水素化芳香族化合物を、水素の貯蔵・輸送に利用する考え方も提案されている。   The use of organic hydrides is being studied as a technology for transporting hydrogen gas in a compact manner. For example, a concept of utilizing hydrogenated aromatic compounds such as cyclohexane and decalin constituting a hydrogenation / dehydrogenation pair for hydrogen storage / transport has also been proposed.

この概念を利用した水素の輸送・貯蔵システムの実現のためには、水素キャリアの脱水素反応によって効率的に水素を取り出すことが可能な有機ハイドライドを用いた脱水素システム用原料油の開発が不可欠である。従来、脱水素用の原料油としては工業的に生産された高純度シクロヘキサンなどが用いられている。特許文献1、2には、水素化芳香族化合物を用いた脱水素システムが記載されている。   In order to realize a hydrogen transportation and storage system using this concept, it is essential to develop feedstock for dehydrogenation system using organic hydride that can efficiently extract hydrogen by dehydrogenation reaction of hydrogen carrier It is. Conventionally, industrially produced high-purity cyclohexane or the like has been used as a raw material oil for dehydrogenation. Patent Documents 1 and 2 describe a dehydrogenation system using a hydrogenated aromatic compound.

特開2007−169072号公報JP 2007-169072 A 特開2004−196638号公報JP 2004-196638 A

近年、水素の有用性が高まるに伴って、有機ハイドライド型水素ステーションが注目を集めている。この水素ステーションのような比較的小型の脱水素システムにおいては、特殊な装置を用いず、かつエネルギー効率よく高い回収率で原料油より水素を取り出すことが望ましい。   In recent years, organic hydride type hydrogen stations have attracted attention as the usefulness of hydrogen increases. In a relatively small dehydrogenation system such as this hydrogen station, it is desirable to take out hydrogen from the feedstock without using a special device and with high energy efficiency and high recovery rate.

水素の回収効率を高めるためには、高度に純度を高めた水素化芳香族化合物を用いることがある程度有効と考えられる。   In order to increase the recovery efficiency of hydrogen, it is considered effective to some extent to use a highly purified hydrogenated aromatic compound.

しかし、高度に純度を高めた水素化芳香族化合物の使用は一般に経済的に不利である。特に、原料油から水素を回収したときに得られる芳香族化合物を含む油分を水素化して原料油として再利用する場合、水素化芳香族化合物の純度を過度に高めることは現実的でない。一方、純度がそれほど高くない原料油を用いると、長期間の使用により水素回収率が低下し易い傾向がある。   However, the use of highly purified hydrogenated aromatic compounds is generally economically disadvantageous. In particular, when the oil containing the aromatic compound obtained when hydrogen is recovered from the raw material oil is hydrogenated and reused as the raw material oil, it is not practical to excessively increase the purity of the hydrogenated aromatic compound. On the other hand, when a raw material oil that is not so high in purity is used, the hydrogen recovery rate tends to decrease due to long-term use.

そこで、本発明は、飽和六員環成分を含む脱水素システム用原料油に関して、高度に純度を高めた飽和六員環成分を用いることなく、水素回収率の低下を抑制することを目的とする。   Then, this invention aims at suppressing the fall of a hydrogen recovery rate, without using the saturated 6-membered ring component which highly purified about the feedstock for dehydrogenation systems containing a saturated 6-membered ring component. .

本発明は、飽和六員環成分を含む脱水素システム用原料油に関する。本発明に係る原料油は、水素化された状態において、シクロヘキサン、メチルシクロヘキサン及びジメチルシクロヘキサンからなる群より選ばれる少なくとも1種の飽和六員環成分を含む。当該原料油全体の質量を基準として、飽和六員環成分の二量体の合計の割合が0.3質量%未満である。   The present invention relates to a feedstock for a dehydrogenation system containing a saturated six-membered ring component. The feedstock according to the present invention contains at least one saturated six-membered ring component selected from the group consisting of cyclohexane, methylcyclohexane and dimethylcyclohexane in a hydrogenated state. Based on the total mass of the feedstock, the total proportion of the dimers of saturated six-membered ring components is less than 0.3% by mass.

上記本発明に係る原料油によれば、高度に純度を高めた飽和六員環成分を用いることなく、水素回収率の低下を抑制することが可能である。   According to the raw material oil according to the present invention, it is possible to suppress a decrease in the hydrogen recovery rate without using a saturated six-membered ring component having a highly enhanced purity.

上記飽和六員環成分はメチルシクロヘキサンを含んでいてもよい。当該原料油全体の質量を基準として、メチルシクロヘキサンの割合が89.88質量%以上であってもよい。   The saturated six-membered ring component may contain methylcyclohexane. The ratio of methylcyclohexane may be 89.88% by mass or more based on the mass of the whole raw material oil.

本発明に係る原料油は、水素化された状態において、メチルシクロペンタン及びジメチルシクロペンタンからなる群より選ばれる少なくとも1種の飽和五員環成分を更に含んでいてもよい。当該原料油全体の質量を基準として、飽和五員環成分の割合が0.048質量%以上であってもよい。   The feedstock according to the present invention may further contain at least one saturated five-membered ring component selected from the group consisting of methylcyclopentane and dimethylcyclopentane in the hydrogenated state. The ratio of the saturated five-membered ring component may be 0.048% by mass or more based on the mass of the entire raw material oil.

本発明に係る原料油は、水素化された状態において、パラフィンを更に含んでいてもよい。当該原料油全体の質量を基準として、パラフィンの割合が0.28質量%以上であってもよい。   The feedstock according to the present invention may further contain paraffin in the hydrogenated state. The ratio of paraffin may be 0.28% by mass or more based on the mass of the whole raw material oil.

当該原料油全体の質量を基準として、前記飽和六員環成分の割合が94.7質量%以上であってもよい。   The ratio of the saturated six-membered ring component may be 94.7% by mass or more based on the mass of the whole raw material oil.

本発明は、上記脱水素システム用原料油を脱水素化して水素を生成させる脱水素反応器を備える、脱水素システムにも関する。   The present invention also relates to a dehydrogenation system including a dehydrogenation reactor that dehydrogenates the above dehydrogenation system feedstock to produce hydrogen.

本発明に係る原料油によれば、例えば90モル%以上の高い水素回収率を達成することができる。また、本発明によれば、特殊な運転装置及び設備投資を設けることなく、十分効率よく回収率の低下を抑制することにより安定して水素を製造することが可能な脱水素システムを提供することができる。   According to the feed oil according to the present invention, a high hydrogen recovery rate of, for example, 90 mol% or more can be achieved. In addition, according to the present invention, there is provided a dehydrogenation system capable of stably producing hydrogen by suppressing a decrease in the recovery rate sufficiently efficiently without providing a special operating device and capital investment. Can do.

脱水素システムの一実施形態を示す概念図である。It is a conceptual diagram which shows one Embodiment of a dehydrogenation system.

以下、本発明の好適な実施形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。   Hereinafter, preferred embodiments of the present invention will be described in detail. However, the present invention is not limited to the following embodiments.

図1は、脱水素システムの一実施形態を示す概念図である。図1に示す脱水素システムは、飽和六員環成分を有機ハイドライドとして含む、水素化された状態の原料油を脱水素化して水素を生成させる脱水素反応器を備える。この脱水素システムを用いて、有機ハイドライド型水素ステーション、発電システム等を構成することができる。   FIG. 1 is a conceptual diagram showing an embodiment of a dehydrogenation system. The dehydrogenation system shown in FIG. 1 includes a dehydrogenation reactor that dehydrogenates a hydrogenated feedstock containing a saturated six-membered ring component as an organic hydride to generate hydrogen. Using this dehydrogenation system, an organic hydride hydrogen station, a power generation system, and the like can be configured.

脱水素反応器内には、脱水素触媒が配置されている。脱水素反応器内に原料油を供給し、原料油の脱水素により生成した水素が取り出される。脱水素により生成した脱水素化物も回収される。脱水素化物は、不飽和六員環成分を含む。脱水素反応器に加熱ガスを流通させることにより、脱水素反応のための熱が供給される。脱水素触媒は、特に制限されないが、例えば、白金触媒、パラジウム触媒及びニッケル触媒から選ばれる。これら触媒は、アルミナ、シリカ及びチタニア等の担体上に担持されていてもよい。   A dehydrogenation catalyst is disposed in the dehydrogenation reactor. Feed oil is supplied into the dehydrogenation reactor, and hydrogen produced by dehydrogenation of the feed oil is taken out. The dehydrogenated product produced by dehydrogenation is also recovered. The dehydrogenated product contains an unsaturated six-membered ring component. Heat for the dehydrogenation reaction is supplied by circulating the heated gas through the dehydrogenation reactor. The dehydrogenation catalyst is not particularly limited, and is selected from, for example, a platinum catalyst, a palladium catalyst, and a nickel catalyst. These catalysts may be supported on a carrier such as alumina, silica and titania.

本実施形態に係る原料油は、飽和六員環成分を主成分として含む。具体的には、原料油における飽和六員環成分の割合は、原料油全体の質量を基準として通常は90質量%以上99.9質量%以下であり、94.7質量%以上であってもよい。   The feedstock according to this embodiment contains a saturated six-membered ring component as a main component. Specifically, the ratio of the saturated six-membered ring component in the feed oil is usually 90% by mass or more and 99.9% by mass or less, and 94.7% by mass or more based on the total mass of the feed oil. Good.

飽和六員環成分は、1個以上のシクロヘキサン環を有する化合物である。原料油に含まれ得る飽和六員環成分の具体例としては、シクロヘキサン、メチルシクロヘキサン及びジメチルシクロヘキサンが挙げられる。当該原料油全体の質量を基準として、メチルシクロヘキサンの割合は89.88質量%以上であってもよい。   A saturated six-membered ring component is a compound having one or more cyclohexane rings. Specific examples of the saturated six-membered ring component that can be contained in the raw material oil include cyclohexane, methylcyclohexane, and dimethylcyclohexane. The ratio of methylcyclohexane may be 89.88% by mass or more based on the mass of the whole raw material oil.

原料油におけるパラフィンの割合は、原料油全体の質量を基準として、0.28質量%以上であってもよい。   The ratio of paraffin in the raw material oil may be 0.28% by mass or more based on the mass of the entire raw material oil.

水素化された状態の原料油における飽和五員環成分の割合は、過大な設備投資を避けるため、原料油全体の質量を基準として0.048質量%以上であってもよい。この飽和五員環成分は、メチルシクロペンタン及びジメチルシクロペンタンからなる群より選ばれる少なくとも1種の化合物を含んでいてもよい。   In order to avoid excessive capital investment, the ratio of the saturated five-membered ring component in the hydrogenated raw material oil may be 0.048% by mass or more based on the total mass of the raw material oil. The saturated five-membered ring component may contain at least one compound selected from the group consisting of methylcyclopentane and dimethylcyclopentane.

原料油における、飽和六員環成分の二量体の割合は、原料油全体の質量を基準として、好ましくは0.3質量%未満である。また、飽和六員環成分の二量体の割合は、0.27質量%以下又は0.25質量%以下であってもよい。二量体の割合が大きくなると、水素回収率が経時的に低下し易くなる傾向にある。二量体の割合の下限は、0質量%であってもよいが、過大な設備投資を避けるため、0.05質量%以上であってもよい。   The ratio of the dimer of the saturated six-membered ring component in the raw material oil is preferably less than 0.3% by mass based on the total mass of the raw material oil. Moreover, 0.27 mass% or less or 0.25 mass% or less may be sufficient as the ratio of the dimer of a saturated 6-membered ring component. When the proportion of the dimer increases, the hydrogen recovery rate tends to decrease with time. The lower limit of the ratio of the dimer may be 0% by mass, but may be 0.05% by mass or more in order to avoid excessive capital investment.

本実施形態に係る原料油は、不飽和六員環成分を水素化して飽和六員環成分を生成させる工程を含む方法により、製造することができる。水素化の反応条件は、一般的な水素化装置を用いて処理される際の条件でよく、例えば、反応温度が200〜380℃、水素/油比10〜500NL/Lといった条件が好ましい。反応温度が高くなると、六員環成分の二量体の割合が大きくなる傾向がある。   The feedstock according to this embodiment can be produced by a method including a step of hydrogenating an unsaturated six-membered ring component to produce a saturated six-membered ring component. The reaction conditions for the hydrogenation may be the conditions for treatment using a general hydrogenation apparatus. For example, the reaction temperature is preferably 200 to 380 ° C. and the hydrogen / oil ratio is 10 to 500 NL / L. As the reaction temperature increases, the proportion of the dimer of the six-membered ring component tends to increase.

水素化反応において用いられる水素化触媒としては、担体及び該担体に担持された活性金属を有する一般的な触媒を用いることができる。活性金属種としてPt、Pd及びNi等が挙げられる。担体としては無機複合酸化物、及びゼオライトなどの固体酸を含む物質が挙げられる。   As the hydrogenation catalyst used in the hydrogenation reaction, a general catalyst having a support and an active metal supported on the support can be used. Examples of the active metal species include Pt, Pd, and Ni. Examples of the carrier include inorganic composite oxides and substances containing solid acids such as zeolite.

水素化反応の後、必要により蒸留等の精製を行うことで、飽和六員環成分の二量体の合計の割合が0.3質量%未満の原料油を得ることができる。   After the hydrogenation reaction, if necessary, purification such as distillation can be performed to obtain a raw material oil in which the total proportion of dimers of saturated six-membered ring components is less than 0.3% by mass.

原料油中の飽和六員環成分は、飽和六員環成分を含む原料油から水素を回収したときに生成した不飽和六員環成分を水素化して生成した成分を含んでいてもよい。すなわち、当該原料油が、水素の回収のために1回又は2回以上用いられた飽和六員環成分に由来する成分を含む再利用品であってもよい。   The saturated six-membered ring component in the feedstock oil may include a component produced by hydrogenating the unsaturated six-membered ring component produced when hydrogen is recovered from the feedstock oil containing the saturated six-membered ring component. That is, the raw material oil may be a recycled product containing a component derived from a saturated six-membered ring component used once or twice or more for hydrogen recovery.

再利用品としての原料油は、例えば、飽和六員環成分を含む原料油から水素を回収したときに生成した不飽和六員環成分を水素化して飽和六員環成分を生成させる工程を備える方法により、製造することができる。再利用品である原料油と、別途準備したメチルシクロヘキサン等とを組み合わせて、脱水素システム用原料油として用いることもできる。   The raw material oil as a recycled product includes, for example, a step of hydrogenating an unsaturated six-membered ring component generated when hydrogen is recovered from a raw material oil containing a saturated six-membered ring component to generate a saturated six-membered ring component. It can be manufactured by the method. It can also be used as a raw material oil for a dehydrogenation system by combining a raw material oil which is a reusable product and a separately prepared methylcyclohexane or the like.

以下、実施例を挙げて本発明についてさらに具体的に説明する。ただし、本発明はこれら実施例に限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.

実施例1
水素化反応に用いられる一般的なNi触媒を常圧流通式反応試験装置の反応管に充填した。触媒層の中心温度が125℃以下になるように加熱しながら、反応管にトルエンを供給した。生成したガスを冷却により液状物として回収して、表1に示す組成を有する原料油1を得た。
Example 1
A general Ni catalyst used for the hydrogenation reaction was packed in a reaction tube of an atmospheric pressure flow type reaction test apparatus. Toluene was supplied to the reaction tube while heating so that the center temperature of the catalyst layer was 125 ° C. or lower. The generated gas was recovered as a liquid by cooling, and a raw material oil 1 having the composition shown in Table 1 was obtained.

脱水素反応に用いられる一般的なPt触媒を常圧流通式反応試験装置の反応管に充填した。触媒層の中心温度が300〜350℃になるように加熱しながら、反応管に原料油1を連続的に供給した。生成したガスを、冷却により液状物として回収し、ガスクロマトグラフによって分析して回収された水素の量(水素回収率)を測定した。液状物を回収した後、流出ガスの流量を、ガスメーターによって測定した。この実験において、初期(反応開始直後)の水素回収率は95.88%で、反応開始400時間後の原料油1からの水素回収率は93.85%であった。ここでいう水素回収率とは、発生した水素の質量の、原料油から理論的に発生しうる水素の質量に対する割合(百分率)である。以下の実施例及び比較例でも同様である。   A general Pt catalyst used for the dehydrogenation reaction was filled in a reaction tube of an atmospheric pressure flow type reaction test apparatus. The raw material oil 1 was continuously supplied to the reaction tube while heating so that the center temperature of the catalyst layer was 300 to 350 ° C. The generated gas was recovered as a liquid by cooling, and analyzed by gas chromatography to measure the amount of recovered hydrogen (hydrogen recovery rate). After collecting the liquid, the flow rate of the effluent gas was measured with a gas meter. In this experiment, the initial hydrogen recovery rate (immediately after the start of the reaction) was 95.88%, and the hydrogen recovery rate from the feedstock 1 400 hours after the start of the reaction was 93.85%. The hydrogen recovery rate here is the ratio (percentage) of the mass of generated hydrogen to the mass of hydrogen that can theoretically be generated from the feedstock. The same applies to the following examples and comparative examples.

実施例2
水素化反応に用いられる一般的なNi触媒を常圧流通式反応試験装置の反応管に充填した。触媒層の中心温度が150℃以下になるように加熱しながら、反応管にトルエンを供給した。生成したガスを冷却により液状物として回収して、表1に示す組成を有する原料油2を得た。
Example 2
A general Ni catalyst used for the hydrogenation reaction was packed in a reaction tube of an atmospheric pressure flow type reaction test apparatus. Toluene was supplied to the reaction tube while heating so that the center temperature of the catalyst layer was 150 ° C. or lower. The generated gas was recovered as a liquid by cooling, and a raw material oil 2 having the composition shown in Table 1 was obtained.

実施例1と同様の条件で原料油2の脱水素反応を行なったところ、初期水素回収率は95.85%で、反応開始400時間後の水素回収率は93.80%であった。   When the feedstock 2 was dehydrogenated under the same conditions as in Example 1, the initial hydrogen recovery rate was 95.85%, and the hydrogen recovery rate 400 hours after the start of the reaction was 93.80%.

実施例3
水素化反応に用いられる一般的なNi触媒を常圧流通式反応試験装置の反応管に充填した。触媒層の中心温度が175℃以下になるように加熱しながら、反応管にトルエンを供給した。生成したガスを冷却により液状物として回収して、表1に示す組成を有する原料油3を得た。
Example 3
A general Ni catalyst used for the hydrogenation reaction was packed in a reaction tube of an atmospheric pressure flow type reaction test apparatus. Toluene was supplied to the reaction tube while heating so that the center temperature of the catalyst layer was 175 ° C. or lower. The generated gas was recovered as a liquid by cooling, and a raw material oil 3 having the composition shown in Table 1 was obtained.

実施例1と同様の条件で原料油3の脱水素反応を行なったところ、初期水素回収率は95.85%で、反応開始400時間後の水素回収率は93.85%であった。   When the feedstock 3 was dehydrogenated under the same conditions as in Example 1, the initial hydrogen recovery rate was 95.85%, and the hydrogen recovery rate 400 hours after the start of the reaction was 93.85%.

実施例4
水素化反応に用いられる一般的なNi触媒を常圧流通式反応試験装置の反応管に充填した。触媒層の中心温度が200℃以下になるように加熱しながら、反応管にトルエンを供給した。生成したガスを冷却により液状物として回収して、表1に示す組成を有する原料油4を得た。
Example 4
A general Ni catalyst used for the hydrogenation reaction was packed in a reaction tube of an atmospheric pressure flow type reaction test apparatus. Toluene was supplied to the reaction tube while heating so that the center temperature of the catalyst layer was 200 ° C. or lower. The generated gas was recovered as a liquid by cooling, and a raw material oil 4 having the composition shown in Table 1 was obtained.

実施例1と同様の条件で原料油4の脱水素反応を行なったところ、初期水素回収率は91.45%で、反応開始400時間後の水素回収率は89.55%であった。   When the feedstock 4 was dehydrogenated under the same conditions as in Example 1, the initial hydrogen recovery rate was 91.45%, and the hydrogen recovery rate 400 hours after the start of the reaction was 89.55%.

実施例5
水素化反応に用いられる一般的なPt触媒を常圧流通式反応試験装置の反応管に充填した。触媒層の中心温度が200℃以下になるように加熱しながら、0.15モル%の二量体を含むトルエン混合油を反応管に供給した。生成したガスを冷却により液状物として回収して、表1に示す組成を有する原料油5を得た。
Example 5
A general Pt catalyst used for the hydrogenation reaction was packed in a reaction tube of a normal pressure flow type reaction test apparatus. While heating so that the center temperature of the catalyst layer was 200 ° C. or lower, a toluene mixed oil containing 0.15 mol% of a dimer was supplied to the reaction tube. The produced gas was recovered as a liquid by cooling, and a raw material oil 5 having the composition shown in Table 1 was obtained.

実施例1と同様の条件で原料油5の脱水素反応を行なったところ、初期水素回収率は90.91%で、反応開始400時間後の水素回収率は89.02%であった。   When the feedstock 5 was dehydrogenated under the same conditions as in Example 1, the initial hydrogen recovery rate was 90.91%, and the hydrogen recovery rate 400 hours after the start of the reaction was 89.02%.

比較例1
表1に示す組成を有する原料油6を準備した。実施例1と同様の条件で原料油6の脱水素反応を行なったところ、初期水素回収率は86.17%で、反応開始400時間後の水素回収率は82.58%であった。
Comparative Example 1
A feedstock 6 having the composition shown in Table 1 was prepared. When the feedstock 6 was dehydrogenated under the same conditions as in Example 1, the initial hydrogen recovery rate was 86.17%, and the hydrogen recovery rate 400 hours after the start of the reaction was 82.58%.

比較例2
表1に示す組成を有する原料油7を準備した。実施例1と同様の条件で原料油7の脱水素反応を行なったところ、初期水素回収率は96.00%で、反応開始400時間後の水素回収率は89.51%であった。
Comparative Example 2
A feedstock 7 having the composition shown in Table 1 was prepared. When the feedstock 7 was dehydrogenated under the same conditions as in Example 1, the initial hydrogen recovery rate was 96.00%, and the hydrogen recovery rate 400 hours after the start of the reaction was 89.51%.

Figure 2014054778
Figure 2014054778

表に示される各原料油の組成の数値は、原料油の質量を基準とする質量%である。表1において、「飽和六員環成分」の割合は、メチルシクロヘキサン、シクロヘキサン及びジメチルシクロヘキサンの合計の割合である。「飽和五員環成分」の割合は、メチルシクロペンタン及びジメチルシクロペンタンの合計の割合である。   The numerical value of the composition of each raw material oil shown in the table is mass% based on the mass of the raw material oil. In Table 1, the ratio of “saturated six-membered ring component” is the total ratio of methylcyclohexane, cyclohexane and dimethylcyclohexane. The ratio of “saturated five-membered ring component” is the total ratio of methylcyclopentane and dimethylcyclopentane.

表1に示されるように、飽和六員環成分の二量体の割合が0.3質量%未満である各実施例の原料油の場合、90%を超える高い水素回収率が達成されるとともに、水素回収率の低下が小さかった。一方、飽和六員環成分の二量体の割合が0.3質量%を超える各比較例の原料油の場合、水素回収率が反応開始400時間後に大きく低下した。   As shown in Table 1, in the case of the feedstock of each Example in which the proportion of the dimer of the saturated six-membered ring component is less than 0.3% by mass, a high hydrogen recovery rate exceeding 90% is achieved. The decrease in the hydrogen recovery rate was small. On the other hand, in the case of the feedstock of each comparative example in which the ratio of the dimer of the saturated six-membered ring component exceeds 0.3% by mass, the hydrogen recovery rate greatly decreased after 400 hours from the start of the reaction.

実施例6
水素化反応に用いられる一般的なNi触媒を常圧流通式反応試験装置の反応管に充填した。触媒層の中心温度が125℃以下になるように加熱しながら、反応管にトルエンを供給した。生成したガスを冷却により液状物として回収して、飽和六員環成分としてメチルシクロヘキサンが99.78質量%、飽和六員環成分の二量体が0.22質量%の組成を有する原料油8を得た。
Example 6
A general Ni catalyst used for the hydrogenation reaction was packed in a reaction tube of an atmospheric pressure flow type reaction test apparatus. Toluene was supplied to the reaction tube while heating so that the center temperature of the catalyst layer was 125 ° C. or lower. The produced gas is recovered as a liquid by cooling, and a raw material oil 8 having a composition of 99.78% by mass of methylcyclohexane as a saturated six-membered ring component and 0.22% by mass of a dimer of the saturated six-membered ring component. Got.

脱水素反応に用いられるPt−Ce系触媒を常圧流通式反応試験装置の反応管に充填した。触媒層の中心温度が300〜350℃になるように加熱しながら、反応管に原料油8を連続的に供給した。このときの供給量は実施例1の8倍とした。生成したガスを、冷却により液状物として回収し、ガスクロマトグラフによって分析して、メチルシクロヘキサン転化率を求めた。液状物を回収した後、流出ガスの流量を、ガスメーターによって測定した。この実験において、初期(反応開始直後)のメチルシクロヘキサン転化率は37.26%で、反応開始117時間後の原料油8からのメチルシクロヘキサン転化率は36.30%であった。メチルシクロヘキサン転化率の劣化率(メチルシクロヘキサン転化率/初期のメチルシクロヘキサン転化率×100)は97.42%であった。メチルシクロヘキサン転化率の劣化率と水素回収率の劣化率とは同義であることから、原料油8は水素回収率の低下が小さいことが分かった。   A Pt—Ce-based catalyst used for the dehydrogenation reaction was packed in a reaction tube of an atmospheric pressure flow type reaction test apparatus. The raw material oil 8 was continuously supplied to the reaction tube while heating so that the center temperature of the catalyst layer was 300 to 350 ° C. The supply amount at this time was eight times that of Example 1. The generated gas was recovered as a liquid by cooling and analyzed by gas chromatography to determine the methylcyclohexane conversion. After collecting the liquid, the flow rate of the effluent gas was measured with a gas meter. In this experiment, the methylcyclohexane conversion rate in the initial stage (immediately after the start of the reaction) was 37.26%, and the methylcyclohexane conversion rate from the feedstock 8 117 hours after the start of the reaction was 36.30%. The deterioration rate of the methylcyclohexane conversion rate (methylcyclohexane conversion rate / initial methylcyclohexane conversion rate × 100) was 97.42%. Since the deterioration rate of the methylcyclohexane conversion rate and the deterioration rate of the hydrogen recovery rate are synonymous, it was found that the feedstock 8 had a small decrease in the hydrogen recovery rate.

Claims (9)

飽和六員環成分を主成分として含む脱水素システム用原料油において、
水素化された状態において、シクロヘキサン、メチルシクロヘキサン及びジメチルシクロヘキサンからなる群より選ばれる少なくとも1種の飽和六員環成分を含み、
当該原料油全体の質量を基準として、前記飽和六員環成分の二量体の割合が0.3質量%未満である、脱水素システム用原料油。
In the dehydrogenation system feedstock containing a saturated six-membered ring component as the main component,
In the hydrogenated state, comprising at least one saturated six-membered ring component selected from the group consisting of cyclohexane, methylcyclohexane and dimethylcyclohexane,
A raw material oil for a dehydrogenation system, wherein the ratio of the dimer of the saturated six-membered ring component is less than 0.3% by mass based on the mass of the whole raw material oil.
前記飽和六員環成分がメチルシクロヘキサンを含む、請求項1に記載の脱水素システム用原料油。   The feedstock for a dehydrogenation system according to claim 1, wherein the saturated six-membered ring component comprises methylcyclohexane. 当該原料油全体の質量を基準として、前記メチルシクロヘキサンの割合が89.88質量%以上である、請求項2に記載の脱水素システム用原料油。   The feedstock for a dehydrogenation system according to claim 2, wherein the ratio of the methylcyclohexane is 89.88% by mass or more based on the mass of the entire feedstock. 水素化された状態において、メチルシクロペンタン及びジメチルシクロペンタンからなる群より選ばれる少なくとも1種の飽和五員環成分を更に含む、請求項1〜3のいずれか一項に記載の脱水素システム用原料油。   4. The dehydrogenation system according to claim 1, further comprising at least one saturated five-membered ring component selected from the group consisting of methylcyclopentane and dimethylcyclopentane in a hydrogenated state. Raw material oil. 当該原料油全体の質量を基準として、前記飽和五員環成分の割合が0.048質量%以上である、請求項4に記載の脱水素システム用原料油。   The raw material oil for dehydrogenation systems of Claim 4 whose ratio of the said saturated 5-membered ring component is 0.048 mass% or more on the basis of the mass of the said raw material oil whole. 水素化された状態において、パラフィンを更に含む、請求項4に記載の脱水素システム用原料油。   The feedstock for a dehydrogenation system according to claim 4, further comprising paraffin in the hydrogenated state. 当該原料油全体の質量を基準として、前記パラフィンの割合が0.28質量%以上である、請求項6に記載の脱水素システム用原料油。   The feedstock for a dehydrogenation system according to claim 6, wherein a ratio of the paraffin is 0.28% by mass or more based on a mass of the whole feedstock. 当該原料油全体の質量を基準として、前記飽和六員環成分の割合が94.7質量%以上である、請求項1〜7のいずれか一項に記載の脱水素システム用原料油。   The raw material oil for dehydrogenation systems as described in any one of Claims 1-7 whose ratio of the said saturated 6-membered ring component is 94.7 mass% or more on the basis of the mass of the said raw material oil whole. 請求項1〜8のいずれか一項に記載の脱水素システム用原料油を脱水素化して水素を生成させる脱水素反応器を備える、脱水素システム。   A dehydrogenation system provided with the dehydrogenation reactor which dehydrogenates the raw material oil for dehydrogenation systems as described in any one of Claims 1-8, and produces | generates hydrogen.
JP2014539843A 2012-10-04 2013-10-04 Raw material oil for dehydrogenation system and dehydrogenation system Pending JPWO2014054778A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012222219 2012-10-04
JP2012222219 2012-10-04
PCT/JP2013/077067 WO2014054778A1 (en) 2012-10-04 2013-10-04 Raw oil for dehydrogenation systems, and dehydrogenation system

Publications (1)

Publication Number Publication Date
JPWO2014054778A1 true JPWO2014054778A1 (en) 2016-08-25

Family

ID=50435097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014539843A Pending JPWO2014054778A1 (en) 2012-10-04 2013-10-04 Raw material oil for dehydrogenation system and dehydrogenation system

Country Status (2)

Country Link
JP (1) JPWO2014054778A1 (en)
WO (1) WO2014054778A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005211845A (en) * 2004-01-30 2005-08-11 Chiyoda Corp Dehydrogenation catalyst for hydrogenated aromatic compounds and manufacturing method therefor
JP2007169072A (en) * 2005-12-19 2007-07-05 National Institute Of Advanced Industrial & Technology Apparatus and method for producing hydrogen
JP2007269522A (en) * 2006-03-30 2007-10-18 Chiyoda Corp Storage-transport system of hydrogen

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005211845A (en) * 2004-01-30 2005-08-11 Chiyoda Corp Dehydrogenation catalyst for hydrogenated aromatic compounds and manufacturing method therefor
JP2007169072A (en) * 2005-12-19 2007-07-05 National Institute Of Advanced Industrial & Technology Apparatus and method for producing hydrogen
JP2007269522A (en) * 2006-03-30 2007-10-18 Chiyoda Corp Storage-transport system of hydrogen

Also Published As

Publication number Publication date
WO2014054778A1 (en) 2014-04-10

Similar Documents

Publication Publication Date Title
Kalenchuk et al. Dehydrogenation of polycyclic naphthenes on a Pt/C catalyst for hydrogen storage in liquid organic hydrogen carriers
Biniwale et al. Chemical hydrides: a solution to high capacity hydrogen storage and supply
Li et al. Hydrogen storage and release from a new promising Liquid Organic Hydrogen Storage Carrier (LOHC): 2-methylindole
CN111895265B (en) Method for providing high-purity high-pressure hydrogen
Sotoodeh et al. An overview of the kinetics and catalysis of hydrogen storage on organic liquids
JP4801359B2 (en) Hydrogen production method
TW200624416A (en) Dehydrogenation of liquid fuel in microchannel catalytic reactor
WO2012014225A3 (en) An improved process for the storage delivery of hydrogen using catalyst
JP5897811B2 (en) Hybrid hydrogen production and power generation system
Sisakova et al. Novel catalysts for dibenzyltoluene as a potential Liquid Organic Hydrogen Carrier use—A mini-review
CN102745648A (en) Preparation method of catalyst for producing synthetic gas by methane and carbon dioxide reformation
Kiermaier et al. Dehydrogenation of perhydro-N-ethylcarbazole under reduced total pressure
CA2937515C (en) Hydrogenation system for aromatic compound, hydrogen storage and transportation system equipped with same, and process for hydrogenation of aromatic compound
Mahata et al. Highly selective hydrogenation of CC double bond in unsaturated carbonyl compounds over NiC catalyst
Lohr et al. Efficient catalytic greenhouse gas-free hydrogen and aldehyde formation from aqueous alcohol solutions
CN103772207B (en) A kind of nitrobenzene one step catalytic hydrogenation high selectivity is prepared the method for cyclohexylamine
Shi et al. Dehydrogenation of the liquid organic hydrogen carrier perhydrodibenzyltoluene–reaction pathway over Pt/Al 2 O 3
JP2023544666A (en) Hydrogen storage with liquid organic compounds
JP2007039312A (en) Apparatus and method for producing hydrogen
Ashcroft et al. Centralised and Localised Hydrogen Generation by Ammonia Decomposition: A technical review of the ammonia cracking process
JP2006225169A (en) Hydrogen production apparatus and method
WO2014054778A1 (en) Raw oil for dehydrogenation systems, and dehydrogenation system
Li et al. Efficient conversion of carbon dioxide to non-methane light hydrocarbons—Two stage process with intercooler
JP2015168608A (en) Hydrogen production system and method
WO2012124605A1 (en) HYDROGEN PRODUCTION CATALYST CONTAINING Ni3Si-BASED INTERMETALLIC COMPOUND, METHOD FOR ACTIVATING CATALYST, AND HYDROGEN PRODUCTION METHOD AND DEVICE USING CATALYST

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20171121