JP4740564B2 - Hydrogen purification method - Google Patents

Hydrogen purification method Download PDF

Info

Publication number
JP4740564B2
JP4740564B2 JP2004235127A JP2004235127A JP4740564B2 JP 4740564 B2 JP4740564 B2 JP 4740564B2 JP 2004235127 A JP2004235127 A JP 2004235127A JP 2004235127 A JP2004235127 A JP 2004235127A JP 4740564 B2 JP4740564 B2 JP 4740564B2
Authority
JP
Japan
Prior art keywords
hydrogen
reaction
catalyst
dehydrogenation
hydrogenation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004235127A
Other languages
Japanese (ja)
Other versions
JP2006052110A (en
Inventor
佳己 岡田
裕明 西島
信博 恩田
光則 志村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Corp
Original Assignee
Chiyoda Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Corp filed Critical Chiyoda Corp
Priority to JP2004235127A priority Critical patent/JP4740564B2/en
Publication of JP2006052110A publication Critical patent/JP2006052110A/en
Application granted granted Critical
Publication of JP4740564B2 publication Critical patent/JP4740564B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

この発明は、水素を主成分とする水素含有混合ガスから水素以外の不純物ガスを分離除去してより高純度の水素を得る水素の精製方法に係り、特に水素化反応と脱水素反応とを利用して水素含有混合ガスから水素以外の不純物ガスを分離除去する新規な水素の精製方法に関する。   The present invention relates to a method for purifying hydrogen by separating and removing an impurity gas other than hydrogen from a hydrogen-containing mixed gas containing hydrogen as a main component to obtain higher-purity hydrogen, and particularly uses a hydrogenation reaction and a dehydrogenation reaction. The present invention also relates to a novel method for purifying hydrogen that separates and removes impurity gases other than hydrogen from a hydrogen-containing mixed gas.

クリーンな二次エネルギーある水素は、その将来の利用が期待されており、燃料電池をはじめとする水素利用技術の開発は拍車がかかっている状況である。そして、この水素の工業的製法としては、水電解法、コークスのガス化、石炭の完全ガス化、石油類のガス化、天然ガスの変性、コークス炉ガスの変性、石油精製廃ガスの変性、鉄と水蒸気の反応、メタノールやアンモニアの分解、食塩水電解等の方法を始めとして、製鉄所、製油所、エチレンプラント等で発生するオフガスからの水素回収等の多くの方法が知られている。また、これらの方法で製造される水素ガスには、例えばメタン、炭酸ガス、窒素ガス、一酸化炭素等の水素以外の不純物ガスが比較的多量に含まれている場合が多く、水素の用途によっては、このように不純物ガスを比較的多量に含む水素含有混合ガスから水素以外の不純物ガスを分離除去し、より高純度の水素として利用することも行われている。   Hydrogen with clean secondary energy is expected to be used in the future, and the development of hydrogen utilization technologies such as fuel cells is spurring. Industrial production of this hydrogen includes water electrolysis, coke gasification, coal complete gasification, petroleum gasification, natural gas modification, coke oven gas modification, petroleum refining waste gas modification, iron Many methods are known such as hydrogen recovery from off-gas generated in steelworks, refineries, ethylene plants, etc., including the reaction of water and steam, decomposition of methanol and ammonia, and brine electrolysis. In addition, hydrogen gas produced by these methods often contains a relatively large amount of impurity gas other than hydrogen, such as methane, carbon dioxide gas, nitrogen gas, carbon monoxide, etc. In this way, impurity gases other than hydrogen are separated and removed from a hydrogen-containing mixed gas containing a relatively large amount of impurity gas, and used as higher-purity hydrogen.

そして、この水素含有混合ガスから水素以外の不純物ガスを分離除去してより高純度の水素を得る水素の精製方法としては、一般にその目的・用途に応じて、PSA(圧力スイング吸着)、TSA(温度スイング吸着)、深冷分離、膜分離等の方法が採用されており、特に、90mol%を場合によっては99.9mol%を超える高純度の水素を得るためには、ゼオライト、活性炭、シリカゲル、カーボンモレキュラーシーブ等の吸着剤を用いるPSAが最も有効な方法として広く行われている(例えば、川井利長編「圧力スイング吸着技術集成」工業技術会1986年発行)。   And, as a purification method of hydrogen to obtain higher-purity hydrogen by separating and removing impurity gases other than hydrogen from this hydrogen-containing mixed gas, generally, PSA (pressure swing adsorption), TSA ( Methods such as temperature swing adsorption), cryogenic separation, membrane separation, etc. are employed. In particular, in order to obtain high-purity hydrogen in which 90 mol% exceeds 99.9 mol% in some cases, zeolite, activated carbon, silica gel, PSA using an adsorbent such as carbon molecular sieve is widely used as the most effective method (for example, published by Toshicho Kawai, “Pressure Swing Adsorption Technology Assembly” Industrial Technology Association in 1986).

しかしながら、このPSAにおいては、耐圧・耐真空の装置を必要とし、強く吸着した不純物の脱離が難しく、また、水素以外の不純物ガスの全てを吸着剤に吸着させるため、処理量の増大に比例して吸着剤使用量が増加し、装置が大型化するほか、吸着剤の吸着領域と再生領域とを切り換えるための切換弁の規模や耐性に限界が生じ、更に、使用する吸着剤が水素の一部を吸着したり、吸着領域内に水素が不可避的に残留することから、製品水素の回収率が一般に85mol%以下、実際の操業では80mol%以下にならざるを得ないという問題がある。   However, this PSA requires a pressure / vacuum resistant device, and it is difficult to desorb strongly adsorbed impurities, and because all the impurity gases other than hydrogen are adsorbed to the adsorbent, it is proportional to the increase in throughput. As a result, the amount of adsorbent used is increased, the size of the apparatus is increased, and the scale and resistance of the switching valve for switching between the adsorption area and the regeneration area of the adsorbent are limited. There is a problem that the product hydrogen recovery rate is generally 85 mol% or less and 80 mol% or less in actual operation because hydrogen is inevitably left in the adsorption region due to partial adsorption.

川井利長編「圧力スイング吸着技術集成」工業技術会1986年発行Published by Toshicho Kawai, “Pressure Swing Adsorption Technology Collection”, Industrial Technology Association, 1986

そこで、本発明者らは、水素を主成分とする比較的低品位の水素含有混合ガスから水素以外の不純物ガスを分離除去してより高純度の水素を得る水素の精製方法であって、種々の化学プロセス等の工業用用途を始めとして99.99mol%以上の超高純度が要求される燃料電池用途にも利用可能な高純度の水素を容易に得ることができ、しかも、連続処理が可能であって水素含有混合ガスの大量処理に対してもスケールアップにより容易に対応できる水素の精製方法について鋭意検討した結果、水添触媒の存在下に水素含有混合ガスと芳香族化合物とを接触させる芳香族化合物の水素化反応と、この水素化反応で得られた水素化芳香族化合物を脱水素触媒に接触させる水素化芳香族化合物の脱水素反応とを組み合わせて適用する、いわゆる反応分離の方法により、水素含有混合ガスから水素以外の不純物ガスを分離除去してより高純度の水素を得ることができることを見出し、本発明を完成した。   Therefore, the present inventors have provided a method for purifying hydrogen, which obtains higher-purity hydrogen by separating and removing impurity gases other than hydrogen from a relatively low-grade hydrogen-containing mixed gas containing hydrogen as a main component. High-purity hydrogen that can be used in industrial applications such as chemical processes and fuel cell applications that require ultra high purity of 99.99 mol% or more can be easily obtained, and continuous processing is possible. However, as a result of intensive studies on a hydrogen purification method that can easily cope with large-scale treatment of hydrogen-containing mixed gas by scaling up, the hydrogen-containing mixed gas and the aromatic compound are brought into contact in the presence of a hydrogenation catalyst. A so-called reaction component is applied in combination with a hydrogenation reaction of an aromatic compound and a dehydrogenation reaction of a hydrogenated aromatic compound in which the hydrogenated aromatic compound obtained by the hydrogenation reaction is brought into contact with a dehydrogenation catalyst. The present inventors have found that higher purity hydrogen can be obtained by separating and removing impurity gases other than hydrogen from the hydrogen-containing mixed gas by the separation method.

従って、本発明の目的は、操作が容易で高純度の水素を容易に得ることができ、しかも、連続処理が可能であって水素含有混合ガスの大量処理に対してもスケールアップにより容易に対応できる新規な水素の精製方法を提供することにある。   Therefore, the object of the present invention is to easily obtain high-purity hydrogen that is easy to operate, and is capable of continuous processing, and can easily cope with large-scale processing of hydrogen-containing mixed gas by scaling up. An object of the present invention is to provide a novel method for purifying hydrogen.

すなわち、本発明は、水素を主成分とする水素含有混合ガスから水素以外の不純物ガスを分離除去してより高純度の水素を得る水素の精製方法であり、水添触媒の存在下に上記水素含有混合ガスと芳香族化合物とを接触させて上記芳香族化合物を水素化し、この水素化反応で得られた水素化反応混合物を気液分離して水素化芳香族化合物を回収し、次いで脱水素触媒の存在下に上記水素化芳香族化合物を脱水素せしめ、この脱水素反応で発生した水素を回収する水素の精製方法であって、 That is, the present invention is a method for purifying hydrogen that obtains higher-purity hydrogen by separating and removing impurity gases other than hydrogen from a hydrogen-containing mixed gas containing hydrogen as a main component, and in the presence of a hydrogenation catalyst, The mixed gas and the aromatic compound are brought into contact with each other to hydrogenate the aromatic compound, and the hydrogenated reaction mixture obtained by the hydrogenation reaction is gas-liquid separated to recover the hydrogenated aromatic compound, and then dehydrogenated. the hydrogenated aromatic compound in the presence of a catalyst allowed dehydrogenation, purification process der of hydrogen you recover hydrogen generated by dehydrogenation reaction,

記の脱水素触媒として、表面積150m2/g以上、細孔容積0.55cm3/g以上、平均細孔径90〜300Å、及び全細孔容積に対して細孔径90〜300Åの細孔が占める割合(細孔径90〜300Å占有率)が60%以上である多孔性γ−アルミナ担体に、白金、パラジウム、ロジウム、イリジウム及びルテニウムから選ばれた少なくとも1種の触媒金属が10Å以下の粒子サイズで担持された脱水素触媒を用いることを特徴とする。これによって、水素化芳香族化合物の脱水素反応において、290〜350℃という比較的低い反応温度で水素化芳香族化合物の転化率90%以上を達成でき、しかも、98%以上の高い反応選択性を有し、長期に亘って安定的に操業することができる。 As the dehydrogenation catalyst of the above SL, surface area 150 meters 2 / g or more, a pore volume 0.55 cm 3 / g or more, an average pore diameter 90~300A, and pores having a pore diameter 90~300A is the total pore volume Particle size with at least one catalytic metal selected from platinum, palladium, rhodium, iridium and ruthenium being 10 % or less on a porous γ-alumina support having an occupation ratio (pore diameter 90 to 300%) of 60% or more The dehydrogenation catalyst supported by the above is used . As a result, in the dehydrogenation reaction of the hydrogenated aromatic compound, it is possible to achieve a conversion rate of 90% or more of the hydrogenated aromatic compound at a relatively low reaction temperature of 290 to 350 ° C., and a high reaction selectivity of 98% or more. And can be stably operated over a long period of time.

更に、上記の脱水素触媒として前記触媒金属とアルカリ性金属とが担持された脱水素触媒を用いることが好ましく、これによって、水素化芳香族化合物の脱水素反応において、290〜350℃という比較的低い反応温度で水素化芳香族化合物の転化率90%以上を達成でき、しかも、98%以上の高い反応選択性を有し、長期に亘って安定的に操業することができる。 Furthermore, as the upper Symbol dehydrogenation catalyst, it is preferable to use a dehydrogenation catalyst, wherein the catalyst metal and the alkali metal is supported, thereby, in the dehydrogenation reaction of hydrogenated aromatic compounds, referred to two hundred and ninety to three hundred and fifty ° C. The conversion of the hydrogenated aromatic compound can be achieved at a relatively low reaction temperature of 90% or more, and it has a high reaction selectivity of 98% or more and can be stably operated over a long period of time.

本発明において、水素を主成分とする水素含有混合ガスについては、特にその由来について制限されるものではなく、通常その水素含有量が30mol%以上90mol%以下、好ましくは50mol%以上70mol%以下であるのがよい。この水素含有混合ガスの水素含有量が30mol%より低くなると、水素化反応が平衡に規制される反応であることから水素化の平衡転化率が低くなり十分な回収率を得るためのの反応条件が厳しくなるという問題があり、反対に、90mol%より高くなると水素化は平衡的に容易となるが純度の向上幅が低いために経済性を持ちにくくなるという問題が生じる。   In the present invention, the hydrogen-containing mixed gas containing hydrogen as a main component is not particularly limited in its origin, and usually has a hydrogen content of 30 mol% to 90 mol%, preferably 50 mol% to 70 mol%. There should be. When the hydrogen content of this hydrogen-containing mixed gas is lower than 30 mol%, the hydrogenation reaction is a reaction that is regulated by equilibrium, so the equilibrium conversion rate of hydrogenation is lowered and the reaction conditions for obtaining a sufficient recovery rate On the other hand, when it exceeds 90 mol%, hydrogenation becomes easy in equilibrium, but the purity improvement is low, so that there is a problem that it is difficult to have economic efficiency.

この水素含有ガスについては、もし一酸化炭素ガス(CO)や、硫化水素やメルカプタン等の硫黄元素含有ガス等の水添触媒の触媒毒となる触媒毒ガスが含まれている場合には、予めこれらの触媒毒ガスを可及的に分離除去するのがよく、好ましくは10ppm以下、より好ましくは1ppm以下になるまで分離除去するのがよい。このような触媒毒ガスの分離除去操作については、特に制限はなく、触媒毒ガスの種類に応じて、例えば吸着剤による吸着操作、吸収液を用いる化学吸収操作、あるいは酸化亜鉛等を用いる反応除去操作等の方法を採用することができる。   If this hydrogen-containing gas contains a catalyst poison gas that is a catalyst poison of a hydrogenation catalyst, such as carbon monoxide gas (CO) or a sulfur element-containing gas such as hydrogen sulfide or mercaptan, these are included in advance. The catalyst poison gas is preferably separated and removed as much as possible, preferably 10 ppm or less, more preferably 1 ppm or less. Such a catalyst poison gas separation and removal operation is not particularly limited, and depending on the type of the catalyst poison gas, for example, an adsorption operation using an adsorbent, a chemical absorption operation using an absorbing solution, or a reaction removal operation using zinc oxide or the like. This method can be adopted.

また、本発明において、水添触媒の存在下にこの水素含有混合ガスと反応させる芳香族化合物については、それ自体が安定であると共に水素化されて安定な水素化芳香族化合物となるものであれば特に制限されるものではないが、好ましくはベンゼン、トルエン、キシレン等の単環式芳香族化合物や、ナフタレン、テトラリン、メチルナフタレン等の2環式芳香族化合物や、アントラセン等の3環式芳香族化合物等を挙げることができ、より好ましくはベンゼン、トルエン、キシレン等の単環式芳香族化合物や、ナフタレン、テトラリン、メチルナフタレン等の2環式芳香族化合物であり、更に好ましくはベンゼン、トルエン、ナフタレン及びメチルナフタレンであり、これらは単独で用いることができるほか、2種以上の混合物として用いることもできる。   In the present invention, the aromatic compound to be reacted with the hydrogen-containing mixed gas in the presence of a hydrogenation catalyst is not only stable but also hydrogenated to become a stable hydrogenated aromatic compound. Although not particularly limited, it is preferably a monocyclic aromatic compound such as benzene, toluene or xylene, a bicyclic aromatic compound such as naphthalene, tetralin or methylnaphthalene, or a tricyclic aromatic compound such as anthracene. More preferred are monocyclic aromatic compounds such as benzene, toluene and xylene, and bicyclic aromatic compounds such as naphthalene, tetralin and methylnaphthalene, and more preferred are benzene and toluene. , Naphthalene and methylnaphthalene, which can be used alone or as a mixture of two or more It is also possible.

そして、この芳香族化合物の水素化反応に用いる水添触媒としては、従来よりこの種の水素化反応に用いられているものをそのまま使用することができ、従来の水素化芳香族の製造のためには芳香族化合物の種類や製品となる水素化芳香族の仕様に応じて、例えば、アルミナやシリカを担体とし、活性金属として白金(Pt)、パラジウム(Pd)、ニッケル(Ni)等が担持された触媒が好適に用いられる。   And as a hydrogenation catalyst used for the hydrogenation reaction of this aromatic compound, those conventionally used for this type of hydrogenation reaction can be used as they are, for the production of conventional hydrogenated aromatics. Depending on the type of aromatic compound and the specifications of the hydrogenated aromatic product, for example, alumina or silica is used as a carrier, and platinum (Pt), palladium (Pd), nickel (Ni), etc. are supported as active metals. The prepared catalyst is preferably used.

また、水素化反応の反応条件についても、従来のこの種の水素化反応と変わりがなく、例えば芳香族化合物としてベンゼンを用いる場合、通常、反応温度200〜400℃、反応圧力25〜50気圧の条件で行われる。更に、反応方式についても、気相固定床方式でも、また、水添触媒としてラネーニッケルを用いた液相スラリー床方式でもよく、更には、反応を2段階に分けて前段では比較的高温で反応を早く進めると共に後段では温度を下げて平衡転化率付近まで反応を進める等の方式も採用することができる。   Also, the reaction conditions for the hydrogenation reaction are the same as the conventional hydrogenation reaction of this type. For example, when benzene is used as the aromatic compound, the reaction temperature is usually 200 to 400 ° C. and the reaction pressure is 25 to 50 atm. Done on condition. Further, the reaction method may be a gas phase fixed bed method or a liquid phase slurry bed method using Raney nickel as a hydrogenation catalyst. Furthermore, the reaction is divided into two stages and the reaction is performed at a relatively high temperature in the previous stage. It is also possible to adopt a method in which the reaction proceeds to the vicinity of the equilibrium conversion rate by lowering the temperature in the latter stage while proceeding quickly.

本発明において、上記水素化反応で得られた水素化反応混合物は、次に気液分離されて水素化芳香族化合物が回収される。ここで回収される水素化芳香族化合物は、上記芳香族化合物の水素化反応の生成物であり、この芳香族化合物と同様に、それ自体が安定であると共に脱水素されて安定な芳香族化合物となるものであればよく、上記の芳香族化合物に対応するシクロヘキサン、メチルシクロヘキサン、ジメチルシクロヘキサン等の単環式水素化芳香族化合物や、テトラリン、デカリン、メチルデカリン等の2環式水素化芳香族化合物や、テトラデカヒドロアントラセン等の3環式水素化芳香族化合物等を挙げることができる。   In the present invention, the hydrogenation reaction mixture obtained by the hydrogenation reaction is then gas-liquid separated to recover the hydrogenated aromatic compound. The hydrogenated aromatic compound recovered here is the product of the hydrogenation reaction of the aromatic compound, and, like this aromatic compound, is itself stable and dehydrogenated and stable aromatic compound. As well as monocyclic hydrogenated aromatic compounds such as cyclohexane, methylcyclohexane and dimethylcyclohexane corresponding to the above aromatic compounds, and bicyclic hydrogenated aromatic compounds such as tetralin, decalin and methyldecalin. Compounds, and tricyclic hydrogenated aromatic compounds such as tetradecahydroanthracene.

このようにして得られた水素化芳香族化合物は、次に脱水素触媒の存在下に脱水素され、この脱水素反応の際に発生する水素が精製水素として回収される。
この目的で用いられる脱水素触媒についても、従来よりこの種の脱水素反応で用いられているものをそのまま使用することができるが、この水素化芳香族化合物の脱水素反応を、290〜350℃という比較的低い反応温度で、転化率90%以上かつ反応選択性98%以上と極めて効率良く、しかも、長期に亘って安定的に操業するという観点から、好ましくは、次のような脱水素触媒を用いるのがよい。すなわち、水素化芳香族化合物の脱水素触媒としては、表面積150m2/g以上、細孔容積0.55cm3/g以上、平均細孔径90〜300Å、及び全細孔容積に対して細孔径90〜300Åの細孔が占める割合(細孔径90〜300Å占有率)が60%以上である多孔性γ-アルミナ担体に、白金、パラジウム、ロジウム、イリジウム及びルテニウムから選ばれた少なくとも1種の触媒金属が担持された脱水素触媒Aを用いるのがよく、あるいは、表面積150m2/g以上、細孔容積0.55cm3/g以上、平均細孔径90〜300Å、及び全細孔容積に対して細孔径90〜300Åの細孔が占める割合(細孔径90〜300Å占有率)が60%以上である多孔性γ-アルミナ担体に、白金、パラジウム、ロジウム、イリジウム及びルテニウムから選ばれた少なくとも1種の触媒金属とアルカリ性金属とが担持された脱水素触媒Bを用いるのがよい。
The hydrogenated aromatic compound thus obtained is then dehydrogenated in the presence of a dehydrogenation catalyst, and the hydrogen generated during the dehydrogenation reaction is recovered as purified hydrogen.
As the dehydrogenation catalyst used for this purpose, those conventionally used in this type of dehydrogenation reaction can be used as they are, but the dehydrogenation reaction of this hydrogenated aromatic compound is carried out at 290 to 350 ° C. From the viewpoint of extremely efficient operation at a relatively low reaction temperature of 90% or more and a reaction selectivity of 98% or more and stable operation over a long period of time, the following dehydrogenation catalyst is preferable. Should be used. That is, the hydrogenation aromatic compound dehydrogenation catalyst has a surface area of 150 m 2 / g or more, a pore volume of 0.55 cm 3 / g or more, an average pore diameter of 90 to 300 mm, and a pore diameter of 90 to the total pore volume. At least one catalyst metal selected from platinum, palladium, rhodium, iridium and ruthenium on a porous γ-alumina support in which the proportion of pores of ~ 300Å (pore size 90 to 30090) is 60% or more It is preferable to use a dehydrogenation catalyst A on which is supported, or a surface area of 150 m 2 / g or more, a pore volume of 0.55 cm 3 / g or more, an average pore diameter of 90 to 300 mm, and fine with respect to the total pore volume. At least one selected from platinum, palladium, rhodium, iridium and ruthenium is used for the porous γ-alumina carrier in which the proportion of pores having a pore size of 90 to 300 mm (pore size 90 to 300 mm) is 60% or more. It is preferable to use a dehydrogenation catalyst B in which the catalyst metal and the alkali metal supported.

以下に、本発明の水素化芳香族化合物の脱水素反応に用いるのに好適な脱水素触媒A及びBについて詳細に説明する。
先ず、触媒担体として用いる多孔性γ-アルミナ担体は、表面積が150m2/g以上、好ましくは200m2/g以上であり、細孔容積が0.55cm3/g以上、好ましくは0.65cm3/g以上であり、平均細孔径が90Å以上300Å以下、好ましくは100Å以上200Å以下であり、細孔径90〜300Å占有率が60%以上、好ましくは80%以上であるのがよい。この表面積が150m2/g未満であると触媒化後の活性が十分ではなく、細孔容積が0.55cm3/g未満であると活性金属成分の均一な担持が困難である。また、平均細孔径については、90Åより小さいと表面積は大きくなるが、細孔容積が小さくなり、反対に平均細孔径が300Åより大きいと表面積が小さくなり、細孔容積が大きくなるため、これらの相関を総合的に考慮した結果、平均細孔径が90〜300Åが適当である。更に、細孔径90〜300Å占有率が60%未満であると、触媒性能において効果が少なくなる。このような特定の物理性状を有するアルミナ担体を用いる理由は、細孔分布が均一に制御され、細孔の大きさが担体全体を通じて90〜300Åの範囲に集中したアルミナ担体を用いることによって、白金やアルカリ性金属の含浸が均一に行われて分散状態が良好になるためである。
Hereinafter, dehydrogenation catalysts A and B suitable for use in the dehydrogenation reaction of the hydrogenated aromatic compound of the present invention will be described in detail.
First, the porous γ-alumina support used as the catalyst support has a surface area of 150 m 2 / g or more, preferably 200 m 2 / g or more, and a pore volume of 0.55 cm 3 / g or more, preferably 0.65 cm 3. The average pore diameter is 90 to 300 mm, preferably 100 to 200 mm, and the pore diameter 90 to 300 mm occupancy is 60% or more, preferably 80% or more. When the surface area is less than 150 m 2 / g, the activity after the catalyst is not sufficient, and when the pore volume is less than 0.55 cm 3 / g, it is difficult to uniformly carry the active metal component. As for the average pore diameter, when the average pore diameter is smaller than 90 mm, the surface area increases, but the pore volume decreases, and conversely, when the average pore diameter is larger than 300 mm, the surface area decreases and the pore volume increases. As a result of comprehensively considering the correlation, an average pore diameter of 90 to 300 mm is appropriate. Furthermore, if the pore diameter 90-300% occupancy is less than 60%, the effect on the catalyst performance is reduced. The reason for using such an alumina support having specific physical properties is that the distribution of pores is uniformly controlled, and the use of an alumina support in which the pore size is concentrated in the range of 90 to 300 mm throughout the support allows platinum to be used. This is because the dispersion state is improved by uniformly impregnating with alkaline metal.

このような多孔性γ-アルミナ担体は、例えば特公平6-72,005号公報に開示されているように、アルミニウム塩の中和により生成した水酸化アルミニウムのスラリーを濾過洗浄し、得られたアルミナヒドロゲルを脱水乾燥した後、400〜800℃で1〜6時間程度焼成することにより得られるものであり、好ましくはアルミナヒドロゲルのpH値をアルミナヒドロゲル溶解pH領域とベーマイトゲル沈殿pH領域との間で交互に変動させると共に少なくともいずれか一方のpH領域から他方のpH領域へのpH変動に際してアルミナヒドロゲル形成物質を添加してアルミナヒドロゲルの結晶を成長させるpHスイング工程を経て得られたものであるのがよい。このpHスイング工程を経て得られた多孔性γ-アルミナ担体は、細孔分布の均一性に優れ成形後のアルミナ担体ペレットにおいても物理性状のばらつきが少なく、個々のペレット毎の物理性状が安定しているという点で優れている。   Such a porous γ-alumina support is obtained by, for example, filtering and washing a slurry of aluminum hydroxide produced by neutralization of an aluminum salt, as disclosed in Japanese Patent Publication No. 6-72,005. Is obtained by baking at 400 to 800 ° C. for about 1 to 6 hours. Preferably, the pH value of the alumina hydrogel is alternated between the alumina hydrogel dissolution pH region and the boehmite gel precipitation pH region. And a pH swing step of growing an alumina hydrogel crystal by adding an alumina hydrogel-forming substance upon pH change from at least one of the pH ranges to the other pH range. . The porous γ-alumina support obtained through this pH swing process is excellent in the uniformity of pore distribution, there is little variation in physical properties even in the alumina support pellets after molding, and the physical properties of each pellet are stable. It is excellent in that it is.

そして、この多孔性γ-アルミナ担体に担持させる触媒金属は、白金、パラジウム、ロジウム、イリジウム及びルテニウムから選ばれた1種又は2種以上の金属であって、好ましくは白金であり、その担持量については、例えば触媒金属が白金である場合、0.3重量%以上2.0重量%以下、好ましくは0.5重量%以上1.0重量%以下である。この白金の担持量が0.3重量%より少ないと活性が低いという問題があり、反対に、2.0重量%より多くなると白金の粒子径が大きくなり、選択性が低下すると共にシンタリングしやすく劣化し易いという問題が生じる。   The catalyst metal supported on the porous γ-alumina carrier is one or more metals selected from platinum, palladium, rhodium, iridium and ruthenium, preferably platinum, and the supported amount thereof. For example, when the catalyst metal is platinum, it is 0.3 wt% or more and 2.0 wt% or less, preferably 0.5 wt% or more and 1.0 wt% or less. If the supported amount of platinum is less than 0.3% by weight, there is a problem that the activity is low. On the other hand, if it is more than 2.0% by weight, the particle size of platinum becomes large, the selectivity is lowered and sintering is performed. The problem that it is easy to deteriorate arises.

また、白金やパラジウム等の貴金属類をアルミナ担体に含浸担持する場合において、含浸水溶液のpHによって焼成担持後の貴金属類の分散度が異なることがあるが、最適なpHの範囲は1.8〜3.0の範囲である。含浸溶液のpH値が1.8より低い場合には担持後の貴金属類の分散度が低くなり、また、pH値が3.0より高い場合も分散度は低下する。このことは、含浸時のpH値によりアルミナ担体への金属化合物分子の吸着力が異なり、焼成時にシンタリングして粒子成長する際に大きな影響を与えていると推定される。また、貴金属の分散度は、その後のアルカリ金属の担持によって低下する傾向があるが、貴金属の含浸時のpH値を1.8〜3.0の範囲に調整して含浸することにより、アルカリ金属の担持による貴金属分散度の低下を最小限に止めることができる。これらにより、触媒化後の貴金属の分散度を70%以上、より好ましくは80%以上に高分散することが可能である。上記のように分散度が高い貴金属粒子のサイズは10Å以下であり、70%の分散度では7Å以下となる。   In addition, when impregnating and supporting noble metals such as platinum and palladium on an alumina carrier, the degree of dispersion of the noble metals after firing and supporting may vary depending on the pH of the impregnating aqueous solution, but the optimum pH range is 1.8 to The range is 3.0. When the pH value of the impregnating solution is lower than 1.8, the degree of dispersion of the noble metals after loading becomes low, and when the pH value is higher than 3.0, the degree of dispersion also decreases. This is presumed that the adsorption force of the metal compound molecules on the alumina support differs depending on the pH value at the time of impregnation, and has a great influence on sintering during particle growth. Further, the degree of dispersion of the noble metal tends to decrease due to the subsequent supporting of the alkali metal, but by adjusting the pH value during impregnation of the noble metal to the range of 1.8 to 3.0, the alkali metal is dispersed. A decrease in the degree of dispersion of the noble metal due to the loading of can be minimized. As a result, the degree of dispersion of the noble metal after the catalyst can be highly dispersed to 70% or more, more preferably 80% or more. As described above, the size of the noble metal particles having a high degree of dispersion is 10 mm or less, and when the degree of dispersion is 70%, the size is 7 mm or less.

以上のように、特定の多孔性γ-アルミナ担体に特定の触媒金属を担持させて得られた脱水素触媒Aは、それ自体で本発明の水素化芳香族化合物の脱水素反応に用いる脱水素触媒として好適なものであるが、より好ましくは特定の触媒金属と共にアルカリ金属を担持させて脱水素触媒Bとするのがよい。この脱水素触媒Bにおいて、アルカリ金属を担持させる理由は、アルミナ上の酸点をマスキングして、アルミナ表面での分解反応を抑制することが目的である。アルミナ上の残留酸点は貴金属類の担持量によって変動すると考えられ、貴金属類の担持量が多くなるとマスキングに必要なアルカリ金属の量は減少する。従って、白金の高分散状態が実現されていれば、アルカリ金属によるマスキングを実施しない場合でも、ある程度の性能は確保される。しかしながら、水素化芳香族化合物は、脱水素後に回収され再び水素化反応の芳香族化合物として利用するのがよく、少しでも分解によるロスを低減させる必要があり、この観点からアルカリ金属を担持することがより望ましい。   As described above, the dehydrogenation catalyst A obtained by supporting a specific catalytic metal on a specific porous γ-alumina carrier is itself dehydrogenated for the dehydrogenation reaction of the hydrogenated aromatic compound of the present invention. Although it is suitable as a catalyst, it is more preferable to use an alkali metal together with a specific catalyst metal to form the dehydrogenation catalyst B. The reason for supporting the alkali metal in the dehydrogenation catalyst B is to mask the acid sites on the alumina and suppress the decomposition reaction on the alumina surface. The residual acid point on alumina is considered to vary depending on the amount of noble metal supported, and the amount of alkali metal necessary for masking decreases as the amount of noble metal supported increases. Therefore, if a highly dispersed state of platinum is realized, a certain level of performance is ensured even when masking with an alkali metal is not performed. However, hydrogenated aromatic compounds should be recovered after dehydrogenation and used again as aromatic compounds for hydrogenation reactions, and it is necessary to reduce the loss due to decomposition as much as possible. Is more desirable.

更に、多孔性γ-アルミナ担体に担持させるアルカリ性金属は、具体的にはリチウム、ナトリウム、カリウム、ルビジウム、セシウム、ベリリウム、マグネシウム、カルシウム、ストロンチウム及びバリウムを包含する周期律表の第1A族及び第2A族の金属元素であって、好ましくはカリウムであり、その担持量については、例えばアルカリ性金属がカリウムである場合、0.001重量%以上1.0重量%以下、好ましくは0.005重量%以上0.5重量%以下である。このアルカリ性金属の担持量が0.001重量%より少ないと実質的に効果が得られないという問題があり、反対に、1.0重量%より多くなると過剰となって活性が低下するという問題がある。   Further, the alkaline metal supported on the porous γ-alumina support specifically includes Group 1A and Group 1 of the periodic table including lithium, sodium, potassium, rubidium, cesium, beryllium, magnesium, calcium, strontium, and barium. Group 2A metal element, preferably potassium, and the supported amount is, for example, 0.001 wt% or more and 1.0 wt% or less, preferably 0.005 wt% when the alkaline metal is potassium. The content is 0.5% by weight or less. When the amount of the alkaline metal supported is less than 0.001% by weight, there is a problem that the effect is not substantially obtained. On the other hand, when the amount is more than 1.0% by weight, there is a problem that the activity is reduced due to excess. is there.

本発明で用いる脱水素触媒は、上記の多孔性γ-アルミナ担体に上記の触媒金属の溶液を含浸させ、乾燥したのち焼成して触媒金属担持焼成物とし、この触媒金属担持焼成物を還元しない状態でアルカリ性金属の溶液を含浸させて乾燥し、次いで得られたアルカリ性金属担持乾燥物を焼成することなく、直接に最終的な水素還元を実施することにより製造される。
アルカリ金属を担持しない場合は、白金等の触媒金属を含浸、乾燥に続いて空気焼成した後に還元操作を行う通常の方法によって調製することができる。
The dehydrogenation catalyst used in the present invention is obtained by impregnating the above porous γ-alumina carrier with the above catalyst metal solution, drying and calcining it to obtain a catalyst metal-supported calcined product, which is not reduced. It is manufactured by impregnating and drying an alkaline metal solution in the state, and then directly carrying out final hydrogen reduction without firing the obtained dried alkaline metal supported product.
When an alkali metal is not supported, it can be prepared by an ordinary method in which a reduction operation is performed after impregnating a catalyst metal such as platinum and drying followed by air calcination.

ここで、多孔性γ-アルミナ担体に含浸させる触媒金属の化合物の溶液としては、触媒金属の塩化物、臭化物、アンモニウム塩、カルボニル化合物、アミン及びアンミン錯体やアセチルアセトナト錯体等の各種の錯体化合物等を挙げることができ、例えば触媒金属が白金である場合、塩化白金酸、アセチルアセトナト白金、白金酸アンモニウム塩、臭化白金酸、二塩化白金、四塩化白金水和物、二塩化カルボニル白金二塩化物、ジニトロジアミン白金酸塩等の白金化合物が挙げられる。また、触媒金属を担持させる際には、多孔性γ-アルミナ担体に上記の触媒金属の化合物の溶液を含浸させた後、好ましくは50℃以上200℃以下、0.5時間以上48時間以下の条件で乾燥し、次いで、好ましくは350℃以上600℃以下、0.5時間以上48時間以下、より好ましくは350℃以上450℃以下の温度で0.5時間以上5時間以下の条件で焼成するのがよい。   Here, the catalyst metal compound solution impregnated in the porous γ-alumina support includes various complex compounds such as chloride, bromide, ammonium salt, carbonyl compound, amine, ammine complex and acetylacetonato complex of the catalyst metal. For example, when the catalyst metal is platinum, chloroplatinic acid, acetylacetonatoplatinum, platinum platinum ammonium salt, bromoplatinic acid, platinum dichloride, platinum tetrachloride hydrate, carbonyl platinum dichloride Examples thereof include platinum compounds such as dichloride and dinitrodiamine platinate. When the catalyst metal is supported, the porous γ-alumina carrier is impregnated with the solution of the above-mentioned catalyst metal compound, and is preferably 50 ° C. or more and 200 ° C. or less, preferably 0.5 hours or more and 48 hours or less. And then baking is preferably performed at a temperature of 350 ° C. to 600 ° C., 0.5 hour to 48 hours, more preferably 350 ° C. to 450 ° C. for 0.5 hour to 5 hours. It is good.

また、多孔性γ-アルミナ担体に触媒金属を担持させて得られた触媒金属担持焼成物にアルカリ性金属を担持させる際に用いるアルカリ性金属の化合物としては、アルカリ性金属の塩化物、臭化物、ヨウ化物、硝酸塩、硫酸塩、酢酸塩、プロピオン酸塩等を例示でき、好ましくは水溶性のもの及び/又はアセトン等の有機溶媒に可溶のものがよく、例えば、塩化カリウム、臭化カリウム、ヨウ化カリウム、硝酸カリウム、硫酸カリウム、酢酸カリウム、プロピオン酸カリウム、塩化ルビジウム、臭化ルビジウム、ヨウ化ルビジウム、硝酸ルビジウム、硫酸ルビジウム、酢酸ルビジウム、プロピオン酸ルビジウム、塩化リチウム、臭化リチウム、ヨウ化リチウム、硝酸リチウム、硫酸リチウム、酢酸リチウム、プロピオン酸リチウム、塩化セシウム、臭化セシウム、ヨウ化セシウム、硝酸セシウム、硫酸セシウム、酢酸セシウム、プロピオン酸セシウム、塩化マグネシウム、臭化マグネシウム、ヨウ化マグネシウム、硝酸マグネシウム、硫酸マグネシウム、酢酸マグネシウム、プロピオン酸マグネシウム、塩化カルシウム、臭化カルシウム、ヨウ化カルシウム、硝酸カルシウム、硫酸カルシウム、酢酸カルシウム、プロピオン酸カルシウム等を挙げることができる。   In addition, as an alkaline metal compound used when an alkali metal is supported on a catalyst metal-supported fired product obtained by supporting a catalyst metal on a porous γ-alumina carrier, an alkali metal chloride, bromide, iodide, Examples thereof include nitrates, sulfates, acetates, propionates and the like, preferably those which are soluble in water and / or soluble in organic solvents such as acetone, such as potassium chloride, potassium bromide, potassium iodide. , Potassium nitrate, potassium sulfate, potassium acetate, potassium propionate, rubidium chloride, rubidium bromide, rubidium iodide, rubidium nitrate, rubidium sulfate, rubidium acetate, rubidium propionate, lithium chloride, lithium bromide, lithium iodide, lithium nitrate , Lithium sulfate, lithium acetate, lithium propionate, cesium chloride , Cesium bromide, cesium iodide, cesium nitrate, cesium sulfate, cesium acetate, cesium propionate, magnesium chloride, magnesium bromide, magnesium iodide, magnesium nitrate, magnesium sulfate, magnesium acetate, magnesium propionate, calcium chloride, odor Calcium iodide, calcium iodide, calcium nitrate, calcium sulfate, calcium acetate, calcium propionate and the like can be mentioned.

更に、触媒金属担持焼成物にアルカリ性金属を担持させる際には、アルカリ性金属の化合物の溶液を含浸させた後、室温以上200℃以下及び0.5時間以上48時間以内、好ましくは50℃以上150℃以下及び0.5時間以上24時間以内、より好ましくは80℃以上120℃以下及び0.5時間以上5時間以内の乾燥条件で乾燥するのがよい。   Further, when the alkaline metal is supported on the catalyst metal-supported fired product, after impregnating the alkaline metal compound solution, the temperature is from room temperature to 200 ° C. and from 0.5 hour to 48 hours, preferably from 50 ° C. to 150 ° C. It is preferable to dry under the drying conditions of not more than 0 ° C. and not less than 0.5 hours and not more than 24 hours, more preferably not less than 80 ° C. and not more than 120 ° C. and not less than 0.5 hours and not more than 5 hours.

触媒金属担持焼成物にアルカリ性金属を含浸させ、乾燥して得られたアルカリ性金属担持乾燥物については、次に焼成することなく直接に最終的な水素還元を行うが、この水素還元の還元条件は、水素ガスの雰囲気下に、350℃以上600℃以下及び0.5時間以上48時間以下、好ましくは350℃以上550℃以下及び3時間以上24時間以下で行うのがよい。このアルカリ性金属担持乾燥物の水素還元に先駆けて焼成を行うと、活性、選択性及び寿命の触媒性能が低くなるという問題が生じ、また、この水素還元時の温度が350℃未満であると十分に白金が還元されないという問題があり、反対に、600℃を超えると還元時に白金粒子がシンタリングして金属分散度が低下するという問題が生じる。   The alkaline metal-supported dried product obtained by impregnating the catalyst metal-supported fired product with an alkaline metal and drying is directly subjected to final hydrogen reduction without firing, and the reduction conditions for this hydrogen reduction are as follows. In an atmosphere of hydrogen gas, it is preferably performed at 350 ° C. to 600 ° C. and 0.5 hours to 48 hours, preferably 350 ° C. to 550 ° C. and 3 hours to 24 hours. Firing prior to the hydrogen reduction of the alkaline metal-supported dry matter causes a problem that the catalytic performance of activity, selectivity and life is lowered, and it is sufficient that the temperature during the hydrogen reduction is less than 350 ° C. On the other hand, there is a problem that platinum is not reduced. On the other hand, when the temperature exceeds 600 ° C., platinum particles are sintered at the time of reduction, and the metal dispersibility is lowered.

以上のようにして得られた脱水素触媒A及びBは、実験によれば、例えば、反応温度300℃、常圧及び原料溶液のLHSVが2.0h-1の反応条件下において、水素化芳香族化合物の転化率が通常90%以上、好ましくは95%以上に達し、また、その反応選択性が通常98%以上、好ましくは99%以上に達し、290〜350℃という比較的低い反応温度で水素化芳香族化合物の転化率90%以上を達成でき、しかも、98%以上の高い反応選択性を有し、長期に亘って安定的に水素化芳香族化合物の脱水素反応を行うことができる。 According to experiments, the dehydrogenation catalysts A and B obtained as described above are, for example, hydrogenated aroma under the reaction conditions of a reaction temperature of 300 ° C., normal pressure, and LHSV of the raw material solution of 2.0 h −1. The conversion of the group compound is usually 90% or more, preferably 95% or more, and the reaction selectivity is usually 98% or more, preferably 99% or more, at a relatively low reaction temperature of 290 to 350 ° C. The conversion rate of the hydrogenated aromatic compound can be 90% or more, and has a high reaction selectivity of 98% or more, and the hydrogenation aromatic compound can be stably dehydrogenated over a long period of time. .

本発明において、上記の芳香族化合物の水素化反応が発熱反応であって、水素化芳香族化合物の脱水素反応が吸熱反応であるので、好ましくは、1つの反応器内に発熱反応である水素化反応の水素化領域と吸熱反応である脱水素反応の脱水素領域とを組み込み、これら水素化領域と脱水素領域との間で熱の授受が可能となるように構成し、水素化反応で発生した反応熱を脱水素反応の反応熱として利用するのがよい。   In the present invention, since the hydrogenation reaction of the aromatic compound is an exothermic reaction and the dehydrogenation reaction of the hydrogenated aromatic compound is an endothermic reaction, it is preferable that hydrogen that is an exothermic reaction in one reactor. Incorporating the hydrogenation region of the hydrogenation reaction and the dehydrogenation region of the dehydrogenation reaction that is endothermic, and configured so that heat can be transferred between the hydrogenation region and the dehydrogenation region, the hydrogenation reaction The generated reaction heat is preferably used as the reaction heat for the dehydrogenation reaction.

具体的には、例えば、反応器を二重管構造のように構成し、発熱反応である水添反応を吸熱反応である脱水素反応より高い温度で操作することにより、水添反応と脱水素反応との間で熱交換ができるようにしてもよい。   Specifically, for example, by configuring the reactor like a double tube structure and operating the hydrogenation reaction, which is an exothermic reaction, at a higher temperature than the dehydrogenation reaction, which is an endothermic reaction, the hydrogenation reaction and dehydrogenation are performed. Heat exchange with the reaction may be performed.

本発明において、上記水素化芳香族化合物の脱水素反応で得られた脱水素反応混合物は気液分離され、この脱水素反応で生成した水素ガスが回収される。この脱水素反応混合物を気液分離して回収された水素ガス(一次回収水素ガス)は、通常その水素濃度が90mol%以上に達しており、また、不純物ガスとしては例えばメタンガスや炭酸ガス等の元々の水素源として使用した混合ガスに水素以外の成分として含有されていたガスと反応分離に用いた水素化芳香族化合物及び/又は芳香族化合物の蒸気等を含んでいる。   In the present invention, the dehydrogenation reaction mixture obtained by the dehydrogenation reaction of the hydrogenated aromatic compound is gas-liquid separated, and the hydrogen gas produced by the dehydrogenation reaction is recovered. Hydrogen gas recovered by gas-liquid separation of this dehydrogenation reaction mixture (primary recovered hydrogen gas) usually has a hydrogen concentration of 90 mol% or more, and examples of impurity gases include methane gas and carbon dioxide gas. The mixed gas used as the original hydrogen source contains the gas contained as a component other than hydrogen, the hydrogenated aromatic compound used for the reaction separation, and / or the vapor of the aromatic compound.

この一次回収水素ガスは、その水素濃度が90mol%以上にまで高められるため、例えば製油所におけるナフサの水素化改質等の用途にはそのまま製品水素ガスとして用いることもできる。回収水素の純度を更に向上させる手段の一つとして、加圧して気液分離操作を行う方法が挙げられる。これは加圧によって蒸気圧分存在する芳香族類等の量が減少するためである。一般的には回収水素に圧力を持たせて利用することが多いと考えられるので、その圧力に加圧して気液分離することにより水素の純度を向上させ、その圧力を維持したまま利用することも経済的な観点から良い方法である。すなわち、脱水素反応を出た成分の水素純度は、回収水素を利用する圧力条件と利用に差し支えない水素純度の両面から経済的な条件を選択することができる。しかしながら、燃料電池等の用途に用いるためには水素濃度99.99mol%以上の純度が要求される。このような高純度水素を製造する場合は、単に加圧するだけでは非常な高圧を必要とするので、加圧下の気液分離ばかりではなく、吸着カラム等を併せて用いることが有効である。また、吸着操作の他には吸収操作を挙げることができる。これらの操作を組み合わせる場合においても、本発明に代えてPSA等によって水素精製を行う場合と比較すると、既に不純物量が非常に少なくなっているので、飽和吸着あるいは飽和吸収量に至るまでの時間を長くとることができ、それだけ使用する吸着剤の量が少量で済み、スケールアップも容易となる。   Since this primary recovered hydrogen gas has a hydrogen concentration increased to 90 mol% or more, it can be used as it is as a product hydrogen gas for applications such as naphtha hydrogen reforming in refineries. One of the means for further improving the purity of the recovered hydrogen is a method of performing gas-liquid separation operation by applying pressure. This is because the amount of aromatics or the like present in the vapor pressure is reduced by pressurization. In general, it is considered that the recovered hydrogen is often used under pressure, so the hydrogen purity is improved by gas-liquid separation by pressurizing the pressure, and the pressure is maintained while maintaining the pressure. Is also a good method from an economic point of view. In other words, the hydrogen purity of the component that has undergone the dehydrogenation reaction can be selected economically from both the pressure condition using the recovered hydrogen and the hydrogen purity that can be used. However, for use in applications such as fuel cells, a purity with a hydrogen concentration of 99.99 mol% or more is required. When such high-purity hydrogen is produced, it is effective to use not only gas-liquid separation under pressure but also an adsorption column or the like because only high pressure is required to produce a high-purity hydrogen. In addition to the adsorption operation, an absorption operation can be exemplified. Even when these operations are combined, the amount of impurities is already very small compared to the case where hydrogen purification is performed by PSA or the like instead of the present invention, so the time until saturation adsorption or saturation absorption is reached. It can be taken for a long time, and the amount of adsorbent to be used is small, and scale-up is easy.

本発明によれば、水素を主成分とする比較的低品位の水素含有混合ガスに、芳香族化合物の水素化反応と水素化芳香族化合物の脱水素反応とからなる反応分離の方法を適用して水素の精製を行うので、水素以外の不純物ガスを比較的簡単な操作で、かつ、効率良く分離除去することができ、回収される水素ガス中の不純物も水素化芳香族化合物の脱水素反応に伴う特定な成分に限られるので更に精製して高純度化することが極めて容易であり、種々の化学プロセス等の工業用用途を始めとして99.99mol%以上の超高純度が要求される燃料電池用途等にも利用可能な高純度の水素を容易に得ることができ、加えて、連続処理が可能であって水素含有混合ガスの大量処理に対してもスケールアップにより容易に対応できる。   According to the present invention, a reaction separation method comprising a hydrogenation reaction of an aromatic compound and a dehydrogenation reaction of a hydrogenated aromatic compound is applied to a relatively low-grade hydrogen-containing mixed gas containing hydrogen as a main component. Since hydrogen is purified, impurity gases other than hydrogen can be separated and removed efficiently with relatively simple operations, and impurities in the recovered hydrogen gas can also be dehydrogenated from hydrogenated aromatic compounds. Because it is limited to the specific components accompanying the fuel, it is extremely easy to further purify and purify, and fuel that requires ultra high purity of 99.99 mol% or more including industrial uses such as various chemical processes. High-purity hydrogen that can also be used for battery applications and the like can be easily obtained. In addition, continuous processing is possible, and large-scale treatment of a hydrogen-containing mixed gas can be easily handled by scaling up.

以下、添付図面に示すフローシートに基づいて、各操作の平衡計算値を使用して本発明の実施の形態を具体的に説明する。
図1において、水素化反応を行う水添反応器1には水素(HYD)67mol%及びメタン(MET)33mol%に調整された水素含有混合ガスと芳香族化合物としてトルエン(TOL)60mol%とを含む流れAを供給し、この水添反応器1で水添触媒の存在下に温度330℃、圧力75kg/cm2Aの条件でトルエンの水素化反応を行う。このときの水素の平衡転化率は95.4mol%である。
Hereinafter, based on the flow sheet shown in the accompanying drawings, an embodiment of the present invention will be specifically described using the calculated equilibrium value of each operation.
In FIG. 1, a hydrogenation reactor 1 for performing a hydrogenation reaction contains a hydrogen-containing mixed gas adjusted to 67 mol% hydrogen (HYD) and 33 mol% methane (MET) and 60 mol% toluene (TOL) as an aromatic compound. In the hydrogenation reactor 1, a hydrogenation reaction of toluene is performed in the presence of a hydrogenation catalyst under the conditions of a temperature of 330 ° C. and a pressure of 75 kg / cm 2 A. At this time, the equilibrium conversion rate of hydrogen is 95.4 mol%.

次に、上記水添反応器1から抜き出された水素化反応混合物(流れB)を気液分離器2に導入し、常圧下に気液分離してオフガス(流れC)を分離すると共に、主としてメチルシクロヘキサン(MCH)と未反応トルエンとからなり、溶解分として4×10−3mol%の水素と4×10−5mol%のメタンとを含む水素化液体成分(流れD)を回収する。 Next, the hydrogenation reaction mixture (stream B) extracted from the hydrogenation reactor 1 is introduced into the gas-liquid separator 2, and gas-liquid separation is performed under normal pressure to separate off-gas (stream C). A hydrogenated liquid component (stream D) mainly composed of methylcyclohexane (MCH) and unreacted toluene and containing 4 × 10 −3 mol% hydrogen and 4 × 10 −5 mol% methane as a dissolved component is recovered. .

この水素化液体成分(流れD)については、予熱器3で300℃まで加熱し、高温の水素化液体成分(流れE)として脱水素反応器4に導入し、温度300℃、常圧の条件下に上記脱水素反応器4内に充填された脱水素触媒と接触させ、メチルシクロヘキサンの脱水素反応を行った。このときのメチルシクロヘキサンの平衡転化率は96.4mol%であり、水添された水素の転化率の89.2mol%に相当し、また、この脱水素反応器4の出口での水素回収率は85.2mol%である。   About this hydrogenated liquid component (flow D), it heats to 300 degreeC with the preheater 3, introduce | transduces into a dehydrogenation reactor 4 as a high temperature hydrogenated liquid component (stream E), the conditions of temperature 300 degreeC and normal pressure The dehydrogenation catalyst of the above-mentioned dehydrogenation reactor 4 was made to contact below and the dehydrogenation catalyst of the methylcyclohexane was contacted. The equilibrium conversion rate of methylcyclohexane at this time is 96.4 mol%, corresponding to 89.2 mol% of the hydrogenated hydrogen conversion rate, and the hydrogen recovery rate at the outlet of the dehydrogenation reactor 4 is It is 85.2 mol%.

上記脱水素反応器4から抜き出された脱水素反応混合物(流れF)は、気液分離器5に導入し、30℃、常圧の条件で気液分離して不純物(流れH)を分離すると共に、一次回収水素ガス(流れG)を得る。
得られた一次回収水素ガス(流れG)は、その水素純度が92.7mol%であり、不純物として蒸気圧分のトルエン6.7mol%とメタン0.37mol%が含まれている。
The dehydrogenation reaction mixture (stream F) extracted from the dehydrogenation reactor 4 is introduced into the gas-liquid separator 5 and separated into impurities (stream H) by gas-liquid separation at 30 ° C. and atmospheric pressure. At the same time, primary recovered hydrogen gas (flow G) is obtained.
The obtained primary recovered hydrogen gas (stream G) has a hydrogen purity of 92.7 mol%, and contains 6.7 mol% of toluene for vapor pressure and 0.37 mol% of methane as impurities.

このようにして得られた一次回収水素ガス(流れG)を加圧による気液分離によって純度を更に向上させる場合を、10kg/cm2(絶対圧力0.981MPa)、20kg/cm2(絶対圧1.962MPa)、又は50kg/cm2(絶対圧力4.905MPa)(kg/cm2Aは絶対圧力を示す。)に加圧した条件で実施した例を用いて説明する。一次回収水素ガス(流れG)を10気圧昇圧機6を介して気液分離器7に導入し、また、20気圧昇圧機8を介して気液分離器9に導入し、更に、50気圧昇圧機10を介して気液分離器11に導入し、それぞれ30℃で、10kg/cm2A、20kg/cm2A、又は50kg/cm2Aの条件に加圧して気液分離し、不純物(流れJ、流れL、又は流れN)を分離すると共に、精製水素ガス(流れI、流れK、又は流れM)を得る。 When the purity of the primary recovered hydrogen gas (flow G) thus obtained is further improved by gas-liquid separation by pressurization, 10 kg / cm 2 A (absolute pressure 0.981 MPa) , 20 kg / cm 2 A ( Absolute pressure 1.962 MPa) or 50 kg / cm 2 A (absolute pressure 4.905 MPa) (kg / cm 2 A indicates absolute pressure) will be used for the description. Primary recovered hydrogen gas (flow G) is introduced into the gas-liquid separator 7 through the 10-atmospheric pressure booster 6, and is introduced into the gas-liquid separator 9 through the 20-atmospheric pressure booster 8. It is introduced into the gas-liquid separator 11 through the machine 10, and is pressurized at 30 ° C. under the conditions of 10 kg / cm 2 A, 20 kg / cm 2 A, or 50 kg / cm 2 A, respectively. Stream J, stream L, or stream N) is separated and purified hydrogen gas (stream I, stream K, or stream M) is obtained.

各加圧下気液分離によって得られた精製水素ガス(流れI、流れK、又は流れM)は、それぞれその水素純度が98.9mol%(流れI)、99.2mol%(流れK)、及び99.4mol%(流れM)であり、水素回収率はいずれの場合も85.1mol%である。
以下に、この実施形態における各流れA〜流れNの温度(℃)、圧力(kg/cm2A)、質量流量(kg/h)、モル組成(mol%)及びモル流量(kgmol/h)を表1にまとめて示す。
Purified hydrogen gas (stream I, stream K, or stream M) obtained by gas-liquid separation under pressure has a hydrogen purity of 98.9 mol% (stream I), 99.2 mol% (stream K), and 99.4 mol% (stream M) and the hydrogen recovery is 85.1 mol% in all cases.
Below, the temperature (° C.), pressure (kg / cm 2 A), mass flow rate (kg / h), molar composition (mol%) and molar flow rate (kgmol / h) of each flow A to flow N in this embodiment Are summarized in Table 1.

Figure 0004740564
Figure 0004740564

上記の図1のフローシートによる平衡計算値に対して、実際の触媒を用いて妥当な反応成績が得られることを以下の実施例により説明する。
〔水素化反応〕
反応管断面の中心に外形1/8インチの熱電対用保護管を備えた内径12.6mmφ×300mmの大きさのステンレス製反応管内に、水添触媒として市販のPt(0.5wt%)/Al2O3触媒10ccを、触媒層の中心が反応管の長さ方向の中心に位置するように充填し、更にこの触媒層の上側に予熱層として1mmφの球状α−アルミナビーズ10ccを充填し、水素化反応の加圧流通式水素化反応試験装置(水添反応器)とした。
The following example demonstrates that a reasonable reaction result can be obtained using an actual catalyst with respect to the equilibrium calculated value by the flow sheet in FIG.
(Hydrogenation reaction)
A commercially available Pt (0.5 wt%) / Al as a hydrogenation catalyst is placed in a stainless steel reaction tube with an inner diameter of 12.6 mmφ x 300 mm equipped with a 1 / 8-inch thermocouple protection tube at the center of the reaction tube cross section. 2 O 3 catalyst 10 cc is packed so that the center of the catalyst layer is located in the center of the length direction of the reaction tube, and further 1 mmφ spherical α-alumina beads 10 cc are packed as a preheating layer above the catalyst layer, A pressurized flow type hydrogenation reaction test apparatus (hydrogenation reactor) for the hydrogenation reaction was used.

この水添反応器の触媒層を圧力75kg/cm2Aの水素気流下で300℃まで昇温させ、水素67mol%及びメタン33mol%の組成を有する水素含有混合ガス7,000Ncc/hとトルエン20Ncc/h(LHSV=2.0h-1)とを、トルエンと混合ガスとのモル比(トルエン/混合ガス)60:100を維持しながら、上記触媒層に供給した。このとき、同時に昇温用の水素気流の供給を止めた。水素化反応の進行による発熱によって触媒層の温度が上昇するが、昇温がみられなくなったところで触媒層を330℃まで昇温させ、反応開始とした。 The catalyst layer of this hydrogenation reactor was heated to 300 ° C. in a hydrogen stream at a pressure of 75 kg / cm 2 A, and a hydrogen-containing mixed gas having a composition of 67 mol% of hydrogen and 33 mol% of methane and 7,000 Ncc / h of toluene and 20 Ncc of toluene. / h (LHSV = 2.0 h −1 ) was supplied to the catalyst layer while maintaining a molar ratio of toluene and mixed gas (toluene / mixed gas) of 60: 100. At this time, the supply of the hydrogen flow for temperature increase was stopped at the same time. Although the temperature of the catalyst layer increased due to heat generation due to the progress of the hydrogenation reaction, the temperature of the catalyst layer was raised to 330 ° C. when the temperature increase was not observed, and the reaction was started.

1時間経過後に反応管出口留分を気液分離器で分離して水素化液体成分をサンプリングし、ガスクロマトグラフによってトルエンとメチルシクロヘキサンを定量したところ、トルエンのメチルシクロヘキサンへの転化率は34mol%であり、水素の転化率に換算すると、水素含有混合ガス中の水素の転化率は92mol%であった。この水素化液体成分の組成は、トルエンが65.01mol%であってメチルシクロヘキサンが34.59mol%であった。   After 1 hour, the reaction tube outlet fraction was separated with a gas-liquid separator, the hydrogenated liquid component was sampled, and toluene and methylcyclohexane were quantified by gas chromatography. The conversion of toluene to methylcyclohexane was 34 mol%. In terms of the hydrogen conversion rate, the hydrogen conversion rate in the hydrogen-containing mixed gas was 92 mol%. The composition of this hydrogenated liquid component was 65.01 mol% toluene and 34.59 mol% methylcyclohexane.

〔多孔性γ-アルミナ担体の調製〕
特公平6-72,005号公報中の実施例1に記載されるようにして、γーアルミナ担体を製造した。この方法のあらましを述べると、熱希硫酸中に激しく撹拌しながら瞬時にアルミン酸ソーダ水溶液を加えることにより水酸化アルミニウムスラリーの懸濁液(pH10)を得、これを種子水酸化アルミニウムとして、撹拌を続けながら熱希硫酸とアルミン酸ソーダ水溶液を交互に一定時間おいて加える操作を繰り返し、ろ過洗浄ケーキを得、これを押し出し成形して乾燥した後、500℃で3時間焼成するというものである。
(Preparation of porous γ-alumina support)
A γ-alumina support was produced as described in Example 1 of JP-B-6-72,005. The outline of this method is as follows. Aqueous sodium aluminate aqueous solution is added instantaneously with vigorous stirring in hot dilute sulfuric acid to obtain an aluminum hydroxide slurry suspension (pH 10), which is used as seed aluminum hydroxide and stirred. The operation of adding hot dilute sulfuric acid and sodium aluminate aqueous solution alternately for a certain time while repeating the above is repeated to obtain a filter washed cake, which is extruded and dried, and then baked at 500 ° C. for 3 hours. .

このようなpHスイングの操作(pHスイング法)によって得られた多孔質γ-アルミナ担体の性状は、平均細孔径が119Å、細孔容積が0.713cm3/g、表面積が240m2/g、及び、全細孔容積に占める90〜300Åの細孔の割合が90vol%であった。 The properties of the porous γ-alumina support obtained by such pH swing operation (pH swing method) are as follows: the average pore diameter is 119 mm, the pore volume is 0.713 cm 3 / g, the surface area is 240 m 2 / g, And the ratio of the pores of 90 to 300 mm in the total pore volume was 90 vol%.

〔脱水素触媒の調製〕
上記のように調製した多孔性γ-アルミナ担体20gに、pH値が2.0になるように調製した0.4wt%-塩化白金酸水溶液79gを添加し、3時間放置して含浸させた後、デカンテーションにより水を除去し、次いで120℃で3時間乾燥させてからマッフル炉により空気流通下に400℃で3時間焼成した。
(Preparation of dehydrogenation catalyst)
To 20 g of the porous γ-alumina carrier prepared as described above, 79 g of 0.4 wt% -chloroplatinic acid aqueous solution prepared so as to have a pH value of 2.0 was added, and the mixture was allowed to stand for 3 hours for impregnation. The water was removed by decantation, then dried at 120 ° C. for 3 hours, and then calcined at 400 ° C. for 3 hours in an air stream in a muffle furnace.

得られた焼成物をデシケーター中で常温まで冷却した後、これに0.52wt%-硝酸カリウム水溶液10gを添加し、3時間放置して含浸せしめ、次いでエバポレーターにより水分を除去した後、120℃で3時間乾燥させ、水素流通下に400℃で15時間還元し、脱水素触媒を調製した。この脱水素触媒は、その白金の担持量が0.6重量%であって、カリウムの担持量が0.1重量%であった。   The obtained fired product was cooled to room temperature in a desiccator, then added with 10 g of a 0.52 wt% -potassium nitrate aqueous solution, allowed to stand for 3 hours and then impregnated, and then water was removed by an evaporator, and then at 120 ° C. for 3 hours. The mixture was dried and reduced at 400 ° C. for 15 hours under a hydrogen flow to prepare a dehydrogenation catalyst. This dehydrogenation catalyst had a platinum loading of 0.6% by weight and a potassium loading of 0.1% by weight.

このようにして得られた脱水素触媒について、全自動触媒ガス吸着量測定装置(大倉理研社製:R6015)を用いてCOのパルス吸着法により、白金の分散度と粒子径とを測定した。すなわち、白金の格子定数面積a2に対し、COが1分子吸着するものとして金属表面積を算出し、また、白金の担持量を0.6重量%として金属分散度及び粒子径を求めた。結果は、分散度が78%であって、粒子径が6.3Åであった。 With respect to the dehydrogenation catalyst thus obtained, the dispersion degree and particle size of platinum were measured by a pulse adsorption method of CO using a fully automatic catalyst gas adsorption amount measuring device (Okura Riken Co., Ltd .: R6015). That is, the metal surface area was calculated assuming that one molecule of CO is adsorbed with respect to the lattice constant area a 2 of platinum, and the metal dispersity and particle diameter were determined with the amount of platinum supported being 0.6% by weight. As a result, the degree of dispersion was 78% and the particle size was 6.3 mm.

〔脱水素反応〕
上で得られた脱水素触媒10ccを、反応管断面の中心に外形1/8インチの熱電対用保護管を備えた内径12.6mmφ×300mmの大きさのステンレス製反応管内に、触媒層の中心が反応管の長さ方向の中心に位置するように充填し、更にこの触媒層の上側に予熱層として1mmφの球状α−アルミナビーズ10ccを充填し、脱水素反応の加圧流通式脱水素反応試験装置(脱水素反応器)とした。
[Dehydrogenation reaction]
10 cc of the dehydrogenation catalyst obtained above was placed in a stainless steel reaction tube having an inner diameter of 12.6 mmφ × 300 mm equipped with a 1 / 8-inch thermocouple protection tube at the center of the reaction tube cross section. Packed so that the center is located in the center of the length of the reaction tube, and then 10cc of 1mmφ spherical α-alumina beads as a preheating layer is packed on the upper side of the catalyst layer. A reaction test apparatus (dehydrogenation reactor) was used.

この脱水素反応器の触媒層を、圧力1kg/cm2Aの水素気流(LHSV=5.0; 50cc/hr)下に、中心温度が300℃になるまで昇温させ、次いで高速液体クロマトグラフィ(HPLC)用送液ポンプ(HPLCポンプ)を用いて上記の水素化反応で得られた水素化液体成分(組成:トルエン65.01mol%及びメチルシクロヘキサン34.59mol%)を50cc/hrの速度で供給し、昇温用水素の供給を止めた。 The catalyst layer of this dehydrogenation reactor was heated to a central temperature of 300 ° C under a hydrogen stream (LHSV = 5.0; 50cc / hr) at a pressure of 1kg / cm 2 A, and then high performance liquid chromatography (HPLC) Supply liquid component (composition: toluene 65.01 mol% and methylcyclohexane 34.59 mol%) obtained by the above hydrogenation reaction using a liquid feed pump (HPLC pump) at a rate of 50 cc / hr. The supply of industrial hydrogen was stopped.

脱水素反応の吸熱によって触媒層の温度が低下するので、ヒーターの出力を調整して触媒層の温度を300℃にコントロールして反応開始とした。1時間経過後に反応管出口留分を気液分離器で分離して液成分をサンプリングし、ガスクロマトグラフによってトルエンとメチルシクロヘキサンを定量したところ、メチルシクロヘキサンのトルエンへの転化率は95mol%であり、水素の転化率に換算すると混合ガス中の水素の転化率は85mol%であった。   Since the temperature of the catalyst layer was lowered by the endothermic reaction of the dehydrogenation reaction, the output of the heater was adjusted and the temperature of the catalyst layer was controlled at 300 ° C. to initiate the reaction. After 1 hour, the fraction at the outlet of the reaction tube was separated with a gas-liquid separator, the liquid components were sampled, and when toluene and methylcyclohexane were quantified by gas chromatography, the conversion of methylcyclohexane to toluene was 95 mol%. In terms of hydrogen conversion, the hydrogen conversion in the mixed gas was 85 mol%.

〔脱水素触媒の寿命試験〕
上記の脱水素反応の場合と同様にして加圧流通式脱水素反応試験装置(脱水素反応器)を調製し、メチルシクロヘキサンの脱水素反応における触媒寿命試験を行った。脱水素反応は、反応温度300℃で、LHSVが2.0h-1に相当するメチルシクロヘキサンと共に、供給する水素のフィード中の濃度が20mol%となるように水素を供給して行った。
[Dehydrogenation catalyst life test]
In the same manner as in the above dehydrogenation reaction, a pressurized flow-type dehydrogenation reaction test apparatus (dehydrogenation reactor) was prepared, and a catalyst life test in the dehydrogenation reaction of methylcyclohexane was conducted. The dehydrogenation reaction was performed by supplying hydrogen at a reaction temperature of 300 ° C. together with methylcyclohexane having an LHSV of 2.0 h −1 so that the concentration of the supplied hydrogen in the feed was 20 mol%.

このときのメチルシクロヘキサンの平衡転化率は96.0mol%であり、反応開始24時間後におけるメチルシクロヘキサンの平衡転化率は94.2mol%であり、また、トルエンの選択率は99.9mol%であった。   At this time, the equilibrium conversion of methylcyclohexane was 96.0 mol%, the equilibrium conversion of methylcyclohexane 24 hours after the start of the reaction was 94.2 mol%, and the selectivity of toluene was 99.9 mol%. It was.

更に、24時間経過後、反応温度を320℃に昇温させて脱水素反応を3000時間継続した。反応温度を320℃に昇温させた際のメチルシクロヘキサンの平衡転化率は99.8mol%であり、また、3000時間経過後のメチルシクロヘキサンの平衡転化率は95.2mol%であって、トルエンの選択率は99.9mol%が維持された。   Further, after 24 hours, the reaction temperature was raised to 320 ° C. and the dehydrogenation reaction was continued for 3000 hours. The equilibrium conversion rate of methylcyclohexane when the reaction temperature was raised to 320 ° C. was 99.8 mol%, and the equilibrium conversion rate of methylcyclohexane after 3000 hours was 95.2 mol%. The selectivity was maintained at 99.9 mol%.

本発明の水素の精製方法は、比較的低品位の水素含有混合ガスから水素以外の不純物ガスを分離除去してより高純度の水素を得る際に、比較的その操作が容易であって、しかも、連続処理が可能であって水素含有混合ガスの大量処理に対してもスケールアップにより容易に対応することができ、種々の化学プロセス等の工業用用途を始めとして超高純度の水素が要求される燃料電池用途にも対応できるものであって、工業的利用価値の高いものである。   The method for purifying hydrogen according to the present invention is relatively easy to operate when a higher purity hydrogen is obtained by separating and removing impurity gases other than hydrogen from a relatively low-grade hydrogen-containing mixed gas. It can be continuously processed and can easily handle large-scale processing of hydrogen-containing mixed gas by scaling up, and ultra-high purity hydrogen is required for industrial applications such as various chemical processes. It can also be used for fuel cell applications and has high industrial utility value.

図1は、本発明の好適な実施形態を示すフローシートである。FIG. 1 is a flow sheet showing a preferred embodiment of the present invention.

符号の説明Explanation of symbols

1…水添反応器、
2,5,7,9,11…気液分離器、
3…予熱器、
4…脱水素反応器、
6…10気圧昇圧機、8…20気圧昇圧機、10…50気圧昇圧機。
1 ... Hydrogenation reactor,
2, 5, 7, 9, 11 ... gas-liquid separator,
3 ... Preheater,
4 ... dehydrogenation reactor,
6 ... 10 atmosphere pressure booster, 8 ... 20 atmosphere pressure booster, 10 ... 50 atmosphere pressure booster.

Claims (8)

水素を主成分とする水素含有混合ガスから水素以外の不純物ガスを分離除去してより高純度の水素を得る水素の精製方法であり、水添触媒の存在下に上記水素含有混合ガスと芳香族化合物とを接触させて上記芳香族化合物を水素化し、この水素化反応で得られた水素化反応混合物を気液分離して水素化芳香族化合物を回収し、次いで脱水素触媒の存在下に上記水素化芳香族化合物を脱水素せしめ、この脱水素反応で発生した水素を回収する水素の精製方法であって、
水素化芳香族化合物の脱水素反応に用いる脱水素触媒が、表面積150m 2 /g以上、細孔容積0.55cm 3 /g以上、平均細孔径90〜300Å、及び全細孔容積に対して細孔径90〜300Åの細孔が占める割合(細孔径90〜300Å占有率)が60%以上である多孔性γ−アルミナ担体に、白金、パラジウム、ロジウム、イリジウム及びルテニウムから選ばれた少なくとも1種の触媒金属が10Å以下の粒子サイズで担持された脱水素触媒であることを特徴とする水素の精製方法。
This is a method for purifying hydrogen by separating and removing impurity gases other than hydrogen from a hydrogen-containing mixed gas containing hydrogen as a main component to obtain higher-purity hydrogen, and the hydrogen-containing mixed gas and aromatics in the presence of a hydrogenation catalyst. The aromatic compound is hydrogenated by contacting with the compound, and the hydrogenated reaction mixture obtained by this hydrogenation reaction is gas-liquid separated to recover the hydrogenated aromatic compound, and then in the presence of a dehydrogenation catalyst. A hydrogen purification method for dehydrogenating a hydrogenated aromatic compound and recovering hydrogen generated by the dehydrogenation reaction ,
The dehydrogenation catalyst used for the dehydrogenation reaction of the hydrogenated aromatic compound has a surface area of 150 m 2 / g or more, a pore volume of 0.55 cm 3 / g or more, an average pore diameter of 90 to 300 mm, and a fine pore volume. A porous γ-alumina carrier in which the proportion of pores having a pore size of 90 to 300 mm (pore size 90 to 300 mm) is 60% or more is at least one selected from platinum, palladium, rhodium, iridium and ruthenium. A method for purifying hydrogen, wherein the catalyst metal is a dehydrogenation catalyst supported with a particle size of 10 mm or less .
脱水素反応で発生した水素を回収する際に、絶対圧力0.981MPa以上に加圧して気液分離操作を行う請求項1に記載の水素の精製方法。 The method for purifying hydrogen according to claim 1, wherein when recovering hydrogen generated in the dehydrogenation reaction, gas-liquid separation operation is performed by pressurizing to an absolute pressure of 0.981 MPa or more . 水素化芳香族化合物の脱水素反応に用いる脱水素触媒は、前記触媒金属とともにアルカリ性金属が担持された脱水素触媒である請求項1又は2に記載の水素の精製方法。 Dehydrogenation catalyst used in the dehydrogenation of hydrogenated aromatic compounds, method for purifying hydrogen according to claim 1 or 2 together alkaline metals and the catalyst metal is dehydrogenation catalyst supported. 水素化反応に用いる芳香族化合物が、ベンゼン、トルエン、ナフタレン及びメチルナフタレンから選ばれた1種又は2種以上の混合物である請求項1〜3のいずれかに記載の水素の精製方法。   The method for purifying hydrogen according to any one of claims 1 to 3, wherein the aromatic compound used in the hydrogenation reaction is one or a mixture of two or more selected from benzene, toluene, naphthalene and methylnaphthalene. 芳香族化合物の水素化反応に用いる水添触媒は、白金、パラジウム、ロジウム、イリジウム、ルテニウム及びニッケルから選ばれた少なくとも1種の触媒金属をγ−アルミナ又はシリカの触媒担体に担持させた触媒である請求項1〜4のいずれかに記載の水素の精製方法。   The hydrogenation catalyst used for the hydrogenation reaction of the aromatic compound is a catalyst in which at least one catalyst metal selected from platinum, palladium, rhodium, iridium, ruthenium and nickel is supported on a catalyst carrier of γ-alumina or silica. The method for purifying hydrogen according to any one of claims 1 to 4. 水素含有混合ガスは、水素含有量が30〜80mol%である請求項1〜5のいずれかに記載の水素の精製方法。   The method for purifying hydrogen according to any one of claims 1 to 5, wherein the hydrogen-containing mixed gas has a hydrogen content of 30 to 80 mol%. 水素含有混合ガスは、水添触媒の触媒毒となる一酸化炭素及び/又は硫黄化合物が予め除去されている請求項1〜6のいずれかに記載の水素の精製方法。   The method for purifying hydrogen according to any one of claims 1 to 6, wherein carbon monoxide and / or a sulfur compound which is a catalyst poison of a hydrogenation catalyst is previously removed from the hydrogen-containing mixed gas. 1つの反応器内に発熱反応である水素化反応の水素化領域と吸熱反応である脱水素反応の脱水素領域とを組み込み、水素化反応で発生した反応熱を脱水素反応の反応熱として利用する請求項1〜7のいずれかに記載の水素の精製方法。   The hydrogenation region of the hydrogenation reaction, which is an exothermic reaction, and the dehydrogenation region of the dehydrogenation reaction, which is an endothermic reaction, are incorporated in one reactor, and the reaction heat generated by the hydrogenation reaction is used as the reaction heat of the dehydrogenation reaction. The method for purifying hydrogen according to any one of claims 1 to 7.
JP2004235127A 2004-08-12 2004-08-12 Hydrogen purification method Active JP4740564B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004235127A JP4740564B2 (en) 2004-08-12 2004-08-12 Hydrogen purification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004235127A JP4740564B2 (en) 2004-08-12 2004-08-12 Hydrogen purification method

Publications (2)

Publication Number Publication Date
JP2006052110A JP2006052110A (en) 2006-02-23
JP4740564B2 true JP4740564B2 (en) 2011-08-03

Family

ID=36029822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004235127A Active JP4740564B2 (en) 2004-08-12 2004-08-12 Hydrogen purification method

Country Status (1)

Country Link
JP (1) JP4740564B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022231658A1 (en) * 2021-04-28 2022-11-03 Messer Industries Usa, Inc. Argon stripping from water for high purity hydrogen and oxygen production

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4910474B2 (en) * 2005-11-09 2012-04-04 Jfeエンジニアリング株式会社 Method for recovering hydrogen gas from mixed gas
JP5065952B2 (en) * 2008-03-13 2012-11-07 Jx日鉱日石エネルギー株式会社 Hydrogen-containing gas utilization system
WO2021214954A1 (en) * 2020-04-23 2021-10-28 千代田化工建設株式会社 Uniform platinum-supported alumina catalyst, method for producing same, and method for using same
KR20230053682A (en) * 2021-04-16 2023-04-21 치요다가코겐세츠가부시키가이샤 Hydrogen Station and Hydrogen Generation Method
KR102482520B1 (en) * 2022-06-09 2022-12-29 (주)에스엔 Hydrogenation reaction monitoring and control system using simulation of hydrogen by-products

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3942957A (en) * 1973-05-14 1976-03-09 British Gas Corporation Production of combustible gases
JPS5835094B2 (en) * 1979-08-28 1983-07-30 工業技術院長 Method for manufacturing dehydrogenation catalyst
JPS61201601A (en) * 1985-03-04 1986-09-06 Nippon Steel Corp Purification, storage, and regeneration of hydrogen from hydrogen-containing gaseous mixture
JPH0672005B2 (en) * 1985-11-08 1994-09-14 千代田化工建設株式会社 Method for adsorption and separation of carbon monoxide
IT1228545B (en) * 1987-07-31 1991-06-20 Eniricerche Spa DEHYDROGENATION CATALYST AND PROCEDURE FOR ITS PREPARATION.
JPH0263545A (en) * 1988-08-30 1990-03-02 Toshiaki Kabe Reaction tube
JPH09178294A (en) * 1995-12-26 1997-07-11 Sekiyu Sangyo Kasseika Center Catalyst for chemical heat-pump, manufacture thereof, and chemical heat-pump
JP4210069B2 (en) * 2002-03-19 2009-01-14 新日本石油株式会社 Method for producing decalin and hydrogen
JP2004196638A (en) * 2002-12-20 2004-07-15 Chiyoda Corp Method of manufacturing hydrogen

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022231658A1 (en) * 2021-04-28 2022-11-03 Messer Industries Usa, Inc. Argon stripping from water for high purity hydrogen and oxygen production

Also Published As

Publication number Publication date
JP2006052110A (en) 2006-02-23

Similar Documents

Publication Publication Date Title
JP4907210B2 (en) Hydrogen storage and transport system
EP1290110A2 (en) Process for carbon monoxide preferential oxidation for use with fuel cells
CA2281239A1 (en) Catalyst and process for purifying streams of materials
JP4849775B2 (en) Hydrogen supply system for fuel cell operating chassis
CN113797947B (en) Application of C modified platinum-based catalyst in catalyzing hydrogenation reaction of halogenated nitrobenzene
WO2001072417A1 (en) Desulfurizing agent for hydrocarbon derived from petroleum, method for producing hydrogen for use in fuel cell and method for producing nickel-based desulfurizing agent
Jo et al. Coke-promoted Ni/CaO catal-sorbents in the production of cyclic CO and syngas
JPH05330802A (en) Production of ammonia-cracked gas and production of hydrogen
Mei et al. Thermo-catalytic methane decomposition for hydrogen production: Effect of palladium promoter on Ni-based catalysts
JP4740564B2 (en) Hydrogen purification method
EP3280529B1 (en) Catalyst composition, its use and catalytic processes for producing liquid hydrocarbons
JP4890194B2 (en) Method for producing carbon monoxide removal catalyst
Jo et al. Ru/K2CO3–MgO catalytic sorbent for integrated CO2 capture and methanation at low temperatures
EP1413548A1 (en) Regeneration of partial oxidation catalysts
JP2011083701A (en) Hydrogenation catalyst exhibiting excellent anti-poison property to impurity in hydrogen source and method for producing the catalyst
JP2006272324A (en) Catalyst for producing hydrogen and method for producing hydrogen
EP3409361A1 (en) Heterogeneous-system catalyst structure and manufacturing method therefor
KR0163980B1 (en) Process for the dehydrogenation of hydrocarbons
JP3302402B2 (en) Ammonia decomposition catalyst
TWI457313B (en) Study on the selective hydrogenation of phenylethylene in the presence of styrene in the presence of
GB2607490A (en) Method for preparing a steam reforming catalyst, catalyst and related use
JPH05329370A (en) Ammonia decomposition catalyst
US10335772B2 (en) Catalyst comprising gold homogeneously dispersed in a porous support
JP5979443B2 (en) Method for producing hydrogen
JP5948657B2 (en) Hydrogen production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110426

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110502

R150 Certificate of patent or registration of utility model

Ref document number: 4740564

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S303 Written request for registration of pledge or change of pledge

Free format text: JAPANESE INTERMEDIATE CODE: R316303

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S303 Written request for registration of pledge or change of pledge

Free format text: JAPANESE INTERMEDIATE CODE: R316303

S803 Written request for registration of cancellation of provisional registration

Free format text: JAPANESE INTERMEDIATE CODE: R316803

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250