JPS5835094B2 - Method for manufacturing dehydrogenation catalyst - Google Patents

Method for manufacturing dehydrogenation catalyst

Info

Publication number
JPS5835094B2
JPS5835094B2 JP54109971A JP10997179A JPS5835094B2 JP S5835094 B2 JPS5835094 B2 JP S5835094B2 JP 54109971 A JP54109971 A JP 54109971A JP 10997179 A JP10997179 A JP 10997179A JP S5835094 B2 JPS5835094 B2 JP S5835094B2
Authority
JP
Japan
Prior art keywords
paragraph
catalyst
weight
alumina
electrodialysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54109971A
Other languages
Japanese (ja)
Other versions
JPS5633035A (en
Inventor
寿一 今村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP54109971A priority Critical patent/JPS5835094B2/en
Publication of JPS5633035A publication Critical patent/JPS5633035A/en
Publication of JPS5835094B2 publication Critical patent/JPS5835094B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】 本発明は、γ−アルミナおよびシリカ−アルミナの中か
ら選ばれた少なくとも1種から成る担体を、塩化白金酸
水溶液または塩化白金酸と塩化イリジウムを含む水溶液
に接触させて、塩化白金酸または塩化白金酸と塩化イリ
ジウムな担体に吸着させた後、乾燥し、次いで水素還元
してから、これを電気透析してCIなどのイオン性物質
を除去し、ここに得られた透析品をアルカリ水溶液に接
触させてアルカリを担持させることを特徴とする、フェ
ノール性化合物製造用気相接触脱水素触媒の製造方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention involves contacting a carrier made of at least one selected from γ-alumina and silica-alumina with an aqueous solution of chloroplatinic acid or an aqueous solution containing chloroplatinic acid and iridium chloride. , adsorbed on a carrier of chloroplatinic acid or chloroplatinic acid and iridium chloride, dried, then reduced with hydrogen, and electrodialyzed to remove ionic substances such as CI. The present invention relates to a method for producing a gas phase catalytic dehydrogenation catalyst for producing a phenolic compound, which comprises bringing a dialysate into contact with an aqueous alkali solution to support an alkali.

フェノールやナフトールは極めて重要な化学薬品であり
、種々の製造法が提案されているが、無公害でかつ併産
品を伴わない製造法として脱水素法も注目されており、
α−ナフトール製造で実現しているほか、シクロヘキサ
ノールおよび/またはシクロヘキサノンの脱水素による
フェノール合成も工業化の域に達している。
Phenol and naphthol are extremely important chemicals, and various manufacturing methods have been proposed, but the dehydrogenation method is also attracting attention as a pollution-free manufacturing method that does not produce co-products.
In addition to the production of α-naphthol, phenol synthesis by dehydrogenation of cyclohexanol and/or cyclohexanone has also reached the stage of industrialization.

また、フェニルフェノール類は有機精密化学原料等とし
て最近急速に需要が増大しているが、その製造法には問
題が多く、需要の増大とともに脱水素法を中心とした新
製法も種々提案されてきたが、工業的に充分満足し得る
脱水素触媒は見出されていtit・。
In addition, the demand for phenylphenols as raw materials for organic fine chemicals has increased rapidly recently, but there are many problems with their production methods, and as demand increases, various new production methods centered on dehydrogenation methods have been proposed. However, a dehydrogenation catalyst that is industrially satisfactory has not been found.

本発明者は、脱水素法によるフェニルフェノール製造法
を探索し、pt−アルカリ−γ−アルミナ(あるL・は
アルミナ含量の多い合成シリカ−アルミナ)触媒がすぐ
れたフェニルフェノール選択生成能を持つ事を見出し、
特許を取得した(日本特許第804485号、8156
09号、857162号)。
The present inventor searched for a method for producing phenylphenol using a dehydrogenation method, and found that a pt-alkali-γ-alumina (a certain L is a synthetic silica-alumina with a high alumina content) catalyst has an excellent ability to selectively produce phenylphenol. Heading,
Obtained patents (Japanese Patent Nos. 804485 and 8156)
No. 09, No. 857162).

この方法は従来法よりも格段に利点が多いため、半速O
−フェニルフェノールの工業生産に利用され、現在も順
調に稼動しているが、より詳細な検討の結果、この方法
の唯一の欠点として、物性値のほぼ同一な担体でも、現
時点では解析不可能な要因によって触媒寿命が大巾に変
動することが明らかとなってきた。
This method has many advantages over the conventional method, so half-speed O
- It has been used for the industrial production of phenylphenol and is still in operation, but as a result of a more detailed study, the only drawback of this method is that even with almost the same physical properties, it is impossible to analyze it at present. It has become clear that catalyst life varies widely depending on factors.

本発明者は、再現性良く活性および寿命の長い触媒を得
る事を目的として種々検討の結果、微量のIr添加が有
効な事を知り特許を出願した(特開昭5l−14924
8)この結果、脱水素法によるフェニルフェノールの製
造はほぼ完成と思われたが、さらに長期にわたる寿命試
験をすすめたところ、空気中に長時間放置したγ−アル
ミナ等を担体とした場合は、r−アルミナの物性値やE
SCAおよびIMA等で調べた表面状態には全く変化が
ないのに、触媒寿命だけが大巾に低下する事を知り、こ
のよつtx状態にある接体を使用して、すぐれた脱水素
触媒を調製する方法について種々検討の結果本発明に到
達した。
As a result of various studies aimed at obtaining a catalyst with good activity and long life with good reproducibility, the present inventor learned that adding a small amount of Ir was effective and filed a patent application (Japanese Patent Application Laid-Open No. 51-14924).
8) As a result, it seemed that the production of phenylphenol by the dehydrogenation method was almost completed, but when we carried out an even longer life test, we found that when γ-alumina or the like that had been left in the air for a long time was used as a carrier, Physical properties of r-alumina and E
Although there was no change in the surface condition examined by SCA and IMA, we found that only the catalyst life was significantly reduced, so we developed an excellent dehydrogenation catalyst using this tx state contact. The present invention was achieved as a result of various studies on methods for preparing .

γ−アルミナやアルミナ含量90%以上の合成シリカー
アルミナ(ここに使用する合成シリカーアルミナはBE
T表面積200〜400m/rで、かつ細孔容積0.4
〜0.95 ml/ fのものである。
γ-alumina or synthetic silica alumina with an alumina content of 90% or more (the synthetic silica alumina used here is BE)
T surface area 200-400 m/r and pore volume 0.4
~0.95 ml/f.

)は、製造時のわずかな温度変化やpH変化等で触媒性
能が変動すると言われており、完全な再現性を保つこと
は至難とされている。
) is said to fluctuate in catalyst performance due to slight changes in temperature or pH during production, and it is considered extremely difficult to maintain perfect reproducibility.

しかし、現時点の最高レベルの表面測定法で測定しても
、前記担体の触媒能変化を予測する事は一般にむずかし
く、物性値や機器測定によるデータから触媒寿命を予測
する事は不可能といえる。
However, even when measured using the current highest level surface measurement method, it is generally difficult to predict changes in the catalytic ability of the support, and it is impossible to predict the catalyst life from data obtained from physical property values and instrumental measurements.

したがって、長寿命触媒の開発は試行錯誤的に行う以外
になく、本発明法の結果もその域を出るものではないが
、フェノール類合成時における触媒電気透析効果は驚く
ほどであり、電気透析をしなL・場合は100時間以下
の寿命にすぎない触媒が、電気透析によって数千時間の
寿命となる例が多数得られている(実施例参照)。
Therefore, the only way to develop a long-life catalyst is through trial and error, and the results of the method of the present invention are no different from that. However, the catalytic electrodialysis effect during phenol synthesis is surprising, and There have been many examples in which catalysts that have a lifetime of only 100 hours or less in the case of Shina L. have a lifetime of several thousand hours by electrodialysis (see Examples).

本発明者の詳細な検討によると、フェノール類の選択生
成に威力を発揮する脱水素触媒は、BET表面積150
〜350m/P、細孔容積0.4〜0、95 ml/
?で、鉄分の含量が少ない(0,5重量%以下)γ−ア
ルミナを担体とするのが良く、10重量%以下のシリカ
混入は担体性能を向上させる場合が多い。
According to a detailed study by the present inventor, a dehydrogenation catalyst that is effective in selectively producing phenols has a BET surface area of 150
~350m/P, pore volume 0.4~0, 95ml/
? Therefore, it is preferable to use γ-alumina as a carrier, which has a low iron content (0.5% by weight or less), and mixing silica in an amount of 10% by weight or less often improves the carrier performance.

すなわち、担体としては比較的細孔容積の大きい担体用
γ−アルミナまたはアルミナ分90%以上の合成シリカ
ーアルミナという事ができる。
That is, the carrier can be γ-alumina for carriers with a relatively large pore volume or synthetic silica alumina with an alumina content of 90% or more.

触媒組成は、本発明者が取得した前記特許にも記載した
ように、Pt担持量0.3〜3.0重量%、Ir担持量
はPt担持量の0−0.5重量倍、アルカリとしてはN
aおよびKの酸化物が良く、これらの担持量は酸化物と
して触媒重量の1〜10重量%程度が良い。
As described in the above-mentioned patent obtained by the present inventor, the catalyst composition is that the amount of Pt supported is 0.3 to 3.0% by weight, the amount of Ir supported is 0 to 0.5 times the amount of Pt supported, and as an alkali. is N
Oxides of a and K are preferred, and the amount of these supported is preferably about 1 to 10% by weight of the weight of the catalyst.

pt担持量が少なすぎると活性・寿命とも低下し、Pt
担持量0,1重量%以下では実用触媒として不適当とな
る。
If the amount of Pt supported is too small, both activity and lifespan will decrease, and Pt
If the supported amount is less than 0.1% by weight, it becomes unsuitable as a practical catalyst.

pt担持量が多すぎても、反応面での支障はほとんどな
いが、担持量の増加とともに、均一担持が困難になるし
、経済上の問題もあって必要以上の担持は好ましい事で
はない。
Even if the amount of pt supported is too large, there is almost no problem in terms of reaction, but as the amount of pt supported increases, it becomes difficult to support it uniformly, and there are also economic problems, so supporting more than necessary is not preferable.

結局、実用可能な範囲のpt担持量としては0.1〜5
.0重量%といえるが、より現実的には0.3〜3.0
重量%程度が良く、最適範囲は1.0〜2.0重量%程
度といえる。
In the end, the practical range of PT loading is 0.1 to 5.
.. It can be said that it is 0% by weight, but more realistically it is 0.3 to 3.0%.
It can be said that the amount is about 1.0 to 2.0 weight %, and the optimum range is about 1.0 to 2.0 weight %.

本発明法に用いられるアルカリとしては、NaおよびK
の酸化物が良く、そのため触媒生成過程でNaまたはK
の酸化物に転換し得るような水溶性化合物を出発原料と
するのが良い。
The alkalis used in the method of the present invention include Na and K.
The oxide of Na or K is preferable, so Na or K is used in the catalyst production process.
It is preferable to use a water-soluble compound as a starting material that can be converted into an oxide of.

すなわち、焼成過程でほぼ完全にNaまたはKの酸化物
に転換するような水溶性化合物を溶解した水溶液を、p
tまたはptとIrを担持したγ−アルミナあるいは1
0重量%以下のシリカを含むシリカ−アルミナと接触さ
せて必要量のアルカリを担持した触媒を調製すればよく
、この目的に好適な化合物としてはNaまたはKの水酸
化物、炭酸塩、重炭酸塩、ギ酸塩、酢酸塩、硝酸塩など
があり、価格や取扱いやすさ等の点から水酸化物や炭酸
塩が特に好適といえる。
That is, p
γ-alumina or 1 carrying t or pt and Ir
A catalyst supporting the required amount of alkali may be prepared by contacting with silica-alumina containing 0% by weight or less of silica, and suitable compounds for this purpose include Na or K hydroxides, carbonates, bicarbonates. There are salts, formates, acetates, nitrates, etc., and hydroxides and carbonates are particularly suitable in terms of price and ease of handling.

なお、Naの酸化物とKの酸化物を併用しても何等支障
のない事はいうまでもない。
It goes without saying that there is no problem in using both the Na oxide and the K oxide.

アルカリの添加量は、使用する担体の種類や使用する被
脱水素化合物によっても異なり、担体の固態酸性が弱い
場合や、被脱水素化合物が、カルボニウムイオン反応を
受けやすい場合は、アルカリ添加量を多少大きくした場
合に好結果を示す場合が多い。
The amount of alkali added varies depending on the type of carrier used and the compound to be dehydrogenated. If the solid acidity of the carrier is weak or if the compound to be dehydrogenated is susceptible to carbonium ion reactions, the amount of alkali added will vary depending on the type of carrier used and the compound to be dehydrogenated. In many cases, good results are obtained when the value is increased somewhat.

このような多少の変動はあるが、一般的にはアルカリ金
属の酸化物(Na20またはに20)として触媒重量の
1〜10重量%程度添加すれば良く、特に3〜7重量%
程度の添加が望ましい。
Although there are some variations, generally it is sufficient to add about 1 to 10% by weight of the catalyst weight as an alkali metal oxide (Na20 or Na20), especially 3 to 7% by weight.
It is desirable to add a certain amount.

添加量が少なすぎると触媒の酸性が中和されないから、
分解や脱水等の副反応が活発に生起して目的物選択率が
低下する。
If the amount added is too small, the acidity of the catalyst will not be neutralized.
Side reactions such as decomposition and dehydration actively occur, resulting in a decrease in target product selectivity.

添加量が多すぎた場合は、触媒活性が低下するため生産
性が減少するとともに、触媒寿命も短かくなる。
If the amount added is too large, the catalyst activity will decrease, resulting in decreased productivity and shortened catalyst life.

本発明法による触媒調製に当って特に注意すべき点は、
担体に白金または白金とイリジウムを塩の形で担持して
から水素還元して、塩の大半を金属状態とし、モの後に
アルカリを担持する点であり、金属に還元する方法とし
ては、300〜400’Cで水素還元するのが最も望ま
しい。
Particular attention should be paid to the following points when preparing the catalyst according to the method of the present invention:
Platinum or platinum and iridium are supported in the form of a salt on a carrier, and then hydrogen-reduced to make most of the salt in a metallic state, followed by supporting an alkali. Hydrogen reduction at 400'C is most desirable.

水素還元温度を300℃以下としたり、400°C以上
としても大きな支障のない場合が多いが、300℃以下
では還元時間が長くなり、200℃以下では実際上充分
な還元が困難となる。
Although there are many cases where the hydrogen reduction temperature is 300°C or lower or 400°C or higher, there is no major problem; however, at 300°C or lower, the reduction time becomes long, and at 200°C or lower, sufficient reduction becomes difficult.

400℃以上とした場合は、低温時より問題が少なく、
白金のシンタリングや担体の表面積減少が生起しない限
り、より高温で還元してもほとんど支障はない。
When the temperature is 400℃ or higher, there are fewer problems than when the temperature is low.
As long as platinum sintering and support surface area reduction do not occur, there is little problem in reducing at higher temperatures.

しかし、高温還元の利点もないから、400℃以下で還
元するのが無難といえる。
However, since there is no advantage of high temperature reduction, it is safe to reduce at 400°C or lower.

水素還元後の電気透析は、本発明法の中核的操作である
が、この方法は一般的な半透膜−例えば酢酸繊維素膜−
を透析膜とし、炭素や金属を電極とする通常の電気透析
法たよれば良く、電気透析は通常2〜3日間続ければ良
いが、それ以前に大巾な電流値の低下が認められれば、
その時点で透析を終了しても、得られた触媒の性能にほ
とんど差は認められない。
Electrodialysis after hydrogen reduction is the core operation of the method of the present invention, but this method can be performed using a common semipermeable membrane, such as a cellulose acetate membrane.
You can use the normal electrodialysis method using a dialysis membrane and carbon or metal electrodes. Electrodialysis can usually be continued for 2 to 3 days, but if a large decrease in current value is observed before then,
Even if dialysis is terminated at that point, there is almost no difference in the performance of the obtained catalyst.

電気透析を一週間、あるいはそれり上継続しても、得ら
れた触媒の性能が低下する事はないが、不必要に長期間
継続しても触媒性能の向上は認められないので、−週間
以上の継続は好ましい事ではない。
Even if electrodialysis is continued for a week or more, the performance of the resulting catalyst will not deteriorate, but if it continues for an unnecessarily long period of time, no improvement in catalyst performance will be observed. Continuation of the above is not desirable.

すなわち、電気透析に要する時間は、担体の種類等によ
っても多少変動するが、一般的には1日〜1週間行えば
良く、2〜3日間行うのが通例である。
That is, the time required for electrodialysis varies somewhat depending on the type of carrier, etc., but generally it may be carried out for one day to one week, and it is customary to carry out it for two to three days.

電気透析法は、一般に除去しにくい電解質イオンを容易
に除去する方法として知られており、本発明法の場合も
電気透析によってClイオンが減少する事が明らかであ
る。
Electrodialysis is generally known as a method for easily removing electrolyte ions that are difficult to remove, and it is clear that Cl ions are reduced by electrodialysis in the method of the present invention as well.

炭化水素を環化脱水素して芳香族化合物を得る方法とし
て著名な、プラットフォーミング法と本発明法には類似
点が多いが、プラットフォーミングの場合は触媒中に存
在するClイオンが触媒の活性や寿命増加に有効である
のに、前記の結果から含酸素化合物の脱水素でフェノー
ル類を得る場合には、Clイオンの存在はマイナスに作
用するようでもある。
There are many similarities between the platforming method, a well-known method for obtaining aromatic compounds by cyclodehydrogenation of hydrocarbons, and the method of the present invention, but in the case of platforming, Cl ions present in the catalyst However, from the above results, the presence of Cl ions seems to have a negative effect when phenols are obtained by dehydrogenating oxygen-containing compounds.

しかし、C1を含ま紅い白金塩−例えば Pt(N)(3)2(NO2)2−を出発原料として調
製した白金〜アルミナ触媒は、フェノール類製造を目的
とする含酸素化合物の脱水素触媒として全く不適当であ
るし、積極的に塩素を加えて効果を示す場合もあるので
、本触媒系での塩素の挙動は極めて微妙であり、電気透
析が効果的に理由も充分明確とはいえない。
However, platinum-alumina catalysts prepared from C1-containing red platinum salts, such as Pt(N)(3)2(NO2)2-, as starting materials have been used as dehydrogenation catalysts for oxygenated compounds for the purpose of producing phenols. This is completely inappropriate, and in some cases even active addition of chlorine is effective, so the behavior of chlorine in this catalyst system is extremely subtle, and the reason why electrodialysis is effective is not fully clear. .

また、電気透析によって触媒寿命が増加した例は全く見
当らず、フェノール類製造を目的とする脱水素触媒の寿
命が電気透析によって大巾に増加する現象は、従来の文
献等からは想像する事もできず、この方面の専門家とい
えども、電気透析法によって触媒寿命が増加する事を予
測する事は全く不可能といえる。
Furthermore, we have not found any examples of catalyst life being increased by electrodialysis, and it is difficult to imagine from conventional literature that the life of a dehydrogenation catalyst for the purpose of producing phenols would be greatly increased by electrodialysis. Even for experts in this field, it is completely impossible to predict that electrodialysis will increase catalyst life.

本発明法で調製した脱水素触媒は、始めから環状構造を
持つ含酸素炭化水素を脱水素して、対応するフェノール
類を得るのに有効であり、具体的にはシクロヘキサノー
ルおよび/またはシクロヘキサノンからフェノール合成
、0−シクロヘキシルフェノールおよび/またはシクロ
ヘキサノンをアルドール縮合して得た二量体からO−フ
ェニルフェノール合成、p−シクロヘキシルフェノール
からp−フェニルフェノール合成、α−テトラロンから
α−ナフトール合成、シクロヘキサノンをアルドール縮
合して得た三量体から2・6−ジフェニルフェノール合
成等に有効である。
The dehydrogenation catalyst prepared by the method of the present invention is effective for dehydrogenating oxygen-containing hydrocarbons having a cyclic structure from the beginning to obtain corresponding phenols, and specifically, from cyclohexanol and/or cyclohexanone. Synthesis of phenol, synthesis of O-phenylphenol from a dimer obtained by aldol condensation of O-cyclohexylphenol and/or cyclohexanone, synthesis of p-phenylphenol from p-cyclohexylphenol, synthesis of α-naphthol from α-tetralone, synthesis of cyclohexanone It is effective for the synthesis of 2,6-diphenylphenol from the trimer obtained by aldol condensation.

しかし、含酸素鎖状化合物を環化脱水素してフェノール
類を得る反応には効果を示さない。
However, it is not effective in the reaction of cyclodehydrogenating oxygen-containing chain compounds to obtain phenols.

本発明法によって脱水素触媒を製造する場合、ある種の
担体使用時は塩化白金酸を担持させる前に、担体を空気
中550〜630℃程度の温度で焼成すると、大巾な性
能向上を示す事が認められる。
When producing a dehydrogenation catalyst by the method of the present invention, when using a certain type of carrier, the performance can be significantly improved by calcining the carrier in air at a temperature of about 550 to 630°C before supporting chloroplatinic acid. The matter is acknowledged.

この主因は、担体中に残存した有機物(担体製造に使用
した有機物の一部)を燃焼除去するためと推定され、本
発明者が別途出願の焼成効果とは全く異質のものである
The main reason for this is presumed to be the burning and removal of organic matter remaining in the carrier (part of the organic matter used in the manufacture of the carrier), which is completely different from the firing effect that the present inventor has filed separately.

この事を和実に示す実験結果として、電気透析法で調製
した長寿命触媒を焼成すると、大巾に寿命が減少する実
験結果も得られており、本触媒は諸因子によって大巾に
活性や寿命が変動するといえる。
Experimental results have shown that when long-life catalysts prepared by electrodialysis are fired, their lifespans are drastically reduced. can be said to fluctuate.

次に本発明を実施例によって更に詳細に説明する。Next, the present invention will be explained in more detail with reference to Examples.

実施例 1 触媒化或工業製γ−アルミナペレット(φ1.5關、長
さ3〜5imの成型品でBET表面積226m1/2、
細孔容積0.85mJ/r)を担体とし、この担体を充
分脱気してから水を加えてアルミナ水利時の破壊を防止
した後、担体20.1にH2PtCl6・6H200,
547rおよびIrCl4・H2O0,074f?を溶
解した蒸留水50m1を加え、時々かきまぜながら15
時間放置して前記貴金属塩を担体に充分吸着させた。
Example 1 Catalyzed or industrially made γ-alumina pellets (molded product with a diameter of 1.5 mm and a length of 3 to 5 mm, with a BET surface area of 226 m 1/2,
A carrier with a pore volume of 0.85 mJ/r) was thoroughly degassed and water was added to prevent the destruction of alumina during water use.
547r and IrCl4.H2O0,074f? Add 50ml of distilled water dissolved in it, and add 50ml of distilled water, stirring occasionally
The noble metal salt was sufficiently adsorbed onto the carrier by standing for a period of time.

この触媒を110’cの電気乾燥器で3時間乾燥後、パ
イレックスガラス製触媒焼成管に充填し、31/hr程
度の速度で水素を通しながら350〜360°Cで8時
間水素還元した。
After drying this catalyst in a 110'C electric dryer for 3 hours, it was filled into a Pyrex glass catalyst firing tube and hydrogen-reduced at 350-360°C for 8 hours while passing hydrogen at a rate of about 31/hr.

この触媒(21,02)に市販特級苛性力I71.2s
’を含む蒸留水40m1を加え、浸漬法によって苛性カ
リを吸着させた。
This catalyst (21,02) had a commercially available special grade caustic force I71.2s.
40 ml of distilled water containing ' was added, and caustic potash was adsorbed by the immersion method.

この触媒を電気乾燥器で乾燥して脱水素触媒を調製した
This catalyst was dried in an electric dryer to prepare a dehydrogenation catalyst.

この触媒(1,0重量%Pt −0,2重量%Ir5重
量%KOH−r−アルミナ) 30mJ(17,52)
を内径2’2nm、長さ800mmのモリブデンガラス
製反応管の触媒充填部に充填し、管状電気炉内に設置し
て、通常の流通法によってO−シクロヘキシルフェノー
ルの脱水素反応を行った。
This catalyst (1,0 wt% Pt-0,2 wt% Ir5 wt% KOH-r-alumina) 30 mJ (17,52)
was filled into the catalyst-packed part of a molybdenum glass reaction tube with an inner diameter of 2'2 nm and a length of 800 mm, and placed in a tubular electric furnace to perform a dehydrogenation reaction of O-cyclohexylphenol using a normal flow method.

すなわち、60℃の恒温槽内に設置した定量ポンプを用
い、60℃に保った0−シクロヘキシルフェノールを毎
時9mlの速度で供給し、同時に水素を373 / h
rの速度で触媒上に供給し、反応炉温度を350℃に
保った(反応中の触媒層最低温度は325〜327℃と
なった)。
That is, using a metering pump installed in a constant temperature bath at 60 °C, 0-cyclohexylphenol kept at 60 °C was supplied at a rate of 9 ml/hour, and at the same time hydrogen was supplied at a rate of 373/h.
The reactor temperature was maintained at 350° C. (the lowest temperature of the catalyst layer during the reaction was 325 to 327° C.).

生成物はリボンヒーターで加熱した生成物捕集トラップ
に捕集し、捕集物は抜取りコックによって適宜系外に取
出し、3%シリコンXE−60−クロモソルプWAW(
シラン処理品)を充填剤とする昇温ガスクロマトグラフ
法(カラム長5m)によって分析した。
The product was collected in a product collection trap heated with a ribbon heater, and the collected material was appropriately taken out of the system using a sampling cock, and then placed in a 3% silicone XE-60-Chromosolp WAW (
The analysis was carried out by temperature-rising gas chromatography (column length: 5 m) using a silanized product as a packing material.

生成物の経時変化を求めたところ、反応直後より150
時間経過時点までは反応率93%以上、0−フェニルフ
ェノール選択率95モル%以上を持続したが、その後次
第に反応率が低下してきたので、適宜反応温度を上昇さ
せ反応率90%以上を保つようにした。
When the change in the product over time was determined, it was found that 150% immediately after the reaction.
The reaction rate was maintained at 93% or higher and the 0-phenylphenol selectivity was maintained at 95 mol% or higher until the time elapsed, but the reaction rate gradually decreased after that, so the reaction temperature was increased accordingly to maintain the reaction rate at 90% or higher. I made it.

この結果、反応開始後2000時間では反応温度402
℃で、反応率95%〇−フェニルフェノール選択率94
モル%を示した。
As a result, the reaction temperature was 402 at 2000 hours after the start of the reaction.
℃, reaction rate 95%〇-phenylphenol selectivity 94
The mole % is shown.

しかるに、この担体な空気中に密封せずに約2年間放置
後、前記と全く同様にして触媒を調製し、前記と全く同
様にして0−シクロヘキシルフェノールの脱水素反応を
行ったところ、反応開始直後は反応率99%で0−フェ
ニルフェノール選択率78モル%を示したが、30時間
目には反応率75%、0−フェニルフェノール選択率7
9モル%に低下し、反応温度の上昇や原料送入速度の低
下も選択率の向上にはあまり効果がなかった。
However, after leaving the carrier in air for about two years without sealing, a catalyst was prepared in exactly the same manner as above, and when the dehydrogenation reaction of 0-cyclohexylphenol was carried out in exactly the same manner as above, the reaction started. Immediately after, the reaction rate was 99% and the 0-phenylphenol selectivity was 78 mol%, but at 30 hours, the reaction rate was 75% and the 0-phenylphenol selectivity was 78%.
The selectivity decreased to 9 mol %, and increasing the reaction temperature and decreasing the feed rate of raw materials did not have much effect on improving the selectivity.

そこで、前記と全く同様にして調製した1重量%Pt−
0,2重量%Ir−劣化γ−アルミナ触媒を、電気透析
してから前記の方法でKOHな担持させた触媒を調製し
た。
Therefore, 1 wt% Pt-
A 0.2% by weight Ir-degraded γ-alumina catalyst was electrodialyzed and then a KOH-supported catalyst was prepared in the manner described above.

電気透析は、酢酸繊維素膜を隔膜とし、炭素板を電極と
する常法で行い、陰極室、陽極室、透析部とも6cmI
′rL×8CrIL×16CrrLの容積を持つ。
Electrodialysis was performed using a conventional method using a cellulose acetate membrane as a diaphragm and a carbon plate as an electrode.
It has a volume of 'rL×8CrIL×16CrrL.

この各室に蒸留水を満し、透析部(中央部)の中央にガ
ーゼ袋に入れた貴金属担持γ−アルミナをつるして、6
0Vの直流電圧をかけて電気透析を行った。
Each chamber is filled with distilled water, and the precious metal-supported γ-alumina in a gauze bag is suspended in the center of the dialysis section (center).
Electrodialysis was performed by applying a DC voltage of 0V.

電流は最初から50rrLA程度しか流れず、その後徐
々に低下して30時間電気透析後には20mA程度とな
った。
The current flowed from the beginning to only about 50 rrLA, and then gradually decreased to about 20 mA after 30 hours of electrodialysis.

その後はぼ20rrLAを保ったので、70時間で電気
透析を打切り蒸留水で洗浄してそのまま所定量のアルカ
リを含む液に浸漬して触媒を調製しtも 電気透析法の触媒を使用すると、反応開始後3時間目に
は原料送入速度13.5mJ/hr、炉温333°Cで
、反応率100%、0−フェニルフェノール選択率81
モル%にすぎなかったが、その後徐々に反応成績が向上
し、反応開始後300時間目には原料送入速度9.6
ml/ h r 、炉温348℃で反応率99%、選択
率93.8モル%を、1500時間目には原料送入速度
9.9 ml/ h r、炉温376℃で反応率97.
1%、選択率93モル%を示し、3000時間目でも原
料送入速度8.4m// h r s炉温401℃で反
応率94%、選択率92.4モル%を示した。
After that, the electrodialysis was maintained at about 20rrLA, so the electrodialysis was stopped after 70 hours, and the catalyst was prepared by washing with distilled water and immersed in a solution containing a predetermined amount of alkali. Three hours after the start, the raw material feed rate was 13.5 mJ/hr, the furnace temperature was 333°C, the reaction rate was 100%, and the 0-phenylphenol selectivity was 81.
However, the reaction performance gradually improved after that, and at 300 hours after the start of the reaction, the raw material feed rate was 9.6%.
ml/hr, furnace temperature 348°C, reaction rate 99%, selectivity 93.8 mol%, and at 1500 hours, raw material feed rate 9.9ml/hr, furnace temperature 376°C, reaction rate 97.
1% and a selectivity of 93 mol%, and even at the 3000th hour, the reaction rate was 94% and the selectivity was 92.4 mol% at a raw material feed rate of 8.4 m//hrs and a furnace temperature of 401°C.

電気透析効果媒を使用する実験でIr無添加の場合は、
Ir添加時よりむしろ成績が良く、3000時間目でも
原料送入速度8.8 ml/ h r 。
When Ir is not added in an experiment using an electrodialysis effect medium,
The results were better than when Ir was added, and even at the 3000th hour, the raw material feed rate was 8.8 ml/hr.

炉温398℃で反応率93%、選択率94.1モル%で
あった。
At a furnace temperature of 398°C, the reaction rate was 93% and the selectivity was 94.1 mol%.

この結果からは、電気透析法の場合はIr添加効果はほ
とんどkいと推定される。
From this result, it is estimated that the effect of Ir addition is almost k in the case of electrodialysis.

なお、電気透析しない場合のIr無添加触媒使用では、
反応開始直後でも反応率53%、0−フェニルフェノー
ル選択率72モル%(原料送入速度9ml/ h r
、炉温350℃)にすぎず、Irの添加無添加に拘らず
電気透析効果が絶大な事は明らかである。
In addition, when using a catalyst without adding Ir without electrodialysis,
Even immediately after the start of the reaction, the reaction rate was 53% and the 0-phenylphenol selectivity was 72 mol% (raw material feed rate 9 ml/hr
, the furnace temperature was only 350° C.), and it is clear that the electrodialysis effect is tremendous regardless of whether Ir is added or not.

実施例 2 触媒化或工業製r−アルミナペレット(φ1.5關、長
さ3〜5關の成型品で、BET表面積320 ml ?
、細孔容積0.68m1/f/、SiO2含量1.91
重量%、FeをFe2O3として0.03重量%含有)
を、3〜51: / h rの流速で空気を通しながら
20時間焼成したものを担体とし、実施例1と全く同様
にして1重量%Pt −5重量%KOH−γ−アルミナ
触媒、および1重量%pt−3重量%KOH−γ−アル
ミナ触媒を製造し、電気透析品と電気透析をしない触媒
を比較した。
Example 2 Catalyzed R-alumina pellets made by Kogyo (a molded product with a diameter of 1.5 mm and a length of 3 to 5 mm, with a BET surface area of 320 ml?
, pore volume 0.68 m1/f/, SiO2 content 1.91
(wt%, containing 0.03 wt% Fe as Fe2O3)
was calcined for 20 hours while passing air at a flow rate of 3 to 51:/hr as a carrier, and in the same manner as in Example 1, 1 wt% Pt-5 wt% KOH-γ-alumina catalyst, and 1 A wt% pt-3 wt% KOH-gamma-alumina catalyst was prepared and compared between an electrodialyzed product and a catalyst without electrodialysis.

電気透析は実施例1と全く同様にして行い、透析時間は
48時間とした。
Electrodialysis was performed in exactly the same manner as in Example 1, and the dialysis time was 48 hours.

0−シクロヘキシルフェノール、o−p−混合シクロヘ
キシルフェノール(フェノールとシクロヘキセンの反応
で合成したもので、0−シクロヘキシルフェノール含有
率57%)、シクロヘキサノンのアルドール縮合テ得た
二量体、シクロヘキサノール、およびα−テトラロンの
脱水素成績は表1のとおりである。
0-cyclohexylphenol, op-mixed cyclohexylphenol (synthesized by reaction of phenol and cyclohexene, 0-cyclohexylphenol content 57%), dimer obtained by aldol condensation of cyclohexanone, cyclohexanol, and α The dehydrogenation results of -tetralone are shown in Table 1.

なお、実験は何れも触媒30m1を使用し、0−シクロ
ヘキシルフェノールおよヒ混合シクロヘキシルフェノー
ルの脱水素は3重量%KOH担持品で、他は5重量%K
OH担持品を使用し、実施例1と全<同様にして行い、
フェニルフェノールおよびα−ナフトール製造時は生成
物中の目的物濃度85重量%以上(可能な限り90重量
%以上)、フェノール製造時は目的物濃度60重量%以
上(反応初期はなるべく高く)で分解物選択率5重量%
以下となるよう適宜昇温および原料送入速度の調節を行
いながら反応させた。
In each experiment, 30 ml of catalyst was used, and for the dehydrogenation of 0-cyclohexylphenol and mixed cyclohexylphenol, 3% by weight KOH was supported, and for the other products, 5% by weight K was used.
It was carried out in the same manner as in Example 1 using an OH-supported product,
When producing phenylphenol and α-naphthol, decompose the target product in the product at a concentration of 85% by weight or more (90% by weight or more if possible), and when producing phenol, the target product concentration in the product is 60% by weight or more (as high as possible at the beginning of the reaction). Product selectivity 5% by weight
The reaction was carried out while appropriately raising the temperature and adjusting the feed rate of raw materials so that the following conditions were achieved.

また、混合シクロヘキシルフェノールは融点が高いから
貯槽および供給ポンプを100℃付近に保った。
Furthermore, since mixed cyclohexylphenol has a high melting point, the storage tank and supply pump were kept at around 100°C.

p−フェニルフェノールおよびα−ナフトールは融点が
高(・から、これらが生成する混合シクロヘキシルフェ
ノールおよびα−テトラロンの脱水素時は、生成物捕集
トラップをリボンヒーターで100℃付近に加熱した。
Since p-phenylphenol and α-naphthol have high melting points (·, when dehydrogenating the mixed cyclohexylphenol and α-tetralone produced by these, the product collection trap was heated to around 100°C with a ribbon heater.

*l A:電気透析しない触媒を使用する。*l A: Use a catalyst that does not undergo electrodialysis.

−シクロヘキシルフェノールの脱水素反応B二電気透析
触媒を使用する。
- Dehydrogenation reaction of cyclohexylphenol B using two electrodialysis catalysts.

−シクロヘキシルフェノールの脱水素反応C:電気透析
しない触媒を使用する混合シクロヘキシルフェノールの
脱水素反応D:電気透析触媒を使用する混合シクロヘキ
シルフェノールの脱水素反応E:電気透析しない触媒を
使用するシクロヘキサノンニ量体の脱水素反応F°電気
透析触媒を使用するシクロヘキサノンニ量体の脱水素反
応G:電気透析しない触媒を使用するシクロヘキサノー
ルの脱水素反応H:電気透析触媒を使用するシクロヘキ
サノールの脱水素反応I:電気透析しない触媒を使用す
るα−テトラロンの脱水素反応J:電気透析触媒を使用
するα−テトラロンの脱水素反応*2 目的とするフェ
ノール性化合物の選択率(モル%)*3 炉温(℃) *4 LH3V=液体空間速度(cc /cc/ h
r )*5 このほか分解生成物(ベンゼン等)が選
択率6.5重量%で生成し、分解物生成率はさらに増加
してきたので165時間で反応を中止した(このときの
分解物選択率9.8重量%)。
- Dehydrogenation reaction of cyclohexylphenol C: Dehydrogenation reaction of mixed cyclohexylphenol using a catalyst without electrodialysis D: Dehydrogenation reaction of mixed cyclohexylphenol using an electrodialysis catalyst E: Cyclohexanone using a catalyst without electrodialysis F° Dehydrogenation reaction of cyclohexanone dimer using an electrodialysis catalyst G: Dehydrogenation reaction of cyclohexanol using a non-electrodialysis catalyst H: Dehydrogenation reaction of cyclohexanol using an electrodialysis catalyst I: Dehydrogenation reaction of α-tetralone using a catalyst without electrodialysis J: Dehydrogenation reaction of α-tetralone using an electrodialysis catalyst *2 Selectivity of target phenolic compound (mol%) *3 Furnace temperature (℃) *4 LH3V=liquid space velocity (cc/cc/h
r ) *5 In addition, decomposition products (benzene, etc.) were produced with a selectivity of 6.5% by weight, and the decomposition product production rate further increased, so the reaction was stopped at 165 hours (decomposition product selectivity at this time 9.8% by weight).

実施例 3 住友活性アルミナKHA−24(φ2〜4關の球状、B
ET表面積150−180 rrl/f?、細五容積0
.5〜0.6ml/ft )を担体とし、実施例1と全
く同様にして2.5重量%Pt −7,0重量%N
a 2 COs −活性アルミナ触媒を調製し、0−シ
クロヘキシルフェノール、シクロヘキサノンニ量1体(
アルドール縮合物)、α−テトラロンおよびシクロヘキ
サノン三量体(アルドール縮合物)ノ脱水素反応を行い
、電気透析触媒と電気透析をしない触媒の比較を試み、
表2の結果を得た。
Example 3 Sumitomo activated alumina KHA-24 (φ2 to 4 spherical, B
ET surface area 150-180 rrl/f? , hosogo volume 0
.. 5 to 0.6 ml/ft) as a carrier, and 2.5 wt% Pt - 7.0 wt% N in the same manner as in Example 1.
A 2 COs-activated alumina catalyst was prepared, and 0-cyclohexylphenol and 1 monomer of cyclohexanone (
We conducted a dehydrogenation reaction of α-tetralone (aldol condensate), α-tetralone, and cyclohexanone trimer (aldol condensate), and attempted to compare electrodialysis catalysts and catalysts without electrodialysis.
The results shown in Table 2 were obtained.

電気透析条件や寿命試験法の規準は実施例2と同一であ
る。
The electrodialysis conditions and standards of the life test method were the same as in Example 2.

*1 A:電気透析しない触媒を使用するO−シクロヘキシル
フェノールの脱水素反応B:電気透析触媒を使用する0
−シクロヘキシルフェノールの脱水素反応C:電気透析
しない触媒を使用するシクロヘキサノン三量体の脱水素
反応D:電気透析触媒を使用するシクロヘキサノン三量
体の脱水素反応E:電気透析しない触媒を使用するα−
テトラロンの脱水素反応F:電気透析触媒を使用するα
−テトラロンの脱水素反応C:電気透析しない触媒を使
用するシクロヘキサノン三量体の脱水素反応H:電気透
析触媒を使用するシクロヘキサノン三量体の脱水素反応
目的とするフェノール性化合物の選択率(モル%)炉温
(℃’) LH3V−液体空間速度(cc/cc/ hr )実施
例 4 触媒化成工業製r−アルミナベレット(φ1.5關、長
さ3〜51nrILの成型品でBET表面積267rr
l/?、細孔容積0.7ml/f?のもの)を、約2年
間密栓せずに空気中に放置したものを担体とし、K実施
例1と全く同様にして1,5重量%Pt −5重量%−
NaOH−γ−アルミナ触媒を調製し、電気透析品と電
気透析しない場合の比較を試み表3の結果を得た。
*1 A: Dehydrogenation reaction of O-cyclohexylphenol using a catalyst without electrodialysis B: 0 using an electrodialysis catalyst
- Dehydrogenation reaction of cyclohexylphenol C: Dehydrogenation reaction of cyclohexanone trimer using a catalyst without electrodialysis D: Dehydrogenation reaction of cyclohexanone trimer using an electrodialysis catalyst E: α using a catalyst without electrodialysis −
Tetralone dehydrogenation reaction F: α using electrodialysis catalyst
- Dehydrogenation reaction of tetralone C: Dehydrogenation reaction of cyclohexanone trimer using a catalyst without electrodialysis H: Dehydrogenation reaction of cyclohexanone trimer using an electrodialysis catalyst Selectivity of the target phenolic compound (molar %) Furnace temperature (°C') LH3V-Liquid hourly space velocity (cc/cc/hr) Example 4 R-Alumina pellet manufactured by Catalysts and Chemicals (φ1.5 mm, length 3-51nrIL molded product, BET surface area 267rr
l/? , pore volume 0.7ml/f? 1.5% by weight Pt -5% by weight - in exactly the same manner as in Example 1 using a carrier that had been left in the air without sealing for about 2 years.
A NaOH-γ-alumina catalyst was prepared, and a comparison was made between an electrodialyzed product and a case without electrodialysis, and the results shown in Table 3 were obtained.

なお、電気透析は5日間行い、寿命試験法は実施例2と
同一規準で行った。
In addition, electrodialysis was performed for 5 days, and the life test method was performed according to the same standards as in Example 2.

*l A:電気透析しなL゛触媒使用する0−シクロヘキシル
フェノールの脱水素反応 B:電気透析触媒を使用する0−シクロヘキシルフェノ
ールの脱水素反応 C:電気透析しない触媒を使用するシクロヘキサノール
脱水素反応D:電気透析触媒を使用するシクロヘキサノ
ールの脱水素反応*2 目的とするフェノール性化合物
の選択率(モル%)*3 炉温(℃) *4 LH8V=液体空間速度(cc/cc/ hr
)実施例 5 触媒(d工業製γ−アルミナペレット(φ1.5關、長
さ3〜5朋の成型品でBET表面積198m/fl、細
孔容積0.88mt/l )を担体トシ、実施例1と全
く同一操作で0.7重量%Pt −3,5重量%KOH
−γ−アルミナ触媒および0.7重量%※EPt −0
,2重量%Ir−3,5重量%KOH触媒を調製し、0
−シクロヘキシルフェノール脱水素反応時の電気透析触
媒の効果について検討し表4の結果を得た。
*l A: Dehydrogenation reaction of 0-cyclohexylphenol using a L catalyst without electrodialysis B: Dehydrogenation reaction of 0-cyclohexylphenol using an electrodialysis catalyst C: Dehydrogenation of cyclohexanol using a catalyst without electrodialysis Reaction D: Dehydrogenation reaction of cyclohexanol using electrodialysis catalyst *2 Selectivity of target phenolic compound (mol%) *3 Furnace temperature (℃) *4 LH8V = liquid hourly space velocity (cc/cc/hr
) Example 5 Catalyst (γ-alumina pellets manufactured by d Kogyo (φ1.5 diameter, length 3-5 mm molded product, BET surface area 198 m/fl, pore volume 0.88 mt/l) was used as a carrier, Example 0.7 wt% Pt - 3.5 wt% KOH by exactly the same operation as 1.
-γ-Alumina catalyst and 0.7% by weight *EPt -0
, 2 wt% Ir-3, 5 wt% KOH catalyst was prepared, and 0
- The effect of the electrodialysis catalyst during the cyclohexylphenol dehydrogenation reaction was investigated and the results shown in Table 4 were obtained.

なお、表4の実験Bでは、5000時間経過しても生成
物中00−フェニルフェノール含量90重量%以上を保
った(LH8V0.33)。
In addition, in Experiment B in Table 4, the 00-phenylphenol content in the product was maintained at 90% by weight or more even after 5000 hours (LH8V0.33).

1 A:Irを含まない電気透析しない触媒を使用する0−
シクロヘキシルフェノールの脱水素反応 B:Irを含まない電気透析触媒を使用する0−シクロ
ヘキシルフェノールの脱水素反応 C:Irを含む電気透析しない触媒を使用する0−シク
ロヘキシルフェノールの脱水素反応 D:Irを含む電気透析触媒を使用する0−シクロヘキ
シルフェノールの脱水素反応 *2 o−フェニルフェノールの選択率(モル%)*3
炉温(”C) *4 LH3V=液体空間速度(cc/cc/ hr
)実施例 6 日産化学製アルミナゾル(アルミナ含有率9.98重量
%)と、スノーデツクス(8産化学製シリカゾル、シリ
カ含有率20.9重量%)を混合した後、湯浴上で水分
を蒸発させ、シリカ:アルミナ=1:11(重量比)の
シリカ−アルミナを調製し、粒度8〜16メツシユとし
てから570〜61O℃で24時間空気流通(5〜71
:/ hr:下に焼成した。
1 A: 0- using Ir-free non-electrodialysis catalyst
Dehydrogenation reaction of cyclohexylphenol B: Dehydrogenation reaction of 0-cyclohexylphenol using an Ir-free electrodialysis catalyst C: Dehydrogenation reaction of 0-cyclohexylphenol using an Ir-containing non-electrodialysis catalyst D: Ir-free dehydrogenation reaction Dehydrogenation reaction of o-cyclohexylphenol using electrodialysis catalyst containing *2 Selectivity of o-phenylphenol (mol%) *3
Furnace temperature ("C) *4 LH3V=Liquid space velocity (cc/cc/hr
) Example 6 After mixing Nissan Chemical's alumina sol (alumina content 9.98% by weight) and Snowdex (8san Chemical's silica sol, silica content 20.9% by weight), the water was evaporated on a hot water bath. , prepared silica-alumina with silica:alumina=1:11 (weight ratio), made the particle size 8-16 mesh, and then air-circulated (5-71
:/hr: Baked below.

(BET表面積335 ml ?、細く孔容積0.78
at/ t )この担体を使用し、実施例1と全く同
様にして2.5重量%Pt −8重量%KNO3−担体
触媒(電気透析処理品と電気透析しない触媒を調製)を
調製した。
(BET surface area 335 ml?, fine pore volume 0.78
at/t) Using this carrier, a 2.5 wt% Pt-8 wt% KNO3-carrier catalyst (electrodialyzed product and non-electrodialyzed catalyst were prepared) in exactly the same manner as in Example 1.

この触媒を、0.5〜11/hrの窒素流通下に350
〜370℃で36時間焼成上、実施例2と全く同一手法
で種々の化合物を脱水素し電気透析品と電気透析しない
触媒を比較した。
This catalyst was heated at 350° C. under nitrogen flow of 0.5 to 11/hr.
After calcination at ~370°C for 36 hours, various compounds were dehydrogenated in exactly the same manner as in Example 2, and electrodialyzed products and non-electrodialyzed catalysts were compared.

Claims (1)

【特許請求の範囲】 1 γ−アルミナおよびシリカ−アルミナの中から選ば
れた少なくとも1種から成る担体を、塩化白金酸水溶液
または塩化白金酸と塩化イリジウムを含む水溶液に接触
させて、塩化白金酸または塩化白金酸と塩化イリジウム
な担体に吸着させた後乾燥し、次いで水素還元してから
、これを電気透析してCIなどのイオン性物質を除去し
、ここに得られた透析品をアルカリ水溶液に接触させて
アルカリを担持させる事を特徴とする、フェノール性環
状構造をもつ含酸素炭化水素中に存在する飽和された炭
素6員環構造を脱水素し、対応する芳香環を有するフェ
ノール類の製造用触媒の製造方法。 2 水素還元を300〜400 ”Cで3〜48時間行
う特許請求の範囲第1項の方法。 3 担体として、BET表面表面積1御0〜350 Fe2O3として0.5重量%以下しか含まないγアル
ミナを使用する特許請求の範囲第1項または第2項の方
法。 4 担体として、BET表面表面積2御0〜400 Fe2O3として0.5重量%以下しか含ま紅いシリカ
含量10重量%以下の合成シリカ−アルミナを使用する
特許請求の範囲第1項または第2項の方法。 5 アルカリとしてNaまたはKの水酸化物、炭酸塩、
重炭酸塩、ギ酸塩、酢酸塩、硝酸塩など触媒製造過程で
酸化物に転換し得る化合物を使用する特許請求の範囲第
1項、第2項、第3項または第4項の方法。 6 アルカリ担持量が、アルカリ金属の酸化物として触
媒重量の1〜10重量%である特許請求の範囲第1項、
第2項、第3項、第4項または第5項の方法。 7 pt担持量が金属として触媒重量の0.3〜3、
0重量%である特許請求の範囲第1項、第2項、第3項
、第4項、第5項または第6項の方法。 8 Ir担持量が金属としてpt量00〜0.5重量
倍である特許請求の範囲第1項、第2項、第3項、第4
項、第5項、第6項または第7項の方法。 9 フェノール性化合物がフェノールであり、被脱水素
物がシクロヘキサノールおよび/またはシクロヘキサノ
ンである特許請求の範囲第1項、第2項、第3項、第4
項、第5項、第6項、第7項または第8項の方法。 10 フェノール性化合物が0−フェニルフェノール
であり、被脱水素物が0−シクロヘキシルフェノールお
よび/またはシクロヘキサノンをアルドール縮合して得
た二量体である特許請求の範囲第1項、第2項、第3項
、第4項、第5項、第6項、第7項または第8項の方法
。 11 フェノール性化合物がp−フェニルフェノール
であり、被脱水素物がp−シクロヘキシルフェノールで
ある特許請求の範囲第1項、第2項、第3項、第4項、
第5項、第6項、第7項または第8項の方法。 12 フェノール性化合物がα−ナフトールであり、
被脱水素物がα−テトラロンである特許請求の範囲第1
項、第2項、第3項、第4項、第5項、第6項、第7項
または第8項の方法。
[Scope of Claims] 1. A carrier made of at least one selected from γ-alumina and silica-alumina is brought into contact with an aqueous solution of chloroplatinic acid or an aqueous solution containing chloroplatinic acid and iridium chloride to produce chloroplatinic acid. Alternatively, it is adsorbed onto a carrier of chloroplatinic acid and iridium chloride, dried, then reduced with hydrogen, electrodialyzed to remove ionic substances such as CI, and the resulting dialyzed product is dissolved in alkaline aqueous solution. The saturated carbon six-membered ring structure present in oxygenated hydrocarbons having a phenolic ring structure is dehydrogenated by contacting with alkali to support an alkali, and the phenols having the corresponding aromatic ring are A method for producing a catalyst for production. 2. The method according to claim 1, in which hydrogen reduction is carried out at 300 to 400"C for 3 to 48 hours. 3. As a support, γ alumina containing 0.5% by weight or less as Fe2O3 with a BET surface area of 1 to 350. 4. The method according to claim 1 or 2, in which the support is a synthetic silica having a BET surface area of 20 to 400 and containing less than 0.5% by weight of Fe2O3 and a red silica content of not more than 10% by weight. The method according to claim 1 or 2 using alumina. 5. Na or K hydroxide, carbonate, as alkali.
5. The method according to claim 1, 2, 3 or 4, which uses a compound that can be converted into an oxide during the catalyst production process, such as bicarbonate, formate, acetate or nitrate. 6. Claim 1, wherein the amount of alkali supported is 1 to 10% by weight of the catalyst weight as the alkali metal oxide;
The method of paragraph 2, paragraph 3, paragraph 4 or paragraph 5. 7 The amount of pt supported as metal is 0.3 to 3 of the catalyst weight,
7. The method of claim 1, 2, 3, 4, 5 or 6, wherein the amount is 0% by weight. 8 Claims 1, 2, 3, and 4 in which the amount of Ir supported is 00 to 0.5 times the amount of pt by weight as metal.
The method of paragraph 5, paragraph 6 or paragraph 7. 9 Claims 1, 2, 3, and 4 in which the phenolic compound is phenol and the substance to be dehydrogenated is cyclohexanol and/or cyclohexanone.
The method of paragraph 5, paragraph 6, paragraph 7 or paragraph 8. 10 Claims 1, 2 and 2, in which the phenolic compound is 0-phenylphenol and the product to be dehydrogenated is a dimer obtained by aldol condensation of 0-cyclohexylphenol and/or cyclohexanone. The method of Section 3, Section 4, Section 5, Section 6, Section 7 or Section 8. 11 Claims 1, 2, 3, and 4, wherein the phenolic compound is p-phenylphenol and the dehydrogenated product is p-cyclohexylphenol,
The method of paragraph 5, paragraph 6, paragraph 7 or paragraph 8. 12 The phenolic compound is α-naphthol,
Claim 1 in which the product to be dehydrogenated is α-tetralone
The method of paragraph 2, paragraph 3, paragraph 4, paragraph 5, paragraph 6, paragraph 7 or paragraph 8.
JP54109971A 1979-08-28 1979-08-28 Method for manufacturing dehydrogenation catalyst Expired JPS5835094B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54109971A JPS5835094B2 (en) 1979-08-28 1979-08-28 Method for manufacturing dehydrogenation catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54109971A JPS5835094B2 (en) 1979-08-28 1979-08-28 Method for manufacturing dehydrogenation catalyst

Publications (2)

Publication Number Publication Date
JPS5633035A JPS5633035A (en) 1981-04-03
JPS5835094B2 true JPS5835094B2 (en) 1983-07-30

Family

ID=14523790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54109971A Expired JPS5835094B2 (en) 1979-08-28 1979-08-28 Method for manufacturing dehydrogenation catalyst

Country Status (1)

Country Link
JP (1) JPS5835094B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4652695B2 (en) * 2004-01-30 2011-03-16 千代田化工建設株式会社 Hydrogenated aromatic dehydrogenation catalyst and method for producing the same
JP4740564B2 (en) * 2004-08-12 2011-08-03 千代田化工建設株式会社 Hydrogen purification method

Also Published As

Publication number Publication date
JPS5633035A (en) 1981-04-03

Similar Documents

Publication Publication Date Title
DK171209B1 (en) Process for preparing a metal-containing supported catalyst with reduced metal concentration in its outer layer
US3972836A (en) Preparation of ortho-alkylated phenols
US7847129B2 (en) Method for dehydrogenating alcohols
JP2000061306A (en) Supported catalyst usable in conversion reaction of organic compound
JP4673531B2 (en) Method for producing phenol and acetone
KR20080096846A (en) Direct amination of hydrocarbons
US4522940A (en) Method of preparing a catalyst and catalyst prepared by the method
EP0044118A2 (en) A method of preparing a catalyst
US4080390A (en) Process for the production of o-phenylphenol
US4729977A (en) Supported catalyst, process for its preparation and its use for the preparation of hydroxydiphenyl
EP2214816A2 (en) Single-step catalytic preparation of para-aminophenol
CN111298816A (en) Preparation method of porous hydroxyapatite supported platinum catalyst
EP1411038B1 (en) Process for the preparation of phenol by means of the hydrodeoxygenation of benzene-diols
JPS5835094B2 (en) Method for manufacturing dehydrogenation catalyst
JP2010516465A (en) Dehydrogenation catalyst, process for its preparation and use thereof
JP2637812B2 (en) Method for producing phenol
US2273338A (en) Production of catalytic material
JPS6225128B2 (en)
US5248840A (en) Process for the preparation of hydrooxydiphenyls
JPS5810136B2 (en) Method for manufacturing dehydrogenation catalyst
RU2095136C1 (en) Nickel hydrogenation catalyst on carrier and method of preparing modified nickel hydrogenation catalyst on carrier
US4177166A (en) Hydroalkylation composition and process for producing said composition
US3437709A (en) Disproportionation of alkyl aromatics with a crystalline aluminosilicate and oxygen
US20140058134A1 (en) Process for treating shaped catalyst bodies and shaped catalyst bodies having increased mechanical strength
Gremillion et al. The oxidation and leaching of some chromia-alumina and chromia-silica-alumina preparations