JP2017081774A - Dehydrogenation catalyst, manufacturing method of dehydrogenation catalyst, dehydrogenation reactor, manufacturing method of dehydrogenation reactor, manufacturing system of hydrogen and manufacturing method of hydrogen - Google Patents
Dehydrogenation catalyst, manufacturing method of dehydrogenation catalyst, dehydrogenation reactor, manufacturing method of dehydrogenation reactor, manufacturing system of hydrogen and manufacturing method of hydrogen Download PDFInfo
- Publication number
- JP2017081774A JP2017081774A JP2015209850A JP2015209850A JP2017081774A JP 2017081774 A JP2017081774 A JP 2017081774A JP 2015209850 A JP2015209850 A JP 2015209850A JP 2015209850 A JP2015209850 A JP 2015209850A JP 2017081774 A JP2017081774 A JP 2017081774A
- Authority
- JP
- Japan
- Prior art keywords
- dehydrogenation
- particles
- catalyst
- tio
- raw material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000006356 dehydrogenation reaction Methods 0.000 title claims abstract description 327
- 239000003054 catalyst Substances 0.000 title claims description 199
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 title claims description 109
- 229910052739 hydrogen Inorganic materials 0.000 title claims description 98
- 239000001257 hydrogen Substances 0.000 title claims description 98
- 238000004519 manufacturing process Methods 0.000 title claims description 83
- 238000006243 chemical reaction Methods 0.000 claims abstract description 66
- 125000004122 cyclic group Chemical group 0.000 claims abstract description 42
- 229930195734 saturated hydrocarbon Natural products 0.000 claims abstract description 42
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims abstract description 37
- 239000002245 particle Substances 0.000 claims description 177
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 125
- 239000002994 raw material Substances 0.000 claims description 122
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 75
- 238000004513 sizing Methods 0.000 claims description 30
- 238000002156 mixing Methods 0.000 claims description 29
- 230000017858 demethylation Effects 0.000 abstract description 25
- 238000010520 demethylation reaction Methods 0.000 abstract description 25
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 88
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 75
- 238000000034 method Methods 0.000 description 48
- 238000010304 firing Methods 0.000 description 45
- UAEPNZWRGJTJPN-UHFFFAOYSA-N methylcyclohexane Chemical compound CC1CCCCC1 UAEPNZWRGJTJPN-UHFFFAOYSA-N 0.000 description 30
- 230000000052 comparative effect Effects 0.000 description 28
- 230000035484 reaction time Effects 0.000 description 25
- 239000000047 product Substances 0.000 description 24
- 229930195735 unsaturated hydrocarbon Natural products 0.000 description 23
- 239000007789 gas Substances 0.000 description 20
- 239000007788 liquid Substances 0.000 description 17
- 239000012528 membrane Substances 0.000 description 17
- GYNNXHKOJHMOHS-UHFFFAOYSA-N methyl-cycloheptane Natural products CC1CCCCCC1 GYNNXHKOJHMOHS-UHFFFAOYSA-N 0.000 description 15
- 150000001875 compounds Chemical class 0.000 description 14
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 12
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 11
- 239000000945 filler Substances 0.000 description 11
- 239000000446 fuel Substances 0.000 description 11
- 238000001354 calcination Methods 0.000 description 10
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 9
- 238000002441 X-ray diffraction Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 8
- 238000005259 measurement Methods 0.000 description 8
- 229930195733 hydrocarbon Natural products 0.000 description 7
- 150000002430 hydrocarbons Chemical class 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 238000010298 pulverizing process Methods 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 238000000926 separation method Methods 0.000 description 6
- 239000007858 starting material Substances 0.000 description 6
- 238000000227 grinding Methods 0.000 description 5
- 150000004678 hydrides Chemical class 0.000 description 5
- 238000005470 impregnation Methods 0.000 description 5
- 238000000746 purification Methods 0.000 description 5
- 239000000377 silicon dioxide Substances 0.000 description 5
- 238000001179 sorption measurement Methods 0.000 description 5
- QEGNUYASOUJEHD-UHFFFAOYSA-N 1,1-dimethylcyclohexane Chemical compound CC1(C)CCCCC1 QEGNUYASOUJEHD-UHFFFAOYSA-N 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 238000010790 dilution Methods 0.000 description 4
- 239000012895 dilution Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 150000002431 hydrogen Chemical class 0.000 description 4
- 239000007791 liquid phase Substances 0.000 description 4
- 239000012071 phase Substances 0.000 description 4
- 238000011144 upstream manufacturing Methods 0.000 description 4
- 210000002268 wool Anatomy 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 239000012466 permeate Substances 0.000 description 3
- 239000000376 reactant Substances 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000004438 BET method Methods 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 2
- RBAKORNXYLGSJB-UHFFFAOYSA-N azane;platinum(2+);dinitrate Chemical compound N.N.N.N.[Pt+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O RBAKORNXYLGSJB-UHFFFAOYSA-N 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000000748 compression moulding Methods 0.000 description 2
- 239000012263 liquid product Substances 0.000 description 2
- 239000004570 mortar (masonry) Substances 0.000 description 2
- 150000002894 organic compounds Chemical class 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- NWAHZABTSDUXMJ-UHFFFAOYSA-N platinum(2+);dinitrate Chemical compound [Pt+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O NWAHZABTSDUXMJ-UHFFFAOYSA-N 0.000 description 2
- SSVFCHUBLIJAMI-UHFFFAOYSA-N platinum;hydrochloride Chemical compound Cl.[Pt] SSVFCHUBLIJAMI-UHFFFAOYSA-N 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- POILWHVDKZOXJZ-ARJAWSKDSA-M (z)-4-oxopent-2-en-2-olate Chemical compound C\C([O-])=C\C(C)=O POILWHVDKZOXJZ-ARJAWSKDSA-M 0.000 description 1
- NHCREQREVZBOCH-UHFFFAOYSA-N 1-methyl-1,2,3,4,4a,5,6,7,8,8a-decahydronaphthalene Chemical compound C1CCCC2C(C)CCCC21 NHCREQREVZBOCH-UHFFFAOYSA-N 0.000 description 1
- GREARFRXIFVLGB-UHFFFAOYSA-N 2-methyl-1,2,3,4,4a,5,6,7,8,8a-decahydronaphthalene Chemical compound C1CCCC2CC(C)CCC21 GREARFRXIFVLGB-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- YPGLWPWPVJBCEM-UHFFFAOYSA-K [Pt+3].[O-]P([O-])([O-])=O Chemical compound [Pt+3].[O-]P([O-])([O-])=O YPGLWPWPVJBCEM-UHFFFAOYSA-K 0.000 description 1
- CTUFHBVSYAEMLM-UHFFFAOYSA-N acetic acid;platinum Chemical compound [Pt].CC(O)=O.CC(O)=O CTUFHBVSYAEMLM-UHFFFAOYSA-N 0.000 description 1
- 125000005595 acetylacetonate group Chemical group 0.000 description 1
- 150000004703 alkoxides Chemical class 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- PDJBCBKQQFANPW-UHFFFAOYSA-L azanide;platinum(2+);dichloride Chemical compound [NH2-].[NH2-].[NH2-].[NH2-].Cl[Pt]Cl PDJBCBKQQFANPW-UHFFFAOYSA-L 0.000 description 1
- IXSUHTFXKKBBJP-UHFFFAOYSA-L azanide;platinum(2+);dinitrite Chemical compound [NH2-].[NH2-].[Pt+2].[O-]N=O.[O-]N=O IXSUHTFXKKBBJP-UHFFFAOYSA-L 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 125000000753 cycloalkyl group Chemical group 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000010574 gas phase reaction Methods 0.000 description 1
- 238000005469 granulation Methods 0.000 description 1
- 230000003179 granulation Effects 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- DBJYYRBULROVQT-UHFFFAOYSA-N platinum rhenium Chemical compound [Re].[Pt] DBJYYRBULROVQT-UHFFFAOYSA-N 0.000 description 1
- HHNGEOJZFQTKKI-UHFFFAOYSA-L platinum(2+);carbonate Chemical compound [Pt+2].[O-]C([O-])=O HHNGEOJZFQTKKI-UHFFFAOYSA-L 0.000 description 1
- PQTLYDQECILMMB-UHFFFAOYSA-L platinum(2+);sulfate Chemical compound [Pt+2].[O-]S([O-])(=O)=O PQTLYDQECILMMB-UHFFFAOYSA-L 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920005597 polymer membrane Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- FBEIPJNQGITEBL-UHFFFAOYSA-J tetrachloroplatinum Chemical compound Cl[Pt](Cl)(Cl)Cl FBEIPJNQGITEBL-UHFFFAOYSA-J 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Landscapes
- Hydrogen, Water And Hydrids (AREA)
- Catalysts (AREA)
Abstract
Description
本発明は、脱水素触媒、脱水素触媒の製造方法、脱水素反応器、脱水素反応器の製造方法、水素の製造システム、及び水素の製造方法に関する。 The present invention relates to a dehydrogenation catalyst, a dehydrogenation catalyst production method, a dehydrogenation reactor, a dehydrogenation reactor production method, a hydrogen production system, and a hydrogen production method.
近年、環境負荷の小さい水素を燃料とする燃料電池を、自動車等の動力源に用いることが期待されている。水素の輸送、貯蔵及び供給の過程では、例えば、ナフテン系炭化水素(環状炭化水素)が利用される。例えば、水素の製造施設において、芳香族炭化水素の水素化により、ナフテン系炭化水素を生成させる。このナフテン系炭化水素を、水素の消費地へ輸送したり、消費地で貯蔵したりする。消費地において、ナフテン系炭化水素の脱水素により、水素と芳香族炭化水素とを生成させる。この水素を燃料電池へ供給する。ナフテン系炭化水素は、常温において液体であり、水素ガスよりも体積が小さく、水素ガスよりも反応性が低く安全である。そのため、ナフテン系炭化水素は水素ガスよりも輸送及び貯蔵に適している。 In recent years, it is expected that a fuel cell using hydrogen with a small environmental load as a fuel will be used as a power source of an automobile or the like. In the process of transporting, storing and supplying hydrogen, for example, naphthenic hydrocarbons (cyclic hydrocarbons) are used. For example, in a hydrogen production facility, naphthenic hydrocarbons are generated by hydrogenation of aromatic hydrocarbons. This naphthenic hydrocarbon is transported to a hydrogen consumption area or stored in the consumption area. In the consumption area, hydrogen and aromatic hydrocarbons are generated by dehydrogenation of naphthenic hydrocarbons. This hydrogen is supplied to the fuel cell. Naphthenic hydrocarbons are liquid at room temperature, have a smaller volume than hydrogen gas, are less reactive than hydrogen gas, and are safe. Therefore, naphthenic hydrocarbons are more suitable for transportation and storage than hydrogen gas.
ナフテン系炭化水素用の脱水素触媒としては、白金‐レニウムのバイメタルをアルミナ担体に担持させた触媒が知られている(下記非特許文献1参照。)。 As a dehydrogenation catalyst for naphthenic hydrocarbons, a catalyst in which a platinum-rhenium bimetal is supported on an alumina carrier is known (see Non-Patent Document 1 below).
本発明は、メチル基を有する環状飽和炭化水素の脱水素に伴う脱メチル化を抑制することができる脱水素触媒、当該脱水素触媒の製造方法、脱水素反応器、当該脱水素反応器の製造方法、当該脱水素反応器を用いた水素の製造システム、及び水素の製造方法を提供することを目的とする。 The present invention relates to a dehydrogenation catalyst capable of suppressing demethylation accompanying dehydrogenation of a cyclic saturated hydrocarbon having a methyl group, a method for producing the dehydrogenation catalyst, a dehydrogenation reactor, and production of the dehydrogenation reactor. It is an object to provide a method, a hydrogen production system using the dehydrogenation reactor, and a hydrogen production method.
本発明の一側面に係る脱水素反応器は、反応室と、反応室内に配置されている、Ptが担持されたAl2O3と、反応室内に配置されている、TiO2と、を備え、メチル基を有する環状飽和炭化水素の脱水素に用いられる。 A dehydrogenation reactor according to one aspect of the present invention includes a reaction chamber, Al 2 O 3 loaded with Pt, disposed in the reaction chamber, and TiO 2 disposed in the reaction chamber. , Used for dehydrogenation of cyclic saturated hydrocarbons having a methyl group.
本発明の一側面に係る上記脱水素反応器は、反応室と、反応室内に配置されている第1触媒部及び第2触媒部と、を備えてよく、第1触媒部が、Ptが担持されたAl2O3を含んでよく、第2触媒部が、TiO2を含んでよい。 The dehydrogenation reactor according to one aspect of the present invention may include a reaction chamber, and a first catalyst unit and a second catalyst unit disposed in the reaction chamber, and the first catalyst unit carries Pt. Al 2 O 3 may be included, and the second catalyst portion may include TiO 2 .
本発明の一側面に係る上記脱水素反応器では、環状飽和炭化水素の供給口が反応室に形成されていてよく、反応室内で生成した生成物の排出口が反応室に形成されていてよく、第2触媒部が、供給口と排出口との間に位置してよく、第1触媒部が、第2触媒部と排出口との間に位置してよい。 In the dehydrogenation reactor according to one aspect of the present invention, a cyclic saturated hydrocarbon supply port may be formed in the reaction chamber, and a discharge port for a product generated in the reaction chamber may be formed in the reaction chamber. The second catalyst unit may be located between the supply port and the discharge port, and the first catalyst unit may be located between the second catalyst unit and the discharge port.
本発明の一側面に係る上記脱水素反応器は、反応室と、反応室内に配置されている第1粒子及び第2粒子と、を備えてよく、第1粒子が、Ptが担持されたAl2O3を含んでよく、第2粒子が、TiO2を含んでよく、第1粒子及び第2粒子が反応室内で混ざっていてよい。 The dehydrogenation reactor according to one aspect of the present invention may include a reaction chamber, and first particles and second particles disposed in the reaction chamber, and the first particles are Al on which Pt is supported. 2 O 3 may be included, the second particles may include TiO 2 , and the first particles and the second particles may be mixed in the reaction chamber.
本発明の一側面に係る上記脱水素反応器は、反応室と、反応室内に配置されている第3粒子と、を備えてよく、第3粒子が、Ptが担持されたAl2O3と、TiO2と、を含んでよい。 The dehydrogenation reactor according to one aspect of the present invention may include a reaction chamber and third particles disposed in the reaction chamber, and the third particles include Al 2 O 3 supporting Pt and , TiO 2 .
本発明の一側面に係る上記脱水素反応器では、TiO2の結晶子径が35nm以下であってよい。 In the dehydrogenation reactor according to one aspect of the present invention, the crystallite diameter of TiO 2 may be 35 nm or less.
本発明の一側面に係る脱水素反応器の製造方法は、上記脱水素反応器を製造する方法であって、Ptが担持されたAl2O3を含む第1原料を整粒して、第1粒子を得る工程と、TiO2を含む第2原料を整粒して、第2粒子を得る工程と、第1粒子及び第2粒子を混合する工程と、を備える。 A method for producing a dehydrogenation reactor according to one aspect of the present invention is a method for producing the dehydrogenation reactor, wherein the first raw material containing Pt-supported Al 2 O 3 is sized, A step of obtaining one particle, a step of sizing a second raw material containing TiO 2 to obtain a second particle, and a step of mixing the first particle and the second particle.
本発明の一側面に係る脱水素反応器の製造方法は、上記脱水素反応器を製造する方法であって、Ptが担持されたAl2O3を含む第1原料、及びTiO2を含む第2原料を混合して、第1原料及び第2原料を含む第3原料を得る工程と、第3原料を整粒して、第3粒子を得る工程と、を備える。 A method for producing a dehydrogenation reactor according to one aspect of the present invention is a method for producing the dehydrogenation reactor, wherein the first raw material contains Al 2 O 3 on which Pt is supported, and the first raw material contains TiO 2 . Two raw materials are mixed to obtain a third raw material containing the first raw material and the second raw material, and a step of sizing the third raw material to obtain third particles.
本発明の一側面に係る上記脱水素反応器の製造方法では、TiO2の結晶子径が35nm以下であってよい。 In the method for producing a dehydrogenation reactor according to one aspect of the present invention, the crystallite diameter of TiO 2 may be 35 nm or less.
本発明の一側面に係る脱水素触媒は、Ptが担持されたAl2O3と、TiO2と、を備え、メチル基を有する環状飽和炭化水素の脱水素に用いられる。 A dehydrogenation catalyst according to an aspect of the present invention includes Al 2 O 3 supporting Pt and TiO 2 and is used for dehydrogenation of a cyclic saturated hydrocarbon having a methyl group.
本発明の一側面に係る上記脱水素触媒は、第1粒子と、第2粒子と、を備えてよく、第1粒子が、Ptが担持されたAl2O3を含んでよく、第2粒子が、TiO2を含んでよく、第1粒子及び第2粒子が混ざっていてよい。 The dehydrogenation catalyst according to one aspect of the present invention may include first particles and second particles, and the first particles may include Al 2 O 3 supporting Pt, and the second particles but it may include TiO 2, may have mixed first particles and the second particles.
本発明の一側面に係る上記脱水素触媒は、第3粒子を備えてよく、第3粒子が、Ptが担持されたAl2O3と、TiO2と、を含んでよい。 The dehydrogenation catalyst according to one aspect of the present invention may include third particles, and the third particles may include Al 2 O 3 supporting Pt and TiO 2 .
本発明の一側面に係る上記脱水素触媒では、TiO2の結晶子径が35nm以下であってよい。 In the dehydrogenation catalyst according to one aspect of the present invention, the crystallite diameter of TiO 2 may be 35 nm or less.
本発明の一側面に係る脱水素触媒の製造方法は、上記脱水素触媒を製造する方法であって、Ptが担持されたAl2O3を含む第1原料を整粒して、第1粒子を得る工程と、TiO2を含む第2原料を整粒して、第2粒子を得る工程と、第1粒子及び第2粒子を混合する工程と、を備える。 A method for producing a dehydrogenation catalyst according to an aspect of the present invention is a method for producing the above dehydrogenation catalyst, wherein the first raw material containing Pt-supported Al 2 O 3 is sized, and the first particles A step of adjusting the second raw material containing TiO 2 to obtain second particles, and a step of mixing the first particles and the second particles.
本発明の一側面に係る脱水素触媒の製造方法は、上記脱水素触媒を製造する方法であって、Ptが担持されたAl2O3を含む第1原料、及びTiO2を含む第2原料を混合して、第1原料及び第2原料を含む第3原料を得る工程と、第3原料を整粒して、第3粒子を得る工程と、を備える。 A method for producing a dehydrogenation catalyst according to an aspect of the present invention is a method for producing the above dehydrogenation catalyst, which includes a first raw material containing Al 2 O 3 on which Pt is supported, and a second raw material containing TiO 2. And a step of obtaining a third raw material containing the first raw material and the second raw material and a step of adjusting the third raw material to obtain third particles.
本発明の一側面に係る上記脱水素触媒の製造方法では、TiO2の結晶子径が35nm以下であってよい。 In the method for producing a dehydrogenation catalyst according to one aspect of the present invention, the crystallite diameter of TiO 2 may be 35 nm or less.
本発明の一側面に係る水素の製造システムは、上記脱水素反応器を備える。 A hydrogen production system according to one aspect of the present invention includes the dehydrogenation reactor.
本発明の一側面に係る水素の製造方法は、上記脱水素反応器内で、環状飽和炭化水素の脱水素により水素を生成させる工程を備える。 The method for producing hydrogen according to one aspect of the present invention includes a step of generating hydrogen by dehydrogenation of a cyclic saturated hydrocarbon in the dehydrogenation reactor.
本発明によれば、メチル基を有する環状飽和炭化水素の脱水素に伴う脱メチル化を抑制することができる脱水素触媒、当該脱水素触媒の製造方法、脱水素反応器、当該脱水素反応器の製造方法、当該脱水素反応器を用いた水素の製造システム、及び水素の製造方法を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the dehydrogenation catalyst which can suppress the demethylation accompanying dehydrogenation of the cyclic saturated hydrocarbon which has a methyl group, the manufacturing method of the said dehydrogenation catalyst, a dehydrogenation reactor, the said dehydrogenation reactor , A hydrogen production system using the dehydrogenation reactor, and a hydrogen production method can be provided.
以下、本発明の好適な実施形態について説明する。ただし、本発明は下記実施形態に何ら限定されるものではない。図面において、同等の構成要素には同一の符号を付す。 Hereinafter, preferred embodiments of the present invention will be described. However, the present invention is not limited to the following embodiment. In the drawings, the same components are denoted by the same reference numerals.
本発明の一側面に係る脱水素触媒は、Ptが担持されたAl2O3と、TiO2とを備える。本発明の一側面に係る脱水素反応器は、反応室と、反応室内に配置されている上記脱水素触媒を備える。本発明の一側面に係る脱水素反応器は、メチル基を有する環状飽和炭化水素の脱水素に用いられる。以下では、「Ptが担持されたAl2O3」を、「Pt/Al2O3」とも記載する。 A dehydrogenation catalyst according to one aspect of the present invention includes Al 2 O 3 on which Pt is supported and TiO 2 . A dehydrogenation reactor according to one aspect of the present invention includes a reaction chamber and the dehydrogenation catalyst disposed in the reaction chamber. The dehydrogenation reactor according to one aspect of the present invention is used for dehydrogenation of a cyclic saturated hydrocarbon having a methyl group. Hereinafter, “Al 2 O 3 supporting Pt” is also referred to as “Pt / Al 2 O 3 ”.
本発明の一側面に係る脱水素反応器は、従来の脱水素反応器と比較して、メチル基を有する環状飽和炭化水素の脱水素に伴う脱メチル化を抑制することができる。「脱メチル化」とは、環状飽和炭化水素からのメチル基の脱離、及びメタンの生成である。つまり、本発明によれば、メチル基を有する環状飽和炭化水素の脱水素に伴うメタンの発生を抑制することができる。 The dehydrogenation reactor according to one aspect of the present invention can suppress demethylation associated with dehydrogenation of a cyclic saturated hydrocarbon having a methyl group, as compared with a conventional dehydrogenation reactor. “Demethylation” is elimination of a methyl group from a cyclic saturated hydrocarbon and formation of methane. That is, according to the present invention, generation of methane accompanying dehydrogenation of a cyclic saturated hydrocarbon having a methyl group can be suppressed.
メチル基を有する環状飽和炭化水素は、例えば、メチルシクロヘキサン、ジメチルシクロヘキサン、1−メチルデカリン、及び2−メチルデカリンからなる群より選択される少なくとも一種であってよい。これらの化合物は、有機ハイドライドと呼ばれる。メチル基を有する環状飽和炭化水素としては、メチルシクロヘキサン、ジメチルシクロヘキサンからなる群より選択される少なくとも1種であることが好ましい。 The cyclic saturated hydrocarbon having a methyl group may be at least one selected from the group consisting of methylcyclohexane, dimethylcyclohexane, 1-methyldecalin, and 2-methyldecalin, for example. These compounds are called organic hydrides. The cyclic saturated hydrocarbon having a methyl group is preferably at least one selected from the group consisting of methylcyclohexane and dimethylcyclohexane.
例えば、従来の脱水素触媒を用いたメチルシクロヘキサンの脱水素反応では、脱水素によってトルエンが生成するのみならず、さらに炭素−炭素結合切断反応が進行して、トルエンからメチル基が脱離し、副生成物のベンゼンとメタンとが生成する。 For example, in the dehydrogenation reaction of methylcyclohexane using a conventional dehydrogenation catalyst, not only toluene is generated by dehydrogenation, but also a carbon-carbon bond breaking reaction proceeds, so that a methyl group is desorbed from toluene, and a secondary group is removed. The products benzene and methane are produced.
本発明は、第1実施形態、第2実施形態及び第3実施形態に分けられる。第1実施形態及び第2実施形態では、Pt/Al2O3及びTiO2が物理的に混合されている。第3実施形態では、脱水素触媒が、Pt/Al2O3を含む第1触媒部と、TiO2を含む第2触媒部とに分かれている。以下では、まず、第1実施形態及び第2実施形態について説明し、続いて、第3実施形態について説明する。 The present invention is divided into a first embodiment, a second embodiment, and a third embodiment. In the first embodiment and the second embodiment, Pt / Al 2 O 3 and TiO 2 are physically mixed. In the third embodiment, the dehydrogenation catalyst is divided into a first catalyst part containing Pt / Al 2 O 3 and a second catalyst part containing TiO 2 . Hereinafter, the first embodiment and the second embodiment will be described first, and then the third embodiment will be described.
(第1実施形態)
図1中の(a)に示すように、第1実施形態に係る脱水素反応器2aは、反応室4と、反応室4内に配置されている脱水素触媒6とを備える。脱水素触媒6は、第1粒子8aと、第2粒子8bとを備える。「粒子」とは、複数の粒子を示す。第1粒子8aは、Pt/Al2O3を含む。第2粒子8bは、TiO2を含む。第1粒子8aは、Pt/Al2O3のみからなっていてよい。第2粒子8bは、TiO2のみからなっていてよい。脱水素触媒6において、第1粒子8a及び第2粒子8bは混ざっている。反応室4内において、脱水素触媒6が存在しない領域には、充填材が配置されていてよい。充填材を配置することにより、脱水素触媒6を反応室4内の所定の位置に固定してよい。充填材は、脱水素反応に寄与しない不活性物質であってよい。
(First embodiment)
As shown in FIG. 1A, the dehydrogenation reactor 2 a according to the first embodiment includes a reaction chamber 4 and a dehydrogenation catalyst 6 disposed in the reaction chamber 4. The dehydrogenation catalyst 6 includes first particles 8a and second particles 8b. “Particle” refers to a plurality of particles. The first particles 8a contain Pt / Al 2 O 3 . Second particle 8b comprises TiO 2. First particle 8a can consist only Pt / Al 2 O 3. Second particle 8b may consist only TiO 2. In the dehydrogenation catalyst 6, the first particles 8a and the second particles 8b are mixed. In the reaction chamber 4, a filler may be disposed in a region where the dehydrogenation catalyst 6 does not exist. The dehydrogenation catalyst 6 may be fixed at a predetermined position in the reaction chamber 4 by arranging a filler. The filler may be an inert substance that does not contribute to the dehydrogenation reaction.
第1実施形態に係る水素の製造方法では、メチル基を有する環状飽和炭化水素10を脱水素反応器2a内に供給し、環状飽和炭化水素10を脱水素触媒6に接触させる。その結果、脱水素反応器2a内で、環状飽和炭化水素10の脱水素反応が起こり、生成物12が得られる。生成物12は、メチル基を有する不飽和炭化水素と、水素と、を含む。 In the method for producing hydrogen according to the first embodiment, the cyclic saturated hydrocarbon 10 having a methyl group is supplied into the dehydrogenation reactor 2a, and the cyclic saturated hydrocarbon 10 is brought into contact with the dehydrogenation catalyst 6. As a result, the dehydrogenation reaction of the cyclic saturated hydrocarbon 10 occurs in the dehydrogenation reactor 2a, and the product 12 is obtained. The product 12 includes an unsaturated hydrocarbon having a methyl group and hydrogen.
第1実施形態によれば、脱水素触媒がPt/Al2O3のみからなる場合と比べて、脱水素に伴う脱メチル化を抑制することができる。 According to the first embodiment, demethylation associated with dehydrogenation can be suppressed as compared with the case where the dehydrogenation catalyst is composed only of Pt / Al 2 O 3 .
第1実施形態に係る脱水素反応器2aの製造方法は、Pt/Al2O3を含む第1原料を整粒して、第1粒子8aを得る工程と、TiO2を含む第2原料を整粒して、第2粒子8bを得る工程と、第1粒子8a及び第2粒子8bを混合して脱水素触媒6を作製する工程と、脱水素触媒6を反応室4内へ設置する工程と、を備える。第1実施形態に係る脱水素触媒6に係る製造方法は、Pt/Al2O3を含む第1原料を整粒して、第1粒子8aを得る工程と、TiO2を含む第2原料を整粒して、第2粒子8bを得る工程と、第1粒子8a及び第2粒子8bを混合する工程と、を備える。 In the method for manufacturing the dehydrogenation reactor 2a according to the first embodiment, the first raw material containing Pt / Al 2 O 3 is sized to obtain the first particles 8a, and the second raw material containing TiO 2 is used. The step of sizing to obtain the second particles 8b, the step of mixing the first particles 8a and the second particles 8b to produce the dehydrogenation catalyst 6, and the step of installing the dehydrogenation catalyst 6 in the reaction chamber 4 And comprising. In the production method according to the dehydrogenation catalyst 6 according to the first embodiment, the first raw material containing Pt / Al 2 O 3 is sized to obtain the first particles 8a, and the second raw material containing TiO 2 is used. The method includes adjusting the size to obtain the second particles 8b and mixing the first particles 8a and the second particles 8b.
第1原料は、例えば、Al2O3を含む粉末状の担体を更に粉砕する粉砕工程と、粉砕された担体にPtを担持する担持工程と、を備える方法によって製造される。粉砕工程で用いる粉砕方法は、例えば遊星ボールミルであってよい。Ptの担持工程では、例えば、Al2O3を含む担体に、Ptの溶液(例えば水溶液)を含浸させてよい。また、Ptの溶液が含浸した担体を乾燥させてもよく、更には焼成してもよい。 The first raw material is produced, for example, by a method including a pulverizing step of further pulverizing a powdery carrier containing Al 2 O 3 and a supporting step of supporting Pt on the pulverized carrier. The grinding method used in the grinding process may be a planetary ball mill, for example. In the Pt loading process, for example, a support containing Al 2 O 3 may be impregnated with a Pt solution (for example, an aqueous solution). Further, the carrier impregnated with the Pt solution may be dried or further baked.
担体に含まれるAl2O3は、例えば、α−アルミナ、δ−アルミナ、θ−アルミナ、γ−アルミナ又はアルマイトであってよい。担体は、Al2O3のみからなっていてもよい。Al2O3の比表面積は、特に限定されないが、例えば、100〜500m2/gであってよい。 Al 2 O 3 contained in the support may be, for example, α-alumina, δ-alumina, θ-alumina, γ-alumina, or alumite. The support may consist only of Al 2 O 3 . The specific surface area of Al 2 O 3 is not particularly limited, for example, may be 100 to 500 m 2 / g.
Ptを担体に担持する方法は、例えば、incipient wetness法、含浸法(pore filling法)、吸着法、浸漬法、蒸発乾固法、噴霧法、イオン交換法、又は液相還元法等であってよい。これらの方法により、Ptを担体の表面に付着させる。第1原料におけるPtの担持量は、Ptの溶液におけるPtの濃度、又は、Ptの溶液の使用量によって調整することができる。 Examples of the method of supporting Pt on a carrier include an incipient wetness method, an impregnation method (pore filling method), an adsorption method, an immersion method, an evaporation to dryness method, a spray method, an ion exchange method, or a liquid phase reduction method. Good. By these methods, Pt is attached to the surface of the carrier. The amount of Pt supported in the first raw material can be adjusted by the concentration of Pt in the Pt solution or the amount of the Pt solution used.
Ptの溶液は、例えば、Pt化合物を溶媒に溶解させることにより調製することができる。Pt化合物は、特に限定されないが、液体の溶媒に可溶であることが求められる。Pt化合物は、硝酸塩、硫酸塩、炭酸塩、酢酸塩、リン酸塩、シュウ酸塩、ホウ酸塩、塩化物、アルコキシド、アセチルアセトナート等であってよい。 A solution of Pt can be prepared, for example, by dissolving a Pt compound in a solvent. The Pt compound is not particularly limited, but is required to be soluble in a liquid solvent. The Pt compound may be nitrate, sulfate, carbonate, acetate, phosphate, oxalate, borate, chloride, alkoxide, acetylacetonate, and the like.
Pt化合物は、テトラクロロ白金酸、テトラクロロ白金酸カリウム、テトラクロロ白金酸アンモニウム、テトラクロロ白金酸ナトリウム、ビス(アセチルアセトナート)白金、ジアンミンジクロロ白金、ジニトロジアンミン白金、テトラアンミン白金ジクロライド、テトラアンミン白金水酸塩、テトラアンミン白金硝酸塩、テトラアンミン白金酢酸塩、テトラアンミン白金炭酸塩、テトラアンミン白金リン酸塩、ヘキサアンミン白金テトラクロライド、ヘキサアンミン白金水酸塩、ヘキサアンミン白金水酸塩、ビス(エタノールアンモニウム)ヘキサヒドロキソ白金(IV)、ヘキサヒドロキソ白金(IV)酸ナトリウム、ヘキサヒドロキソ白金(IV)酸カリウム、硝酸白金及び硫酸白金からなる群より選択される少なくとも一種であってよい。 Pt compounds are tetrachloroplatinic acid, potassium tetrachloroplatinate, ammonium tetrachloroplatinate, sodium tetrachloroplatinate, bis (acetylacetonato) platinum, diamminedichloroplatinum, dinitrodiammineplatinum, tetraammineplatinum dichloride, tetraammineplatinum water Acid salt, tetraammine platinum nitrate, tetraammine platinum acetate, tetraammine platinum carbonate, tetraammine platinum phosphate, hexaammine platinum tetrachloride, hexaammine platinum hydrochloride, hexaammine platinum hydrochloride, bis (ethanolammonium) hexahydroxo At least one selected from the group consisting of platinum (IV), sodium hexahydroxoplatinum (IV), potassium hexahydroxoplatinum (IV), platinum nitrate and platinum sulfate, There.
Pt化合物を担持した担体を焼成し、Pt化合物を分解することにより、Ptが担体に担持される。焼成温度は、Pt化合物の分解が進行する温度であればよく、例えば473〜773K程度であってよい。 Pt is supported on the carrier by firing the carrier carrying the Pt compound and decomposing the Pt compound. The firing temperature may be a temperature at which decomposition of the Pt compound proceeds, and may be, for example, about 473 to 773K.
上記のとおり、Al2O3を含む担体を粉砕し、粉砕された担体にPtを担持することにより、第1原料が完成する。第1原料の粒子径は、例えば5〜50μm程度であってよい。 As described above, the carrier containing Al 2 O 3 is pulverized, and Pt is supported on the pulverized carrier, whereby the first raw material is completed. The particle diameter of the first raw material may be about 5 to 50 μm, for example.
上記の第1原料を整粒することで、第1粒子8aが得られる。「整粒」とは、原料(第1原料)を、所定の粒子(第1粒子8a)へ加工することをいう。例えば、整粒は、原料を圧縮成形して、成形体を得る工程と、成形体を粉砕して、所定の粒子を得る工程と、を備える。整粒は、粒子(成形体の粉砕物)を分級して、所定の粒子径を有する粒子を得る工程を更に備えてもよい。原料(第1原料)を圧縮成形する手段は、例えば、打錠機であってよい。成形体を粉砕する手段は、例えば、メノウ乳鉢内で乳棒を用いて粉砕する手段であってよい。粒子(成形体の粉砕物)を分級する手段は、例えば、メッシュ(ふるい)であってよい。 The first particles 8a are obtained by regulating the size of the first raw material. “Sizing” means processing a raw material (first raw material) into predetermined particles (first particles 8a). For example, the sizing includes a step of compression-molding a raw material to obtain a molded body, and a step of pulverizing the molded body to obtain predetermined particles. The sizing may further include a step of classifying particles (pulverized product) to obtain particles having a predetermined particle size. The means for compression molding the raw material (first raw material) may be, for example, a tableting machine. The means for pulverizing the molded body may be, for example, a means for pulverizing using a pestle in an agate mortar. The means for classifying the particles (the pulverized product) may be, for example, a mesh.
整粒直後の第1粒子8aの粒子径は、例えば250〜500μm程度であってよい。「整粒直後」とは、整粒した後であって、混合する前を意味する。第1粒子8aの粒子径が上記範囲内である場合、脱水素反応に対する反応物の拡散の影響が低減され易い。また、第1粒子8aの粒子径が上記範囲内である場合、脱水素反応器内における圧力損失が低減され易い。 The particle diameter of the first particles 8a immediately after sizing may be, for example, about 250 to 500 μm. “Immediately after sizing” means after sizing and before mixing. When the particle diameter of the first particles 8a is within the above range, the influence of the diffusion of the reactant on the dehydrogenation reaction is likely to be reduced. Moreover, when the particle diameter of the 1st particle | grains 8a is in the said range, the pressure loss in a dehydrogenation reactor is easy to be reduced.
第2原料は、例えば、出発原料であるTiO2を粉砕する粉砕工程と、粉砕されたTiO2を焼成する焼成工程と、を備える方法によって製造される。粉砕工程で用いる粉砕方法は、例えば遊星ボールミルであってよい。 The second raw material is manufactured, for example, by a method comprising a pulverizing step of pulverizing the TiO 2 as the starting material, a firing step of firing the TiO 2 milled, the. The grinding method used in the grinding process may be a planetary ball mill, for example.
出発原料であるTiO2の結晶構造は、アナターゼ型、ルチル型、又はブルッカイト型であってよい。上記の複数種のTiO2の中でも、アナターゼ型のTiO2が比較的好ましい。完成された脱水素触媒6が含むTiO2の結晶構造も、アナターゼ型、ルチル型、又はブルッカイト型であってよい。脱水素触媒6がアナターゼ型のTiO2を含む場合、他種のTiO2を用いた場合と比べて、脱水素に伴う脱メチル化がより抑制され易い。 The crystal structure of TiO 2 as a starting material may be anatase type, rutile type, or brookite type. Among the above-mentioned plural types of TiO 2 , anatase TiO 2 is relatively preferable. The crystal structure of TiO 2 contained in the completed dehydrogenation catalyst 6 may be anatase type, rutile type, or brookite type. When the dehydrogenation catalyst 6 contains anatase-type TiO 2 , demethylation associated with dehydrogenation is more easily suppressed as compared with the case where other types of TiO 2 are used.
TiO2の焼成温度は、例えば573〜1073K、又は673〜973Kであってよい。 The firing temperature of TiO 2 may be, for example, 573 to 1073K, or 673 to 973K.
上記のとおり、TiO2を粉砕し、粉砕されたTiO2を焼成することにより、第2原料が完成する。第2原料の粒子径は、例えば5〜50μm程度であってよい。 As described above, by grinding TiO 2, by firing TiO 2 milled, second raw material is completed. The particle diameter of the second raw material may be about 5 to 50 μm, for example.
TiO2の結晶子径が小さいほど、脱水素に伴う脱メチル化がより抑制され易い。「結晶子径」とは、下記のScherrerの式(1)に従って、X線回折法(XRD法)の測定結果から算出される結晶子の大きさの平均値である。
Dhkl=(K・λ)/(βcosθ) (1)
The smaller the crystallite size of TiO 2, the more easily the demethylation accompanying dehydrogenation is suppressed. The “crystallite diameter” is an average value of the crystallite size calculated from the measurement result of the X-ray diffraction method (XRD method) according to the following Scherrer equation (1).
D hkl = (K · λ) / (βcos θ) (1)
式(1)中、Dhklは、結晶子の(hkl)面に垂直な方向における「結晶子径」であり、KはScherrer定数であり、λは、XRD法に用いるX線の波長であり、βは(hkl)面の回折X線ピークの広がり(半値幅又は積分幅)であり、θは回折X線のブラッグ角である。TiO2の結晶子径の場合、θは、例えば12.64°であってよい。TiO2の結晶子径は、アナターゼ型TiO2の(101)面に垂直な方向における結晶子径D101であってよい。 In formula (1), D hkl is the “crystallite diameter” in the direction perpendicular to the (hkl) plane of the crystallite, K is the Scherrer constant, and λ is the wavelength of X-rays used in the XRD method. , Β is the spread (half-value width or integral width) of the diffraction X-ray peak on the (hkl) plane, and θ is the Bragg angle of the diffraction X-ray. In the case of a crystallite diameter of TiO 2 , θ may be 12.64 °, for example. Crystallite size of TiO 2 may be a crystallite size D 101 in the direction perpendicular to the (101) plane of anatase TiO 2.
TiO2の結晶子径は、例えば10〜55nm、又は14〜35nmであってよい。TiO2の結晶子径が上記範囲内である場合、脱水素に伴う脱メチル化がより抑制され易い。 The crystallite diameter of TiO 2 may be, for example, 10 to 55 nm, or 14 to 35 nm. When the crystallite diameter of TiO 2 is within the above range, demethylation accompanying dehydrogenation is more easily suppressed.
TiO2の比表面積は、例えば10〜150m2/g、又は30〜120m2/g以下であってよい。比表面積は、例えば、BET法で測定すればよい。TiO2の比表面積が上記範囲内である場合、脱水素に伴う脱メチル化がより抑制され易い。 The specific surface area of TiO 2, for example 10 to 150 m 2 / g, or 30~120m may be 2 / g or less. The specific surface area may be measured by, for example, the BET method. When the specific surface area of TiO 2 is within the above range, demethylation accompanying dehydrogenation is more easily suppressed.
上記の第2原料を整粒することで、第2粒子8bが得られる。第2原料を整粒する方法は、第1原料を整粒する方法と同じであってよい。 The second particles 8b are obtained by regulating the size of the second raw material. The method of sizing the second raw material may be the same as the method of sizing the first raw material.
整粒直後の第2粒子8bの粒子径は、例えば250〜500μm程度であってよい。第2粒子8bの粒子径が上記範囲内である場合、脱水素反応に対する反応物の拡散の影響が低減され易い。また、第2粒子8bの粒子径が上記範囲内である場合、脱水素反応器内における圧力損失が低減され易い。 The particle diameter of the second particles 8b immediately after sizing may be, for example, about 250 to 500 μm. When the particle diameter of the second particles 8b is within the above range, the influence of the diffusion of the reactant on the dehydrogenation reaction is likely to be reduced. Moreover, when the particle diameter of the 2nd particle | grains 8b is in the said range, the pressure loss in a dehydrogenation reactor is easy to be reduced.
以上の方法によって得られた第1粒子8a及び第2粒子8bを混合することにより、脱水素触媒6が得られる。脱水素触媒6を反応室4内に配置することにより、脱水素反応器2aが完成する。第1粒子8a及び第2粒子8bを混合する手段は、例えば、ビーカー内での混合であってよい。 The dehydrogenation catalyst 6 is obtained by mixing the first particles 8a and the second particles 8b obtained by the above method. By placing the dehydrogenation catalyst 6 in the reaction chamber 4, the dehydrogenation reactor 2a is completed. The means for mixing the first particles 8a and the second particles 8b may be, for example, mixing in a beaker.
第1粒子8a及び第2粒子8bを混合した後の第1粒子8aの粒子径は、混合する前の第1粒子8aの粒子径から変化しなくてよい。 The particle diameter of the first particle 8a after mixing the first particle 8a and the second particle 8b may not change from the particle diameter of the first particle 8a before mixing.
第1粒子8a及び第2粒子8bを混合した後の第2粒子8bの粒子径は、混合する前の第2粒子8bの粒子径から変化しなくてよい。 The particle diameter of the second particle 8b after mixing the first particle 8a and the second particle 8b may not change from the particle diameter of the second particle 8b before mixing.
脱水素触媒6に含まれるPt/Al2O3の含有量を100質量部としたとき、脱水素触媒6に含まれるTiO2の含有量は、例えば25〜400質量部、又は50〜200質量部であってよい。TiO2の含有量が少ないほど、脱水素反応の初期における水素の収率が向上し易い。TiO2の含有量が多いほど、脱水素反応に伴う脱メチル化が抑制され易い。 When the content of Pt / Al 2 O 3 contained in the dehydrogenation catalyst 6 is 100 parts by mass, the content of TiO 2 contained in the dehydrogenation catalyst 6 is, for example, 25 to 400 parts by mass, or 50 to 200 parts by mass. Part. The lower the TiO 2 content, the easier it is to improve the yield of hydrogen at the initial stage of the dehydrogenation reaction. The greater the content of TiO 2, the easier the demethylation associated with the dehydrogenation reaction is suppressed.
なお、仮に、Ptが担持されたTiO2(Pt/TiO2)を整粒して得られた粒子と、TiO2を整粒して得られた粒子とを混合してなる脱水素触媒を用いた場合は、Pt/TiO2のみを整粒して得られた粒子からなる脱水素触媒を用いた場合に比べて、水素の収率が小さくなる。 Note that a dehydrogenation catalyst obtained by mixing particles obtained by sizing TiO 2 (Pt / TiO 2 ) on which Pt is supported and particles obtained by sizing TiO 2 is used. In such a case, the yield of hydrogen is smaller than when a dehydrogenation catalyst composed of particles obtained by regulating only Pt / TiO 2 is used.
(第2実施形態)
図1中の(b)に示すように、第2実施形態に係る脱水素反応器2bは、反応室4と、反応室4内に配置されている脱水素触媒14とを備える。脱水素触媒14は、第3粒子14aを備える。第3粒子14aは、Pt/Al2O3と、TiO2とを含む。第3粒子14aは、Pt/Al2O3と、TiO2とのみからなっていてよい。反応室4内において、脱水素触媒14が存在しない領域には、充填材が配置されていてよい。充填材を配置することにより、脱水素触媒14を反応室4内の所定の位置に固定してよい。充填材は、脱水素反応に寄与しない不活性物質であってよい。
(Second Embodiment)
As shown in FIG. 1B, the dehydrogenation reactor 2 b according to the second embodiment includes a reaction chamber 4 and a dehydrogenation catalyst 14 disposed in the reaction chamber 4. The dehydrogenation catalyst 14 includes third particles 14a. The third particles 14a include Pt / Al 2 O 3 and TiO 2 . The third particle 14a includes a Pt / Al 2 O 3, may consist as TiO 2 only. In the reaction chamber 4, a filler may be disposed in a region where the dehydrogenation catalyst 14 does not exist. The dehydrogenation catalyst 14 may be fixed at a predetermined position in the reaction chamber 4 by arranging a filler. The filler may be an inert substance that does not contribute to the dehydrogenation reaction.
第2実施形態に係る水素の製造方法では、メチル基を有する環状飽和炭化水素10を脱水素反応器2b内に供給し、環状飽和炭化水素10を脱水素触媒14に接触させる。その結果、脱水素反応器2b内で、環状飽和炭化水素10の脱水素反応が起こり、生成物12が得られる。生成物12は、メチル基を有する不飽和炭化水素と、水素と、を含む。 In the method for producing hydrogen according to the second embodiment, the cyclic saturated hydrocarbon 10 having a methyl group is supplied into the dehydrogenation reactor 2b, and the cyclic saturated hydrocarbon 10 is brought into contact with the dehydrogenation catalyst 14. As a result, the dehydrogenation reaction of the cyclic saturated hydrocarbon 10 occurs in the dehydrogenation reactor 2b, and the product 12 is obtained. The product 12 includes an unsaturated hydrocarbon having a methyl group and hydrogen.
第2実施形態によれば、脱水素触媒がPt/Al2O3のみからなる場合と比べて、脱水素に伴う脱メチル化を抑制することができる。 According to the second embodiment, demethylation associated with dehydrogenation can be suppressed as compared with the case where the dehydrogenation catalyst is composed only of Pt / Al 2 O 3 .
第2実施形態に係る脱水素反応器2bの製造方法は、Pt/Al2O3を含む第1原料、及びTiO2を含む第2原料を混合して、第1原料及び第2原料を含む第3原料を得る工程と、第3原料を整粒して、第3粒子14aを得る工程と、第3粒子14aを備える脱水素触媒14を作製する工程と、脱水素触媒14を反応室4内へ設置する工程と、を備える。換言すると、第2実施形態に係る脱水素触媒14の製造方法は、Pt/Al2O3を含む第1原料、及びTiO2を含む第2原料を混合して、第1原料及び第2原料を含む第3原料を得る工程と、第3原料を整粒して、第3粒子14aを得る工程と、を備える。第2実施形態に係る脱水素触媒14は、第3粒子14aのみからなっていてよい。 The method for producing the dehydrogenation reactor 2b according to the second embodiment includes the first raw material and the second raw material by mixing the first raw material containing Pt / Al 2 O 3 and the second raw material containing TiO 2. A step of obtaining a third raw material, a step of adjusting the third raw material to obtain third particles 14a, a step of producing a dehydrogenation catalyst 14 including the third particles 14a, and a dehydrogenation catalyst 14 in the reaction chamber 4 And a process of installing in. In other words, in the method for producing the dehydrogenation catalyst 14 according to the second embodiment, the first raw material and the second raw material are mixed by mixing the first raw material containing Pt / Al 2 O 3 and the second raw material containing TiO 2. And a step of obtaining a third particle 14a by sizing the third raw material. The dehydrogenation catalyst 14 according to the second embodiment may consist only of the third particles 14a.
第1原料は、第1実施形態における第1原料と同じであってよい。第2原料は、第1実施形態における第2原料と同じであってよい。第1原料及び第2原料を混合する手段は、例えば、遊星ボールミルであってよい。第3原料の粒子径は、例えば5〜50μm程度であってよい。 The first raw material may be the same as the first raw material in the first embodiment. The second raw material may be the same as the second raw material in the first embodiment. The means for mixing the first raw material and the second raw material may be, for example, a planetary ball mill. The particle diameter of the third raw material may be about 5 to 50 μm, for example.
上記のとおり、第3原料を整粒することで、第3粒子14aが得られる。第3粒子14aを得るための「整粒」の方法は、第1実施形態における整粒の方法と同じであってよい。整粒直後の第3粒子14aの粒子径は、例えば250〜500μm程度であってよい。第3粒子14aの粒子径が上記範囲内である場合、脱水素反応に対する反応物の拡散の影響が低減され易い。また、第3粒子14aの粒子径が上記範囲内である場合、脱水素反応器内における圧力損失が低減され易い。 As described above, the third particles 14a are obtained by sizing the third raw material. The method of “sizing” to obtain the third particles 14a may be the same as the method of sizing in the first embodiment. The particle diameter of the third particles 14a immediately after sizing may be, for example, about 250 to 500 μm. When the particle diameter of the third particles 14a is within the above range, the influence of the diffusion of the reactant on the dehydrogenation reaction is likely to be reduced. Moreover, when the particle diameter of the 3rd particle | grains 14a is in the said range, the pressure loss in a dehydrogenation reactor is easy to be reduced.
脱水素触媒14に含まれるPt/Al2O3の含有量を100質量部としたとき、脱水素触媒14に含まれるTiO2の含有量は、例えば25〜400質量部、又は50〜200質量部であってよい。TiO2の含有量が多いほど、脱水素反応に伴う脱メチル化が抑制され易い。 When the content of Pt / Al 2 O 3 contained in the dehydrogenation catalyst 14 is 100 parts by mass, the content of TiO 2 contained in the dehydrogenation catalyst 14 is, for example, 25 to 400 parts by mass, or 50 to 200 parts by mass. Part. The greater the content of TiO 2, the easier the demethylation associated with the dehydrogenation reaction is suppressed.
TiO2の結晶子径が35nm以下である場合、第1実施形態は、第2実施形態に比べて、脱水素に伴う脱メチル化を抑制する効果がより優れている。第2実施形態は、第1実施形態に比べて、脱水素反応の初期における水素の収率がより優れている。 When the crystallite diameter of TiO 2 is 35 nm or less, the first embodiment is more effective in suppressing demethylation associated with dehydrogenation than the second embodiment. The second embodiment is more excellent in the yield of hydrogen in the initial stage of the dehydrogenation reaction than the first embodiment.
第1実施形態では、Pt/Al2O3を含む第1原料、及び、TiO2を含む第2原料をそれぞれ整粒してから混合した。第2実施形態では、Pt/Al2O3を含む第1原料、及び、TiO2を含む第2原料を混合してから整粒した。このような整粒と混合との順序は、脱水素触媒中のPtとTiO2との距離を決定する因子の一つであると本発明者らは考える。第1実施形態に係る脱水素触媒におけるPtとTiO2との距離は、第2実施形態に係る脱水素触媒におけるPtとTiO2との距離に比べて、大きい傾向にある。また、上記のような整粒と混合との順序は、脱水素触媒中のPt/Al2O3とTiO2との接触界面の面積を決定する因子の一つでもあると本発明者らは考える。第1実施形態に係る脱水素触媒におけるPt/Al2O3とTiO2との接触界面の面積は、第2実施形態に係る脱水素触媒におけるPt/Al2O3とTiO2との接触界面の面積に比べて、小さい傾向にある。 In the first embodiment, the first raw material containing Pt / Al 2 O 3 and the second raw material containing TiO 2 are each sized and mixed. In the second embodiment, the first raw material containing Pt / Al 2 O 3 and the second raw material containing TiO 2 were mixed and then sized. The present inventors consider that the order of such sizing and mixing is one of the factors that determine the distance between Pt and TiO 2 in the dehydrogenation catalyst. The distance between Pt and TiO 2 in the dehydrogenation catalyst according to the first embodiment tends to be larger than the distance between Pt and TiO 2 in the dehydrogenation catalyst according to the second embodiment. Further, the present inventors consider that the order of the sizing and mixing as described above is one of the factors that determine the area of the contact interface between Pt / Al 2 O 3 and TiO 2 in the dehydrogenation catalyst. Think. The area of the contact interface between Pt / Al 2 O 3 and TiO 2 in the dehydrogenation catalyst according to the first embodiment is equal to the contact interface between Pt / Al 2 O 3 and TiO 2 in the dehydrogenation catalyst according to the second embodiment. It tends to be smaller than the area.
(第3実施形態)
図2中の(a)に示すように、第3実施形態に係る脱水素反応器20aは、反応室4と、反応室4内に配置されている脱水素触媒22とを備える。脱水素触媒22は、第1触媒部24(第1触媒層)と第2触媒部26(第2触媒層)とを備える。第1触媒部24は、Pt/Al2O3を含む。第2触媒部26は、TiO2を含む。第1触媒部24は、Pt/Al2O3のみからなっていてよい。第2触媒部26は、TiO2のみからなっていてよい。反応室4内において、脱水素触媒22が存在しない領域には、充填材が配置されていてよい。充填材を配置することにより、脱水素触媒22を反応室4内の所定の位置に固定してよい。充填材は、脱水素反応に寄与しない不活性物質であってよい。充填材は、第1触媒部24と第2触媒部26との間の領域に配置されていてもよい。充填材を配置することにより、第1触媒部24と第2触媒部26とを完全に分離してもよい。
(Third embodiment)
As shown to (a) in FIG. 2, the dehydrogenation reactor 20a which concerns on 3rd Embodiment is provided with the reaction chamber 4 and the dehydrogenation catalyst 22 arrange | positioned in the reaction chamber 4. FIG. The dehydrogenation catalyst 22 includes a first catalyst part 24 (first catalyst layer) and a second catalyst part 26 (second catalyst layer). The first catalyst unit 24 includes Pt / Al 2 O 3 . The second catalyst unit 26 includes TiO 2 . The first catalyst portion 24 may consist only Pt / Al 2 O 3. The second catalyst unit 26 can consist of only TiO 2. In the reaction chamber 4, a filler may be disposed in a region where the dehydrogenation catalyst 22 does not exist. The dehydrogenation catalyst 22 may be fixed at a predetermined position in the reaction chamber 4 by arranging a filler. The filler may be an inert substance that does not contribute to the dehydrogenation reaction. The filler may be disposed in a region between the first catalyst part 24 and the second catalyst part 26. The first catalyst part 24 and the second catalyst part 26 may be completely separated by arranging the filler.
第3実施形態に係る脱水素反応器20aでは、環状飽和炭化水素10の供給口28が反応室4に形成されており、反応室4内で生成した生成物12の排出口30が反応室に形成されている。第2触媒部26は、供給口28と排出口30との間に位置している。第1触媒部24は、第2触媒部26と排出口30との間に位置している。つまり、TiO2を含む第2触媒部26は、Pt/Al2O3を含む第1触媒部24よりも上流側に位置し、Pt/Al2O3を含む第1触媒部24は、TiO2を含む第2触媒部26よりも下流側に位置する。 In the dehydrogenation reactor 20a according to the third embodiment, the supply port 28 for the cyclic saturated hydrocarbon 10 is formed in the reaction chamber 4, and the discharge port 30 for the product 12 produced in the reaction chamber 4 is provided in the reaction chamber. Is formed. The second catalyst unit 26 is located between the supply port 28 and the discharge port 30. The first catalyst part 24 is located between the second catalyst part 26 and the discharge port 30. That is, the second catalyst unit 26 including TiO 2 is positioned upstream of the first catalyst unit 24 including the Pt / Al 2 O 3, the first catalyst unit 24 including the Pt / Al 2 O 3 is, TiO 2 is located on the downstream side of the second catalyst part 26 including 2.
第3実施形態に係る水素の製造方法では、メチル基を有する環状飽和炭化水素10を脱水素反応器20a内に供給し、環状飽和炭化水素10が、まず第2触媒部26に接触し、続いて第1触媒部24に接触する。その結果、脱水素反応器20a内で、環状飽和炭化水素10の脱水素反応が起こり、生成物12が得られる。生成物12は、メチル基を有する不飽和炭化水素と、水素と、を含む。 In the method for producing hydrogen according to the third embodiment, the cyclic saturated hydrocarbon 10 having a methyl group is supplied into the dehydrogenation reactor 20a, and the cyclic saturated hydrocarbon 10 first comes into contact with the second catalyst unit 26, and then In contact with the first catalyst unit 24. As a result, the dehydrogenation reaction of the cyclic saturated hydrocarbon 10 occurs in the dehydrogenation reactor 20a, and the product 12 is obtained. The product 12 includes an unsaturated hydrocarbon having a methyl group and hydrogen.
第3実施形態によれば、脱水素触媒がPt/Al2O3のみからなる場合と比べて、脱水素に伴う脱メチル化を抑制することができる。 According to the third embodiment, demethylation associated with dehydrogenation can be suppressed as compared with the case where the dehydrogenation catalyst is composed only of Pt / Al 2 O 3 .
第1触媒部24に含まれるAl2O3は、例えば、α−アルミナ、δ−アルミナ、θ−アルミナ、γ−アルミナ又はアルマイトであってよい。PtをAl2O3に担持する方法は、第1実施形態の場合と同じであってよい。 Al 2 O 3 contained in the first catalyst unit 24 may be, for example, α-alumina, δ-alumina, θ-alumina, γ-alumina, or alumite. The method for supporting Pt on Al 2 O 3 may be the same as in the first embodiment.
第2触媒部26に含まれるTiO2の結晶構造は、アナターゼ型、ルチル型、又はブルッカイト型であってよい。 The crystal structure of TiO 2 contained in the second catalyst portion 26 may be an anatase type, a rutile type, or a brookite type.
第1触媒部24に含まれるPt/Al2O3の含有量を100質量部としたとき、第2触媒部26に含まれるTiO2の含有量は、例えば25〜400質量部、又は50〜200質量部であってよい。TiO2の含有量が多いほど、脱水素反応に伴う脱メチル化が抑制され易い。 When the content of Pt / Al 2 O 3 contained in the first catalyst unit 24 is 100 parts by mass, the content of TiO 2 contained in the second catalyst unit 26, for example 25 to 400 parts by mass, or 50 to It may be 200 parts by mass. The greater the content of TiO 2, the easier the demethylation associated with the dehydrogenation reaction is suppressed.
第3実施形態の変形例では、例えば、図2中の(b)に示すように、脱水素反応器20b内において、第1触媒部24が、供給口28と排出口30との間に位置してよく、第2触媒部26が、第1触媒部24と排出口30との間に位置してよい。つまり、Pt/Al2O3を含む第1触媒部24は、TiO2を含む第2触媒部26よりも上流側に位置してよく、TiO2を含む第2触媒部26は、Pt/Al2O3を含む第1触媒部24よりも下流側に位置してよい。 In the modification of the third embodiment, for example, as shown in FIG. 2B, the first catalyst unit 24 is positioned between the supply port 28 and the discharge port 30 in the dehydrogenation reactor 20 b. Alternatively, the second catalyst part 26 may be located between the first catalyst part 24 and the discharge port 30. That is, the first catalyst unit 24 including the Pt / Al 2 O 3 may be located upstream of the second catalyst unit 26 including TiO 2, the second catalyst unit 26 comprising TiO 2, the Pt / Al than the first catalyst unit 24 including 2 O 3 may be located downstream.
第2触媒部26が供給口28側に位置し、第1触媒部24が排出口30側に位置している場合は、第1触媒部24が供給口28側に位置し、第2触媒部26が排出口30側に位置している場合に比べて、脱水素に伴う脱メチル化を抑制する効果がより優れている。第1触媒部24が供給口28側に位置し、第2触媒部26が排出口30側に位置している場合は、第2触媒部26が供給口28側に位置し、第1触媒部24が排出口30側に位置している場合に比べて、脱水素反応の初期における水素の収率がより優れている。 When the second catalyst part 26 is located on the supply port 28 side and the first catalyst part 24 is located on the discharge port 30 side, the first catalyst part 24 is located on the supply port 28 side, and the second catalyst part Compared with the case where 26 is located on the discharge port 30 side, the effect of suppressing demethylation accompanying dehydrogenation is more excellent. When the first catalyst part 24 is located on the supply port 28 side and the second catalyst part 26 is located on the discharge port 30 side, the second catalyst part 26 is located on the supply port 28 side, and the first catalyst part Compared with the case where 24 is located on the outlet 30 side, the yield of hydrogen in the initial stage of the dehydrogenation reaction is more excellent.
(水素の製造システム、及び水素の製造法)
本発明の一実施形態では、図3に示す水素の製造システム100を用いて、水素を製造する。なお、水素の製造システム100とは、例えば燃料電池車に燃料として水素ガスを供給するための水素ステーションである。
(Hydrogen production system and hydrogen production method)
In one embodiment of the present invention, hydrogen is produced using the hydrogen production system 100 shown in FIG. The hydrogen production system 100 is, for example, a hydrogen station for supplying hydrogen gas as fuel to a fuel cell vehicle.
水素の製造システム100は、少なくとも脱水素反応器、気液分離器44、水素精製装置46、及びタンク56を備える。製造システム100は、更に高圧コンプレッサー54を備えてもよい。製造システム100が備える脱水素反応器は、図1中の(a)に示される脱水素反応器2aであってよい。製造システム100が備える脱水素反応器は、図1中の(b)に示される脱水素反応器2bであってもよい。製造システム100が備える脱水素反応器は、図2中の(a)に示される脱水素反応器20aであってもよい。製造システム100が備える脱水素反応器は、図2中の(b)に示される脱水素反応器20bであってもよい。脱水素反応器は、上記実施形態に係る脱水素触媒を有する。当該脱水素触媒を用いて、メチル基を有する環状飽和炭化水素を脱水素することにより、水素及び有機化合物を生成させる。有機化合物は、メチル基を有する不飽和炭化水素を含む。つまり、上記実施形態に係る水素の製造方法は、上記実施形態に係る脱水素反応器内で、メチル基を有する環状飽和炭化水素の脱水素により、水素、及び、メチル基を有する不飽和炭化水素を生成させる工程(脱水素工程)を備える。 The hydrogen production system 100 includes at least a dehydrogenation reactor, a gas-liquid separator 44, a hydrogen purification device 46, and a tank 56. The manufacturing system 100 may further include a high-pressure compressor 54. The dehydrogenation reactor provided in the production system 100 may be a dehydrogenation reactor 2a shown in (a) of FIG. The dehydrogenation reactor provided in the production system 100 may be a dehydrogenation reactor 2b shown in (b) of FIG. The dehydrogenation reactor provided in the production system 100 may be a dehydrogenation reactor 20a shown in (a) of FIG. The dehydrogenation reactor provided in the production system 100 may be a dehydrogenation reactor 20b shown in (b) of FIG. The dehydrogenation reactor has the dehydrogenation catalyst according to the above embodiment. Hydrogen and an organic compound are produced by dehydrogenating a cyclic saturated hydrocarbon having a methyl group using the dehydrogenation catalyst. The organic compound includes an unsaturated hydrocarbon having a methyl group. That is, in the method for producing hydrogen according to the above embodiment, the hydrogen and the unsaturated hydrocarbon having a methyl group are obtained by dehydrogenating the cyclic saturated hydrocarbon having a methyl group in the dehydrogenation reactor according to the above embodiment. The process of producing | generating (dehydrogenation process) is provided.
上記実施形態に係る水素の製造システムによれば、脱水素触媒がPt/Al2O3のみからなる場合と比べて、脱水素に伴う脱メチル化を抑制することができる。 According to the hydrogen production system according to the above embodiment, demethylation associated with dehydrogenation can be suppressed as compared with the case where the dehydrogenation catalyst is made of only Pt / Al 2 O 3 .
脱水素工程では、メチル基を有する環状飽和炭化水素を脱水素反応器内へ供給する。脱水素反応器内には、上記実施形態に係る脱水素触媒が設置されている。脱水素反応器内は還元雰囲気である。脱水素反応器内において、メチル基を有する環状飽和炭化水素が脱水素触媒に接触すると、脱水素反応が起こり、少なくとも一対の水素原子が上記環状飽和炭化水素から引き抜かれる。その結果、水素分子と、メチル基を有する不飽和炭化水素と、が生成する。このように、脱水素反応は気相反応である。脱水素工程では、メチル基を有する環状飽和炭化水素と共に水素を脱水素反応器内へ供給してもよい。これにより、脱水素活性がより長期間維持される傾向がある。以下では、メチル基を有する不飽和炭化水素を単に「不飽和炭化水素」と記載する。 In the dehydrogenation step, a cyclic saturated hydrocarbon having a methyl group is supplied into the dehydrogenation reactor. The dehydrogenation catalyst according to the above embodiment is installed in the dehydrogenation reactor. The inside of the dehydrogenation reactor is a reducing atmosphere. In the dehydrogenation reactor, when the cyclic saturated hydrocarbon having a methyl group comes into contact with the dehydrogenation catalyst, a dehydrogenation reaction takes place, and at least a pair of hydrogen atoms are extracted from the cyclic saturated hydrocarbon. As a result, hydrogen molecules and unsaturated hydrocarbons having a methyl group are generated. Thus, the dehydrogenation reaction is a gas phase reaction. In the dehydrogenation step, hydrogen may be supplied into the dehydrogenation reactor together with the cyclic saturated hydrocarbon having a methyl group. This tends to maintain the dehydrogenation activity for a longer period. Hereinafter, the unsaturated hydrocarbon having a methyl group is simply referred to as “unsaturated hydrocarbon”.
脱水素反応の条件は、特に限定されない。反応温度は、250〜420℃(523〜693K)であってよく、300〜400℃(573〜673K)であってもよい。反応温度を上記範囲に調整するためには、脱水素反応器内の触媒層の中央部の温度を上記範囲に調整すればよい。液空間速度(LHSV)は、0.2〜4.0h−1であってよい。反応圧力は、0.1〜1.0MPaであってよい。また、メチル基を有する環状飽和炭化水素と共に水素を脱水素反応器内へ供給する場合、脱水素反応器内へ供給する水素のモル数nHと、脱水素反応器内へ供給するメチル基を有する環状飽和炭化水素のモル数nCとの比nH/nCは0.05〜1.0であってよい。 The conditions for the dehydrogenation reaction are not particularly limited. The reaction temperature may be 250 to 420 ° C. (523 to 693 K), or 300 to 400 ° C. (573 to 673 K). In order to adjust the reaction temperature to the above range, the temperature at the center of the catalyst layer in the dehydrogenation reactor may be adjusted to the above range. The liquid hourly space velocity (LHSV) may be 0.2 to 4.0 h −1 . The reaction pressure may be 0.1 to 1.0 MPa. In the case of supplying hydrogen with cyclic saturated hydrocarbon having a methyl group into the dehydrogenation reactor, the mole number n H of hydrogen supplied to the dehydrogenation reactor, a methyl group is supplied to the dehydrogenation reactor The ratio n H / n C to the number of moles n C of the cyclic saturated hydrocarbon having may be 0.05 to 1.0.
脱水素反応の生成物(水素分子及び不飽和炭化水素)は、脱水素反応器から気液分離器44内へ供給される。気液分離器44内の温度は、不飽和炭化水素の融点以上、不飽和炭化水素の沸点未満である。したがって、気液分離器44内の水素分子は気体であり、気液分離器44内の不飽和炭化水素は液体である。つまり、気液分離器44内において、脱水素反応の生成物は、水素ガス(気相、気層)と、不飽和炭化水素の液体(液相、液層)と、に分離する。気液分離器44内の気相(水素含有ガス)は、水素精製装置46へ供給される。気液分離器44内の液相(不飽和炭化水素の液体)は、タンク56へ供給される。なお、気相には、不飽和炭化水素の蒸気が混入している場合がある。気相における不飽和炭化水素の分圧は最大で不飽和炭化水素の飽和蒸気圧程度である。なお、上記実施形態に係る水素の製造方法においては、上記実施形態に係る脱水素反応器を用いていることから、脱水素に伴う脱メチル化を抑制することができる。一方、液相には、脱水素されなかった有機ハイドライドが残存する場合がある。 The product (hydrogen molecule and unsaturated hydrocarbon) of the dehydrogenation reaction is supplied from the dehydrogenation reactor into the gas-liquid separator 44. The temperature in the gas-liquid separator 44 is not lower than the melting point of the unsaturated hydrocarbon and lower than the boiling point of the unsaturated hydrocarbon. Therefore, the hydrogen molecules in the gas-liquid separator 44 are gases, and the unsaturated hydrocarbons in the gas-liquid separator 44 are liquids. That is, in the gas-liquid separator 44, the product of the dehydrogenation reaction is separated into hydrogen gas (gas phase, gas layer) and unsaturated hydrocarbon liquid (liquid phase, liquid layer). The gas phase (hydrogen-containing gas) in the gas-liquid separator 44 is supplied to the hydrogen purifier 46. The liquid phase (unsaturated hydrocarbon liquid) in the gas-liquid separator 44 is supplied to the tank 56. Note that unsaturated hydrocarbon vapor may be mixed in the gas phase. The partial pressure of unsaturated hydrocarbons in the gas phase is at most about the saturated vapor pressure of unsaturated hydrocarbons. In the method for producing hydrogen according to the above embodiment, since the dehydrogenation reactor according to the above embodiment is used, demethylation accompanying dehydrogenation can be suppressed. On the other hand, organic hydride that has not been dehydrogenated may remain in the liquid phase.
気液分離器44から水素精製装置46へ供給された水素含有ガスは、水素精製装置46において精製される。水素精製装置46は、例えば、水素ガス及び不飽和炭化水素のうち水素ガスのみが選択的に透過する分離膜を備えてよい。分離膜は、例えば、金属膜(PbAg系膜、PdCu系膜、若しくはNb系膜など)、無機膜(シリカ膜、ゼオライト膜、若しくは炭素膜など)、又は高分子膜(フッ素樹脂膜、若しくはポリイミド膜など)であってよい。水素ガスが分離膜を透過することにより、水素ガスの純度が高まる。一方、水素含有ガス中の不飽和炭化水素(未反応の有機ハイドライド等)は、分離膜を透過することができない。したがって、不飽和炭化水素が水素含有ガスから分離され、高純度の水素ガスが精製される。精製された高純度の水素ガスは、高圧コンプレッサー54を経ることなく、燃料電池の燃料として用いられてもよく、高圧コンプレッサー54において圧縮された後、燃料電池の燃料として用いられてもよい。なお、不飽和炭化水素のみならず、微量の水素ガスも炭素膜を透過しない場合がある。炭素膜を透過しなかった水素ガスを、有機ハイドライドと共に回収して、オフガスとして、脱水素反応器内へ供給してもよい。または、炭素膜を透過しなかった不飽和炭化水素を、タンク56内へ回収してもよい。水素精製装置46は、分離膜を備える装置に限定されない。水素精製装置46は、例えば、圧力スイング吸着(PSA)法、熱スイング吸着(TSA)法(温度スイング吸着法)、温度圧力スイング吸着(TPSA)法、及び深冷分離法からなる群より選ばれる少なくとも一種の方法を実施する装置であってもよい。これらの装置を用いて、水素含有ガスを精製し、精製に伴って生じたオフガスを脱水素反応器内へ供給し、水素含有ガスから分離された不飽和炭化水素をタンク56へ供給してよい。精製された水素ガスの一部を、有機ハイドライドと共に脱水素反応器へ供給してよい。これにより、脱水素反応器内の脱水素触媒の脱水素活性が維持され易くなる。 The hydrogen-containing gas supplied from the gas-liquid separator 44 to the hydrogen purification device 46 is purified by the hydrogen purification device 46. The hydrogen purifier 46 may include, for example, a separation membrane that selectively allows only hydrogen gas among hydrogen gas and unsaturated hydrocarbons to permeate. The separation membrane is, for example, a metal membrane (such as a PbAg-based membrane, a PdCu-based membrane, or an Nb-based membrane), an inorganic membrane (such as a silica membrane, a zeolite membrane, or a carbon membrane), or a polymer membrane (a fluororesin membrane or polyimide). A membrane). The hydrogen gas permeates through the separation membrane, thereby increasing the purity of the hydrogen gas. On the other hand, unsaturated hydrocarbons (such as unreacted organic hydride) in the hydrogen-containing gas cannot permeate the separation membrane. Therefore, unsaturated hydrocarbons are separated from the hydrogen-containing gas, and high-purity hydrogen gas is purified. The purified high-purity hydrogen gas may be used as fuel for the fuel cell without passing through the high-pressure compressor 54, or may be used as fuel for the fuel cell after being compressed by the high-pressure compressor 54. Note that not only unsaturated hydrocarbons but also trace amounts of hydrogen gas may not pass through the carbon film. The hydrogen gas that has not permeated the carbon membrane may be recovered together with the organic hydride and supplied as an off-gas into the dehydrogenation reactor. Alternatively, unsaturated hydrocarbons that have not permeated the carbon membrane may be recovered into the tank 56. The hydrogen purification apparatus 46 is not limited to an apparatus provided with a separation membrane. The hydrogen purifier 46 is selected from the group consisting of, for example, a pressure swing adsorption (PSA) method, a thermal swing adsorption (TSA) method (temperature swing adsorption method), a temperature pressure swing adsorption (TPSA) method, and a cryogenic separation method. An apparatus that performs at least one method may be used. Using these apparatuses, the hydrogen-containing gas may be purified, the off-gas generated along with the purification may be supplied into the dehydrogenation reactor, and the unsaturated hydrocarbon separated from the hydrogen-containing gas may be supplied to the tank 56. . A portion of the purified hydrogen gas may be supplied to the dehydrogenation reactor along with the organic hydride. Thereby, the dehydrogenation activity of the dehydrogenation catalyst in the dehydrogenation reactor is easily maintained.
以上、本発明の態様について説明したが、本発明は上記実施形態に何ら限定されるものではない。例えば、本発明の他の実施形態に係る脱水素反応器は、反応室と、反応室内に配置されている第1成形体及び第2成形体と、を備えてよく、第1成形体は、Ptが担持されたAl2O3を含んでよく、第2成形体は、TiO2を含んでよく、当該脱水素反応器は、メチル基を有する環状飽和炭化水素の脱水素に用いられてよい。本発明の他の実施形態に係る脱水素触媒は、第1成形体及び第2成形体を備えてよく、第1成形体は、Ptが担持されたAl2O3を含んでよく、第2成形体は、TiO2を含んでよく、当該脱水素触媒は、メチル基を有する環状飽和炭化水素の脱水素に用いられてよい。本発明の他の実施形態に係る脱水素反応器は、反応室と、反応室内に配置されている成形体(第3成形体)と、を備えてよく、成形体(第3成形体)は、Ptが担持されたAl2O3と、TiO2と、を含んでよく、当該脱水素反応器は、メチル基を有する環状飽和炭化水素の脱水素に用いられてよい。本発明の他の実施形態に係る脱水素触媒は、成形体(第3成形体)を備えてよく、成形体(第3成形体)は、Ptが担持されたAl2O3と、TiO2と、を含んでよく、当該脱水素触媒は、メチル基を有する環状飽和炭化水素の脱水素に用いられてよい。第1成形体、第2成形体及び第3成形体それぞれの製造方法は、例えば、転動造粒、押し出し成形、又は打錠成型であってよい。第1成形体、第2成形体及び第3成形体それぞれの形状は、特に限定されない。各成形体は、例えば、球状又は柱状であってよい。柱状の成形体の断面は、円状、三葉状、又は四葉状であってよい。各成形体は、プレート状、又はハニカム状であってよい。各成形体の長径(例えば直径)は、特に限定されないが、1〜4mmであってよい。 As mentioned above, although the aspect of this invention was demonstrated, this invention is not limited to the said embodiment at all. For example, a dehydrogenation reactor according to another embodiment of the present invention may include a reaction chamber, and a first molded body and a second molded body arranged in the reaction chamber, and the first molded body is Pt-supported Al 2 O 3 may be included, the second molded body may include TiO 2, and the dehydrogenation reactor may be used for dehydrogenation of a cyclic saturated hydrocarbon having a methyl group. . A dehydrogenation catalyst according to another embodiment of the present invention may include a first molded body and a second molded body, and the first molded body may include Al 2 O 3 on which Pt is supported. The shaped body may contain TiO 2, and the dehydrogenation catalyst may be used for dehydrogenation of a cyclic saturated hydrocarbon having a methyl group. A dehydrogenation reactor according to another embodiment of the present invention may include a reaction chamber and a molded body (third molded body) disposed in the reaction chamber. , Pt-supported Al 2 O 3 and TiO 2, and the dehydrogenation reactor may be used for dehydrogenation of a cyclic saturated hydrocarbon having a methyl group. The dehydrogenation catalyst according to another embodiment of the present invention may include a molded body (third molded body), and the molded body (third molded body) includes Al 2 O 3 supporting Pt and TiO 2. The dehydrogenation catalyst may be used for dehydrogenation of a cyclic saturated hydrocarbon having a methyl group. The manufacturing method of each of the first molded body, the second molded body, and the third molded body may be, for example, rolling granulation, extrusion molding, or tableting molding. The shape of each of the first molded body, the second molded body, and the third molded body is not particularly limited. Each molded body may be spherical or columnar, for example. The cross section of the columnar shaped body may be circular, trilobal, or tetralobal. Each shaped body may be plate-shaped or honeycomb-shaped. The major axis (for example, diameter) of each molded body is not particularly limited, but may be 1 to 4 mm.
以下、本発明の内容を実施例及び比較例を用いてより詳細に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, although the content of the present invention is explained in detail using an example and a comparative example, the present invention is not limited to the following examples.
[第1粒子の作製]
担体のAl2O3には、日本参照触媒の一種であるJRC−ALO−8を用いた。担体を遊星ボールミルで粉砕した。Pt化合物の溶液を、含浸法により、粉砕された担体に付着させた。Pt化合物には、硝酸テトラアンミン白金(II)を用いた。含浸法は、担体におけるPtの担持量が1質量%となるように行った。Ptの担持量は、担体の全質量を基準とした担持量である。Pt化合物が付着した担体を673Kの温度で焼成し、粉末状の第1原料を得た。第1原料を整粒して、第1粒子を得た。なお、整粒は以下の手順で行った。第1原料を打錠機で圧縮成形して、成形体を得た。成形体を乳鉢内で乳棒を用いて軽く砕いて、粉砕物を得た。粉砕物をメッシュで分級して、第1粒子を得た。第1粒子の粒子径は、250〜500μmであった。
[Production of first particles]
As the support Al 2 O 3 , JRC-ALO-8 which is a kind of Japanese reference catalyst was used. The carrier was pulverized with a planetary ball mill. The solution of Pt compound was attached to the pulverized carrier by the impregnation method. For the Pt compound, tetraammineplatinum (II) nitrate was used. The impregnation method was performed so that the amount of Pt supported on the carrier was 1% by mass. The supported amount of Pt is a supported amount based on the total mass of the carrier. The carrier to which the Pt compound was adhered was fired at a temperature of 673 K to obtain a powdery first raw material. The first raw material was sized to obtain first particles. The sizing was performed according to the following procedure. The first raw material was compression molded with a tableting machine to obtain a molded body. The molded body was lightly crushed using a pestle in a mortar to obtain a pulverized product. The pulverized product was classified with a mesh to obtain first particles. The particle diameter of the first particles was 250 to 500 μm.
[第2粒子の作製]
出発原料のTiO2には、日本参照触媒の一種であるJRC−TIO−7を用いた。出発原料のTiO2を遊星ボールミルで粉砕した。粉砕されたTiO2を673K、873K、973K、又は1073Kの温度で焼成して、焼成温度が異なる4種類の第2原料を得た。以下では、TiO2を673Kの温度で焼成して得られた第2原料を、「焼成温度673Kの第2原料」ともいう。TiO2を873Kの温度で焼成して得られた第2原料を「焼成温度873Kの第2原料」ともいう。TiO2を973Kの温度で焼成して得られた第2原料を「焼成温度973Kの第2原料」ともいう。TiO2を1073Kの温度で焼成して得られた第2原料を「焼成温度1073Kの第2原料」ともいう。
[Production of second particles]
JRC-TIO-7, which is a kind of Japanese reference catalyst, was used as the starting material TiO 2 . The starting material TiO 2 was pulverized with a planetary ball mill. The pulverized TiO 2 was fired at a temperature of 673K, 873K, 973K, or 1073K to obtain four types of second raw materials having different firing temperatures. Hereinafter, the second raw material obtained by firing a TiO 2 at a temperature of 673K, also referred to as "second raw material baking temperature 673K." The second raw material obtained by baking TiO 2 at a temperature of 873 K is also referred to as “second raw material at a baking temperature of 873 K”. The second raw material obtained by firing TiO 2 at a temperature of 973K is also referred to as “second raw material having a firing temperature of 973K”. A second raw material obtained by baking TiO 2 at a temperature of 1073K is also referred to as a “second raw material having a baking temperature of 1073K”.
X線回折(XRD)装置を用いて、上記で得られた焼成温度が異なる4種類の第2原料を構成するTiO2それぞれのXRDパターンを個別に測定した。測定された4種類のTiO2のXRDパターンを図4に示す。図4に示すように、4種類のTiO2のXRDパターンでは、いずれもアナターゼ型の回折ピークが見られた。これは、4種類のTiO2が、いずれもアナターゼ型TiO2であることを意味する。アナターゼ型TiO2の(101)面に由来する25.28°の回折角2θにおける回折ピークを用いて、上記のScherrerの式(1)に従い、焼成後のTiO2の結晶子径を求めた。焼成温度673Kの第2原料を構成するTiO2の結晶子径は、14.1nmであった。焼成温度873Kの第2原料を構成するTiO2の結晶子径は、23.4nmであった。焼成温度973Kの第2原料を構成するTiO2の結晶子径は、33.7nmであった。焼成温度1073Kの第2原料を構成するTiO2の結晶子径は、52.8nmであった。焼成後のTiO2の比表面積をBET法により測定した。焼成温度673Kの第2原料を構成するTiO2の比表面積は、118m2/gであった。焼成温度873Kの第2原料を構成するTiO2の比表面積は、58m2/gであった。焼成温度973Kの第2原料を構成するTiO2の比表面積は、31m2/gであった。焼成温度1073Kの第2原料を構成するTiO2の比表面積は、13m2/gであった。 Using an X-ray diffraction (XRD) apparatus, the XRD patterns of TiO 2 constituting the four kinds of second raw materials having different firing temperatures obtained above were individually measured. The XRD patterns of the four types of TiO 2 measured are shown in FIG. As shown in FIG. 4, anatase-type diffraction peaks were observed in all four types of XRD patterns of TiO 2 . This means that the four types of TiO 2 are all anatase TiO 2 . Using the diffraction peak at a diffraction angle 2θ of 25.28 ° derived from the (101) plane of anatase-type TiO 2 , the crystallite diameter of TiO 2 after firing was determined according to Scherrer's equation (1). The crystallite diameter of TiO 2 constituting the second raw material having a firing temperature of 673 K was 14.1 nm. The crystallite diameter of TiO 2 constituting the second raw material having a firing temperature of 873 K was 23.4 nm. The crystallite diameter of TiO 2 constituting the second raw material having a firing temperature of 973 K was 33.7 nm. The crystallite diameter of TiO 2 constituting the second raw material having a firing temperature of 1073K was 52.8 nm. The specific surface area of TiO 2 after firing was measured by the BET method. The specific surface area of TiO 2 constituting the second raw material having a firing temperature of 673 K was 118 m 2 / g. The specific surface area of TiO 2 constituting the second raw material having a firing temperature of 873 K was 58 m 2 / g. The specific surface area of TiO 2 constituting the second raw material having a firing temperature of 973 K was 31 m 2 / g. The specific surface area of TiO 2 constituting the second raw material having a firing temperature of 1073 K was 13 m 2 / g.
上記で得られた4種類の第2原料をそれぞれ個別に整粒して、4種類の第2粒子を得た。以下では、焼成温度673Kの第2原料から得られた第2粒子を「焼成温度673Kの第2粒子」ともいう。焼成温度873Kの第2原料から得られた第2粒子を「焼成温度873Kの第2粒子」ともいう。焼成温度973Kの第2原料から得られた第2粒子を「焼成温度973Kの第2粒子」ともいう。焼成温度1073Kの第2原料から得られた第2粒子を「焼成温度1073Kの第2粒子」ともいう。なお、整粒の方法は、第1粒子の場合と同じである。4種類の第2粒子の粒子径は、それぞれ250〜500μmであった。 The four types of second raw materials obtained above were individually sized to obtain four types of second particles. Below, the 2nd particle obtained from the 2nd raw material of calcination temperature 673K is also called "the 2nd particle of calcination temperature 673K." The second particles obtained from the second raw material having a firing temperature of 873K are also referred to as “second particles having a firing temperature of 873K”. The second particles obtained from the second raw material having a firing temperature of 973K are also referred to as “second particles having a firing temperature of 973K”. The second particles obtained from the second raw material having a firing temperature of 1073K are also referred to as “second particles having a firing temperature of 1073K”. Note that the sizing method is the same as that for the first particles. The particle diameters of the four types of second particles were 250 to 500 μm, respectively.
(実施例1)
第1粒子25mgと、焼成温度673Kの第2粒子25mgとを薬包紙上で軽く混合して、脱水素触媒50mgを得た。得られた脱水素触媒50mgと、SiC500mgとを混合して、脱水素触媒を希釈した。希釈後の脱水素触媒550mgを固定床流通式反応器の反応室内に配置して、実施例1の脱水素反応器を得た。反応室内に配置された希釈後の脱水素触媒の層の厚さは、4mmであった。
Example 1
25 mg of the first particles and 25 mg of the second particles having a calcination temperature of 673 K were lightly mixed on the medicine-wrapping paper to obtain 50 mg of a dehydrogenation catalyst. The dehydrogenation catalyst was diluted by mixing 50 mg of the obtained dehydrogenation catalyst and 500 mg of SiC. 550 mg of the dehydrogenation catalyst after dilution was placed in the reaction chamber of the fixed bed flow reactor to obtain the dehydrogenation reactor of Example 1. The thickness of the layer of the dehydrogenation catalyst after dilution disposed in the reaction chamber was 4 mm.
(実施例2)
実施例2では、焼成温度673Kの第2粒子の代わりに焼成温度873Kの第2粒子を用いた。この点を除いては実施例1と同様にして、実施例2の脱水素触媒及び脱水素反応器を得た。
(Example 2)
In Example 2, the second particles having a firing temperature of 873K were used instead of the second particles having a firing temperature of 673K. Except for this point, the dehydrogenation catalyst and dehydrogenation reactor of Example 2 were obtained in the same manner as Example 1.
(実施例3)
実施例3では、焼成温度673Kの第2粒子の代わりに焼成温度973Kの第2粒子を用いた。この点を除いては実施例1と同様にして、実施例3の脱水素触媒及び脱水素反応器を得た。
(Example 3)
In Example 3, the second particles having a firing temperature of 973K were used instead of the second particles having a firing temperature of 673K. Except for this point, the dehydrogenation catalyst and dehydrogenation reactor of Example 3 were obtained in the same manner as Example 1.
(実施例4)
実施例4では、焼成温度673Kの第2粒子の代わりに焼成温度1073Kの第2粒子を用いた。この点を除いては実施例1と同様にして、実施例4の脱水素触媒及び脱水素反応器を得た。
Example 4
In Example 4, the second particles having a firing temperature of 1073K were used instead of the second particles having a firing temperature of 673K. Except for this point, the dehydrogenation catalyst and dehydrogenation reactor of Example 4 were obtained in the same manner as Example 1.
(比較例1)
比較例1では、第2原料の出発原料としてTiO2の代わりにAl2O3を用いた。Al2O3には、日本参照触媒の一種であるJRC−ALO−8を用いた。以上の点を除いては実施例1と同様にして、比較例1の脱水素触媒及び脱水素反応器を得た。
(Comparative Example 1)
In Comparative Example 1, Al 2 O 3 was used instead of TiO 2 as the starting material for the second material. As Al 2 O 3 , JRC-ALO-8, which is a kind of Japanese reference catalyst, was used. Except for the above points, a dehydrogenation catalyst and a dehydrogenation reactor of Comparative Example 1 were obtained in the same manner as in Example 1.
[メタン生成量の測定]
実施例1〜4及び比較例1で得られた脱水素反応器それぞれを単独で用いて脱水素反応を行った。そして、脱水素反応に伴うメタン生成量を測定した。測定は、以下の方法により行った。脱水素反応器内に、メチルシクロヘキサン(MCH)とArとN2とからなるガスを供給して、脱水素反応を行った。脱水素反応は、623Kの温度で行った。ガスに含まれるMCHとArとN2との体積比MCH:Ar:N2は、6.4:20:5であった。ガスの流量は、31.4mL/minであった。脱水素反応器から排出された生成物を回収して冷却し、液体生成物と気体生成物とに分離した。液体生成物を、ガスクロマトグラフ−水素炎イオン化検出器(GC−FID)で分析した。気体生成物を、ガスクロマトグラフ−熱伝導度検出器(GC−TCD)で分析した。気体生成物に含まれるメタンのGC面積(ピーク面積)から、メタンの生成速度rCH4を算出した。rCH4は、単位時間あたりに生成するメタンのモル数である。実施例1〜4及び比較例1における脱水素反応時間とメタン生成速度との関係を図5に示す。続いて、気体生成物に含まれる水素のGC面積(ピーク面積)から、水素の生成速度rH2を算出し、rH2とrCH4の和に対するrCH4の割合rCH4/(rH2+rCH4)から、生成水素中のメタン濃度(ppm)を算出した。rH2は、単位時間あたりに生成する水素のモル数である。実施例1〜4及び比較例1における脱水素反応時間と、生成水素中のメタン濃度(ppm)との関係を図6に示す。rCH4、又は、生成水素中のメタン濃度(ppm)の値が小さいほど、脱水素反応に伴う脱メチル化がより抑制されている。
[Measurement of methane production]
The dehydrogenation reaction was performed using each of the dehydrogenation reactors obtained in Examples 1 to 4 and Comparative Example 1 alone. And the methane production amount accompanying a dehydrogenation reaction was measured. The measurement was performed by the following method. A dehydrogenation reaction was performed by supplying a gas composed of methylcyclohexane (MCH), Ar, and N 2 into the dehydrogenation reactor. The dehydrogenation reaction was performed at a temperature of 623K. The volume ratio MCH: Ar: N 2 of MCH, Ar, and N 2 contained in the gas was 6.4: 20: 5. The gas flow rate was 31.4 mL / min. The product discharged from the dehydrogenation reactor was recovered and cooled, and separated into a liquid product and a gaseous product. The liquid product was analyzed with a gas chromatograph-hydrogen flame ionization detector (GC-FID). The gas product was analyzed with a gas chromatograph-thermal conductivity detector (GC-TCD). From the GC area (peak area) of methane contained in the gaseous product, the methane production rate r CH4 was calculated. r CH4 is the number of moles of methane produced per unit time. FIG. 5 shows the relationship between the dehydrogenation reaction time and the methane production rate in Examples 1 to 4 and Comparative Example 1. Subsequently, the GC area of the hydrogen contained in the gaseous products (peak area) was calculated production rate r H2 of hydrogen, the ratio r CH4 / of r CH4 to the sum of r H2 and r CH4 (r H2 + r CH4 ) From this, the methane concentration (ppm) in the produced hydrogen was calculated. r H2 is the number of moles of hydrogen generated per unit time. FIG. 6 shows the relationship between the dehydrogenation reaction time in Examples 1 to 4 and Comparative Example 1 and the methane concentration (ppm) in the produced hydrogen. The smaller the value of r CH4 or methane concentration (ppm) in the produced hydrogen, the more the demethylation associated with the dehydrogenation reaction is suppressed.
[水素収率の測定]
実施例1〜4及び比較例1それぞれの脱水素反応における水素収率を測定した。水素収率は、上記のrH2と、脱水素反応器内へのMCHの供給量rMCHとから、下記の式(2)に従って求めた。rMCHは、脱水素反応器内へ単位時間あたりに供給されるMCHのモル数である。実施例1〜4及び比較例1における脱水素反応時間と水素収率との関係を図7に示す。
水素収率(単位:%)=rH2/(rMCH×3)×100 (2)
[Measurement of hydrogen yield]
The hydrogen yield in each dehydrogenation reaction of Examples 1 to 4 and Comparative Example 1 was measured. Hydrogen yield and r H2 above, and a supply amount r MCH of MCH to the dehydrogenation reactor, was determined according to the following equation (2). r MCH is the number of moles of MCH supplied per unit time into the dehydrogenation reactor. The relationship between the dehydrogenation reaction time and the hydrogen yield in Examples 1 to 4 and Comparative Example 1 is shown in FIG.
Hydrogen yield (unit:%) = r H2 / (r MCH × 3) × 100 (2)
(実施例5)
実施例5では、第1粒子25mgと、焼成温度673Kの第2粒子12.5mgとを混合して、脱水素触媒37.5mgを得た。得られた脱水素触媒37.5mgと、SiC500mgとを混合して、脱水素触媒を希釈した。希釈後の脱水素触媒537.5mgを固定床流通式反応器の反応室内に配置した。以上の点を除いては実施例1と同様にして、実施例5の脱水素触媒及び脱水素反応器を得た。
(Example 5)
In Example 5, 25 mg of the first particles and 12.5 mg of the second particles having a calcining temperature of 673 K were mixed to obtain 37.5 mg of a dehydrogenation catalyst. The dehydrogenation catalyst was diluted by mixing 37.5 mg of the obtained dehydrogenation catalyst and 500 mg of SiC. 537.5 mg of the dehydrogenation catalyst after dilution was placed in the reaction chamber of the fixed bed flow reactor. A dehydrogenation catalyst and a dehydrogenation reactor of Example 5 were obtained in the same manner as Example 1 except for the above points.
(実施例6)
実施例6では、第1粒子25mgと、焼成温度673Kの第2粒子50mgとを混合して、脱水素触媒75mgを得た。得られた脱水素触媒75mgと、SiC500mgとを混合して、脱水素触媒を希釈した。希釈後の脱水素触媒575mgを固定床流通式反応器の反応室内に配置した。以上の点を除いては実施例1と同様にして、実施例6の脱水素触媒及び脱水素反応器を得た。
(Example 6)
In Example 6, 25 mg of the first particles and 50 mg of the second particles having a calcination temperature of 673 K were mixed to obtain 75 mg of a dehydrogenation catalyst. The resulting dehydrogenation catalyst 75 mg and SiC 500 mg were mixed to dilute the dehydrogenation catalyst. 575 mg of the dehydrogenated catalyst after dilution was placed in the reaction chamber of the fixed bed flow reactor. A dehydrogenation catalyst and a dehydrogenation reactor of Example 6 were obtained in the same manner as Example 1 except for the above points.
実施例1と同様にして、実施例5及び6それぞれの脱水素反応におけるメタン生成量及び水素収率を測定した。実施例1、5及び6における脱水素反応時間とメタン生成速度との関係を図8に示す。実施例1、5及び6における脱水素反応時間と、生成水素中のメタン濃度(ppm)との関係を図9に示す。実施例1、5及び6における脱水素反応時間と水素収率との関係を図10に示す。各図が示す通り、実施例1〜6は、比較例1に比べて、脱水素反応に伴う脱メチル化を抑制できることがわかった。 In the same manner as in Example 1, the amount of methane produced and the hydrogen yield in the dehydrogenation reactions of Examples 5 and 6 were measured. FIG. 8 shows the relationship between the dehydrogenation reaction time and the methane production rate in Examples 1, 5 and 6. FIG. 9 shows the relationship between the dehydrogenation reaction time in Examples 1, 5, and 6 and the methane concentration (ppm) in the produced hydrogen. The relationship between the dehydrogenation reaction time and the hydrogen yield in Examples 1, 5, and 6 is shown in FIG. As shown in each figure, it was found that Examples 1 to 6 can suppress demethylation associated with the dehydrogenation reaction as compared with Comparative Example 1.
[第3粒子の作製]
上記の第1原料と、焼成温度が異なる3種類の第2原料のうち一つとを遊星ボールミルで混合して、以下の3種類の第3原料を得た。以下では、第1原料と、焼成温度673Kの第2原料とを混合して得られた第3原料を「焼成温度673Kの第3原料」ともいう。第1原料と、焼成温度873Kの第2原料とを混合して得られた第3原料を「焼成温度873Kの第3原料」ともいう。第1原料と、焼成温度1073Kの第2原料とを混合して得られた第3原料を「焼成温度1073Kの第3原料」ともいう。遊星ボールミルによる混合は、300rpmで30分間を2回行った。3種類の第3原料をそれぞれ個別に整粒して、3種類の第3粒子を得た。以下では、焼成温度673Kの第3原料から得られた第3粒子を「焼成温度673Kの第3粒子」ともいう。焼成温度873Kの第3原料から得られた第3粒子を「焼成温度873Kの第3粒子」ともいう。焼成温度1073Kの第3原料から得られた第3粒子を「焼成温度1073Kの第3粒子」ともいう。なお、整粒の方法は、第1粒子の場合と同じである。3種類の第3粒子の粒子径は、それぞれ250〜500μmであった。
[Production of third particles]
The first raw material and one of the three kinds of second raw materials having different firing temperatures were mixed by a planetary ball mill to obtain the following three kinds of third raw materials. Hereinafter, the third raw material obtained by mixing the first raw material and the second raw material having a baking temperature of 673K is also referred to as “third raw material having a baking temperature of 673K”. The third raw material obtained by mixing the first raw material and the second raw material having a firing temperature of 873K is also referred to as “third raw material having a firing temperature of 873K”. The third raw material obtained by mixing the first raw material and the second raw material having a firing temperature of 1073K is also referred to as “third raw material having a firing temperature of 1073K”. Mixing with the planetary ball mill was performed twice at 300 rpm for 30 minutes. Three types of third raw materials were individually sized to obtain three types of third particles. Below, the 3rd particle obtained from the 3rd raw material of calcination temperature 673K is also called "the 3rd particle of calcination temperature 673K." The third particles obtained from the third raw material having a firing temperature of 873K are also referred to as “third particles having a firing temperature of 873K”. The third particles obtained from the third raw material having a firing temperature of 1073K are also referred to as “third particles having a firing temperature of 1073K”. Note that the sizing method is the same as that for the first particles. The particle sizes of the three types of third particles were 250 to 500 μm, respectively.
(実施例7)
焼成温度673Kの第3粒子のみからなる脱水素触媒50mgと、SiC500mgとを混合して、脱水素触媒を希釈した。希釈後の脱水素触媒550mgを固定床流通式反応器の反応室内に配置して、実施例7の脱水素反応器を得た。
(Example 7)
The dehydrogenation catalyst was diluted by mixing 50 mg of the dehydrogenation catalyst consisting only of the third particles having a calcination temperature of 673 K and 500 mg of SiC. 550 mg of the diluted dehydrogenation catalyst was placed in the reaction chamber of the fixed bed flow reactor to obtain the dehydrogenation reactor of Example 7.
(実施例8)
実施例8では、焼成温度673Kの第3粒子の代わりに焼成温度873Kの第3粒子を用いた。この点を除いては実施例7と同様にして、実施例8の脱水素触媒及び脱水素反応器を得た。
(Example 8)
In Example 8, the 3rd particle of calcination temperature 873K was used instead of the 3rd particle of calcination temperature 673K. Except for this point, the dehydrogenation catalyst and dehydrogenation reactor of Example 8 were obtained in the same manner as Example 7.
(実施例9)
実施例9では、焼成温度673Kの第3粒子の代わりに焼成温度1073Kの第3粒子を用いた。この点を除いては実施例7と同様にして、実施例9の脱水素触媒及び脱水素反応器を得た。
Example 9
In Example 9, the third particles having a firing temperature of 1073K were used instead of the third particles having a firing temperature of 673K. Except for this point, the dehydrogenation catalyst and dehydrogenation reactor of Example 9 were obtained in the same manner as Example 7.
(比較例2)
比較例2では、第2原料の出発原料としてTiO2の代わりにAl2O3を用いた。Al2O3には、日本参照触媒の一種であるJRC−ALO−8を用いた。以上の点を除いては実施例7と同様にして、比較例2の脱水素触媒及び脱水素反応器を得た。
(Comparative Example 2)
In Comparative Example 2, Al 2 O 3 was used in place of TiO 2 as a starting material for the second raw material. As Al 2 O 3 , JRC-ALO-8, which is a kind of Japanese reference catalyst, was used. Except for the above points, the dehydrogenation catalyst and dehydrogenation reactor of Comparative Example 2 were obtained in the same manner as in Example 7.
実施例1と同様にして、実施例7〜9及び比較例2それぞれの脱水素反応におけるメタン生成量及び水素収率を測定した。実施例7〜9及び比較例2における脱水素反応時間とメタン生成速度との関係を図11に示す。実施例7〜9及び比較例2における脱水素反応時間と、生成水素中のメタン濃度との関係を図12に示す。実施例7〜9及び比較例2における脱水素反応時間と水素収率との関係を図13に示す。各図が示す通り、実施例7〜9は、比較例2に比べて、脱水素反応に伴う脱メチル化を抑制できることがわかった。 In the same manner as in Example 1, the amount of methane produced and the hydrogen yield in the dehydrogenation reactions of Examples 7 to 9 and Comparative Example 2 were measured. The relationship between the dehydrogenation reaction time and the methane production rate in Examples 7 to 9 and Comparative Example 2 is shown in FIG. FIG. 12 shows the relationship between the dehydrogenation reaction time in Examples 7 to 9 and Comparative Example 2 and the methane concentration in the produced hydrogen. FIG. 13 shows the relationship between the dehydrogenation reaction time and the hydrogen yield in Examples 7 to 9 and Comparative Example 2. As shown in each figure, Examples 7 to 9 were found to be able to suppress demethylation associated with the dehydrogenation reaction as compared with Comparative Example 2.
図7と図13とを比較する。図7における実施例1及び2では、脱水素反応の初期における水素の収率が比較的小さった。一方、図13における実施例7及び8では、図7中の実施例1及び2に比べて、脱水素反応の初期においても水素の収率が大きかった。つまり、第2実施形態に係る脱水素反応器は、第1実施形態に係る脱水素反応器に比べて、脱水素反応の初期における水素の収率が優れていることが確認された。ただし、図7における実施例1及び2では、脱水素反応における水素の収率は経時的に増加し、図13における実施例7及び8の水素の収率と大きな差は見られなくなった。図5と図11との比較、及び、図6と図12との比較から、脱水素反応時間が経過するほど、実施例1〜3のメタン生成量は、実施例7〜9のメタン生成量よりも減少する傾向があることが確認された。 FIG. 7 is compared with FIG. In Examples 1 and 2 in FIG. 7, the hydrogen yield at the initial stage of the dehydrogenation reaction was relatively small. On the other hand, in Examples 7 and 8 in FIG. 13, compared with Examples 1 and 2 in FIG. 7, the yield of hydrogen was large even at the initial stage of the dehydrogenation reaction. That is, it was confirmed that the dehydrogenation reactor according to the second embodiment has an excellent hydrogen yield at the initial stage of the dehydrogenation reaction as compared with the dehydrogenation reactor according to the first embodiment. However, in Examples 1 and 2 in FIG. 7, the hydrogen yield in the dehydrogenation reaction increased with time, and no significant difference was found from the hydrogen yield in Examples 7 and 8 in FIG. From the comparison between FIG. 5 and FIG. 11 and the comparison between FIG. 6 and FIG. 12, as the dehydrogenation reaction time elapses, the methane production amount of Examples 1 to 3 is the methane production amount of Examples 7 to 9. It was confirmed that there was a tendency to decrease.
[Pt/Al2O3の作製]
担体のAl2O3には、日本参照触媒の一種であるJRC−ALO−8を用いた。Pt化合物の溶液を含浸法により、担体に付着させた。Pt化合物には、硝酸テトラアンミン白金(II)を用いた。含浸法は、担体におけるPtの担持量が1質量%となるように行った。Pt化合物が付着した担体を673Kの温度で焼成して、第1触媒部用のPt/Al2O3を得た。
[Production of Pt / Al 2 O 3 ]
As the support Al 2 O 3 , JRC-ALO-8 which is a kind of Japanese reference catalyst was used. A solution of the Pt compound was attached to the support by an impregnation method. For the Pt compound, tetraammineplatinum (II) nitrate was used. The impregnation method was performed so that the amount of Pt supported on the carrier was 1% by mass. The carrier to which the Pt compound was adhered was calcined at a temperature of 673K to obtain Pt / Al 2 O 3 for the first catalyst part.
[TiO2の作製]
TiO2には、日本参照触媒の一種であるJRC−TIO−7を用いた。TiO2を673Kの温度で焼成して、第2触媒部用のTiO2を得た。
[Production of TiO 2 ]
As TiO 2 , JRC-TIO-7, which is a kind of Japanese reference catalyst, was used. TiO 2 was calcined at a temperature of 673 K to obtain TiO 2 for the second catalyst part.
(実施例10)
固定床流通式反応器の反応室内において、MCHの供給口側(上流側)に、TiO2及びSiCからなる第2触媒部(第2触媒層)を形成した。また、反応室内において、生成物の排出口側(下流側)に、Pt/Al2O3及びSiCからなる第1触媒部(第1触媒層)を形成した。MCHの供給口側を鉛直上方に配置し、生成物の排出口側を鉛直下方に配置した。つまり、反応室内において第2触媒層を第1触媒層の上に重ねた。第1触媒層と第2触媒層との間には、シリカウールからなる層を配置した。なお、第1触媒層と第2触媒層は、シリカウールからなる層によって完全に分離されている。以上の手順により実施例10の脱水素反応器を得た。第1触媒層の厚さは、4mmであった。第2触媒層の厚さは、4mmであった。シリカウールからなる層の厚さは、1mmであった。第1触媒層中のPt/Al2O3の質量は、25mgであった。第1触媒層中のSiCの質量は、250mgであった。第2触媒層中のTiO2の質量は、25mgであった。第2触媒層中のSiCの質量は、250mgであった。
(Example 10)
In the reaction chamber of the fixed bed flow reactor, a second catalyst portion (second catalyst layer) made of TiO 2 and SiC was formed on the MCH supply port side (upstream side). In the reaction chamber, a first catalyst portion (first catalyst layer) made of Pt / Al 2 O 3 and SiC was formed on the product outlet side (downstream side). The MCH supply port side was disposed vertically upward, and the product discharge port side was disposed vertically downward. That is, the second catalyst layer was stacked on the first catalyst layer in the reaction chamber. A layer made of silica wool was disposed between the first catalyst layer and the second catalyst layer. The first catalyst layer and the second catalyst layer are completely separated by a layer made of silica wool. The dehydrogenation reactor of Example 10 was obtained by the above procedure. The thickness of the first catalyst layer was 4 mm. The thickness of the second catalyst layer was 4 mm. The thickness of the layer made of silica wool was 1 mm. The mass of Pt / Al 2 O 3 in the first catalyst layer was 25 mg. The mass of SiC in the first catalyst layer was 250 mg. The mass of TiO 2 in the second catalyst layer was 25 mg. The mass of SiC in the second catalyst layer was 250 mg.
(実施例11)
実施例11では、Pt/Al2O3及びSiCからなる第1触媒部(第1触媒層)をMCHの供給口側(上流側)に形成した。また、TiO2及びSiCからなる第2触媒部(第2触媒層)を生成物の排出口側(下流側)に形成した。つまり、実施例11では、第1触媒層を第2触媒層の上に重ねた。以上の点を除いては実施例10と同様にして、実施例11の脱水素反応器を得た。
(Example 11)
In Example 11, the first catalyst portion (first catalyst layer) made of Pt / Al 2 O 3 and SiC was formed on the MCH supply port side (upstream side). Also, to form the second catalyst part composed of TiO 2 and SiC (second catalyst layer) on the outlet side of the product (the downstream side). That is, in Example 11, the first catalyst layer was overlaid on the second catalyst layer. A dehydrogenation reactor of Example 11 was obtained in the same manner as Example 10 except for the above points.
実施例1と同様にして、実施例10及び11それぞれの脱水素反応におけるメタン生成量及び水素収率を測定した。実施例10及び11における脱水素反応時間とメタン生成速度との関係を図14に示す。実施例10及び11における脱水素反応時間と、生成水素中のメタン濃度(ppm)との関係を図15に示す。実施例10及び11における脱水素反応時間と水素収率との関係を図16に示す。 In the same manner as in Example 1, the amount of methane produced and the hydrogen yield in the dehydrogenation reactions of Examples 10 and 11 were measured. The relationship between the dehydrogenation reaction time and the methane production rate in Examples 10 and 11 is shown in FIG. The relationship between the dehydrogenation reaction time in Examples 10 and 11 and the methane concentration (ppm) in the produced hydrogen is shown in FIG. FIG. 16 shows the relationship between the dehydrogenation reaction time and the hydrogen yield in Examples 10 and 11.
図5及び11と、図14とを比較すると、実施例10及び11は、比較例1及び2に比べて、メタン生成速度が小さいことがわかった。図6及び12と、図15とを比較すると、実施例10及び11は、比較例1及び2に比べて、脱水素活性あたりのメタン生成量が小さいことがわかった。つまり、実施例10及び11は、比較例1及び2に比べて、脱水素反応に伴う脱メチル化を抑制できることがわかった。 5 and 11 were compared with FIG. 14, it was found that Examples 10 and 11 had a lower methane production rate than Comparative Examples 1 and 2. 6 and 12 were compared with FIG. 15, it was found that Examples 10 and 11 had a smaller amount of methane produced per dehydrogenation activity than Comparative Examples 1 and 2. That is, it was found that Examples 10 and 11 can suppress demethylation associated with the dehydrogenation reaction as compared with Comparative Examples 1 and 2.
(実施例12)
シリカウールからなる層の厚さを4mmに変更したこと以外は実施例10と同様にして、実施例12の脱水素反応器を得た。
(Example 12)
A dehydrogenation reactor of Example 12 was obtained in the same manner as in Example 10 except that the thickness of the layer made of silica wool was changed to 4 mm.
実施例1と同様にして、実施例12の脱水素反応におけるメタン生成量及び水素収率を測定した。実施例12の測定結果は、実施例10の測定結果と同様であった。得られた測定結果から、実施例12は、比較例1及び2に比べて、脱水素反応に伴う脱メチル化を抑制できることがわかった。実施例10〜12の測定結果から、TiO2とPt/Al2O3とが直接接触せず、互いに離れている場合であっても脱水素反応が進行し、脱水素反応に伴う脱メチル化が抑制されることが実証された。 In the same manner as in Example 1, the amount of methane produced and the hydrogen yield in the dehydrogenation reaction of Example 12 were measured. The measurement result of Example 12 was the same as the measurement result of Example 10. From the obtained measurement results, it was found that Example 12 can suppress demethylation associated with the dehydrogenation reaction as compared with Comparative Examples 1 and 2. From the measurement results of Examples 10 to 12, TiO 2 and Pt / Al 2 O 3 are not in direct contact and dehydrogenation proceeds even when they are separated from each other, and demethylation accompanying dehydrogenation reaction Has been demonstrated to be suppressed.
本発明に係る脱水素触媒及び脱水素反応器を用いた環状飽和炭化水素の脱水素によって生成する水素ガスは、例えば、燃料電池車の燃料として利用される。 Hydrogen gas produced by dehydrogenation of cyclic saturated hydrocarbons using the dehydrogenation catalyst and dehydrogenation reactor according to the present invention is used as fuel for fuel cell vehicles, for example.
2a,2b,20a,20b…脱水素反応器、4…反応室、6,14,22…脱水素触媒、8a…第1粒子、8b…第2粒子、10…メチル基を有する環状飽和炭化水素、12…生成物、14a…第3粒子、24…第1触媒部、26…第2触媒部、28…供給口、30…排出口、44…気液分離器、46…水素精製装置、54…高圧コンプレッサー、56…タンク、100…水素の製造システム。 2a, 2b, 20a, 20b ... dehydrogenation reactor, 4 ... reaction chamber, 6,14,22 ... dehydrogenation catalyst, 8a ... first particle, 8b ... second particle, 10 ... cyclic saturated hydrocarbon having a methyl group , 12 ... product, 14a ... third particles, 24 ... first catalyst part, 26 ... second catalyst part, 28 ... supply port, 30 ... discharge port, 44 ... gas-liquid separator, 46 ... hydrogen purifier, 54 ... high pressure compressor, 56 ... tank, 100 ... hydrogen production system.
Claims (18)
前記反応室内に配置されている、Ptが担持されたAl2O3と、
前記反応室内に配置されている、TiO2と、
を備え、
メチル基を有する環状飽和炭化水素の脱水素に用いられる脱水素反応器。 A reaction chamber;
Al 2 O 3 loaded with Pt disposed in the reaction chamber;
TiO 2 disposed in the reaction chamber;
With
A dehydrogenation reactor used for dehydrogenation of a cyclic saturated hydrocarbon having a methyl group.
を備え、
前記第1触媒部が、Ptが担持されたAl2O3を含み、
前記第2触媒部が、TiO2を含む、
請求項1に記載の脱水素反応器。 The reaction chamber; a first catalyst portion and a second catalyst portion disposed in the reaction chamber;
With
The first catalyst part includes Al 2 O 3 on which Pt is supported,
The second catalyst part includes TiO 2 ;
The dehydrogenation reactor according to claim 1.
前記反応室内で生成した生成物の排出口が前記反応室に形成されており、
前記第2触媒部が、前記供給口と前記排出口との間に位置し、
前記第1触媒部が、前記第2触媒部と前記排出口との間に位置する、
請求項2に記載の脱水素反応器。 A supply port for the cyclic saturated hydrocarbon is formed in the reaction chamber;
A discharge port for the product generated in the reaction chamber is formed in the reaction chamber,
The second catalyst part is located between the supply port and the discharge port;
The first catalyst part is located between the second catalyst part and the outlet;
The dehydrogenation reactor according to claim 2.
を備え、
前記第1粒子が、Ptが担持されたAl2O3を含み、
前記第2粒子が、TiO2を含み、
前記第1粒子及び前記第2粒子が前記反応室内で混ざっている、
請求項1に記載の脱水素反応器。 The reaction chamber; first particles and second particles disposed in the reaction chamber;
With
The first particles include Al 2 O 3 on which Pt is supported,
The second particles include TiO 2 ;
The first particles and the second particles are mixed in the reaction chamber;
The dehydrogenation reactor according to claim 1.
を備え、
前記第3粒子が、
Ptが担持されたAl2O3と、
TiO2と、
を含む、
請求項1に記載の脱水素反応器。 The reaction chamber; and third particles disposed in the reaction chamber;
With
The third particles are
Al 2 O 3 supported with Pt;
TiO 2 and
including,
The dehydrogenation reactor according to claim 1.
請求項4又は5に記載の脱水素反応器。 The crystallite diameter of the TiO 2 is 35 nm or less,
The dehydrogenation reactor according to claim 4 or 5.
Ptが担持されたAl2O3を含む第1原料を整粒して、前記第1粒子を得る工程と、
TiO2を含む第2原料を整粒して、前記第2粒子を得る工程と、
前記第1粒子及び前記第2粒子を混合する工程と、
を備える、
脱水素反応器の製造方法。 A method for producing a dehydrogenation reactor according to claim 4, comprising:
Sizing the first raw material containing Pt-supported Al 2 O 3 to obtain the first particles;
Sizing a second raw material containing TiO 2 to obtain the second particles;
Mixing the first particles and the second particles;
Comprising
A method for producing a dehydrogenation reactor.
Ptが担持されたAl2O3を含む第1原料、及びTiO2を含む第2原料を混合して、前記第1原料及び前記第2原料を含む第3原料を得る工程と、
前記第3原料を整粒して、前記第3粒子を得る工程と、
を備える、
脱水素反応器の製造方法。 A method for producing a dehydrogenation reactor according to claim 5, comprising:
Mixing a first raw material containing Al 2 O 3 supported with Pt and a second raw material containing TiO 2 to obtain a third raw material containing the first raw material and the second raw material;
Sizing the third raw material to obtain the third particles;
Comprising
A method for producing a dehydrogenation reactor.
請求項7又は8に記載の脱水素反応器の製造方法。 The crystallite diameter of the TiO 2 is 35 nm or less,
The method for producing a dehydrogenation reactor according to claim 7 or 8.
TiO2と、
を備え、
メチル基を有する環状飽和炭化水素の脱水素に用いられる脱水素触媒。 Al 2 O 3 supported with Pt;
TiO 2 and
With
A dehydrogenation catalyst used for dehydrogenation of a cyclic saturated hydrocarbon having a methyl group.
前記第1粒子が、Ptが担持されたAl2O3を含み、
前記第2粒子が、TiO2を含み、
前記第1粒子及び前記第2粒子が混ざっている、
請求項10に記載の脱水素触媒。 First particles and second particles,
The first particles include Al 2 O 3 on which Pt is supported,
The second particles include TiO 2 ;
The first particles and the second particles are mixed,
The dehydrogenation catalyst according to claim 10.
前記第3粒子が、
Ptが担持されたAl2O3と、
TiO2と、
を含む、
請求項10に記載の脱水素触媒。 Comprising third particles,
The third particles are
Al 2 O 3 supported with Pt;
TiO 2 and
including,
The dehydrogenation catalyst according to claim 10.
請求項11又は12に記載の脱水素触媒。 The crystallite diameter of the TiO 2 is 35 nm or less,
The dehydrogenation catalyst according to claim 11 or 12.
Ptが担持されたAl2O3を含む第1原料を整粒して、前記第1粒子を得る工程と、
TiO2を含む第2原料を整粒して、前記第2粒子を得る工程と、
前記第1粒子及び前記第2粒子を混合する工程と、
を備える、
脱水素触媒の製造方法。 A method for producing the dehydrogenation catalyst according to claim 11, comprising:
Sizing the first raw material containing Pt-supported Al 2 O 3 to obtain the first particles;
Sizing a second raw material containing TiO 2 to obtain the second particles;
Mixing the first particles and the second particles;
Comprising
A method for producing a dehydrogenation catalyst.
Ptが担持されたAl2O3を含む第1原料、及びTiO2を含む第2原料を混合して、前記第1原料及び前記第2原料を含む第3原料を得る工程と、
前記第3原料を整粒して、前記第3粒子を得る工程と、
を備える、
脱水素触媒の製造方法。 A method for producing the dehydrogenation catalyst according to claim 12, comprising:
Mixing a first raw material containing Al 2 O 3 supported with Pt and a second raw material containing TiO 2 to obtain a third raw material containing the first raw material and the second raw material;
Sizing the third raw material to obtain the third particles;
Comprising
A method for producing a dehydrogenation catalyst.
請求項14又は15に記載の脱水素触媒の製造方法。 The crystallite diameter of the TiO 2 is 35 nm or less,
The method for producing a dehydrogenation catalyst according to claim 14 or 15.
水素の製造システム。 Comprising the dehydrogenation reactor according to any one of claims 1 to 6,
Hydrogen production system.
水素の製造方法。 In the dehydrogenation reactor according to any one of claims 1 to 6, comprising a step of generating hydrogen by dehydrogenation of the cyclic saturated hydrocarbon,
A method for producing hydrogen.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015209850A JP2017081774A (en) | 2015-10-26 | 2015-10-26 | Dehydrogenation catalyst, manufacturing method of dehydrogenation catalyst, dehydrogenation reactor, manufacturing method of dehydrogenation reactor, manufacturing system of hydrogen and manufacturing method of hydrogen |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015209850A JP2017081774A (en) | 2015-10-26 | 2015-10-26 | Dehydrogenation catalyst, manufacturing method of dehydrogenation catalyst, dehydrogenation reactor, manufacturing method of dehydrogenation reactor, manufacturing system of hydrogen and manufacturing method of hydrogen |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2017081774A true JP2017081774A (en) | 2017-05-18 |
Family
ID=58710572
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015209850A Pending JP2017081774A (en) | 2015-10-26 | 2015-10-26 | Dehydrogenation catalyst, manufacturing method of dehydrogenation catalyst, dehydrogenation reactor, manufacturing method of dehydrogenation reactor, manufacturing system of hydrogen and manufacturing method of hydrogen |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2017081774A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114057783A (en) * | 2021-12-23 | 2022-02-18 | 山东海科创新研究院有限公司 | Preparation method of lithium bis (oxalato) borate |
-
2015
- 2015-10-26 JP JP2015209850A patent/JP2017081774A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114057783A (en) * | 2021-12-23 | 2022-02-18 | 山东海科创新研究院有限公司 | Preparation method of lithium bis (oxalato) borate |
CN114057783B (en) * | 2021-12-23 | 2023-07-14 | 山东海科创新研究院有限公司 | Preparation method of lithium bis (oxalato) borate |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Lin et al. | Ammonia synthesis activity of alumina-supported ruthenium catalyst enhanced by alumina phase transformation | |
Fan et al. | Recent trends in developments of active metals and heterogenous materials for catalytic CO2 hydrogenation to renewable methane: A review | |
Lin et al. | Morphology effect of ceria on the catalytic performances of Ru/CeO2 catalysts for ammonia synthesis | |
Lin et al. | Enhanced ammonia synthesis activity of ceria-supported ruthenium catalysts induced by CO activation | |
JP6297538B2 (en) | Dehydrogenation catalyst for naphthenic hydrocarbons, method for producing dehydrogenation catalyst for naphthenic hydrocarbons, system for producing hydrogen, and method for producing hydrogen | |
Shen et al. | Synergistic Pt-CeO2 interface boosting low temperature dry reforming of methane | |
JP4907210B2 (en) | Hydrogen storage and transport system | |
Frei et al. | The influence of the precipitation/ageing temperature on a Cu/ZnO/ZrO2 catalyst for methanol synthesis from H2 and CO2 | |
Mironova et al. | Production of high purity hydrogen by ethanol steam reforming in membrane reactor | |
US20200062590A1 (en) | Ammonia Decomposition Catalyst Systems | |
Chihaia et al. | Supported nickel catalysts for low temperature methane steam reforming: comparison between metal additives and support modification | |
US20140005042A1 (en) | Catalysts for use in steam reforming processes | |
Lee et al. | A core-shell structured, metal–ceramic composite-supported Ru catalyst for methane steam reforming | |
JP2016528143A (en) | Catalysts and processes for thermal neutralization reforming of liquid hydrocarbons | |
Qihai et al. | Hydrogen production by steam reforming of ethanol over copper doped Ni/CeO2 catalysts | |
Larimi et al. | Highly selective doped PtMgO nano-sheets for renewable hydrogen production from APR of glycerol | |
Lin et al. | Effects of using carbon-coated alumina as support for Ba-promoted Ru catalyst in ammonia synthesis | |
Lei et al. | Mesoporous Co3O4 derived from facile calcination of octahedral Co-MOFs for toluene catalytic oxidation | |
Brijaldo et al. | Effect of support on acetic acid decomposition over palladium catalysts | |
Xie et al. | Regulating local coordination environment of rhodium single atoms in Rh/CeO2 catalysts for N2O decomposition | |
Song et al. | Understanding the role of coordinatively unsaturated Al3+ sites on nanoshaped Al2O3 for creating uniform Ni–Cu alloys for selective hydrogenation of acetylene | |
Ye et al. | Atomically dispersed Pt in ordered PtSnZn intermetallic with Pt− Sn and Pt− Zn pairs for selective propane dehydrogenation | |
Lee et al. | Top-down syntheses of nickel-based structured catalysts for hydrogen production from ammonia | |
Fayisa et al. | Pt-modulated Cu/SiO2 catalysts for efficient hydrogenation of CO2-derived ethylene carbonate to methanol and ethylene glycol | |
Chen et al. | Concerted oxygen diffusion across heterogeneous oxide interfaces for intensified propane dehydrogenation |