JP2006214602A - Refrigerating cycle device - Google Patents

Refrigerating cycle device Download PDF

Info

Publication number
JP2006214602A
JP2006214602A JP2005024749A JP2005024749A JP2006214602A JP 2006214602 A JP2006214602 A JP 2006214602A JP 2005024749 A JP2005024749 A JP 2005024749A JP 2005024749 A JP2005024749 A JP 2005024749A JP 2006214602 A JP2006214602 A JP 2006214602A
Authority
JP
Japan
Prior art keywords
compressor
oil
compressors
temperature
refrigeration cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005024749A
Other languages
Japanese (ja)
Inventor
Tomiyuki Noma
富之 野間
Masatoshi Takahashi
正敏 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005024749A priority Critical patent/JP2006214602A/en
Publication of JP2006214602A publication Critical patent/JP2006214602A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/025Motor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0253Compressor control by controlling speed with variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2105Oil temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a refrigerating cycle device capable of ensuring required amount of oil of two compressors without attaching an overflow pipe to a side face of the compressor and allowing use in common when used in a refrigerating cycle device having the same configuration of the inside of the compressor, constituted by one compressor, and having half of refrigerating capability and being manufacturable at low cost. <P>SOLUTION: This refrigerating cycle device is provided with oil separators arranged in discharge pipes of each of two compressors, two oil bypass circuits for returning oil separated from refrigerant by the oil separators into a suction pipe of the compressor on the other side through a pressure reducing means, two temperature sensors arranged on the downstream side of the pressure reducing means of each of two oil bypass circuits, two inverters for controlling operation speed of two compressors each independently, a compressor control means for deciding operation speed of two inverters, and a compressor operation compensating means for compensating operation speed of two inverters decided by the compressor control means based on difference in temperature detected by two temperature sensors. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、複数台の密閉型圧縮機を搭載した冷凍サイクル装置に関わり、特に圧縮機の油面制御に関するものである。   The present invention relates to a refrigeration cycle apparatus equipped with a plurality of hermetic compressors, and more particularly to oil level control of a compressor.

従来、この種の冷凍サイクル装置では、複数台の圧縮機に充填されたオイルが冷媒とともに吐出され、冷凍サイクル中を循環するうちに、各圧縮機の油面に偏りが生じ、油量の減少した圧縮機の摺動部に潤滑不良が生じて信頼性を損なうといった不具合を回避するため、圧縮機内の油面を均等、もしくは最低限の油面を確保できるように種々の均油回路が提案されてきた。   Conventionally, in this type of refrigeration cycle apparatus, oil filled in a plurality of compressors is discharged together with the refrigerant, and while circulating in the refrigeration cycle, the oil level of each compressor is biased, reducing the amount of oil. Various oil leveling circuits have been proposed to ensure that the oil level in the compressor is uniform or that the minimum oil level is ensured in order to avoid problems such as poor lubrication and loss of reliability in the sliding parts of the compressor. It has been.

例えば、圧縮機内部の油面を直接検出する方式としては、フロートスイッチ方式の油面調節器が知られている。   For example, a float switch type oil level adjuster is known as a method for directly detecting the oil level inside the compressor.

この油面調節器は、圧縮機内のオイルを均油管により容器内に取り込み、容器内の油面に浮かぶフロートの上下動によって油面を検出する構成のものである。また、冷凍サイクル中のオイルが適正量以上充填されていることを前提とした方式として、圧縮機容器側面にオーバーフロー管を取り付け、圧縮機容器内のオイルが所定量以上になれば、オイルはオーバーフロー管より圧縮機容器外部へ取り出され、減圧手段を介してオイルの不足した圧縮機へ戻すようにした構成のものもある(例えば、特許文献1参照)。   This oil level adjuster has a configuration in which oil in a compressor is taken into a container through an oil equalizing pipe and the oil level is detected by vertical movement of a float floating on the oil level in the container. In addition, as a premise that the oil in the refrigeration cycle is filled with an appropriate amount or more, an overflow pipe is attached to the side of the compressor container, and if the oil in the compressor container exceeds the predetermined amount, the oil overflows There is also a configuration that is taken out of the compressor container from the pipe and returned to the compressor that is deficient in oil through the decompression means (see, for example, Patent Document 1).

図4は、特許文献1に記載された従来の冷凍サイクル装置を示すものである。   FIG. 4 shows a conventional refrigeration cycle apparatus described in Patent Document 1. As shown in FIG.

図4に示すように、圧縮機1a、1bは並列接続されて1つの冷凍サイクルを構成している。   As shown in FIG. 4, the compressors 1a and 1b are connected in parallel to form one refrigeration cycle.

圧縮機1a、1bの各々の吐出管は逆流防止用の逆止弁19a、19bを介して合流し、オイルセパレータ2、四方弁3、室外熱交換器4、膨張弁5、室内熱交換器6の順に接続された後に分岐され、圧縮機1a、1bの吸入管へ戻るように接続されている。   The discharge pipes of the compressors 1a and 1b are joined via check valves 19a and 19b for preventing backflow, and an oil separator 2, a four-way valve 3, an outdoor heat exchanger 4, an expansion valve 5, and an indoor heat exchanger 6 are combined. Are connected in this order, and then branched to return to the suction pipes of the compressors 1a and 1b.

オイルセパレータ2ではガス冷媒とオイルが分離され、オイルはオイル戻し管21を流れ電磁弁22、減圧手段23を介して吸入管合流部へ接続される。   In the oil separator 2, the gas refrigerant and the oil are separated, and the oil flows through the oil return pipe 21 and is connected to the suction pipe junction through the electromagnetic valve 22 and the pressure reducing means 23.

そして、圧縮機1a、1bの側面には各々オーバーフロー管11a、11bが取り付けられており、電磁弁12a、12b、減圧手段13a、13bを介して吸入管合流部に接続されている。   Overflow pipes 11a and 11b are attached to the side surfaces of the compressors 1a and 1b, respectively, and are connected to the suction pipe merging portion via electromagnetic valves 12a and 12b and decompression means 13a and 13b.

圧縮機1a、1bにおいては、オーバーフロー管11a、11bの取り付け位置が適正油面位置であり、それを超える油面となる場合は電磁弁12a、12bを開とすることで、余剰となったオイルは吸入管合流部へ戻され、ガス冷媒とともに圧縮機1a、1bに再分配される。   In the compressors 1a and 1b, the installation positions of the overflow pipes 11a and 11b are appropriate oil level positions, and when the oil level exceeds that, the excess oil can be obtained by opening the solenoid valves 12a and 12b. Is returned to the suction pipe junction and redistributed to the compressors 1a and 1b together with the gas refrigerant.

以上の作用により圧縮機1a、1bの油面をオーバーフロー管取り付け位置の適正油面に保つことができるように構成されている。
特開2002−242833号公報
With the above operation, the oil level of the compressors 1a and 1b can be maintained at an appropriate oil level at the overflow pipe mounting position.
JP 2002-242833 A

しかしながら、前記従来の構成は、圧縮機側面にオーバーフロー管を備えた構成であることから、2台の圧縮機の内の1台を用いて、2台の圧縮機を搭載した冷凍サイクルの半分の能力をもつ冷凍サイクルを構成し、これに前記圧縮機と内部構造が同一の圧縮機を用いるのは不可能であり、冷凍サイクル装置製造における部品管理面、製造工数面においてコストアップを招来するという課題を有していた。   However, since the conventional configuration is provided with an overflow pipe on the side of the compressor, one of the two compressors is used and half of the refrigeration cycle in which the two compressors are mounted. It is impossible to configure a refrigeration cycle with the same capacity and use the same internal structure as the compressor. This will increase costs in terms of parts management and manufacturing man-hours in the manufacture of refrigeration cycle equipment. Had problems.

本発明は、前記従来の課題を解決するもので、1つの圧縮機で構成される半分の冷凍能力を有する冷凍サイクルに用いる場合との共用を可能とし、低コストで製造可能な冷凍サイクル装置を提供することを目的とする。   The present invention solves the above-described conventional problems, and provides a refrigeration cycle apparatus that can be used in a refrigeration cycle having a half refrigeration capacity constituted by a single compressor and can be manufactured at low cost. The purpose is to provide.

前記従来の課題を解決するために、本発明の冷凍サイクル装置は、2台の圧縮機を並列接続した構成を有する冷凍サイクルと、前記2台の圧縮機各々の吐出管に配設されたオイルセパレータと、前記オイルセパレータにより冷媒と分離されたオイルを前記2台の圧縮機のうち相対する他方の圧縮機の吸入管へ減圧手段を介して戻す2つのオイルバイパス回路と、前記2台の圧縮機各々の吐出管に配設された吐出温度センサと、前記2つのオイルバイパス回路各々の減圧手段下流に配設されたバイパス回路温度センサと、前記2台の圧縮機の運転周波数を各々独立して制御する2つのインバータと、前記2つのインバータの運転周波数を決定する圧縮機制御手段と、前記吐出温度センサと前記バイパス回路温度センサの検知温度によって前記圧縮機制御手段の決定した2つのインバータの運転周波数に対して補正を施す圧縮機運転補正手段を備えた構成としたものである。   In order to solve the above-described conventional problems, a refrigeration cycle apparatus according to the present invention includes a refrigeration cycle having a configuration in which two compressors are connected in parallel, and oil disposed in a discharge pipe of each of the two compressors. A separator, two oil bypass circuits for returning the oil separated from the refrigerant by the oil separator to the suction pipe of the other compressor of the two compressors via a pressure reducing means, and the two compressors The discharge temperature sensor disposed in each discharge pipe, the bypass circuit temperature sensor disposed downstream of the pressure reducing means of each of the two oil bypass circuits, and the operating frequency of the two compressors are independent of each other. Two inverters to be controlled, compressor control means for determining the operating frequency of the two inverters, the pressure based on the detected temperatures of the discharge temperature sensor and the bypass circuit temperature sensor. Machine is obtained by a configuration having a compressor operation correction means for performing correction for the two inverters driving frequency determined in the control means.

これによって、1つの圧縮機で構成される半分の冷凍能力を有する冷凍サイクルに用いる場合との共用を可能とし、低コストで製造可能な冷凍サイクル装置を提供することが可能となる。   As a result, it is possible to share a refrigeration cycle apparatus that can be manufactured at a low cost, and can be shared with a refrigeration cycle that has half the refrigeration capacity constituted by one compressor.

また、本発明の冷凍サイクル装置は、前記の構成に加え、オイルセパレータの下流に配設された逆止弁と、2台の圧縮機の何れか片方を停止する圧縮機運転手段を備えたものである。   Further, the refrigeration cycle apparatus of the present invention includes a check valve disposed downstream of the oil separator and a compressor operating means for stopping one of the two compressors in addition to the above-described configuration. It is.

これによって、冷凍サイクル装置の要求負荷が極端に小さい場合に、1台の圧縮機のみでの運転ができるようになる。   As a result, when the required load of the refrigeration cycle apparatus is extremely small, it is possible to operate with only one compressor.

また、本発明の冷凍サイクル装置は、吐出圧力もしくは凝縮器温度を検知する凝縮温度検知手段と、吸入圧力もしくは蒸発器温度を検知する蒸発温度検知手段と、凝縮温度と蒸発温度により所定の運転周波数における冷媒吐出量を求め、運転周波数に応じた係数を乗じることで冷媒吐出量を算出する冷媒吐出量算出手段と、予め設定された圧縮機の冷媒吐出量と油面高さに対するオイル吐出量の相関式とを備え、圧縮機運転補正手段は前記相関式による演算結果を基に2つのインバータの運転周波数に対して補正を施すようにしたものである。   In addition, the refrigeration cycle apparatus of the present invention includes a condensing temperature detecting means for detecting the discharge pressure or the condenser temperature, an evaporating temperature detecting means for detecting the suction pressure or the evaporator temperature, and a predetermined operating frequency based on the condensing temperature and the evaporating temperature. A refrigerant discharge amount calculating means for calculating the refrigerant discharge amount by calculating a refrigerant discharge amount at the engine frequency and multiplying by a coefficient corresponding to the operating frequency, and a preset refrigerant discharge amount of the compressor and an oil discharge amount with respect to the oil surface height. The compressor operation correction means corrects the operation frequency of the two inverters based on the calculation result of the correlation equation.

これによって、冷凍サイクル装置の冷媒循環量をより正確に推定でき、予め実験により求めた冷媒吐出量と油面高さとの相関式により、圧縮機内部の油面高さを正確に推定することができるようになる。   As a result, the refrigerant circulation amount of the refrigeration cycle apparatus can be estimated more accurately, and the oil level height inside the compressor can be accurately estimated based on the correlation equation between the refrigerant discharge amount and the oil level height obtained in advance through experiments. become able to.

本発明の冷凍サイクル装置は、2台の圧縮機を用いた冷凍サイクルと、その半分の能力をもつ冷凍サイクルに1台の圧縮機を搭載した場合に、これら圧縮機の共用を可能とし、低コストで製造可能な冷凍サイクル装置を提供することができる。   The refrigeration cycle apparatus of the present invention can share these compressors when a single compressor is installed in a refrigeration cycle using two compressors and a refrigeration cycle having half the capacity. A refrigeration cycle apparatus that can be manufactured at low cost can be provided.

第1の発明は、2台の圧縮機を並列接続した構成を有する冷凍サイクルと、前記2台の圧縮機各々の吐出管に配設されたオイルセパレータと、前記オイルセパレータにより冷媒と分離されたオイルを前記2台の圧縮機のうち相対する他方の圧縮機の吸入管へ減圧手段を介して戻す2つのオイルバイパス回路と、前記2台の圧縮機各々の吐出管に配設された吐出温度センサと、前記2つのオイルバイパス回路各々の減圧手段下流に配設されたバイパス回路温度センサと、前記2台の圧縮機の運転周波数を各々独立して制御する2つのインバータと、前記2つのインバータの運転周波数を決定する圧縮機制御手段と、前記吐出温度センサと前記バイパス回路温度センサの検知温度によって前記圧縮機制御手段の決定した2つのインバータの運転周波数に対して補正を施す圧縮機運転補正手段を備えているので、1つの圧縮機で構成される半分の冷凍能力を有する冷凍サイクルに用いる場合との共用を可能とし、低コストで製造可能な冷凍サイクル装置を提供することができる。   1st invention separated the refrigerant | coolant with the refrigerating cycle which has the structure which connected the two compressors in parallel, the oil separator arrange | positioned at the discharge pipe of each of the said two compressors, and the said oil separator Two oil bypass circuits for returning oil to the suction pipe of the other compressor among the two compressors via a pressure reducing means, and discharge temperatures disposed in the discharge pipes of each of the two compressors A sensor, a bypass circuit temperature sensor disposed downstream of the pressure reducing means of each of the two oil bypass circuits, two inverters for independently controlling the operating frequencies of the two compressors, and the two inverters Compressor operating means for determining the operating frequency of the two inverters, and the operating cycles of the two inverters determined by the compressor controlling means based on the detected temperatures of the discharge temperature sensor and the bypass circuit temperature sensor Since it is equipped with compressor operation correction means that corrects the number, it can be shared with the use of a refrigeration cycle having half the refrigeration capacity constituted by one compressor, and can be manufactured at low cost. A refrigeration cycle apparatus can be provided.

第2の発明は、特に、第1の発明の構成に加え、オイルセパレータの下流に配設された逆止弁と、2台の圧縮機の何れか片方を停止する圧縮機運転手段を備えたことにより、冷凍サイクル装置の要求負荷が極端に小さい場合に、1台の圧縮機のみでの運転ができるようになる。   In particular, the second invention includes, in addition to the configuration of the first invention, a check valve disposed downstream of the oil separator and a compressor operating means for stopping one of the two compressors. As a result, when the required load of the refrigeration cycle apparatus is extremely small, it is possible to operate with only one compressor.

第3の発明は、特に、第1の発明の構成に加え、吐出圧力もしくは凝縮器温度を検知する凝縮温度検知手段と、吸入圧力もしくは蒸発器温度を検知する蒸発温度検知手段と、凝縮温度と蒸発温度により所定の運転周波数における冷媒吐出量を求め、運転周波数に応じた係数を乗じることで冷媒吐出量を算出する冷媒吐出量算出手段と、予め設定された圧縮機の冷媒吐出量と油面高さに対するオイル吐出量の相関式とを備え、圧縮機運転補正手段は前記相関式による演算結果を基に2つのインバータの運転周波数に対して補正を施すようにしたことにより、冷凍サイクル装置の冷媒循環量をより正確に推定でき、予め実験により求めた冷媒吐出量と油面高さとの相関式により、圧縮機内部の油面高さを正確に推定することができるようになる。   In particular, the third aspect of the invention includes, in addition to the configuration of the first aspect of the invention, condensing temperature detecting means for detecting discharge pressure or condenser temperature, evaporating temperature detecting means for detecting suction pressure or evaporator temperature, condensing temperature, A refrigerant discharge amount calculating means for calculating a refrigerant discharge amount by calculating a refrigerant discharge amount at a predetermined operating frequency from the evaporation temperature and multiplying by a coefficient corresponding to the operating frequency, and a preset refrigerant discharge amount and oil level of the compressor The compressor operation correction means corrects the operation frequency of the two inverters based on the calculation result based on the correlation equation. The refrigerant circulation amount can be estimated more accurately, and the oil level height inside the compressor can be accurately estimated by a correlation equation between the refrigerant discharge amount and the oil level height obtained in advance through experiments.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の第1の実施の形態における冷凍サイクル装置の制御ブロック図を示すものである。
(Embodiment 1)
FIG. 1 is a control block diagram of the refrigeration cycle apparatus in the first embodiment of the present invention.

図1において、圧縮機1aとオイルセパレータ2a、圧縮機1bとオイルセパレータ2bは各々直列接続され、四方弁3、室外熱交換器4、膨張弁5、室内熱交換器6とを環状に連結して冷凍サイクルが構成される。   In FIG. 1, a compressor 1a and an oil separator 2a, a compressor 1b and an oil separator 2b are connected in series, and a four-way valve 3, an outdoor heat exchanger 4, an expansion valve 5 and an indoor heat exchanger 6 are connected in an annular shape. The refrigeration cycle is configured.

また、オイルセパレータ2a、2bからは、オイルバイパス回路31a、31bが取り出され、圧縮機1a、1bからガス冷媒とともに吐出されたオイルを分離し、減圧手段32a、32bを介して、相対する他方の圧縮機1b、1aの吸入管へ接続されている。   Also, oil bypass circuits 31a and 31b are taken out from the oil separators 2a and 2b, the oil discharged together with the gas refrigerant from the compressors 1a and 1b is separated, and the other opposing one is connected via the decompression means 32a and 32b. It is connected to the suction pipes of the compressors 1b and 1a.

圧縮機1a、1bの吐出管には吐出温度センサ33a、33bが取り付けられ、各圧縮機の吐出温度を検出する。   Discharge temperature sensors 33a and 33b are attached to the discharge pipes of the compressors 1a and 1b to detect the discharge temperature of each compressor.

また、オイルバイパス回路31a、31bが各々吸入管に接続される手前には、バイパス回路温度センサ34a、34bが取り付けられ、各オイルバイパス回路の配管温度を検出する。圧縮機制御手段41は、冷凍サイクル装置の冷凍能力(例えば空気調和機の室内
温度センサ44により検知された室内温度)を所定の値に保つように、インバ−タ43a、43bの出力(圧縮機の運転周波数)が2台の圧縮機を同じ運転周波数で運転すべく算出する。
Further, before the oil bypass circuits 31a and 31b are connected to the suction pipes, bypass circuit temperature sensors 34a and 34b are attached to detect the pipe temperature of each oil bypass circuit. The compressor control means 41 outputs the outputs (compressors) of the inverters 43a and 43b so as to keep the refrigeration capacity of the refrigeration cycle apparatus (for example, the indoor temperature detected by the indoor temperature sensor 44 of the air conditioner) at a predetermined value. Is calculated to operate the two compressors at the same operating frequency.

圧縮機運転補正手段42は、圧縮機制御手段41が算出した結果に対して、吐出温度センサ33a、33bおよびバイパス回路温度センサ34a、34bの検出値に基づいて補正を加え、インバ−タ43a、43bに出力するように構成されている。   The compressor operation correction unit 42 corrects the result calculated by the compressor control unit 41 based on the detection values of the discharge temperature sensors 33a and 33b and the bypass circuit temperature sensors 34a and 34b, thereby converting the inverter 43a, It is comprised so that it may output to 43b.

以上のように構成された冷凍サイクル装置について、以下その作用を説明する。
本実施の形態の構成は、圧縮機側面にオーバーフロー管を備えた構成ではないため、圧縮機内の油面高さは、冷媒吐出管からのオイル吐出量と冷媒吸入管からのオイル戻り量により決定される。
The operation of the refrigeration cycle apparatus configured as described above will be described below.
Since the configuration of the present embodiment is not a configuration having an overflow pipe on the side surface of the compressor, the oil level in the compressor is determined by the oil discharge amount from the refrigerant discharge pipe and the oil return amount from the refrigerant suction pipe. Is done.

すなわち、2台の圧縮機のオイル吐出量が等しく、吸入管からのオイル戻り量が等しい場合、2台の圧縮機の油面は変化しない。   That is, when the oil discharge amounts of the two compressors are equal and the oil return amount from the suction pipe is equal, the oil levels of the two compressors do not change.

2台の圧縮機の油面が均等でかつ適正レベルを維持している場合は、その運転状態を継続するのが好ましく、2台の圧縮機の油面に偏りが生じ、油面の低下した圧縮機が信頼性に支障を来たすような状態になっている場合は、圧縮機の油面が均等になるように運転状態を変化させる必要がある。   When the oil levels of the two compressors are equal and maintain an appropriate level, it is preferable to continue the operation state, and the oil levels of the two compressors are biased and the oil level is lowered. When the compressor is in a state that impedes reliability, it is necessary to change the operating state so that the oil level of the compressor is uniform.

一般的に圧縮機のオイル吐出量は、図2に示すように、内部の油面高さと運転周波数に依存し、吸入管からのオイル戻り量は吸入管近傍の配管形状に依存する傾向がある。   Generally, as shown in FIG. 2, the oil discharge amount of the compressor depends on the internal oil level and the operating frequency, and the oil return amount from the suction pipe tends to depend on the piping shape in the vicinity of the suction pipe. .

2台の圧縮機の吸入管形状が、オイル戻り量が均等になるように設計されており、同じ運転周波数で運転しているならば、油面が高い圧縮機のオイル吐出量が多く、逆に油面が低い圧縮機のオイル吐出量は少なくなる。   The suction pipe shapes of the two compressors are designed so that the oil return amount is uniform, and if the compressor is operating at the same operating frequency, the oil discharge amount of the compressor with a high oil level is large, In addition, the oil discharge amount of a compressor having a low oil level is reduced.

本実施の形態においては、オイルバイパス回路が相対する他方の圧縮機の吸入管へオイルを戻すように構成し、さらに2台の圧縮機各々のオイル吐出量の多少を判定して、オイル吐出量の多い圧縮機の運転周波数を高く、逆にオイル吐出量の少ない圧縮機の運転周波数を低く設定することで、油面の低い圧縮機にオイルが戻されて、油面高さを調整することが可能にしている。   In the present embodiment, the oil bypass circuit is configured to return the oil to the suction pipe of the other compressor, and the oil discharge amount of each of the two compressors is further determined to determine the oil discharge amount. Adjust the oil level by returning the oil to the compressor with a low oil level by setting the operating frequency of the compressor with a lot of oil high and conversely setting the operating frequency of the compressor with a small oil discharge rate low. Makes it possible.

オイル吐出量の多少を判定する手段として、オイルセパレータからオイルバイパス回路を介して圧縮機の冷媒吸入管へ流れる流体がオイルであるか冷媒であるかを判定し、オイルと判定された圧縮機のオイル吐出量が多いと判定し、逆に冷媒であると判定された圧縮機のオイル吐出量が少ないと判定するようにし、その結果に基づいて圧縮機運転補正手段42が運転周波数に補正を加えるようにしている。   As a means for determining the amount of oil discharged, it is determined whether the fluid flowing from the oil separator to the refrigerant suction pipe of the compressor through the oil bypass circuit is oil or refrigerant. It is determined that the oil discharge amount is large, and conversely, it is determined that the oil discharge amount of the compressor determined to be refrigerant is small, and based on the result, the compressor operation correction means 42 corrects the operation frequency. I am doing so.

例えば、圧縮機1aから吐出されたオイルは、オイルセパレータ2aにより冷媒から分離されオイルバイパス回路31aを介して圧縮機1b側の吸入管へ流れるが、オイル吐出量が少ない場合には、オイルバイパス回路31aを流れる流体はガス冷媒の状態となり、オイル吐出量が多い場合には、オイルの状態となる。   For example, the oil discharged from the compressor 1a is separated from the refrigerant by the oil separator 2a and flows to the suction pipe on the compressor 1b side through the oil bypass circuit 31a, but when the oil discharge amount is small, the oil bypass circuit The fluid flowing through 31a is in the state of gas refrigerant, and in the case of a large oil discharge amount, it is in the oil state.

圧縮機1aから吐出された直後の流体の温度は吐出温度センサ33aにより検知され、減圧手段32aを通過した後の流体の温度はバイパス回路温度センサ34bにより検知される。   The temperature of the fluid immediately after being discharged from the compressor 1a is detected by the discharge temperature sensor 33a, and the temperature of the fluid after passing through the pressure reducing means 32a is detected by the bypass circuit temperature sensor 34b.

圧縮機1aのオイル吐出量が多くオイルバイパス回路31aを流れる流体がオイルの場
合、流体の温度は減圧手段32aを通過し減圧されても、放熱量が小さく吐出温度センサ33aにより検知された値からの減分が小さく、逆に圧縮機1aのオイル吐出量が少なくオイルバイパス回路31aを流れる流体がガス冷媒の場合、流体の温度は減圧手段32aを通過し減圧されることにより放熱し、吐出温度センサ33aにより検知された値からの減分が大きくなる。
When the fluid flowing through the oil bypass circuit 31a is oil with a large oil discharge amount of the compressor 1a, even if the temperature of the fluid passes through the pressure reducing means 32a and is reduced in pressure, the heat release amount is small and the value detected by the discharge temperature sensor 33a When the fluid flowing through the oil bypass circuit 31a is a gas refrigerant, the temperature of the fluid passes through the decompression means 32a and is depressurized to dissipate heat and discharge temperature. The decrement from the value detected by the sensor 33a increases.

すなわち、吐出温度センサ33aの検知値をT1a、吐出温度センサ33bの検知値をT1b、バイパス回路温度センサ34aの検知値をT2a、バイパス回路温度センサ34bの検知値をT2bとすると、圧縮機1aのオイル吐出量はT1a−T2b、圧縮機1bのオイル吐出量はT1b−T2aによって推定できる。   That is, if the detection value of the discharge temperature sensor 33a is T1a, the detection value of the discharge temperature sensor 33b is T1b, the detection value of the bypass circuit temperature sensor 34a is T2a, and the detection value of the bypass circuit temperature sensor 34b is T2b, the compressor 1a The oil discharge amount can be estimated by T1a-T2b, and the oil discharge amount of the compressor 1b can be estimated by T1b-T2a.

圧縮機運転補正手段42は、以上の作用により推定された圧縮機1a、圧縮機1bのオイル吐出量を基に、圧縮機1aのオイル吐出量が多い場合は、圧縮機制御手段41が算出した運転周波数に対してプラスの補正を加えた値をインバ−タ43aに、またマイナスの補正を加えた値をインバ−タ43bに出力し、逆に圧縮機1bのオイル吐出量が多い場合は、圧縮機制御手段41が算出した運転周波数に対してプラスの補正を加えた値をインバ−タ43bに、またマイナスの補正を加えた値をインバ−タ43aに出力する。   The compressor operation correction means 42 is calculated by the compressor control means 41 when the oil discharge amount of the compressor 1a is large, based on the oil discharge amount of the compressor 1a and the compressor 1b estimated by the above-described operation. A value obtained by adding a positive correction to the operating frequency is output to the inverter 43a, and a value obtained by adding a negative correction is output to the inverter 43b. Conversely, when the oil discharge amount of the compressor 1b is large, A value obtained by adding a positive correction to the operating frequency calculated by the compressor control means 41 is output to the inverter 43b, and a value obtained by adding a negative correction is output to the inverter 43a.

以上のように、本実施の形態においては、圧縮機側面にオーバーフロー管を備えていないを使用して2台の圧縮機の油面を均等に制御できるので、1台の圧縮機で構成される半分の冷凍能力を有する冷凍サイクルに用いる場合との共用を可能とし、低コストで製造可能な冷凍サイクル装置を提供することが可能となる。   As described above, in the present embodiment, the oil level of the two compressors can be evenly controlled using the compressor that does not have an overflow pipe on the side of the compressor. It is possible to share a refrigeration cycle apparatus that can be manufactured at a low cost by using the refrigeration cycle with half the refrigeration capacity.

また、本実施の形態において、すでに図1で示した通りオイルセパレータの下流に逆止弁を配設し、2台の圧縮機の何れか片方を停止する圧縮機運転手段を設けることで、冷凍サイクル装置の要求負荷が極端に小さい場合に、1台の圧縮機のみでの運転ができるようにすることができる。   Further, in the present embodiment, as shown in FIG. 1, a check valve is provided downstream of the oil separator, and compressor operating means for stopping one of the two compressors is provided. When the required load of the cycle device is extremely small, it is possible to operate with only one compressor.

また、本実施の形態において、室外熱交換器4の温度を検知する室外熱交換器温度センサと、室内熱交換器6の温度を検知する室内熱交換器温度センサを備え、四方弁3が冷房側にあるときは、室外熱交換器温度センサを凝縮温度検知手段、室内熱交換器温度センサを蒸発温度検知手段とし、四方弁3が暖房側にあるときは、室外熱交換器温度センサを蒸発温度検知手段、室内熱交換器温度センサを凝縮温度検知手段とし、図3に示すように予め実験により求めた圧縮機の凝縮温度Tcと蒸発温度Teによる冷媒吐出量の関数F1(Tc、Te)、および運転周波数fに応じた係数の関数F2(f)から冷媒吐出量G=F1(Tc、Te)×F2(f)を算出し、その冷媒吐出量Gと油面高さhの2変数に対するオイル吐出量の相関式F3(G、h)とを備え、圧縮機運転補正手段は相関式による演算結果を基に2つのインバータの運転周波数に対して補正を施すようにしたことで、圧縮機内部の油面高さを正確に推定することができ、より精度良く2台の圧縮機の油面を均等に制御することができる。   In the present embodiment, an outdoor heat exchanger temperature sensor that detects the temperature of the outdoor heat exchanger 4 and an indoor heat exchanger temperature sensor that detects the temperature of the indoor heat exchanger 6 are provided, and the four-way valve 3 is cooled. When the four-way valve 3 is on the heating side, the outdoor heat exchanger temperature sensor evaporates when the outdoor heat exchanger temperature sensor is on the side, and the outdoor heat exchanger temperature sensor is the condensation temperature detection means and the indoor heat exchanger temperature sensor is the evaporation temperature detection means. The temperature detection means and the indoor heat exchanger temperature sensor are used as the condensation temperature detection means, and the function F1 (Tc, Te) of the refrigerant discharge amount based on the condensation temperature Tc and evaporation temperature Te of the compressor obtained in advance through experiments as shown in FIG. The refrigerant discharge amount G = F1 (Tc, Te) × F2 (f) is calculated from the function F2 (f) of the coefficient corresponding to the operating frequency f, and two variables of the refrigerant discharge amount G and the oil level height h are calculated. Correlation formula F3 ( H), and the compressor operation correction means corrects the operation frequency of the two inverters based on the calculation result by the correlation formula, so that the oil level inside the compressor is accurately determined. The oil level of the two compressors can be uniformly controlled with higher accuracy.

以上のように、本発明にかかる冷凍サイクル装置は、1つの圧縮機で構成される半分の冷凍能力を有する冷凍サイクルに用いる場合と共用し、低コストで製造可能な冷凍サイクル装置を提供することが可能となるので、冷凍能力の制御可変範囲の拡大と低負荷運転時の省エネを両立させる技術開発にも適用できる。   As described above, the refrigeration cycle apparatus according to the present invention provides a refrigeration cycle apparatus that can be manufactured at a low cost in common with a case where the refrigeration cycle apparatus according to the present invention is used for a refrigeration cycle having a half refrigeration capacity constituted by one compressor. Therefore, it can be applied to technology development that achieves both expansion of the variable control range of refrigeration capacity and energy saving during low-load operation.

本発明の実施の形態1における冷凍サイクル装置の制御ブロック図Control block diagram of refrigeration cycle apparatus in Embodiment 1 of the present invention 本発明の実施の形態1における冷凍サイクル装置の運転周波数と油面高さの相関を示すグラフThe graph which shows the correlation of the operating frequency of the refrigeration cycle apparatus in Embodiment 1 of this invention, and oil level height 本発明の実施の形態1における冷凍サイクル装置の蒸発温度および凝縮温度から油面高さを導き出す関係を示すグラフThe graph which shows the relationship which derives | leads-out oil level height from the evaporation temperature and condensation temperature of the refrigerating-cycle apparatus in Embodiment 1 of this invention. 従来の冷凍サイクル装置の制御ブロック図Control block diagram of conventional refrigeration cycle equipment

符号の説明Explanation of symbols

1a、1b 圧縮機
2a、2b オイルセパレータ
2 オイルセパレータ
3 四方弁
4 室内熱交換器
5 膨張弁
6 室内熱交換器
11a、11b オイルバイパス回路
12a、12b 電磁弁
13a、13b 減圧手段
19a、19b 逆止弁
21 オイルバイパス回路
22 電磁弁
23 減圧手段
31a、31b オイルバイパス回路
32a、32b 減圧手段
33a、33b 吐出温度センサ
34a、34b バイパス回路温度センサ
41 圧縮機制御手段
42 圧縮機運転補正手段
43a、43b インバータ
44 室内温度センサ
DESCRIPTION OF SYMBOLS 1a, 1b Compressor 2a, 2b Oil separator 2 Oil separator 3 Four-way valve 4 Indoor heat exchanger 5 Expansion valve 6 Indoor heat exchanger 11a, 11b Oil bypass circuit 12a, 12b Electromagnetic valve 13a, 13b Pressure reducing means 19a, 19b Check Valve 21 Oil bypass circuit 22 Solenoid valve 23 Pressure reducing means 31a, 31b Oil bypass circuit 32a, 32b Pressure reducing means 33a, 33b Discharge temperature sensor 34a, 34b Bypass circuit temperature sensor 41 Compressor control means 42 Compressor operation correcting means 43a, 43b Inverter 44 Indoor temperature sensor

Claims (3)

2台の圧縮機を並列接続した構成を有する冷凍サイクルと、前記2台の圧縮機各々の吐出管に配設されたオイルセパレータと、前記オイルセパレータにより冷媒と分離されたオイルを前記2台の圧縮機のうち相対する他方の圧縮機の吸入管へ減圧手段を介して戻す2つのオイルバイパス回路と、前記2台の圧縮機各々の吐出管に配設された吐出温度センサと、前記2つのオイルバイパス回路各々の減圧手段下流に配設されたバイパス回路温度センサと、前記2台の圧縮機の運転周波数を各々独立して制御する2つのインバータと、前記2つのインバータの運転周波数を決定する圧縮機制御手段と、前記吐出温度センサと前記バイパス回路温度センサの検知温度によって前記圧縮機制御手段の決定した2つのインバータの運転周波数に対して補正を施す圧縮機運転補正手段を備えた冷凍サイクル装置。 A refrigeration cycle having a configuration in which two compressors are connected in parallel, an oil separator disposed in a discharge pipe of each of the two compressors, and oil separated from the refrigerant by the oil separator. Two oil bypass circuits for returning the suction pipes of the other compressor, which are opposite to each other, via a pressure reducing means, discharge temperature sensors disposed in the discharge pipes of the two compressors, and the two A bypass circuit temperature sensor disposed downstream of the decompression means of each oil bypass circuit, two inverters that independently control the operating frequencies of the two compressors, and the operating frequencies of the two inverters are determined. Compensation for the operating frequency of the two inverters determined by the compressor control means by the compressor control means and the detected temperatures of the discharge temperature sensor and the bypass circuit temperature sensor Refrigeration cycle apparatus comprising compressor operation correction means for applying. オイルセパレータの下流に配設された逆止弁と、2台の圧縮機の何れか片方を停止する圧縮機運転手段を備えたことを特徴とする、請求項1に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to claim 1, further comprising a check valve disposed downstream of the oil separator and compressor operating means for stopping one of the two compressors. 吐出圧力もしくは凝縮器温度を検知する凝縮温度検知手段と、吸入圧力もしくは蒸発器温度を検知する蒸発温度検知手段と、凝縮温度と蒸発温度により所定の運転周波数における冷媒吐出量を求め、運転周波数に応じた係数を乗じることで冷媒吐出量を算出する冷媒吐出量算出手段と、予め設定された圧縮機の冷媒吐出量と油面高さに対するオイル吐出量の相関式とを備え、圧縮機運転補正手段は前記相関式による演算結果を基に2つのインバータの運転周波数に対して補正を施すことを特徴とする、請求項1に記載の冷凍サイクル装置。 A condensing temperature detecting means for detecting the discharge pressure or the condenser temperature, an evaporating temperature detecting means for detecting the suction pressure or the evaporator temperature, a refrigerant discharge amount at a predetermined operating frequency is obtained from the condensing temperature and the evaporating temperature, and the operating frequency is obtained. Compensation for compressor operation, comprising a refrigerant discharge amount calculation means for calculating a refrigerant discharge amount by multiplying a corresponding coefficient, and a correlation equation between a preset refrigerant discharge amount of the compressor and an oil discharge amount with respect to the oil level height 2. The refrigeration cycle apparatus according to claim 1, wherein the means corrects the operating frequency of the two inverters based on a calculation result of the correlation equation.
JP2005024749A 2005-02-01 2005-02-01 Refrigerating cycle device Pending JP2006214602A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005024749A JP2006214602A (en) 2005-02-01 2005-02-01 Refrigerating cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005024749A JP2006214602A (en) 2005-02-01 2005-02-01 Refrigerating cycle device

Publications (1)

Publication Number Publication Date
JP2006214602A true JP2006214602A (en) 2006-08-17

Family

ID=36977984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005024749A Pending JP2006214602A (en) 2005-02-01 2005-02-01 Refrigerating cycle device

Country Status (1)

Country Link
JP (1) JP2006214602A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2045548A1 (en) * 2007-10-05 2009-04-08 Frigo System S.p.A. Refrigerating unit
JP2010139156A (en) * 2008-12-11 2010-06-24 Fujitsu General Ltd Refrigeration apparatus and method for controlling the same
CN101968248A (en) * 2010-08-26 2011-02-09 宁波奥克斯电气有限公司 Control method for oil return of DC inverter compressor
KR101114326B1 (en) 2004-05-17 2012-02-14 엘지전자 주식회사 Cooling cycling apparatus and the control method of the same
JP2012127615A (en) * 2010-12-17 2012-07-05 Aisin Seiki Co Ltd Air conditioner
JP2012207841A (en) * 2011-03-29 2012-10-25 Mitsubishi Electric Corp Indoor unit and air conditioning device
JP2016145651A (en) * 2015-02-06 2016-08-12 株式会社富士通ゼネラル Air conditioner
JP2017116219A (en) * 2015-12-25 2017-06-29 三星電子株式会社Samsung Electronics Co.,Ltd. Air conditioner
WO2017170356A1 (en) * 2016-03-28 2017-10-05 三菱重工サーマルシステムズ株式会社 Multistage compression device, refrigeration cycle comprising same, and operation method for multistage compression device
WO2020098332A1 (en) * 2018-11-13 2020-05-22 青岛海尔空调器有限总公司 Compressor oil return method for compression refrigeration or heating device
CN113939700A (en) * 2019-05-31 2022-01-14 大金工业株式会社 Refrigerating device
JP7299540B1 (en) 2022-03-31 2023-06-28 ダイキン工業株式会社 refrigeration equipment

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101114326B1 (en) 2004-05-17 2012-02-14 엘지전자 주식회사 Cooling cycling apparatus and the control method of the same
EP2045548A1 (en) * 2007-10-05 2009-04-08 Frigo System S.p.A. Refrigerating unit
JP2010139156A (en) * 2008-12-11 2010-06-24 Fujitsu General Ltd Refrigeration apparatus and method for controlling the same
CN101968248A (en) * 2010-08-26 2011-02-09 宁波奥克斯电气有限公司 Control method for oil return of DC inverter compressor
CN101968248B (en) * 2010-08-26 2012-10-17 宁波奥克斯电气有限公司 Control method for oil return of DC inverter compressor
JP2012127615A (en) * 2010-12-17 2012-07-05 Aisin Seiki Co Ltd Air conditioner
JP2012207841A (en) * 2011-03-29 2012-10-25 Mitsubishi Electric Corp Indoor unit and air conditioning device
JP2016145651A (en) * 2015-02-06 2016-08-12 株式会社富士通ゼネラル Air conditioner
JP2017116219A (en) * 2015-12-25 2017-06-29 三星電子株式会社Samsung Electronics Co.,Ltd. Air conditioner
WO2017170356A1 (en) * 2016-03-28 2017-10-05 三菱重工サーマルシステムズ株式会社 Multistage compression device, refrigeration cycle comprising same, and operation method for multistage compression device
JP2017180878A (en) * 2016-03-28 2017-10-05 三菱重工サーマルシステムズ株式会社 Multistage compression device, refrigeration cycle including the same, and operation method of multistage compression device
WO2020098332A1 (en) * 2018-11-13 2020-05-22 青岛海尔空调器有限总公司 Compressor oil return method for compression refrigeration or heating device
CN113939700A (en) * 2019-05-31 2022-01-14 大金工业株式会社 Refrigerating device
JP7299540B1 (en) 2022-03-31 2023-06-28 ダイキン工業株式会社 refrigeration equipment
WO2023189874A1 (en) * 2022-03-31 2023-10-05 ダイキン工業株式会社 Freezing apparatus
JP2023150385A (en) * 2022-03-31 2023-10-16 ダイキン工業株式会社 Freezing apparatus

Similar Documents

Publication Publication Date Title
JP2006214602A (en) Refrigerating cycle device
US8660704B2 (en) Demand flow pumping
JP5414482B2 (en) Air conditioner
JP4762797B2 (en) Multi-type air conditioning system
CN104566823A (en) Refrigerant control method of parallel multi-split air-conditioner
US7997093B2 (en) Air conditioner
JP5511761B2 (en) Air conditioner
JP2011208860A (en) Air conditioner
JP2008249239A (en) Control method of cooling device, cooling device and refrigerating storage
JP2012122670A (en) Air conditioner
JP2009109065A (en) Refrigeration system
CN111486574A (en) Air conditioning system, anti-condensation control method and device thereof, and storage medium
JP2009276004A (en) Free cooling effectiveness-determining method for free cooling system
JP2010101569A (en) Multi-chamber type air conditioner
JP2010164270A (en) Multiple chamber type air conditioner
JP2009204174A (en) Multiple chamber air conditioner
JP5627564B2 (en) Refrigeration cycle system
JP2012242053A (en) Refrigeration air conditioning system
JP2006317050A (en) Control device for cooling and heating concurrent operation type air conditioner
JP6615351B2 (en) Refrigeration cycle equipment
JP2011149611A (en) Air-conditioning apparatus
JP2013061115A (en) Refrigeration cycle system
JP6300393B2 (en) Air conditioner
JP6716037B2 (en) Air conditioning system
JP4896197B2 (en) Precision temperature control air conditioner