JP2006317050A - Control device for cooling and heating concurrent operation type air conditioner - Google Patents

Control device for cooling and heating concurrent operation type air conditioner Download PDF

Info

Publication number
JP2006317050A
JP2006317050A JP2005138894A JP2005138894A JP2006317050A JP 2006317050 A JP2006317050 A JP 2006317050A JP 2005138894 A JP2005138894 A JP 2005138894A JP 2005138894 A JP2005138894 A JP 2005138894A JP 2006317050 A JP2006317050 A JP 2006317050A
Authority
JP
Japan
Prior art keywords
cooling
heating
refrigerant
capacity
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005138894A
Other languages
Japanese (ja)
Inventor
Keiji Matsumoto
圭司 松本
Kiyouko Goto
今日子 後藤
Hiroshi Azuma
洋志 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanmar Co Ltd
Original Assignee
Yanmar Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanmar Co Ltd filed Critical Yanmar Co Ltd
Priority to JP2005138894A priority Critical patent/JP2006317050A/en
Publication of JP2006317050A publication Critical patent/JP2006317050A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating

Landscapes

  • Air Conditioning Control Device (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem in a refrigerant circuit for a cooling and heating concurrent operation type air conditioner wherein it is necessary to set a refrigerant state quantity showing capacity required for cooling and a refrigerant state quantity showing capacity required for heating concurrently to control target values from its functional characteristics, but when load of the refrigerant circuit (e.g., operating indoor unit capacity or room temperature) considerably varies, feedback control does not effectively work because the state quantities of the refrigerant interfere with each other in individual feedback control utilized for usual cooling and heating, and as a result, it takes time before converging on the target values again. <P>SOLUTION: When a plurality of indoor heat exchangers 23 are concurrently operated in different uses of cooling and heating in the cooling and heating concurrent operation type air conditioner 3, control is switched to model predictive control of controlling the refrigerant state quantity showing the capacity required for cooling and the refrigerant state quantity showing capacity required for heating, with a model having transfer characteristics of operation quantities and refrigerant state quantities, based on at least two operation quantities that can control the refrigerant state quantities to the control target values. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、冷暖同時運転型空気調和装置の制御装置の技術に関する。   The present invention relates to a technology of a control device for a cooling and heating simultaneous operation type air conditioner.

従来、ビル空調において負荷の異なる複数の部屋に対し各室毎に室内ユニットを設置し、これを1台の室外ユニットに接続する冷暖混在多室型空気調和装置により、各室毎に空調する個別分散空調の技術は公知となっている。
ここで、冷房必要能力を示す冷媒状態量と暖房必要能力を示す冷媒状態量を、それぞれ独立してフィードバック制御を行う場合、それぞれの冷媒状態量は同一の冷媒サイクル のものであり、片方を操作した影響がもう片方にお互いに影響を及ぼす関係にあるため、室内機の運転台数変化など大きな変化が発生すると、冷媒状態量を所定の目標値に維持するのが困難になる。
Conventionally, indoor units are installed in each room for multiple rooms with different loads in building air conditioning, and each room is individually air-conditioned by a cooling / heating mixed multi-room air conditioner connected to one outdoor unit. The technique of distributed air conditioning is known.
Here, when independent control of the refrigerant state quantity indicating the required cooling capacity and the refrigerant state quantity indicating the required heating capacity is performed independently, each refrigerant state quantity is for the same refrigerant cycle, and one of them is operated. Since the influences on the other side affect each other, it becomes difficult to maintain the refrigerant state quantity at a predetermined target value when a large change such as a change in the number of operating indoor units occurs.

ところで、空気調和装置の冷媒回路はむだ時間や時定数が大きいため、制御結果としての冷媒制御量と制御目標値との偏差によるフィードバック制御では、室温や室外温度等の変化に対して即応的に動作しないことがある。
また、冷媒回路の負荷(例えば運転室内機容量や室温など)が大きく変化した場合、フィードバック制御のみでは吸入圧力や吸入過熱度などの冷媒状態量が変化するまでに時間が掛かり、その間フィードバック制御の入力である偏差が変化しないので、フィードバック制御が有効に働かない。しかも、一旦変化が現れてから再度目標値に収束するまでに時間がかかる。
前述のフィードバック制御より応答速度が速くて安定性の高い制御方法としてモデル予測制御が考えられる。該モデル制御については非特許文献1で公知となっているが、制御目的が冷暖房同時運転に対応するものではなかった。
特開平6−300388号公報 システム制御情報学会会誌第46巻第7号 418−424頁
By the way, since the refrigerant circuit of the air conditioner has a large dead time and a large time constant, feedback control based on a deviation between the control amount of the refrigerant and the control target value as a control result is promptly adapted to changes in room temperature, outdoor temperature, etc. May not work.
In addition, when the load of the refrigerant circuit (for example, the operating indoor unit capacity or room temperature) changes greatly, it takes time until the refrigerant state quantity such as the suction pressure and the suction superheat degree changes with the feedback control alone. Since the input deviation does not change, feedback control does not work effectively. Moreover, it takes time until the target value is converged again after the change once appears.
Model predictive control is conceivable as a control method having a higher response speed and higher stability than the feedback control described above. The model control is known in Non-Patent Document 1, but the control purpose does not correspond to the simultaneous cooling and heating operation.
JP-A-6-300388 Journal of System Control Information Society Vol.46, No.7, 418-424

前述の、特許文献1は冷暖房同時運転にあたり冷媒吐出圧力と冷媒吸入圧力に基づいて圧縮機能力を制御するものの、制御対象が圧縮機のみであり室外機での冷媒の熱交換量を同時に制御出来ていなかった。
本発明の課題は、前述の従来技術の問題点を踏まえ複数の入出力信号を取扱えるモデル予測制御を冷暖房同時運転に適用して、冷房必要能力を示す冷媒状態量と暖房必要能力を示す冷媒状態量を同時に制御を行い、冷暖房同時運転性能を向上することである。
Although the above-mentioned Patent Document 1 controls the compression function based on the refrigerant discharge pressure and the refrigerant suction pressure in the simultaneous cooling and heating operation, the control target is only the compressor, and the heat exchange amount of the refrigerant in the outdoor unit can be controlled simultaneously. It wasn't.
An object of the present invention is to apply a model predictive control capable of handling a plurality of input / output signals based on the above-described problems of the prior art to simultaneous operation of cooling and heating, and a refrigerant state quantity indicating a cooling necessary capacity and a refrigerant indicating a heating necessary capacity It is to control the state quantity at the same time and improve the cooling / heating simultaneous operation performance.

本発明の解決しようとする課題は以上の如くであり、次にこの課題を解決するための手段を説明する。   The problems to be solved by the present invention are as described above. Next, means for solving the problems will be described.

即ち、請求項1においては、圧縮機、室外熱交換器、複数の室内熱交換器を有するヒートポンプにおいて、該複数の室内熱交換器が冷房と暖房の異なる用途に分かれて同時に運転される場合に、冷房必要能力を示す冷媒状態量と暖房必要能力を示す冷媒状態量を、それらを制御目標値に制御することが可能な少なくとも2つの操作量に基づいて、操作量と冷媒状態量との伝達特性を有するモデルにて制御を行うモデル予測制御に切り換えるものである。   That is, in claim 1, in a heat pump having a compressor, an outdoor heat exchanger, and a plurality of indoor heat exchangers, when the plurality of indoor heat exchangers are operated at the same time divided into different uses for cooling and heating. Communicating the operation amount and the refrigerant state amount based on at least two operation amounts capable of controlling the refrigerant state amount indicating the cooling necessary capacity and the refrigerant state quantity indicating the heating necessary capacity to the control target values Switching to model predictive control in which control is performed using a model having characteristics.

請求項2においては、請求項1記載のヒートポンプにおいて、冷房必要能力を示す冷媒状態量を圧縮機吸入圧力、暖房必要能力を示す冷媒状態量を圧縮機吐出圧力としたものである。   According to a second aspect of the present invention, in the heat pump according to the first aspect, the refrigerant state quantity indicating the cooling necessary capacity is defined as the compressor suction pressure, and the refrigerant state quantity indicating the heating necessary capacity is defined as the compressor discharge pressure.

請求項3においては、請求項1記載のヒートポンプにおいて、冷房必要能力と暖房必要能力の差により、操作量の対象を切り換えるものである。   According to a third aspect of the present invention, in the heat pump according to the first aspect, the target of the operation amount is switched depending on the difference between the cooling required capacity and the heating required capacity.

請求項4においては、請求項3記載のヒートポンプにおいて、冷房必要能力が暖房必要能力より大きい場合に圧縮機回転数と、室外機の凝縮能力を調整可能な操作量とし、暖房必要能力が冷房必要能力より大きい場合に圧縮機回転数と、室外機の蒸発能力を調整可能な操作量としたものである。   In claim 4, in the heat pump according to claim 3, when the cooling required capacity is larger than the heating required capacity, the compressor rotation speed and the condensation capacity of the outdoor unit are set as adjustable operation amounts, and the heating required capacity is required to be cooled. When the capacity is larger than the capacity, the operation amount is adjusted so that the compressor rotation speed and the evaporation capacity of the outdoor unit can be adjusted.

請求項5においては、請求項4記載のヒートポンプにおいて、圧縮機に吸入される冷媒の過熱度が所定値以下になったとき、圧縮機吸入圧力制御目標値を変更するものである。   According to a fifth aspect of the present invention, in the heat pump according to the fourth aspect, when the superheat degree of the refrigerant sucked into the compressor becomes a predetermined value or less, the compressor suction pressure control target value is changed.

本発明の効果として、以下に示すような効果を奏する。   As effects of the present invention, the following effects can be obtained.

請求項1においては、冷房必要能力を示す冷媒状態量と暖房必要能力を示す冷媒状態量を、同時に安定して目標値に維持でき、各室を所望の房温度に速やかに冷房または暖房できて安定して冷暖房運転することができる。   In claim 1, the refrigerant state quantity indicating the required cooling capacity and the refrigerant state quantity indicating the required heating capacity can be stably maintained at the target values at the same time, and each room can be rapidly cooled or heated to a desired temperature. Air-conditioning operation can be performed stably.

請求項2においては、請求項1にて従来より用いられてきた圧縮機吸入圧力センサー及び吐出圧力センサーを、冷媒量を検知する手段として使用でき、新たに検知手段を設ける必要がなく、制御手段を変更するだけで安価に安定した空気調和装置(冷暖房装置)を提供できる。   In claim 2, the compressor suction pressure sensor and the discharge pressure sensor conventionally used in claim 1 can be used as means for detecting the refrigerant amount, and it is not necessary to provide a new detection means. It is possible to provide a stable air conditioner (cooling / heating device) at low cost simply by changing the above.

請求項3おいては、冷房必要能力と暖房必要能力の差を室外機でバランスさせることができる。   In claim 3, the difference between the cooling required capacity and the heating required capacity can be balanced by the outdoor unit.

請求項4においては、請求項3にて室外機のファン回転数を制御することによって室外機の凝縮能力を制御できる。また、室外機が蒸発器として作用する際には、廃熱回収器にて熱量を奪う回路を備えたエンジン駆動式ヒートポンプのような場合、該廃熱回収器での蒸発能力に影響のないように膨張弁開度によって蒸発能力を制御できる。   In claim 4, the condensation capacity of the outdoor unit can be controlled by controlling the fan rotation speed of the outdoor unit in claim 3. Also, when the outdoor unit acts as an evaporator, in the case of an engine-driven heat pump equipped with a circuit that takes away the amount of heat in the waste heat recovery unit, the evaporation capacity in the waste heat recovery unit is not affected. In addition, the evaporation capacity can be controlled by the opening degree of the expansion valve.

請求項5においては、冷暖房の同時実現と、圧縮機の湿り運転に対する保護を両立させることができる。
ここで、圧縮機の湿り運転とは圧縮機が液を含んだ状態の冷媒を吸入する現象であり、液圧縮や圧縮機の油上がりの原因となり、圧縮機故障に至る場合もある。室内機運転台数や室内負荷の変動により目標吸入圧力が変化した場合に発生が予想されるが、圧縮機吸入圧力制御目標値を変更することでこれらを回避することができる。
In claim 5, simultaneous realization of cooling and heating and protection against wet operation of the compressor can be achieved at the same time.
Here, the damp operation of the compressor is a phenomenon in which the compressor sucks the refrigerant containing the liquid, which may cause liquid compression or oil rise of the compressor, leading to a compressor failure. Occurrence is expected when the target suction pressure changes due to fluctuations in the number of indoor units operating or the indoor load, but these can be avoided by changing the compressor suction pressure control target value.

次に、発明の実施の形態を説明する。
図1はモデル予測制御の基本的なアルゴリズムを示したブロック線図、図2は本発明の一実施例に係る冷媒回路構成を示した冷媒回路図、図3は同じくモデル予測制御のブロック線図、図4(a)は本発明の実施例1に係る運転変化を示した図、図4(b)は本発明の実施例2に係る運転状態変化を示した図である。
Next, embodiments of the invention will be described.
1 is a block diagram showing a basic algorithm of model predictive control, FIG. 2 is a refrigerant circuit diagram showing a refrigerant circuit configuration according to an embodiment of the present invention, and FIG. 3 is a block diagram of model predictive control. FIG. 4A is a diagram showing an operation change according to Embodiment 1 of the present invention, and FIG. 4B is a diagram showing an operation state change according to Embodiment 2 of the present invention.

<モデル予測制御アルゴリズム>
まず、本発明に適用する予測制御の基本的なアルゴリズムを図1のブロック線図を用いて説明する。
ここでモデル予測制御コントローラ1(以下、MPCという)は制御目標値y(t)、操作量u(t)、冷媒制御量y(t)を入力信号とし、冷凍サイクル2のモデルパラメータと、操作量u(t)と冷媒制御量y(t)との関係を示す伝達特性を有するパラメトリックモデル(以下、モデルという)を使用して予測制御を行う。その予測制御は次のアルゴリズムにて実行する。
<Model predictive control algorithm>
First, a basic algorithm of predictive control applied to the present invention will be described with reference to the block diagram of FIG.
Here, the model predictive controller 1 (hereinafter referred to as MPC) uses the control target value y * (t), the operation amount u (t), and the refrigerant control amount y (t) as input signals, and the model parameters of the refrigeration cycle 2; Predictive control is performed using a parametric model (hereinafter referred to as a model) having a transfer characteristic indicating the relationship between the operation amount u (t) and the refrigerant control amount y (t). The predictive control is executed by the following algorithm.

(1)予測制御のモデルの出力を次式で与える。
ym(t)=θu(t)+θu(t−1)+・・・・+θu(t−n)
ここでθはモデルパラメータであり、θ=[θ、θ、・・・・・・、θ
(2)pステップ先の出力の予測値yp(t+p)を次式で与える。
yp(t+p)=ym(t+p)+{y(t)−ym(t)}
ここでは、現時刻tでの観測値と制御量のモデルによる計算値との差y(t)−ym(t)を外乱とみなして、将来もそれと同じ大きさの外乱がステップ状に一定に制御量に現れると考えて補正している。
(3)予測値が暫定的に目標とする参照軌道yr(t+p)を次式で与える。
yr(t+p)−y(t+p)=a{y(t)―y(t)}
ここでaは制御パラメータで0≦a≦1の範囲で設定する。
(4)yp(t+p)、yr(t+p)から評価関数J(t)を次式で与える。
(1) The output of the predictive control model is given by the following equation.
ym (t) = θ 0 u (t) + θ 1 u (t−1) +... + θ n u (t−n)
Here, θ is a model parameter, and θ = [θ 0 , θ 1 ,..., Θ n ]
(2) The predicted value yp (t + p) of the output after p steps is given by the following equation.
yp (t + p) = ym (t + p) + {y (t) -ym (t)}
Here, the difference y (t) −ym (t) between the observed value at the current time t and the calculated value based on the controlled variable model is regarded as a disturbance, and the disturbance having the same magnitude as that in the future will be constant in a stepped manner. It is corrected by assuming that it appears in the controlled variable.
(3) A reference trajectory yr (t + p) whose predicted value is provisionally targeted is given by the following equation.
yr (t + p) -y * (t + p) = a {y (t) -y * (t)}
Here, a is a control parameter and is set in the range of 0 ≦ a ≦ 1.
(4) The evaluation function J (t) is given by the following equation from yp (t + p) and yr (t + p).

Figure 2006317050
Figure 2006317050

ここでTは予測区間で0<Tの範囲で設定する。
(5)次の条件を満たす冷媒操作量数列Uを決定する。
Minimize J(t) Subject to Ω∋U
ここで、U=[u(t)、u(t+1)、・・・・、u(t+T−1)]、またΩは操作量の制約領域である。
Uの最初のS個をサンプリング周期ごとに出力する。
ここでSは出力区間で0≦S≦Tの範囲で設定する。
(6)時刻t+Sにおいて同様に繰り返す。
以上が、基本的な予測制御のアルゴリズムである。実際には該基本アルゴリズムの応用とて、2入力2出力干渉系の予測制御や該2入力2出力干渉系に外乱を含めた予測制御等がある。
Here, T is set in the range of 0 <T in the prediction interval.
(5) The refrigerant operation quantity sequence U satisfying the following conditions is determined.
Minimize J (t) Subject to Ω∋U
Here, U = [u (t), u (t + 1),..., U (t + T−1)], and Ω is an operation amount restriction region.
The first S of U are output every sampling period.
Here, S is set in the range of 0 ≦ S ≦ T in the output section.
(6) Repeat at time t + S.
The above is the basic predictive control algorithm. Actually, the application of the basic algorithm includes predictive control of a 2-input 2-output interference system, predictive control including disturbance in the 2-input 2-output interference system, and the like.

<冷暖同時運転型冷媒回路>
本発明に係る冷暖同時運転型空気調和装置3は1台の室外機11にて冷房運転及び暖房運転する室内機12を複数台接続し、同時に運転できる空気調和装置である。本実施例では、エンジン駆動式ヒートポンプによる冷暖同時運転型空気調和装置3の冷媒回路構成について図2を用いて説明する。
<Cooling and heating simultaneous operation type refrigerant circuit>
The cooling / heating simultaneous operation type air conditioner 3 according to the present invention is an air conditioner that can be operated simultaneously by connecting a plurality of indoor units 12 that perform cooling operation and heating operation with one outdoor unit 11. In the present embodiment, the refrigerant circuit configuration of the cooling and heating simultaneous operation type air conditioner 3 using an engine-driven heat pump will be described with reference to FIG.

エンジン駆動式ヒートポンプは、駆動源としてのエンジン(図示略)から動力を得て冷媒を圧縮する圧縮機21と、圧縮機21の吐出側に接続され冷房時及び暖房時で冷媒の流れを切り換える三方弁24a・24bと、冷房時に圧縮機21から三方弁24a・24bを介して冷媒が供給される室外熱交換器22a・22bと、暖房時に圧縮機21から三方弁24a・24bを介して冷媒が供給される室内熱交換器23a・23b・23cと、室外熱交換器22及び室内熱交換器23a・23b・23c間に配設される室外熱交換器用膨張弁33a・33bとを有しており、これらで構成される冷媒サイクルを用いるものである。   The engine-driven heat pump has a compressor 21 that obtains power from an engine (not shown) as a drive source and compresses the refrigerant, and is connected to the discharge side of the compressor 21 to switch the refrigerant flow during cooling and heating. The valves 24a and 24b, the outdoor heat exchangers 22a and 22b to which refrigerant is supplied from the compressor 21 through the three-way valves 24a and 24b during cooling, and the refrigerant from the compressor 21 through the three-way valves 24a and 24b during heating It has indoor heat exchangers 23a, 23b, 23c to be supplied, and outdoor heat exchangers 22 and outdoor heat exchanger expansion valves 33a, 33b disposed between the indoor heat exchangers 23a, 23b, 23c. The refrigerant cycle composed of these is used.

前記圧縮機21は、その吸入側からガス冷媒を吸引・圧縮し、高温・高圧のガス冷媒を吐出する。他方、圧縮機21の吐出側には、吐出ラインを構成する経路61を介してガス冷媒中に含まれる冷凍機油を分離して圧縮機21の吸入側に戻すためのオイルセパレータ25が設けられている。すなわち、圧縮機21から吐出されるガス冷媒は、オイルセパレータ25を介して前記三方弁24a・24bへと流入し、この三方弁24a・24bにて所定の方向に導かれる。また、圧縮機21に吸引されるガス冷媒も三方弁24a・24bにて導かれるため、圧縮機21の冷媒吸入側と三方弁24a・24bとは吸入ラインを構成する経路62により接続されている。   The compressor 21 sucks and compresses the gas refrigerant from the suction side and discharges the high-temperature and high-pressure gas refrigerant. On the other hand, an oil separator 25 for separating the refrigeration oil contained in the gas refrigerant and returning it to the suction side of the compressor 21 is provided on the discharge side of the compressor 21 via a path 61 constituting a discharge line. Yes. That is, the gas refrigerant discharged from the compressor 21 flows into the three-way valves 24a and 24b through the oil separator 25 and is guided in a predetermined direction by the three-way valves 24a and 24b. Further, since the gas refrigerant sucked into the compressor 21 is also guided by the three-way valves 24a and 24b, the refrigerant suction side of the compressor 21 and the three-way valves 24a and 24b are connected by a path 62 that constitutes a suction line. .

前記室外熱交換器22a・22bは、室外ファン26の送風にて該室外熱交換器22a・22bを通過する冷媒と室外空気を熱交換する役割を持つ。該室外熱交換器22a・22bの一端には前記三方弁24a・24bが接続されており、他端には室外熱交換器用膨張弁33a・33bを介してブリッジ回路27に接続される。
ここで、室外熱交換器22a・22bがそれぞれ室外熱交換器22a・22bを介して2系統あるのは、熱交換能力を調整するためであって詳細は省略する。
The outdoor heat exchangers 22a and 22b have a function of exchanging heat between the refrigerant passing through the outdoor heat exchangers 22a and 22b and the outdoor air by the blowing of the outdoor fan 26. The three-way valves 24a and 24b are connected to one end of the outdoor heat exchangers 22a and 22b, and the other end is connected to the bridge circuit 27 via the outdoor heat exchanger expansion valves 33a and 33b.
Here, the reason why there are two outdoor heat exchangers 22a and 22b via the outdoor heat exchangers 22a and 22b is to adjust the heat exchange capacity, and the details are omitted.

冷媒液を一時的に溜めることの可能なレシーバ28は密閉された容器であり、内部に過冷却熱交換器29を備えている。ここで、経路63aはレシーバ28の冷媒入口であり、経路63bは冷媒出口である。経路63a及び経路63bはそれぞれレシーバ28と前記ブリッジ回路27を接続している。ブリッジ回路は逆止弁を4つ組み合わせた回路であり、冷房運転時と暖房運転時に方向が逆になる液冷媒の流れを制御して、レシーバ28では冷媒の流れは一方通行としている。   The receiver 28 capable of temporarily storing the refrigerant liquid is a sealed container, and includes a supercooling heat exchanger 29 inside. Here, the path 63a is a refrigerant inlet of the receiver 28, and the path 63b is a refrigerant outlet. The path 63a and the path 63b connect the receiver 28 and the bridge circuit 27, respectively. The bridge circuit is a circuit in which four check valves are combined, and controls the flow of the liquid refrigerant whose direction is reversed during the cooling operation and the heating operation, and the receiver 28 makes the refrigerant flow one-way.

本実施例の冷暖同時運転型空気調和装置3は、通常の空気調和装置と異なり室外機11と室内機12を接続する連絡配管を3本持つことを特徴とする。本実施例では高圧ガス配管14、低圧ガス配管15、液配管16が連絡配管である。   The cooling and heating simultaneous operation type air conditioner 3 of the present embodiment is characterized in that it has three connecting pipes that connect the outdoor unit 11 and the indoor unit 12 unlike a normal air conditioner. In this embodiment, the high pressure gas pipe 14, the low pressure gas pipe 15, and the liquid pipe 16 are connecting pipes.

エンジン廃熱回収器30は、レシーバ28の液冷媒出口経路63bから分岐し、経路62に接続される経路64に設けられている。該経路64には、経路62に向かって廃熱回収器用膨張弁31、過冷却熱交換器29、廃熱回収器30の順にて直列に接続されている。   The engine waste heat recovery unit 30 is provided in a path 64 that branches from the liquid refrigerant outlet path 63 b of the receiver 28 and is connected to the path 62. To the path 64, the waste heat recovery device expansion valve 31, the supercooling heat exchanger 29, and the waste heat recovery device 30 are connected in series toward the path 62.

前記室内熱交換器23a・23b・23cは、室内ファン32a・32b・32cの送風にて該室内熱交換器23a・23b・23cを通過する冷媒と室内空気を熱交換する役割を持つ。該室内熱交換器23a・23b・23cは一端は室内熱交換器用膨張弁34a・34b・34cを介して、他端はそのまま冷媒分岐コントローラ13a・13b・13cに接続される。   The indoor heat exchangers 23a, 23b, and 23c have a role of exchanging heat between the refrigerant that passes through the indoor heat exchangers 23a, 23b, and 23c and the room air by the blowing of the indoor fans 32a, 32b, and 32c. One end of each of the indoor heat exchangers 23a, 23b, and 23c is connected to the refrigerant branch controllers 13a, 13b, and 13c through the indoor heat exchanger expansion valves 34a, 34b, and 34c.

<冷暖同時運転型空気調和装置の冷房運転>
ここで、冷暖同時運転型空気調和装置3の冷暖同時運転時の冷房運転について説明する。ここでは3台示した室内機12a・12b・12cのうち12aが冷房運転をするとして説明する。
冷房運転においては、圧縮機21にて圧縮され吐出される高温・高圧のガス冷媒は、三方弁24a・24bを介して室外熱交換器22a・22bに送られ、この室外熱交換器22a・22bで室外ファン26により送風される外気に放熱することにより凝縮されて、この凝縮熱が室外の空気中に放熱される。ここで、ガス冷媒は気体から液体となる。そして、液化された冷媒は、逆止弁35aから液冷媒レシーバ流入経路63aを経てレシーバ28内に流入し、さらに液冷媒レシーバ流出口経路63bから逆止弁35d及び液配管16を経由して室内熱交換器用膨張弁34aに到達し、この室内熱交換器用膨張弁34aで急激に減圧され蒸発しやすい状態となって室内熱交換器23aに導かれる。この室内熱交換器23aが蒸発器となり、冷媒が室内の空気から蒸発熱を奪い液体から気体へと変化するとともに室内の空気を冷却する。気化した冷媒は、低圧ガス配管15を介して経路62を通り、圧縮機21に吸引されて圧縮された後、再び吐出される。
<Cooling operation of a cooling and heating simultaneous operation type air conditioner>
Here, the cooling operation of the simultaneous cooling and heating operation of the cooling and heating simultaneous operation type air conditioner 3 will be described. Here, the description will be made on the assumption that 12a out of the three indoor units 12a, 12b, and 12c perform the cooling operation.
In the cooling operation, the high-temperature and high-pressure gas refrigerant compressed and discharged by the compressor 21 is sent to the outdoor heat exchangers 22a and 22b via the three-way valves 24a and 24b, and the outdoor heat exchangers 22a and 22b. Then, it is condensed by dissipating heat to the outside air blown by the outdoor fan 26, and this condensation heat is dissipated into the outdoor air. Here, the gas refrigerant changes from gas to liquid. The liquefied refrigerant flows from the check valve 35a through the liquid refrigerant receiver inflow path 63a into the receiver 28, and further passes through the liquid refrigerant receiver outlet path 63b through the check valve 35d and the liquid pipe 16 to the room. The heat exchanger reaches the heat exchanger expansion valve 34a, and is rapidly reduced in pressure by the indoor heat exchanger expansion valve 34a to be easily evaporated and led to the indoor heat exchanger 23a. This indoor heat exchanger 23a becomes an evaporator, and the refrigerant takes heat of evaporation from the indoor air and changes from a liquid to a gas, and cools the indoor air. The vaporized refrigerant passes through the path 62 via the low-pressure gas pipe 15 and is sucked and compressed by the compressor 21 and then discharged again.

<冷暖同時運転型空気調和装置の暖房運転>
ここで、冷暖同時運転型空気調和装置3の冷暖同時運転時の暖房運転について説明する。ここでは3台示した室内機12a・12b・12cのうち12bが暖房運転をするとして説明する。
暖房運転時においては、圧縮機21にて圧縮され吐出される高温・高圧のガス冷媒は、経路61及び高圧ガス配管14を介して室内熱交換器23bに送られ、この室内熱交換器23bで室内ファン32により送風される室内の空気に放熱することにより凝縮されて、この凝縮熱が室内の空気中に放熱され室内の空気を温める。ここで、冷媒は気体から液体となる。そして、液化された冷媒は、液配管16及び逆止弁35cを経て液冷媒レシーバ流入口経路63aからレシーバ28内に流入し、液冷媒レシーバ流出口経路63bから室外熱交換器用膨張弁33a・33bに到達し、この室外熱交換器用膨張弁33a・33bで急激に減圧され蒸発しやすい状態となって室外熱交換器22a・22bに導かれる。この室外熱交換器22a・22bが蒸発器となり、冷媒が室外の空気中から蒸発熱を奪い、冷媒の一部が液体から気体へと変化する。そして、室外熱交換器22a・22bを経て気化した冷媒は、三方弁24a・24bを介して経路62を通り、圧縮機21に吸引されて圧縮された後、再び吐出される。
<Heating operation of a cooling and heating simultaneous operation type air conditioner>
Here, the heating operation at the time of the simultaneous cooling and heating operation of the cooling and heating simultaneous operation type air conditioner 3 will be described. Here, of the three indoor units 12a, 12b, and 12c shown, 12b will be described as performing heating operation.
During the heating operation, the high-temperature and high-pressure gas refrigerant compressed and discharged by the compressor 21 is sent to the indoor heat exchanger 23b via the path 61 and the high-pressure gas pipe 14, and in the indoor heat exchanger 23b. It is condensed by releasing heat to the indoor air blown by the indoor fan 32, and this condensation heat is dissipated into the indoor air and warms the indoor air. Here, the refrigerant changes from gas to liquid. The liquefied refrigerant flows into the receiver 28 from the liquid refrigerant receiver inlet path 63a through the liquid pipe 16 and the check valve 35c, and from the liquid refrigerant receiver outlet path 63b to the outdoor heat exchanger expansion valves 33a and 33b. , And is rapidly reduced in pressure by the outdoor heat exchanger expansion valves 33a and 33b to be easily evaporated and led to the outdoor heat exchangers 22a and 22b. The outdoor heat exchangers 22a and 22b serve as an evaporator, and the refrigerant takes heat of evaporation from the outdoor air, and a part of the refrigerant changes from liquid to gas. The refrigerant evaporated through the outdoor heat exchangers 22a and 22b passes through the path 62 via the three-way valves 24a and 24b, is sucked and compressed by the compressor 21, and is then discharged again.

さらに、エンジン駆動式ヒートポンプの特徴である暖房運転時の廃熱回収器30について説明する。
前記レシーバ28から分岐された液冷媒は、経路64を次のように流れる。即ち、廃熱回収器用膨張弁31で減圧された後、レシーバ内に設けられた過冷却熱交換器29に流入して経路64を経由してエンジン廃熱回収器30に導かれる。この過冷却熱交換器29及び廃熱回収器30が蒸発器となり、冷媒がレシーバ28内の液冷媒及びエンジン廃熱から蒸発熱を奪い液体から気体へと変化する。気化した冷媒は、経路62と合流し、前記圧縮機21に吸引されて圧縮された後、再び吐出される。
Furthermore, the waste heat recovery device 30 during heating operation, which is a feature of the engine-driven heat pump, will be described.
The liquid refrigerant branched from the receiver 28 flows through the path 64 as follows. That is, after being depressurized by the waste heat recovery device expansion valve 31, it flows into the supercooling heat exchanger 29 provided in the receiver and is guided to the engine waste heat recovery device 30 via the path 64. The supercooling heat exchanger 29 and the waste heat recovery device 30 serve as an evaporator, and the refrigerant takes the heat of evaporation from the liquid refrigerant in the receiver 28 and the engine waste heat and changes from liquid to gas. The vaporized refrigerant merges with the path 62, is sucked into the compressor 21 and compressed, and then discharged again.

<冷暖同時運転型空気調和装置の冷暖混在運転>
次に、冷暖同時運転型空気調和装置3の特徴である冷暖混合運転について説明する。ここでは3台示した室内機12a・12b・12cのうち12a・12bが冷房運転を12cが暖房運転をするとして説明する。この場合、室内機の負荷は全て同等であるとすると、全体で冷房運転の容量が大きいので室外機熱交換器22は凝縮器として作用する。
<Cooling and heating simultaneous operation of cooling and heating simultaneous operation type air conditioner>
Next, the cooling / heating mixing operation, which is a feature of the cooling / heating simultaneous operation type air conditioner 3, will be described. Here, of the three indoor units 12a, 12b, and 12c shown, 12a and 12b will be described as being in the cooling operation, and 12c will be described as being in the heating operation. In this case, assuming that the loads of the indoor units are all equal, the capacity of the cooling operation is large as a whole, so that the outdoor unit heat exchanger 22 acts as a condenser.

まず、室外機22側から冷媒の流れを説明する。前記圧縮機21にて吐出された高圧ガスは経路61を通過して、オイルセパレータ25に導かれる。その後、高圧ガス配管14を通過して室内機12cへ向かう冷媒と、三方弁24a・24bを介して室外熱交換器22a・22bに導かれる冷媒に分岐される。前述後者である冷媒は、室外熱交換器22a・22bで室外ファン26により送風される外気に放熱することにより凝縮されて、この凝縮熱が室外の空気中に放熱される。ここで、冷媒は気体から液体となる。そして、液化された冷房運転用冷媒は、逆止弁35aから液冷媒レシーバ流入経路63aを経てレシーバ28内に流入する。   First, the flow of the refrigerant from the outdoor unit 22 side will be described. The high-pressure gas discharged from the compressor 21 passes through the path 61 and is guided to the oil separator 25. Then, it branches into the refrigerant | coolant which passes the high pressure gas piping 14, and goes to the indoor unit 12c, and the refrigerant | coolant guide | induced to the outdoor heat exchangers 22a and 22b via the three-way valves 24a and 24b. The latter refrigerant is condensed by dissipating heat to the outside air blown by the outdoor fan 26 in the outdoor heat exchangers 22a and 22b, and this condensation heat is dissipated into the outdoor air. Here, the refrigerant changes from gas to liquid. The liquefied cooling operation refrigerant flows into the receiver 28 from the check valve 35a through the liquid refrigerant receiver inflow path 63a.

次に、室内機12a・12b・12c側の冷媒の流れを説明する。
ここで、暖房運転をする室内機12cについて説明する。前述にて高圧ガスの状態で、高圧ガス配管14を通過して室内機12cへ向かった冷媒は、室内熱交換器23cに送られ、この室内熱交換器23cで室内ファン32cにより送風される室内の空気に放熱することにより凝縮されて、この凝縮熱が室内の空気中に放熱され室内の空気を温める。ここで、冷媒は気体から液体となる。そして、液化された冷媒は、液配管16及び逆止弁35cを経て液冷媒レシーバ流入口経路63aからレシーバ28内に流入する。
Next, the flow of the refrigerant on the indoor units 12a, 12b, and 12c side will be described.
Here, the indoor unit 12c that performs the heating operation will be described. As described above, the refrigerant that has passed through the high-pressure gas pipe 14 toward the indoor unit 12c in the state of high-pressure gas is sent to the indoor heat exchanger 23c, and is blown by the indoor fan 32c in the indoor heat exchanger 23c. It is condensed by dissipating heat to the air, and this condensation heat is dissipated into the indoor air to warm the indoor air. Here, the refrigerant changes from gas to liquid. The liquefied refrigerant flows into the receiver 28 from the liquid refrigerant receiver inlet path 63a through the liquid pipe 16 and the check valve 35c.

次に、冷房運転をする室内機12a・12bについて説明する。前述にて液冷媒としてレシーバ28内に溜められた液冷媒は、液冷媒レシーバ流出口経路63bから逆止弁35d及び液配管16を経由して室内熱交換器用膨張弁34a・34bに到達し、この室内熱交換器用膨張弁34a・34bで急激に減圧され蒸発しやすい状態となって室内熱交換器23a・23bに導かれる。この室内熱交換器23a・23bが蒸発器となり、冷媒が室内の空気から蒸発熱を奪い液体から気体へと変化するとともに室内の空気を冷却する。気化した冷媒は、低圧ガス配管15を介して経路62を通り、圧縮機21に吸引されて圧縮された後、再び吐出される。   Next, the indoor units 12a and 12b that perform the cooling operation will be described. The liquid refrigerant stored in the receiver 28 as the liquid refrigerant as described above reaches the indoor heat exchanger expansion valves 34a and 34b from the liquid refrigerant receiver outlet path 63b via the check valve 35d and the liquid pipe 16. The indoor heat exchanger expansion valves 34a and 34b are suddenly decompressed and easily evaporated, and are led to the indoor heat exchangers 23a and 23b. The indoor heat exchangers 23a and 23b serve as evaporators, and the refrigerant takes evaporation heat from the indoor air and changes from liquid to gas, and cools the indoor air. The vaporized refrigerant passes through the path 62 via the low-pressure gas pipe 15 and is sucked and compressed by the compressor 21 and then discharged again.

以上の説明より、冷暖同時運転型空気調和装置3の特徴である冷暖混合運転について、複数ある室内機12中の冷房運転の容量が大きい場合は、暖房運転をする室内機12cの蒸発器は通常の空気調和装置であるならば室外機がその役割を担うが、本実施形態の場合は冷房運転を実施している室内機12a・12bが室内機12cの蒸発器として使用されていることが分かる。   From the above description, regarding the cooling and heating mixing operation that is a feature of the cooling and heating simultaneous operation type air conditioner 3, when the capacity of the cooling operation in the plurality of indoor units 12 is large, the evaporator of the indoor unit 12c that performs the heating operation is usually However, in this embodiment, it is understood that the indoor units 12a and 12b that are performing the cooling operation are used as the evaporator of the indoor unit 12c. .

<冷暖同時運転型空気調和装置の予測制御>
次に、本発明の実施形態である予測制御を適用した冷暖同時運転型空気調和装置3を図3にて説明する。
図3においては、MPCはモデル予測制御コントローラ1を示し、信号は矢印の向きに伝達され、「○」で示した合流部では信号は+で正の結合、−で負の結合を表し、「●」で示した分岐部では信号は分岐する。
<Predictive control of a cooling and heating simultaneous operation type air conditioner>
Next, the cooling and heating simultaneous operation type air conditioner 3 to which the predictive control according to the embodiment of the present invention is applied will be described with reference to FIG.
In FIG. 3, MPC represents the model predictive control controller 1, the signal is transmitted in the direction of the arrow, and at the junction indicated by “◯”, the signal represents a positive coupling with + and a negative coupling with −. The signal branches at the branch indicated by ●.

図3中にて、破線内は冷暖同時運転型空気調和装置3を示し、破線内のG1乃至G11はそれぞれある特性の示した伝達関数を示している。これらの伝達関数は予めMPC1に記憶され、モデル化されているものとする。また、図中では図1で示される操作量のフィードバックが図示されていないが、MPC1の内部に含まれていることとする。
ここで、冷媒状態量として圧縮機低圧圧力をPL、圧縮機高圧圧力をPH、吸入過熱度をSHとして示されている。さらに操作量としてのNeは圧縮機回転数であり、室外ファン26の回転数をFan、室外熱交換器用膨張弁33の開度をEVとして示されている。さらに、目標値として圧縮機低圧圧力の目標値をPL、圧縮機高圧圧力の目標値をPHとして示している。そして、冷暖同時運転型空気調和装置3においての冷房運転室内機合計容量をHCcで、暖房運転室内機合計容量をHChで示している。
In FIG. 3, the inside of the broken line indicates the cooling and heating simultaneous operation type air conditioner 3, and G <b> 1 to G <b> 11 within the broken line indicate transfer functions having certain characteristics, respectively. These transfer functions are stored in advance in the MPC 1 and modeled. Further, in the drawing, the feedback of the operation amount shown in FIG. 1 is not shown, but is assumed to be included in the MPC 1.
Here, as the refrigerant state quantity, the compressor low pressure is shown as PL, the compressor high pressure as PH, and the suction superheat degree as SH. Further, Ne as the operation amount is the compressor rotational speed, where the rotational speed of the outdoor fan 26 is Fan and the opening degree of the outdoor heat exchanger expansion valve 33 is EV. Furthermore, the target value of the compressor low pressure is shown as PL * , and the target value of the compressor high pressure is shown as PH * . In the cooling / heating simultaneous operation type air conditioner 3, the cooling operation indoor unit total capacity is indicated by HCc, and the heating operation indoor unit total capacity is indicated by HCh.

ここで、それぞれの伝達関数について説明する。G1は圧縮機回転数Neと低圧圧力PLの関係、G2は圧縮機回転数Neと高圧圧力PHの関係、G3は室外ファン26の回転数Fanと低圧圧力PLの関係、G4は室外ファン26の回転数Fanと高圧圧力PHの関係、G5は冷房運転室内機合計容量HCcと低圧圧力PLの関係、G6は冷房運転室内機合計容量HChと高圧圧力PHの関係、G7は暖房運転室内機合計容量HChと低圧圧力PLの関係、G8は暖房運転室内機合計容量HChと高圧圧力PHの関係、G9は室外熱交換器用膨張弁33a・33bの開度EVと低圧圧力PLの関係、G10は室外熱交換器用膨張弁33a・33bの開度EVと高圧圧力PHの関係、G11は室外熱交換器用膨張弁33a・33bの開度EVと吸入過熱度SHの関係を示している。   Here, each transfer function will be described. G1 is the relationship between the compressor rotational speed Ne and the low pressure PL, G2 is the relationship between the compressor rotational speed Ne and the high pressure PH, G3 is the relationship between the rotational speed Fan of the outdoor fan 26 and the low pressure PL, and G4 is the relationship between the outdoor fan 26 and G4. The relationship between the rotational speed Fan and the high pressure PH, G5 is the relationship between the cooling operation indoor unit total capacity HCc and the low pressure PL, G6 is the relationship between the cooling operation indoor unit total capacity HCh and the high pressure PH, and G7 is the heating operation indoor unit total capacity. Relationship between HCh and low pressure PL, G8 is the relationship between the total capacity of heating operation indoor units HCh and high pressure PH, G9 is the relationship between the opening EV of the outdoor heat exchanger expansion valves 33a and 33b and the low pressure PL, and G10 is outdoor heat. The relationship between the opening degree EV of the exchanger expansion valves 33a and 33b and the high pressure PH, and G11 shows the relationship between the opening degree EV of the expansion valves 33a and 33b for the outdoor heat exchanger and the suction superheat degree SH.

さらに図3中で切換判定部81は、前記冷房運転室内機合計容量HCcと暖房運転室内機合計容量HChを比較し、冷房運転室内機合計容量HCcが暖房運転室内機合計容量HChより多ければ前記室外ファン26の回転数Fanを操作量とし、暖房運転室内機合計容量HChが冷房運転室内機合計容量HCcより多ければ前記室外熱交換器用膨張弁33a・33bまたは、廃熱回収器用膨張弁31の開度EVを操作量とするように自動的に切り換えが行われる。
また、同じく図3中で目標値変更部82は、前記吸入過熱度SHが所定値以下ならば圧縮機低圧圧力の目標値PLを変更する。
Further, in FIG. 3, the switching determination unit 81 compares the cooling operation indoor unit total capacity HCc with the heating operation indoor unit total capacity HCh, and if the cooling operation indoor unit total capacity HCc is larger than the heating operation indoor unit total capacity HCh, If the rotational speed Fan of the outdoor fan 26 is an operation amount and the heating operation indoor unit total capacity HCh is larger than the cooling operation indoor unit total capacity HCc, the outdoor heat exchanger expansion valves 33a and 33b or the waste heat recovery expansion valve 31 Switching is automatically performed so that the degree of opening EV is the operation amount.
Similarly, in FIG. 3, the target value changing unit 82 changes the target value PL * of the compressor low pressure if the suction superheat degree SH is equal to or less than a predetermined value.

以下では、前述の冷媒量を具体的にどのようにして得るのかを図2と図3を用いて説明する。
冷媒状態量として圧縮機低圧圧力PLは吸入圧力センサー53で検知し、圧縮機高圧圧力PHは吐出圧力センサー54から検出しそれぞれMPC1に入力する。また、吸入過熱度SHは吸入温度センサー52で検出した吸入温度より、吸入圧力センサー53で検出した圧縮機低圧圧力PLの飽和相当温度を減じて求められ、目標値変更部82に入力する。
ここで、冷房運転室内機合計容量HCc及び暖房運転室内機合計容量HChは、各々の室内機に設けられた室内温度センサー50と室内空調設定温度の差と室内機容量によって、冷房又は暖房能力の容量をそれぞれ決定する。
Hereinafter, how to obtain the above-described refrigerant amount will be described in detail with reference to FIGS.
As the refrigerant state quantity, the compressor low pressure PL is detected by the suction pressure sensor 53, and the compressor high pressure PH is detected by the discharge pressure sensor 54 and input to the MPC 1 respectively. Further, the suction superheat degree SH is obtained by subtracting the saturation equivalent temperature of the compressor low pressure PL detected by the suction pressure sensor 53 from the suction temperature detected by the suction temperature sensor 52, and is input to the target value changing unit 82.
Here, the cooling operation indoor unit total capacity HCc and the heating operation indoor unit total capacity HCh depend on the difference between the indoor temperature sensor 50 provided in each indoor unit, the indoor air conditioning set temperature, and the indoor unit capacity. Determine each capacity.

さらに、具体的な制御方法について図4を用いて説明する。
ここで、図4は図2に示した冷暖同時運転型空気調和装置3の室内機運転パターン状態変化の代表例を示している。なお、図4中にて室外機の状態を冷房又は暖房で表しているが、これは室外機が暖房運転状態であるということは即ち蒸発器として使用、室外機が冷房運転状態であるということは即ち凝縮器として使用していることを示している。また、冷房運転室内機合計容量HCc及び暖房運転室内機合計容量HChは、室内機の該運転台数により決定されるものではなく、冷暖同時運転型空気調和装置3全体におけるそれぞれの容量である。以下の実施例では、全ての室内機の運転容量(冷房・暖房共に)は同様と仮定する。
Further, a specific control method will be described with reference to FIG.
Here, FIG. 4 shows a representative example of the indoor unit operation pattern state change of the cooling and heating simultaneous operation type air conditioner 3 shown in FIG. In FIG. 4, the state of the outdoor unit is expressed by cooling or heating. This means that the outdoor unit is in a heating operation state, that is, it is used as an evaporator, and the outdoor unit is in a cooling operation state. That is, it is used as a condenser. Further, the cooling operation indoor unit total capacity HCc and the heating operation indoor unit total capacity HCh are not determined by the number of indoor units operated, but are the respective capacities of the cooling / heating simultaneous operation type air conditioner 3 as a whole. In the following embodiments, it is assumed that the operating capacities (both cooling and heating) of all indoor units are the same.

まず、図4に示す運転パターン変化において、室内機12a・12bが冷房運転、室内機12cが停止していた状態(図4中運転状態A)から、室内機12a・12bが冷房運転のまま室内機12cが暖房運転を開始した(図4中運転状態B)とする。
はじめに、運転状態Aでは、冷房運転のみの実施のため冷房負荷に応じた圧縮機低圧圧力の目標値PLを設定し、圧縮機回転数Neを操作量として、通常のフィードバック制御を実施している。
次に、前述の状態より室内機12cが暖房運転を開始したことにより、冷暖同時運転型の運転に切り替わる。この段階で本発明の実施形態であるモデル予測制御を適用する。即ち、状態遷移後に冷房運転室内機合計容量HCcと暖房運転室内機合計容量HChの両方の値が入力されることを踏まえ、圧縮機低圧圧力の目標値PL及び圧縮機高圧圧力の目標値PHを目標値、冷媒状態量の圧縮機低圧圧力PL及び圧縮機高圧圧力PHを制御量、圧縮機回転数Ne及び室外ファンの回転数Fanを操作量として、前述した(1)〜(6)の予測制御を行う。予測制御の詳細は、前述の基本的なアルゴリズムと同様なのでここでは省略する。ここで、MPC1には予め該冷暖同時運転型空気調和装置3の前述した伝達関数G1乃至G11は記憶されている。MPC1による制御は、圧縮機低圧圧力PL及び圧縮機高圧圧力PHがそれぞれの目標値になるまで繰り返される。
First, in the operation pattern change shown in FIG. 4, the indoor units 12a and 12b are in the cooling operation and the indoor unit 12c is stopped (the operation state A in FIG. 4). It is assumed that the machine 12c has started the heating operation (operation state B in FIG. 4).
First, in the operation state A, since only the cooling operation is performed, the target value PL * of the compressor low pressure corresponding to the cooling load is set, and the normal feedback control is performed with the compressor rotational speed Ne as the operation amount. Yes.
Next, when the indoor unit 12c starts the heating operation from the above state, the operation is switched to the cooling and heating simultaneous operation type operation. At this stage, the model predictive control according to the embodiment of the present invention is applied. That is, based on the fact that the values of both the cooling operation indoor unit total capacity HCc and the heating operation indoor unit total capacity HCh are input after the state transition, the compressor low pressure target value PL * and the compressor high pressure target value PH (1) to (6) described above, where * is the target value, the compressor low pressure PL and the compressor high pressure PH of the refrigerant state quantity are control amounts, the compressor rotational speed Ne and the outdoor fan rotational speed Fan are the manipulated variables Predictive control is performed. The details of the predictive control are the same as the basic algorithm described above, and are omitted here. Here, the aforementioned transfer functions G1 to G11 of the cooling and heating simultaneous operation type air conditioner 3 are stored in advance in the MPC1. The control by the MPC 1 is repeated until the compressor low pressure PL and the compressor high pressure PH reach their target values.

次に、図4に示す運転状態変化において、前述の運転状態Bより、室内機12aが冷房運転、室内機12cが暖房運転のまま、室内機12bが冷房運転から停止した(図4中運転状態C)とする。ここで、継続してモデル予測制御を適用する。即ち、圧縮機低圧圧力の目標値PL及び圧縮機高圧圧力の目標値PHを目標値、冷媒状態量の圧縮機低圧圧力PL及び圧縮機高圧圧力PHを制御量、圧縮機回転数Ne及び室外ファンの回転数Fanを操作量として、前述した(1)〜(6)の予測制御を行う。MPC1による制御は、室内機12bが冷房運転から停止したことを冷房運転室内機合計容量HChの減少として検出し、記憶されている伝達関数G1乃至G11に基づいて圧縮機低圧圧力PL及び圧縮機高圧圧力PHがそれぞれの目標値になるまで繰り返される。
ここで、実施例1にて暖房運転のみの運転から冷房運転を開始する場合においても、室外ファンの回転数Fanに代わり室外熱交換器用膨張弁開度EVを操作量とし、同様の制御を実施することは言うまでもない。
Next, in the operation state change shown in FIG. 4, from the above-described operation state B, the indoor unit 12a is stopped from the cooling operation while the indoor unit 12a is in the cooling operation, the indoor unit 12c is in the heating operation (the operation state in FIG. 4). C). Here, model predictive control is applied continuously. That is, the target value PL * of the compressor low pressure and the target value PH * of the compressor high pressure are set to the target value, the compressor low pressure PL and the compressor high pressure PH of the refrigerant state quantity are controlled, the compressor speed Ne and The predictive control (1) to (6) described above is performed using the rotational speed Fan of the outdoor fan as an operation amount. The control by MPC1 detects that the indoor unit 12b has stopped from the cooling operation as a decrease in the cooling operation indoor unit total capacity HCh, and the compressor low pressure PL and the compressor high pressure based on the stored transfer functions G1 to G11. It repeats until pressure PH becomes each target value.
Here, even in the case where the cooling operation is started from the operation only in the heating operation in the first embodiment, the same control is performed by using the outdoor heat exchanger expansion valve opening EV as the operation amount instead of the rotation speed Fan of the outdoor fan. Needless to say.

さらに、具体的な制御方法について説明する。
同様に、図2に示した冷暖同時運転型の空気調和装置3にて、図4に示す運転パターン変化において、室内機12a・12bが冷房運転、室内機12cが暖房運転していた状態(図4中運転状態D)から、室内機12aが冷房運転、室内機12b・12cが暖房運転(図4中運転状態E)、つまり室内機12bが冷房運転から暖房運転に切り替わったとする。
本実施例では冷房運転が多い状態から暖房運転が多い状態に遷移した、即ち室外熱交換器22a・22bは凝縮器の役割から蒸発器の役割を担うことになったので、MPC1は切換判定部81に、操作量を室外ファン回転数Fanから室外熱交換器用膨張弁開度EVに変更する指令を出す。ただし、前述したように切り換えは冷房又は暖房の容量によって行うのであって、運転台数によるものではない。
Furthermore, a specific control method will be described.
Similarly, in the cooling / heating simultaneous operation type air conditioner 3 shown in FIG. 2, the indoor units 12a and 12b are in the cooling operation and the indoor unit 12c is in the heating operation in the operation pattern change shown in FIG. 4, it is assumed that the indoor unit 12a is in the cooling operation, the indoor units 12b and 12c are in the heating operation (operation state E in FIG. 4), that is, the indoor unit 12b is switched from the cooling operation to the heating operation.
In the present embodiment, the state of transition from the cooling operation state to the heating operation state is changed, that is, the outdoor heat exchangers 22a and 22b play the role of the evaporator from the role of the condenser. In 81, a command is issued to change the manipulated variable from the outdoor fan rotational speed Fan to the outdoor heat exchanger expansion valve opening EV. However, as described above, switching is performed according to the capacity of cooling or heating, not the number of operating units.

ここで、状態遷移後の圧縮機低圧圧力の目標値PL及び圧縮機高圧圧力の目標値PHを目標値、冷媒状態量の圧縮機低圧圧力PL及び圧縮機高圧圧力PHを制御量、圧縮機回転数Ne及び室外熱交換器用膨張弁開度EVを操作量として、前述した(1)〜(6)の予測制御を行う。予測制御の詳細は、前述の基本的なアルゴリズムと同様なのでここでは省略する。ここで、MPC1には予め該冷暖同時運転型空気調和装置3の前述した伝達関数G1乃至G11は記憶されている。MPC1による制御は、圧縮機低圧圧力PL及び圧縮機高圧圧力PHがそれぞれの目標値になるまで繰り返される。
ここで、実施例2にて暖房容量大の運転パターンから冷房容量大の運転パターンに変化する場合においても、同様の制御を実施することは言うまでもない。
Here, the target value PL * of the compressor low pressure and the target value PH * of the compressor high pressure after the state transition are set as the target values, and the compressor low pressure PL and the compressor high pressure PH of the refrigerant state quantity are controlled and compressed. The predictive control (1) to (6) described above is performed using the machine speed Ne and the outdoor heat exchanger expansion valve opening EV as the manipulated variables. The details of the predictive control are the same as the basic algorithm described above, and are omitted here. Here, the aforementioned transfer functions G1 to G11 of the cooling and heating simultaneous operation type air conditioner 3 are stored in advance in the MPC1. The control by the MPC 1 is repeated until the compressor low pressure PL and the compressor high pressure PH reach their target values.
Here, it is needless to say that the same control is performed even when the operation pattern of the large heating capacity is changed to the operation pattern of the large cooling capacity in the second embodiment.

前述の実施例2において、MPC1による制御は、圧縮機低圧圧力PLが該目標値PLになるまで繰り返される。しかし、ここで目標値が圧縮機低圧圧力PLの場合、冷房能力を考慮してのみ設定された場合は、圧縮機湿り運転の保護ができない状態での制御となる。圧縮機の湿り運転は、液圧縮や油上がりを発生させ、圧縮機故障の原因となる。
そこで、圧縮機の湿り運転を防止するために冷媒状態量の吸入過熱度SHが、ある所定置以下となった場合は、圧縮機低圧圧力の目標値PLを適時変更し吸入過熱度SHが所定値以上になるように制御を行う。
In the above-described second embodiment, the control by the MPC 1 is repeated until the compressor low pressure PL reaches the target value PL * . However, when the target value is the compressor low pressure PL, and is set only in consideration of the cooling capacity, the control is performed in a state where the compressor wet operation cannot be protected. The wet operation of the compressor causes liquid compression and oil rising, which causes a compressor failure.
Therefore, in order to prevent the compressor from being wet, if the refrigerant supercharging amount SH is less than a predetermined value, the target value PL * of the compressor low pressure is changed in a timely manner so that the intake superheat SH is reduced. Control is performed so as to be equal to or greater than a predetermined value.

予測制御の基本的なアルゴリズムを示したブロック線図である。It is the block diagram which showed the basic algorithm of predictive control. 本発明の実施形態に係る冷媒回路構成を示した冷媒回路図である。It is the refrigerant circuit figure which showed the refrigerant circuit structure which concerns on embodiment of this invention. 同じく予測制御のブロック線図である。It is a block diagram of prediction control similarly. (a)本発明の実施例1に係る運転状態変化を示した図、(b)本発明の実施例2に係る運転状態変化を示した図である。(A) The figure which showed the driving | running state change which concerns on Example 1 of this invention, (b) The figure which showed the driving | running state change which concerns on Example 2 of this invention.

符号の説明Explanation of symbols

1 モデル予測制御コントローラ
3 冷暖同時運転型空気調和装置
81 切換判定部
82 目標値変更部
DESCRIPTION OF SYMBOLS 1 Model prediction controller 3 Cooling and heating simultaneous operation type air conditioner 81 Switching determination part 82 Target value change part

Claims (5)

圧縮機、室外熱交換器、複数の室内熱交換器を有するヒートポンプにおいて、
該複数の室内熱交換器が冷房と暖房の異なる用途に分かれて同時に運転される場合に、冷房必要能力を示す冷媒状態量と暖房必要能力を示す冷媒状態量を、それらを制御目標値に制御することが可能な少なくとも2つの操作量に基づいて、操作量と冷媒状態量との伝達特性を有するモデルにて制御を行うモデル予測制御に切り換えることを特徴とするヒートポンプ。
In a heat pump having a compressor, an outdoor heat exchanger, and a plurality of indoor heat exchangers,
When the plurality of indoor heat exchangers are operated at the same time divided into different uses for cooling and heating, the refrigerant state quantity indicating the cooling necessary capacity and the refrigerant state quantity indicating the heating necessary capacity are controlled to the control target values. A heat pump characterized in that, based on at least two manipulated variables that can be performed, switching to model predictive control in which control is performed with a model having a transfer characteristic between the manipulated variable and the refrigerant state quantity.
請求項1記載のヒートポンプにおいて、
冷房必要能力を示す冷媒状態量を圧縮機吸入圧力、暖房必要能力を示す冷媒状態量を圧縮機吐出圧力としたことを特徴とするヒートポンプ。
The heat pump according to claim 1, wherein
A heat pump characterized in that a refrigerant state quantity indicating a cooling necessary capacity is a compressor suction pressure, and a refrigerant state quantity indicating a heating necessary capacity is a compressor discharge pressure.
請求項1記載のヒートポンプにおいて、
冷房必要能力と暖房必要能力の差により、操作量の対象を切り換えることを特徴とするヒートポンプ。
The heat pump according to claim 1, wherein
A heat pump characterized in that the target of the operation amount is switched depending on the difference between the cooling required capacity and the heating required capacity.
請求項3記載のヒートポンプにおいて、
冷房必要能力が暖房必要能力より大きい場合に圧縮機回転数と、室外機の凝縮能力を調整可能な操作量とし、暖房必要能力が冷房必要能力より大きい場合に圧縮機回転数と、室外機の蒸発能力を調整可能な操作量としたことを特徴とするヒートポンプ。
The heat pump according to claim 3, wherein
When the required cooling capacity is greater than the required heating capacity, the compressor speed and the outdoor unit condensation capacity can be adjusted.When the required heating capacity is greater than the required cooling capacity, the compressor speed and the outdoor unit A heat pump characterized by an operation amount with adjustable evaporation capacity.
請求項4記載のヒートポンプにおいて、
圧縮機に吸入される冷媒の過熱度が所定値以下になったとき、圧縮機吸入圧力制御目標値を変更することを特徴とするヒートポンプ。

The heat pump according to claim 4, wherein
A heat pump characterized by changing a compressor suction pressure control target value when the degree of superheat of refrigerant sucked into the compressor becomes a predetermined value or less.

JP2005138894A 2005-05-11 2005-05-11 Control device for cooling and heating concurrent operation type air conditioner Pending JP2006317050A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005138894A JP2006317050A (en) 2005-05-11 2005-05-11 Control device for cooling and heating concurrent operation type air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005138894A JP2006317050A (en) 2005-05-11 2005-05-11 Control device for cooling and heating concurrent operation type air conditioner

Publications (1)

Publication Number Publication Date
JP2006317050A true JP2006317050A (en) 2006-11-24

Family

ID=37537883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005138894A Pending JP2006317050A (en) 2005-05-11 2005-05-11 Control device for cooling and heating concurrent operation type air conditioner

Country Status (1)

Country Link
JP (1) JP2006317050A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008190757A (en) * 2007-02-02 2008-08-21 Daikin Ind Ltd Refrigeration system
JP2008249228A (en) * 2007-03-30 2008-10-16 Yanmar Co Ltd Air conditioner
JP2012247111A (en) * 2011-05-26 2012-12-13 Mitsubishi Electric Corp Freezing apparatus
JP2016217559A (en) * 2015-05-15 2016-12-22 アイシン精機株式会社 Air conditioner
CN108050657A (en) * 2017-11-30 2018-05-18 广东美的暖通设备有限公司 Control method, device and the air conditioner of air conditioner automatic mode

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0599525A (en) * 1991-10-09 1993-04-20 Matsushita Refrig Co Ltd Multi-chamber type air conditioner
JPH05223386A (en) * 1992-02-14 1993-08-31 Matsushita Refrig Co Ltd Multiroom type air conditioner
JP2002373002A (en) * 2001-06-14 2002-12-26 Toshiba Corp Device and method for process simulater application and control

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0599525A (en) * 1991-10-09 1993-04-20 Matsushita Refrig Co Ltd Multi-chamber type air conditioner
JPH05223386A (en) * 1992-02-14 1993-08-31 Matsushita Refrig Co Ltd Multiroom type air conditioner
JP2002373002A (en) * 2001-06-14 2002-12-26 Toshiba Corp Device and method for process simulater application and control

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008190757A (en) * 2007-02-02 2008-08-21 Daikin Ind Ltd Refrigeration system
JP4730318B2 (en) * 2007-02-02 2011-07-20 ダイキン工業株式会社 Refrigeration equipment
JP2008249228A (en) * 2007-03-30 2008-10-16 Yanmar Co Ltd Air conditioner
JP4700025B2 (en) * 2007-03-30 2011-06-15 ヤンマー株式会社 Air conditioner
JP2012247111A (en) * 2011-05-26 2012-12-13 Mitsubishi Electric Corp Freezing apparatus
JP2016217559A (en) * 2015-05-15 2016-12-22 アイシン精機株式会社 Air conditioner
CN108050657A (en) * 2017-11-30 2018-05-18 广东美的暖通设备有限公司 Control method, device and the air conditioner of air conditioner automatic mode
CN108050657B (en) * 2017-11-30 2020-03-31 广东美的暖通设备有限公司 Control method and device for automatic mode of air conditioner and air conditioner

Similar Documents

Publication Publication Date Title
US9683768B2 (en) Air-conditioning apparatus
US9958171B2 (en) Air-conditioning apparatus
EP2270405B1 (en) Refrigerating device
KR101479458B1 (en) Refrigeration device
JP4779791B2 (en) Air conditioner
EP3587948B1 (en) Air conditioner
JP6296364B2 (en) Air conditioner
EP3608606A1 (en) Refrigeration cycle device
JP2010133589A (en) Air conditioner
JP6067178B2 (en) Heat source side unit and air conditioner
JPWO2019053876A1 (en) Air conditioner
WO2019037722A1 (en) Air conditioning system and control method therefor
AU7108301A (en) Air conditioner
JP2006317050A (en) Control device for cooling and heating concurrent operation type air conditioner
JP6672619B2 (en) Air conditioning system
WO2016001958A1 (en) Air-conditioning device
JP4503630B2 (en) Air conditioning system and control method thereof
JP2017009269A5 (en)
JP2005291553A (en) Multiple air conditioner
KR20210093560A (en) Air Conditioner System for Simultaneous Cooling, Heating and hot water supplying and Control Method of the Same
JP2000304373A (en) Engine heat pump
WO2015115546A1 (en) Refrigeration device
JP4074422B2 (en) Air conditioner and its control method
JP5884381B2 (en) Refrigeration unit outdoor unit
JP2001147052A (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091117

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100316