JP4896197B2 - Precision temperature control air conditioner - Google Patents
Precision temperature control air conditioner Download PDFInfo
- Publication number
- JP4896197B2 JP4896197B2 JP2009235890A JP2009235890A JP4896197B2 JP 4896197 B2 JP4896197 B2 JP 4896197B2 JP 2009235890 A JP2009235890 A JP 2009235890A JP 2009235890 A JP2009235890 A JP 2009235890A JP 4896197 B2 JP4896197 B2 JP 4896197B2
- Authority
- JP
- Japan
- Prior art keywords
- refrigerant
- pressure
- temperature
- heat exchanger
- air
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
Description
本発明は、半導体や液晶パネル等の製造分野で用いられている内部に各種の精密加工装置が設置されているチャンバー内の空気の状態を一定に維持するための精密温度制御空調機に関するものであり、特に、省スペース化・省エネルギー化を可能とした空調機に関する。 The present invention relates to a precision temperature control air conditioner for maintaining a constant state of air in a chamber in which various precision processing devices are installed inside used in the field of manufacturing semiconductors and liquid crystal panels. In particular, the present invention relates to an air conditioner that can save space and energy.
半導体や液晶パネルの製造工程における加工装置や測定機器等が設置されているチャンバーには、チャンバー内空気を熱交換器を経由して循環させて空気の温度、湿度を精密に制御する空調機が設置されている。 Air conditioners that precisely control the temperature and humidity of the air by circulating the air in the chamber via a heat exchanger are installed in the chamber where the processing equipment and measuring equipment in the semiconductor and liquid crystal panel manufacturing processes are installed. is set up.
このような空調機による空気温度の制御システムは、一般的には、図1に示されるように、製造装置等が設置されているチャンバー内の空気を、還り空気として取り出して熱交換器に導入し、冷媒との熱交換により冷却して温度を調節した後、送り空気としてチャンバー内に戻すというシステムである。
上記のような空調機の具体例としては、図2に示されるような直膨コイル方式と図3に示されるような水コイル方式の空調機が挙げられる。
As shown in FIG. 1, the air temperature control system using such an air conditioner generally takes out air in a chamber in which a manufacturing apparatus or the like is installed as return air and introduces it into a heat exchanger. In this system, the temperature is adjusted by cooling with heat exchange with the refrigerant, and then returned to the chamber as feed air.
Specific examples of the air conditioner as described above include a direct expansion coil system as shown in FIG. 2 and a water coil system air conditioner as shown in FIG.
直膨コイル方式を採用した空調機は、図2に示されるように、チャンバー内から抜き出した「還り空気」を空気流路a101から熱交換器101に導入し、冷媒との熱交換を行った後、空気流路a102から抜き出し、必要に応じて加熱コイル105でさらに温度を微調節して空気流路a103から「送り空気」としてチャンバー内に戻す、という「チャンバー内空気循環路」と、熱交換器101でチャンバー内から抜き出した還り空気と熱交換した冷媒を、低圧冷媒ガスとして冷媒流路L101に取り出し、冷媒圧縮器102に送って圧縮冷媒ガスとなし、冷媒流路L102から冷媒凝縮器103に送って凝縮液化して低温高圧冷媒液とし、冷媒流路L103 を経て取り出して、膨張弁104に送り、膨張冷媒液として熱交換器101に供給する、という「冷媒循環路」とを有している。(特許文献1、特許文献2、特許文献3)。
As shown in FIG. 2, the air conditioner employing the direct expansion coil system introduces “return air” extracted from the chamber into the heat exchanger 101 through the air flow path a 101 and performs heat exchange with the refrigerant. After that, it is extracted from the air flow path a 102 , and if necessary, the temperature is further finely adjusted by the
上記直膨コイル方式の空調機は、熱交換性能に優れていて、かつ、水コイル方式の空調機に比べて省スペース化が可能であるという利点がある。しかし、図2にドレン流路Dが図示されているように、熱交換器101の冷却コイル内の冷媒温度が還り空気中の水分の露点温度以下となり、冷却コイル周囲に結露して空気を除湿してしまい、チャンバー内に戻される「送り空気」を静電気が発生しやすい乾燥状態とするという問題や、熱交換器101内の冷却コイルが結露で腐食するという問題等がある。
The direct expansion coil type air conditioner has an advantage that it has excellent heat exchange performance and can save space compared to a water coil type air conditioner. However, as shown in FIG. 2, the drain flow path D shows that the refrigerant temperature in the cooling coil of the
水コイル方式の空調機は、図3に示されるように、チャンバー内から抜き出した「還り空気」を空気流路a201から熱交換器201aに送って熱交換により温度調節した後、必要に応じて、空気流路a202の加熱コイル205aでさらに温度を微調節して、空気流路a203から「送り空気」としてチャンバー内に戻す、という「チャンバー内空気循環路」と、チャンバーから取り出した還り空気と熱交換器201aにおいて熱交換した水冷媒を、熱交換器201aから低圧水冷媒として冷媒流路L201に配置しているポンプPにより取り出した後、別の冷媒と熱交換して冷却し、熱交換器201bを経て低温水冷媒として冷媒流路L204から前記熱交換器201aに循環する「水冷媒循環路」と、該水冷媒循環路を循環する水冷媒と熱交換器201bにおいて熱交換した後、該熱交換器201bから低圧冷媒として冷媒流路L202に取り出し、冷媒圧縮器202で圧縮して圧縮冷媒ガスとし、冷媒流路L203を経て冷媒凝縮器203に送り、冷却凝縮して低温高圧冷媒液とし、冷媒流路L205に取り出して膨張弁204に送り、膨張弁204で膨張させた膨張冷媒液として冷媒流路L206から熱交換器201bに循環供給する、という「冷媒循環路」とを有している。
As shown in FIG. 3, the water coil type air conditioner sends “return air” extracted from the chamber to the heat exchanger 201 a from the air flow path a 201 and adjusts the temperature by heat exchange, and then, as necessary. Te, a further temperature at the
この水コイル方式の空調システムは、熱交換器201a内のコイルを流れる水冷媒の温度がチャンバーからの「還り空気」中の水分の露点温度(相対湿度が100%となる温度)以上であることにより、チャンバー内に戻される「送り空気」の湿度を一定状態に維持することが容易であるという利点を有する。
しかし、前記「水冷媒循環路」とは別に、水冷媒を熱交換器で冷却するための別系統の冷媒循環路の設置が必要となるため、空調機全体が複雑で規模が大きくなるとともに、エネルギーコストが大きくなるし、空調機全体の制御システムも複雑になるという難点がある。
In this water coil type air conditioning system, the temperature of the water refrigerant flowing through the coil in the
However, apart from the “water refrigerant circuit”, it is necessary to install a refrigerant circuit of another system for cooling the water refrigerant with a heat exchanger. There are drawbacks in that the energy cost increases and the control system for the entire air conditioner becomes complicated.
本発明は、水コイル方式の空調機に比べて熱交換性能に優れていて、省スペース化が可能である膨張弁を有するタイプの空調機において、熱交換器の冷却コイル内の冷媒の状態を自動的に調節することによって冷却コイル表面温度を制御することが可能で、かつ、熱交換器の冷却コイルから出て圧縮器に入る低圧冷媒ガスの状態を圧縮器が正常に稼動する冷媒ガス状態となるように自動的に調節できる省エネルギー型、省スペース型の空調機を提供することを課題とするものである。 The present invention is an air conditioner having an expansion valve that is superior in heat exchange performance compared to a water coil type air conditioner and can save space, and the state of the refrigerant in the cooling coil of the heat exchanger It is possible to control the surface temperature of the cooling coil by adjusting automatically, and the state of the low-pressure refrigerant gas that exits the cooling coil of the heat exchanger and enters the compressor is the refrigerant gas state in which the compressor operates normally It is an object of the present invention to provide an energy-saving and space-saving air conditioner that can be automatically adjusted so that
上記課題を達解決することができる本発明は、還り空気と冷媒との熱交換を行う第一熱交換器から圧縮器に至る熱交換済の低圧冷媒ガス流路内に、第一熱交換器の冷却コイル内の冷媒蒸発圧力を自動的に調整することができる冷媒蒸発圧力調整バルブと、冷媒ガス圧縮器に送られる低圧冷媒ガスの状態を、圧縮器が正常に稼動する状態に維持するための第二熱交換器を配置したことを特徴とする空調機に関する発明であり、以下の各発明を包含する。 The present invention that can solve the above-mentioned problems is the first heat exchanger in the low-pressure refrigerant gas flow path that has been heat-exchanged from the first heat exchanger that performs heat exchange between the return air and the refrigerant to the compressor. In order to maintain the state of the refrigerant evaporating pressure adjusting valve capable of automatically adjusting the refrigerant evaporating pressure in the cooling coil and the state of the low-pressure refrigerant gas sent to the refrigerant gas compressor in a state where the compressor operates normally It is invention regarding the air conditioner characterized by having arrange | positioned the 2nd heat exchanger of this, and includes each following invention.
(1)精密装置設置チャンバー内の空気を、空気と冷媒との熱交換を行う第一熱交換器に送って空気の露点温度より高い目標温度に冷却してチャンバー内に戻す空気循環路と、
前記第一熱交換器から出る低圧冷媒ガスを、圧縮器で圧縮した後、凝縮器で凝縮して低温高圧冷媒液とし、該低温高圧冷媒液を膨張弁から前記第一熱交換器の冷却コイルに送る冷媒循環路とを有する空調機であって、
前記空気循環路には第一熱交換器で温度調節された空気用の温度センサーが設置されており、
前記冷媒循環路には、第一熱交換器と圧縮器の間の低圧冷媒ガス流路内に、第一熱交換器側から順次、第一圧力センサー、冷媒蒸発圧力調整バルブ、第二熱交換器、第二圧力センサーが設置され、圧縮器と凝縮器の間の圧縮冷媒流路には、圧縮器から凝縮器に直接接続されている圧縮冷媒流路と、該圧縮冷媒流路から分岐し、第二熱交換器を経由して凝縮器に接続されている圧縮冷媒分岐流路が設置されており、
前記冷媒蒸発圧力調整バルブは、空気循環路の温度センサーによる空気温度の測定値と前記冷媒循環路の第一圧力センサーによる低圧冷媒ガス圧力の測定値とに基づいてバルブ開度を自動制御することによって第一熱交換器の冷却コイル内の冷媒蒸発圧力を自動調節するバルブであり、
前記第二熱交換器は、圧縮冷媒分岐流路を流れる高温圧縮冷媒との熱交換により圧縮器に入る前の低圧冷媒ガスを加熱する熱交換器であることを特徴とする、精密温度制御空調機。
(1) An air circulation path that sends air in the precision device installation chamber to a first heat exchanger that performs heat exchange between the air and the refrigerant, cools the air to a target temperature higher than the dew point temperature of the air, and returns the air into the chamber;
The low-pressure refrigerant gas coming out of the first heat exchanger is compressed by a compressor, then condensed by a condenser to form a low-temperature high-pressure refrigerant liquid, and the low-temperature high-pressure refrigerant liquid is supplied from an expansion valve to the cooling coil of the first heat exchanger An air conditioner having a refrigerant circulation path to be sent to
The air circulation path is provided with a temperature sensor for air whose temperature is adjusted by the first heat exchanger,
In the refrigerant circuit, a first pressure sensor, a refrigerant evaporation pressure adjusting valve, and a second heat exchange are sequentially provided from the first heat exchanger side in the low-pressure refrigerant gas flow path between the first heat exchanger and the compressor. And a second pressure sensor are installed, and the compressed refrigerant flow path between the compressor and the condenser is branched from the compressed refrigerant flow path directly connected to the condenser from the compressor. A compressed refrigerant branch passage connected to the condenser via the second heat exchanger is installed,
The refrigerant evaporating pressure adjusting valve automatically controls the valve opening based on the measured value of the air temperature by the temperature sensor of the air circulation path and the measured value of the low-pressure refrigerant gas pressure by the first pressure sensor of the refrigerant circulation path. Is a valve that automatically adjusts the refrigerant evaporation pressure in the cooling coil of the first heat exchanger,
The second heat exchanger is a heat exchanger that heats the low-pressure refrigerant gas before entering the compressor by heat exchange with the high-temperature compressed refrigerant flowing through the compressed refrigerant branch passage, and is a precision temperature control air conditioner Machine.
(2)前記空気循環路には、前記第一温度センサーの下流側に、空気温度をさらに微調整するヒーターが設置されていることを特徴とする、(1)項記載の精密温度制御空調機。 (2) The precision temperature controlled air conditioner according to (1), wherein a heater for further finely adjusting the air temperature is installed in the air circulation path downstream of the first temperature sensor. .
(3)前記第二熱交換器は、前記第二圧力センサーによる低圧冷媒ガス圧力の測定値に基づいて高温圧縮冷媒の供給量を自動制御するバルブを有する圧縮冷媒分岐流路を流れる高温圧縮冷媒との熱交換により、圧縮器に送られる冷媒ガス圧力を調節する熱交換器であることを特徴とする、(1)項又は(2)項に記載の精密温度制御空調機。 (3) The second heat exchanger is a high-temperature compressed refrigerant that flows through a compressed refrigerant branch passage having a valve that automatically controls a supply amount of the high-temperature compressed refrigerant based on a measured value of the low-pressure refrigerant gas pressure by the second pressure sensor. The precision temperature control air conditioner according to item (1) or (2), characterized in that the heat exchanger adjusts the pressure of the refrigerant gas sent to the compressor by heat exchange.
(4)前記凝縮器は、該凝縮器から膨張器に至る低温高圧冷媒液流路に第三圧力センサーが設置され、該第三圧力センサーによる低温高圧冷媒液圧の測定値に基づいて、凝縮器に設置されている水冷機構が自動制御される凝縮機であることを特徴とする、(1)項〜(3)項のいずれか1項に記載の精密温度制御空調機。 (4) The condenser is provided with a third pressure sensor in a low-temperature high-pressure refrigerant liquid flow path from the condenser to the expander, and is condensed based on a measured value of the low-temperature high-pressure refrigerant liquid pressure by the third pressure sensor. The precision temperature control air conditioner according to any one of items (1) to (3), wherein the water cooling mechanism installed in the vessel is a condenser that is automatically controlled.
(5)前記凝縮器から膨張器に至る低温高圧冷媒液流路に、低温高圧冷媒液の状態を目視できるサイトグラスが配置されていることを特徴とする、(1)項〜(4)項のいずれか1項に記載の精密温度制御空調機。 (5) Item (1) to (4), characterized in that a sight glass capable of visually observing the state of the low-temperature and high-pressure refrigerant liquid is disposed in the low-temperature and high-pressure refrigerant liquid flow path from the condenser to the expander. The precision temperature control air conditioner of any one of these.
本発明の精密装置チャンバー用空調機によれば、熱交換器の冷却コイルの負荷変動によって変動する冷却コイル内の冷媒ガスの状態を、空気循環路に設置されている温度センサーと低圧冷媒ガス流路に設置されている圧力センサーとにより常時測定し、両測定値に基づいて冷媒蒸発圧力調整バルブの開度を自動制御して冷却コイル内の冷媒ガス圧を調節することにより、冷却コイルの温度をリアルタイムで調節することができるし、低圧冷媒ガス流路内の第二熱交換器により圧縮器に入る低圧冷媒ガスの圧力を液バックや湿り圧縮が生起することのない状態に常時調節することが可能である。さらに、第二熱交換器の加熱媒体として圧縮冷媒分岐流路を流れる高温圧縮ガスを有効利用するので、第二熱交換器のための新たな媒体循環用の装置スペースを確保する必要がなく、省エネルギー、省スペース化を達成し得た空調機である。 According to the precision device chamber air conditioner of the present invention, the state of the refrigerant gas in the cooling coil, which fluctuates due to the fluctuation of the load of the cooling coil of the heat exchanger, the temperature sensor installed in the air circulation path and the low-pressure refrigerant gas flow The temperature of the cooling coil is constantly measured by a pressure sensor installed on the road, and the refrigerant gas pressure in the cooling coil is adjusted by automatically controlling the opening of the refrigerant evaporation pressure adjustment valve based on both measured values. Can be adjusted in real time, and the pressure of the low-pressure refrigerant gas entering the compressor by the second heat exchanger in the low-pressure refrigerant gas flow path is constantly adjusted so that no liquid back or wet compression occurs. Is possible. Furthermore, since the high-temperature compressed gas flowing through the compressed refrigerant branch flow path is effectively used as the heating medium of the second heat exchanger, it is not necessary to secure a new medium circulation device space for the second heat exchanger, This air conditioner has achieved energy saving and space saving.
以下、本発明の空調機を、図4を参照して詳細に説明する。
本発明の精密温度制御空調機は、図示していない精密装置チャンバー内から「空気流路a1」に抜き出された「還り空気」が、「第一熱交換器1」内で、「膨張弁4」から「第一熱交換器1」の冷却コイルに供給される膨張冷媒との熱交換により空気の露点温度より高い目標温度に冷却され、「温度センサーT1」が設置されている「空気流路a2」から「ヒーター5」を通って、「温度センサーT2」が設置されている「空気流路a3」から精密装置チャンバー内に「送り空気」として循環される「空気循環路」と、
前記第一熱交換器1の冷却コイルから出る熱交換済の低圧冷媒ガスが、「第二熱交換器6」を通って「圧縮器2」に至り、圧縮されて高温圧縮冷媒ガスとされた後、「凝縮器3」で凝縮されて低温高圧冷媒液とされ、該低温高圧冷媒液が「低温高圧冷媒液流路L3」により膨張弁4に送られ、該膨張弁4から「膨張冷媒流路L4」により第一熱交換器1の冷却コイルに送られる、という「冷媒循環路」とを有する空調機である。
Hereinafter, the air conditioner of this invention is demonstrated in detail with reference to FIG.
In the precision temperature control air conditioner of the present invention, the “return air” extracted from the precision device chamber (not shown) to the “air flow path a1” is “expansion valve” in the “
The heat-exchanged low-pressure refrigerant gas exiting from the cooling coil of the
上記空気循環路では、チャンバーから空気流路a1に抜き出される空気、例えば、チャンバー内で23℃〜26℃の範囲で温度が変動している還り空気が、第一熱交換器1で冷却コイルにより冷却される。冷却された空気は空気流路a2において第一温度センサーT1で温度が測定され、ヒーター5を通って空気流路a3に送られる。空気流路a3には第二温度センサーT2が設置され、第二温度センサーT2で測定された空気温度に基づいて制御されているヒーター5が設置されており、必要によりヒーター5で温度が微調整されて目標温度±0.05℃のように精密に温度調整された空気が送り空気としてチャンバー内に戻される。
In the air circulation path, the air extracted from the chamber to the air flow path a1, for example, return air whose temperature fluctuates in the range of 23 ° C. to 26 ° C. in the chamber, is cooled in the
前記冷媒循環路には、第一熱交換器1の冷却コイルから出る熱交換済の低圧冷媒ガスが流れる冷媒ガス流路L1aに、第一熱交換器1の冷却コイルから出る低圧冷媒ガス圧力を測定する圧力センサーP1と、前記空気流路の温度センサーによる温度測定値及び圧力センサーP1による冷媒ガス圧力の測定値に基づいてその開度が自動制御される冷媒蒸発圧力調整バルブE1が設置されている。この冷媒蒸発圧力調整バルブE1を有することが本発明の空調機の第一の特徴である。
In the refrigerant circuit, a low-pressure refrigerant gas pressure coming out of the cooling coil of the
第一熱交換器1の冷却コイル内のガス・液混合状態の冷媒ガスの場合、圧力と温度は比例関係にあるので、冷却コイルの温度は冷却コイル内の圧力を制御することにより管理することが可能である。
冷媒蒸発圧力調整バルブE1は、前記空気流路の温度センサーによって測定される熱交換済みの空気温度の測定値と低圧冷媒流路L1aに設置されている第一圧力センサーP1による低圧冷媒ガスの圧力の測定値とに基づいて自動的にその開度が制御されるバルブであり、その開度によって冷却コイル内の冷媒蒸発ガス圧を制御し、それによって冷却コイル内の冷媒ガス温度を制御する機能を備えている。
In the case of the refrigerant gas in the gas / liquid mixed state in the cooling coil of the
The refrigerant evaporating pressure adjusting valve E1 includes a measured value of the air temperature after heat exchange measured by the temperature sensor of the air flow path and the pressure of the low pressure refrigerant gas by the first pressure sensor P1 installed in the low pressure refrigerant flow path L1a. Is a valve whose opening degree is automatically controlled based on the measured value, and the refrigerant evaporative gas pressure in the cooling coil is controlled by the opening degree, thereby controlling the refrigerant gas temperature in the cooling coil. It has.
冷媒蒸発圧力調整バルブE1は、前記空気流路の温度センサーによる熱交換済みの空気温度の測定値が目標温度よりも下がっていることを検知すると、低圧冷媒流路L1aに設置されている第一圧力センサーP1による低圧冷媒ガス圧力の測定値との関係で、冷却コイル内の冷媒蒸発圧力が冷媒ガス温度を目標温度とする圧力まで上昇するように自動的に「閉」方向に作動する。
逆に、前記空気流路の第一温度センサーT1による熱交換済みの空気温度の測定値が目標温度よりも高くなっていることを検知すると、冷媒蒸発圧力調整バルブE1は、「開」側に自動的に作動して冷却コイル内の冷媒圧を下げ、それによって冷却コイル内の冷媒ガス温度を目標値に調節する。
When the refrigerant evaporation pressure adjusting valve E1 detects that the measured value of the air temperature after the heat exchange by the temperature sensor of the air flow path is lower than the target temperature, the refrigerant evaporating pressure adjustment valve E1 is installed in the low pressure refrigerant flow path L1a. In relation to the measured value of the low-pressure refrigerant gas pressure by the pressure sensor P1, the refrigerant evaporating pressure in the cooling coil automatically operates in the “closed” direction so as to increase to a pressure having the refrigerant gas temperature as a target temperature.
Conversely, when it is detected that the measured value of the air temperature after heat exchange by the first temperature sensor T1 of the air flow path is higher than the target temperature, the refrigerant evaporation pressure adjustment valve E1 is moved to the “open” side. It automatically operates to lower the refrigerant pressure in the cooling coil, thereby adjusting the refrigerant gas temperature in the cooling coil to a target value.
上記のように、本発明の空調機は、第一熱交換器1の冷却コイル内の冷媒ガス温度の変動に迅速に反応して冷却コイル内の圧力を調整する冷媒蒸発圧力調整バルブE1を低圧冷媒流路L1に設置していることにより、第一熱交換器のを精密にかつリアルタイムで制御することが可能な空調機となっている。
As described above, the air conditioner of the present invention has a low pressure refrigerant evaporating pressure adjusting valve E1 that quickly reacts to a change in refrigerant gas temperature in the cooling coil of the
本発明の空調機は、ガス・液混合状態である場合が多い低圧冷媒ガスを加熱して完全にガス化した状態で冷媒圧縮器に送るために、冷媒蒸発圧力調整バルブE1から下流の低圧冷媒ガス流路L1bに第二の熱交換器6を配置していることを第二の技術的特徴とする。
該第二熱交換器6は、その下流の低圧冷媒ガス流路L1cに冷媒圧縮器に入る低圧冷媒ガスの圧力を測定する第二圧力センサーP2によって測定される低圧冷媒ガスの圧力状態が該低圧冷媒ガスを加熱ガス化することが必要な状態である場合に自動的に作動する。
The air conditioner of the present invention heats the low-pressure refrigerant gas, which is often in a gas / liquid mixed state, and sends it to the refrigerant compressor in a completely gasified state, so that the low-pressure refrigerant downstream from the refrigerant evaporation pressure adjustment valve E1. The second technical feature is that the second heat exchanger 6 is arranged in the gas flow path L1b.
In the second heat exchanger 6, the pressure state of the low-pressure refrigerant gas measured by the second pressure sensor P2 that measures the pressure of the low-pressure refrigerant gas entering the refrigerant compressor in the low-pressure refrigerant gas flow path L1c downstream thereof is the low pressure refrigerant gas. It operates automatically when it is necessary to turn the refrigerant gas into a heated gas.
低圧冷媒ガス中に冷媒液が残存していたり、冷媒ガスの再液化が発生している低圧冷媒ガスは、圧力も低い状態であり、そのままでは圧縮器2の故障発生原因となる。このような低圧冷媒ガスの状態を圧力センサーP2が検知すると、前記冷媒ガス圧縮器2から圧縮冷媒凝縮器3に至る圧縮冷媒流路L2aから分岐されている圧縮冷媒分岐流路L2bを流れる高温圧縮冷媒を利用する熱交換器6が作動し、圧縮冷媒分岐流路L2bを流れる高温圧縮冷媒との熱交換により低圧冷媒ガスは加熱されて完全ガス化された状態で圧縮器2に導入される。
The low-pressure refrigerant gas in which the refrigerant liquid remains in the low-pressure refrigerant gas or the re-liquefaction of the refrigerant gas is in a low pressure state, and causes a failure of the
圧縮器2から凝縮器3に直接接続されている圧縮冷媒流路L2aはバルブE2を有し、第二熱交換器6を経由して凝縮器3に接続されている圧縮冷媒分岐流路L2bはバルブE3を備えており、それぞれのバルブは、圧力センサーP2が検知する低圧冷媒ガスの圧力値が下がった場合は、圧縮冷媒分岐流路L2bのバルブE3が「開」方向に作動し、それに伴って圧縮冷媒流路L2aのバルブE3は「閉」方向作動して第二熱交換器への高温圧縮冷媒ガスの供給量が調整される。
逆に、圧力センサーP2が検知する低圧冷媒ガスの圧力値が適正値である場合は、圧縮冷媒分岐流路L2bのバルブE3が「閉」状態のままで、圧縮冷媒流路L2aのバルブ2は「開」状態となり、高温圧縮冷媒ガスは全量が直接凝縮器に送られることとなる。
The compressed refrigerant flow path L2a directly connected to the
Conversely, when the pressure value of the low-pressure refrigerant gas detected by the pressure sensor P2 is an appropriate value, the valve E3 of the compressed refrigerant branch flow path L2b remains in the “closed” state, and the
以上のように、本発明の空調機では、第二熱交換器を有することによって、冷媒ガス流路L1b、L1cから冷媒ガス圧縮器2に導入される冷媒ガスの状態が常にガス化された状態となり、湿り圧縮や液圧縮を起こして圧縮器が故障したり、圧縮器が装置保護のため停止してしまうことがない。
また、第二熱交換器6において低圧冷媒ガスを加熱する媒体を、本発明の空調機における冷媒循環路内で調達しているので、第二熱交換器への加熱媒体の循環系を新たに設置するための追加のスペースを殆ど必要としない。
As described above, in the air conditioner of the present invention, the state of the refrigerant gas introduced into the
Further, since the medium for heating the low-pressure refrigerant gas in the second heat exchanger 6 is procured in the refrigerant circulation path in the air conditioner of the present invention, a circulation system for the heating medium to the second heat exchanger is newly provided. Little additional space is required for installation.
圧縮冷媒流路L2a及び圧縮冷媒分岐流路L2bからの圧縮冷媒は、圧縮冷媒凝縮器3に送られる。圧縮冷媒凝縮器3は、冷却水供給口W1から凝縮器3内に入り、冷却水排出口W2から排出される冷却水量をバルブMで調節することによって冷却が制御されている水冷機構8を有している。
凝縮液の温度、圧力を一定に保つために、圧縮冷媒凝縮器3から出る低温高圧冷媒液流路L3に冷媒液の圧力を測定する「第三圧力センサーP3」が設置され、該第三圧力センサーP3の測定圧力が常に一定となるように、水冷機構8が制御される。
The compressed refrigerant from the compressed refrigerant flow path L2a and the compressed refrigerant branch flow path L2b is sent to the compressed
In order to keep the temperature and pressure of the condensate constant, a “third pressure sensor P3” that measures the pressure of the refrigerant liquid is installed in the low-temperature high-pressure refrigerant liquid flow path L3 that exits from the compressed
凝縮器3で調製される低温高圧冷媒液は、低温高圧冷媒液流路L3により膨張弁4に送られる。低温高圧冷媒液流路L3には、流路内を流れる低温高圧冷媒液を貯留するレシーバタンク9や、冷温高圧冷媒液の状態を目視により監視する「サイトグラス10」を設置することができる。
The low-temperature high-pressure refrigerant liquid prepared in the
膨張弁4は、冷却コイルの負荷変動に対応して、冷却コイルへの冷媒液の流入量を制御する。膨張弁4を出て膨張冷媒液流路L4を流れる膨張冷媒液は減圧され、熱の授受がないため蒸発してガス・液混合状態となっている。
膨張弁としては、温度自動膨張弁等を採用することができる。
The
The expansion valve can employ temperature automatic expansion valve or the like.
本発明の精密温度制御空調機の場合、第一熱交換器1の冷却コイルで還り空気を除湿せずに送り空気としてチャンバーに戻すために、冷却コイルにおける冷却温度は、通常の空調機(例えば15℃〜18℃)より高めに設定される。第一熱交換器1の冷却コイル内の冷媒蒸発圧力は、冷媒蒸発圧力調整バルブE1の開度を自動制御することによって行われるが、膨張弁4も冷却コイル内の温度状態に応じて膨張冷媒の供給量を調整している。このように、冷却コイル内の状態は、冷媒蒸発圧力調整バルブE1と膨張弁の双方によって制御されているが、熱交換された空気の温度安定精度に寄与する度合いは、冷却コイル内の状態変化に対する応答速度が早い冷媒蒸発圧力調整バルブE1による冷却コイル内の冷媒蒸発圧力の制御操作の方が大きい。
In the case of the precision temperature control air conditioner of the present invention, the cooling temperature in the cooling coil is set to a normal air conditioner (e.g. 15 ° C to 18 ° C). The refrigerant evaporating pressure in the cooling coil of the
以上のように、本発明の精密温度制御空調機は、第一熱交換器1の冷却コイル内の冷媒蒸発圧力を、同じ冷媒ガス流路L1aに設置されている応答速度の早い冷却コイル内の冷媒蒸発圧力調整バルブE1を作動させて迅速に冷却コイル内の冷媒蒸発圧力を制御する方式を採用していることにより、百分の1℃という単位での空気温度の調節を迅速かつ正確に行うことを可能ならしめたものである。
As described above, the precision temperature control air conditioner of the present invention uses the refrigerant evaporation pressure in the cooling coil of the
本発明の精密装置チャンバー用空調機は、前記したように、冷媒蒸発圧力調節バルブE1と膨張弁4とを共働させた冷却コイル内環境の制御方式を採用することにより、極めて精密な温度制御を可能ならしめたものであることに加えて、冷媒循環系内で調達できる高温圧縮冷媒を効率よく利用することにより冷媒ガス圧縮器の連続稼動を可能にして、省スペース化、省エネルギー化を達成し得たものであるので、本発明の空調機に採用されている基本的な技術思想は、精密装置チャンバー用空調機の分野に限らず、広い産業分野での空調システムに応用可能である。
As described above, the precision device chamber air conditioner according to the present invention employs the cooling coil internal environment control system in which the refrigerant evaporation pressure control valve E1 and the
1:第一熱交換器
2:冷媒ガス圧縮器
3:圧縮冷媒凝縮器
4:膨張弁
5:ヒーター(電気式)
6:第二熱交換器
7:アキュムレーター(液分離器)
8:水冷機構
9:レシーバタンク(受液器)
10:サイトグラス
T1:第一温度センサー
T2:第二温度センサー
P1〜P3:圧力センサー
E1:冷媒蒸発圧力調整バルブ
E2:圧縮冷媒流路用バルブ
E3:圧縮冷媒分岐流路用バルブ
a1〜a2:空気流路
L1a〜L1c:低圧冷媒ガス流路
L2a:圧縮冷媒流路
L2b:圧縮冷媒分岐流路
L3:低温高圧冷媒液流路
L4:膨張冷媒液流路
1: First heat exchanger 2: Refrigerant gas compressor 3: Compressed refrigerant condenser 4: Expansion valve 5: Heater (electric type)
6: Second heat exchanger 7: Accumulator (liquid separator)
8: Water cooling mechanism 9: Receiver tank (liquid receiver)
10: Sight glass T1: First temperature sensor T2: Second temperature sensors P1 to P3: Pressure sensor E1: Refrigerant evaporation pressure adjustment valve E2: Compressed refrigerant flow path valve E3: Compressed refrigerant branch flow path valves a1 to a2: Air flow paths L1a to L1c: Low-pressure refrigerant gas flow path L2a: Compressed refrigerant flow path L2b: Compressed refrigerant branch flow path L3: Low-temperature high-pressure refrigerant liquid flow path L4: Expanded refrigerant liquid flow path
Claims (5)
前記第一熱交換器から出る低圧冷媒ガスを、圧縮器で圧縮した後、凝縮器で凝縮して低温高圧冷媒液とし、該低温高圧冷媒液を膨張弁から前記第一熱交換器の冷却コイルに送る冷媒循環路とを有する空調機であって、
前記空気循環路には第一熱交換器で温度調節された空気用の温度センサーが設置されており、
前記冷媒循環路には、第一熱交換器と圧縮器の間の低圧冷媒ガス流路内に、第一熱交換器側から順次、第一圧力センサー、冷媒蒸発圧力調整バルブ、第二熱交換器、第二圧力センサーが設置され、圧縮器と凝縮器の間の圧縮冷媒流路には、圧縮器から凝縮器に直接接続されている圧縮冷媒流路と、該圧縮冷媒流路から分岐し、第二熱交換器を経由して凝縮器に接続されている圧縮冷媒分岐流路が設置されており、
前記冷媒蒸発圧力調整バルブは、空気循環路の温度センサーによる空気温度の測定値と前記冷媒循環路の第一圧力センサーによる低圧冷媒ガス圧力の測定値とに基づいてバルブ開度を自動制御することによって第一熱交換器の冷却コイル内の冷媒蒸発圧力を自動調節するバルブであり、
前記第二熱交換器は、圧縮冷媒分岐流路を流れる高温圧縮冷媒との熱交換により圧縮器に入る前の低圧冷媒ガスを加熱する熱交換器であることを特徴とする、精密温度制御空調機。 An air circulation path that sends the air in the precision device installation chamber to the first heat exchanger that performs heat exchange between the air and the refrigerant, cools the air to a target temperature higher than the dew point temperature of the air, and returns the air to the inside of the chamber;
The low-pressure refrigerant gas coming out of the first heat exchanger is compressed by a compressor, then condensed by a condenser to form a low-temperature high-pressure refrigerant liquid, and the low-temperature high-pressure refrigerant liquid is supplied from an expansion valve to the cooling coil of the first heat exchanger An air conditioner having a refrigerant circulation path to be sent to
The air circulation path is provided with a temperature sensor for air whose temperature is adjusted by the first heat exchanger,
In the refrigerant circuit, a first pressure sensor, a refrigerant evaporation pressure adjusting valve, and a second heat exchange are sequentially provided from the first heat exchanger side in the low-pressure refrigerant gas flow path between the first heat exchanger and the compressor. And a second pressure sensor are installed, and the compressed refrigerant flow path between the compressor and the condenser is branched from the compressed refrigerant flow path directly connected to the condenser from the compressor. A compressed refrigerant branch passage connected to the condenser via the second heat exchanger is installed,
The refrigerant evaporating pressure adjusting valve automatically controls the valve opening based on the measured value of the air temperature by the temperature sensor of the air circulation path and the measured value of the low-pressure refrigerant gas pressure by the first pressure sensor of the refrigerant circulation path. Is a valve that automatically adjusts the refrigerant evaporation pressure in the cooling coil of the first heat exchanger,
The second heat exchanger is a heat exchanger that heats the low-pressure refrigerant gas before entering the compressor by heat exchange with the high-temperature compressed refrigerant flowing through the compressed refrigerant branch passage, and is a precision temperature control air conditioner Machine.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009235890A JP4896197B2 (en) | 2009-10-13 | 2009-10-13 | Precision temperature control air conditioner |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009235890A JP4896197B2 (en) | 2009-10-13 | 2009-10-13 | Precision temperature control air conditioner |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011085266A JP2011085266A (en) | 2011-04-28 |
JP4896197B2 true JP4896197B2 (en) | 2012-03-14 |
Family
ID=44078343
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009235890A Expired - Fee Related JP4896197B2 (en) | 2009-10-13 | 2009-10-13 | Precision temperature control air conditioner |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4896197B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102679650A (en) * | 2012-05-31 | 2012-09-19 | 东南大学 | Safety control device and method for heat pump evaporation pressure |
CN102759157B (en) * | 2012-07-19 | 2014-10-01 | 西安工程大学 | Split air conditioner combining evaporative cooling and semiconductor refrigerating |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3538492B2 (en) * | 1995-12-15 | 2004-06-14 | 昭和電工株式会社 | Refrigeration cycle device |
JPH11193967A (en) * | 1997-12-26 | 1999-07-21 | Zexel:Kk | Refrigerating cycle |
JP2003007600A (en) * | 2001-06-25 | 2003-01-10 | Tokyo Electron Ltd | Substrate processing unit and its air conditioning method |
JP2009228978A (en) * | 2008-03-24 | 2009-10-08 | Mitsubishi Electric Corp | Refrigerating device |
-
2009
- 2009-10-13 JP JP2009235890A patent/JP4896197B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2011085266A (en) | 2011-04-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2428742B1 (en) | Air conditioning device | |
US10527330B2 (en) | Refrigeration cycle device | |
EP3205954B1 (en) | Refrigeration cycle device | |
KR101109730B1 (en) | Chiller apparatus for semiconductor process and Method for controlling temperature in the same | |
JP2017142039A (en) | Air conditioner | |
JP5514787B2 (en) | Environmental test equipment | |
CN104566823A (en) | Refrigerant control method of parallel multi-split air-conditioner | |
JP6420686B2 (en) | Refrigeration cycle equipment | |
JPWO2015097787A1 (en) | Air conditioner | |
KR20120087803A (en) | Accurate air conditioner | |
KR101316022B1 (en) | Refrigerating system and control method thereof | |
US11274851B2 (en) | Air conditioning apparatus | |
JP2009276004A (en) | Free cooling effectiveness-determining method for free cooling system | |
JP2018036002A (en) | Air Conditioning Hot Water Supply System | |
US20130291575A1 (en) | Cooling system and method for operating same | |
JP6221198B2 (en) | External control device | |
JP2011106721A (en) | Precise temperature control air conditioner | |
JP4896197B2 (en) | Precision temperature control air conditioner | |
JP2009243761A (en) | Refrigeration air conditioner | |
JP2013002749A (en) | Air conditioning device | |
JP6213781B2 (en) | External controller control method | |
KR101702008B1 (en) | Combine air conditioning system for communication equipment | |
JP6024726B2 (en) | External control device | |
KR101501175B1 (en) | Method for controlling temperature in chiller device | |
KR100927391B1 (en) | Chiller device for semiconductor process equipment and its control method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20111021 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20111206 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20111220 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150106 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150106 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150106 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |