JP4762797B2 - Multi-type air conditioning system - Google Patents

Multi-type air conditioning system Download PDF

Info

Publication number
JP4762797B2
JP4762797B2 JP2006161791A JP2006161791A JP4762797B2 JP 4762797 B2 JP4762797 B2 JP 4762797B2 JP 2006161791 A JP2006161791 A JP 2006161791A JP 2006161791 A JP2006161791 A JP 2006161791A JP 4762797 B2 JP4762797 B2 JP 4762797B2
Authority
JP
Japan
Prior art keywords
indoor unit
refrigerant
temperature
air conditioning
indoor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006161791A
Other languages
Japanese (ja)
Other versions
JP2007333219A (en
Inventor
祐二 柳原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Building Techno-Service Co Ltd
Original Assignee
Mitsubishi Electric Building Techno-Service Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Building Techno-Service Co Ltd filed Critical Mitsubishi Electric Building Techno-Service Co Ltd
Priority to JP2006161791A priority Critical patent/JP4762797B2/en
Publication of JP2007333219A publication Critical patent/JP2007333219A/en
Application granted granted Critical
Publication of JP4762797B2 publication Critical patent/JP4762797B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/005Arrangement or mounting of control or safety devices of safety devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Description

本発明は、マルチ式空気調和システムに係り、特に、冷媒を膨張させる膨張弁と、膨張した冷媒を蒸発させる蒸発器と、冷媒をそれらに流通させる冷媒流路とを有する複数の室内機を、室外機に接続させるマルチ式空気調和システムに関する。   The present invention relates to a multi-type air conditioning system, and in particular, a plurality of indoor units having an expansion valve for expanding the refrigerant, an evaporator for evaporating the expanded refrigerant, and a refrigerant flow path for circulating the refrigerant through them. The present invention relates to a multi-type air conditioning system connected to an outdoor unit.

オフィスビルや工場等の空気調和設備として、複数の室内機を空調エリアに分散配置し、1台の室外機により冷房、暖房、除湿、換気等の空調を行う、いわゆるマルチ式といわれる空気調和システムが主流となっている。このマルチ式空気調和システムによれば室外機の設置スペースが節約できるという利点がある。   As air conditioning equipment for office buildings, factories, etc., multiple indoor units are distributed in the air conditioning area, and a single outdoor unit performs air conditioning such as cooling, heating, dehumidification, and ventilation. Has become the mainstream. This multi-type air conditioning system has the advantage that the installation space for the outdoor unit can be saved.

図4に、一般的なマルチ式空気調和システムの概略の構成図を示す。本構成図では、説明のため、室外機11に室内機10を2台接続した場合について図示する。このマルチ式空気調和システム1は、圧縮機2により冷媒を圧縮し、圧縮された冷媒を室外機11に設置された凝縮器3により凝縮し、凝縮された冷媒を各膨張弁4a,4bで膨張させ、室内機10に設置された蒸発器5a,5bにより膨張した冷媒を蒸発させる冷媒循環サイクルにより各室内の空調を行う。また、この冷媒循環サイクルは、冷媒が各機器を循環する冷媒流路6により構成される。また、凝縮器3は、圧縮され凝縮して温度の上昇した冷媒と外気との間で熱交換を行い、蒸発器5a,5bは、膨張され気化して温度の降下した冷媒と室内の空気との間で熱交換を行う。   FIG. 4 shows a schematic configuration diagram of a general multi-type air conditioning system. In this configuration diagram, for the sake of explanation, the case where two indoor units 10 are connected to the outdoor unit 11 is illustrated. The multi-type air conditioning system 1 compresses refrigerant by a compressor 2, condenses the compressed refrigerant by a condenser 3 installed in an outdoor unit 11, and expands the condensed refrigerant by expansion valves 4a and 4b. Each room is air-conditioned by a refrigerant circulation cycle in which the refrigerant expanded by the evaporators 5a and 5b installed in the indoor unit 10 is evaporated. Further, this refrigerant circulation cycle is constituted by a refrigerant flow path 6 through which the refrigerant circulates through each device. The condenser 3 exchanges heat between the compressed and condensed refrigerant whose temperature has increased and the outside air, and the evaporators 5a and 5b have expanded and vaporized refrigerant whose temperature has decreased and the indoor air. Heat exchange between.

膨張弁4は、各室内機10に組み込まれ、冷媒の膨張や凝縮の制御を行い、各室内機10に冷媒の循環量を分配する役割を有する。この膨張弁4として、一般に、電磁コイルの操作力で弁の開閉を行う電子膨張弁4が用いられる。電子膨張弁4は、内部のクリアランスが狭いことから、流体内に混入した異物が付着して作動不良を起こす場合がある。この作動不良が起きた場合には、空気調和システム自体によっては検知することができない。これは、空気調和システムは、電子膨張弁4の駆動電子回路や電気回線の故障については、その異常を検知する手段を有するが、電子膨張弁4自体の作動不良については、システム自体によっては検知できないからである。   The expansion valve 4 is incorporated in each indoor unit 10, performs expansion and condensation control of the refrigerant, and distributes the circulation amount of the refrigerant to each indoor unit 10. As the expansion valve 4, an electronic expansion valve 4 that opens and closes the valve with an operation force of an electromagnetic coil is generally used. Since the electronic expansion valve 4 has a narrow internal clearance, foreign matter mixed in the fluid may adhere to cause malfunction. When this malfunction occurs, it cannot be detected by the air conditioning system itself. This is because the air-conditioning system has means for detecting abnormalities in the drive electronic circuit and electric circuit of the electronic expansion valve 4, but the malfunction of the electronic expansion valve 4 itself is detected depending on the system itself. It is not possible.

例えば、室内機10が送風運転状態のときに、電子膨張弁4が閉じた状態で作動不良を起こし(ロックして)開かないと、その室内機10は空調能力が低下し、本来の冷房が効かなくなる。また、室内機10が送風運転状態のときに、電子膨張弁4が開いた状態で作動不良を起こし(ロックして)完全に閉じないと、冷媒が漏れて圧縮機2にまわり、液圧縮により圧縮機2が破損する虞がある。また、室内機10が漏れた冷媒の蒸発により冷やされ、水漏れによる結露が発生する。従って、従来から電子膨張弁4の異常を検知する方法が、各種提案されている。   For example, when the indoor unit 10 is in a blowing operation state, if the electronic expansion valve 4 is closed and malfunctions (locked) and does not open, the indoor unit 10 has a reduced air conditioning capability, and the original cooling is not performed. Does not work. In addition, when the indoor unit 10 is in the blowing operation state, if the electronic expansion valve 4 is opened and malfunctions (locked) and does not close completely, the refrigerant leaks to the compressor 2 and is compressed by liquid compression. The compressor 2 may be damaged. Moreover, the indoor unit 10 is cooled by evaporation of the leaked refrigerant, and condensation due to water leakage occurs. Therefore, various methods for detecting an abnormality of the electronic expansion valve 4 have been proposed.

特許文献1には、膨張弁である流量制御装置の故障診断手段を設けた空気調和装置が開示されている。また、特許文献2には、膨張弁の異常検知方法及び空調装置が開示されている。   Patent Document 1 discloses an air conditioner provided with failure diagnosis means for a flow control device that is an expansion valve. Patent Document 2 discloses an expansion valve abnormality detection method and an air conditioner.

特許文献1の流量制御装置の故障診断手段は、室内側熱交換機の出入口に、配管温度検出手段を設け、ある基準値と配管温度検出手段による検出温度の差から流量制御装置の故障診断を行うものである。すなわち、冷房モードにおいて、室内側熱交換機の検出された入口温度と出口温度との差をΔT1とする。次に、電気式膨張弁を閉め、室内側熱交換機の検出された入口温度と出口温度との差をΔT2とする。電気式膨張弁が正常に閉まっていると、入口温度が低くなり、出口温度が高くなるためΔT1の値と比較してΔT2の値が大きくなる。この原理に基づき流量制御装置の不良が判定される。   The failure diagnosing means of the flow control device of Patent Document 1 is provided with piping temperature detection means at the entrance / exit of the indoor heat exchanger, and performs failure diagnosis of the flow control device from a difference between a certain reference value and a temperature detected by the piping temperature detection means. Is. That is, in the cooling mode, the difference between the detected inlet temperature and outlet temperature of the indoor heat exchanger is ΔT1. Next, the electric expansion valve is closed, and the difference between the detected inlet temperature and outlet temperature of the indoor heat exchanger is set to ΔT2. When the electric expansion valve is normally closed, the inlet temperature becomes lower and the outlet temperature becomes higher, so that the value of ΔT2 becomes larger than the value of ΔT1. Based on this principle, the failure of the flow control device is determined.

特許文献2の膨張弁の異常検知方法及び空調装置は、電子膨張弁と蒸発器の間に設けられ蒸発器の温度を検知する温度センサS1と、吸込み空気温度を検知する温度センサS2とにより検知された温度から電子膨張弁の異常検知を行うものである。すなわち、冷房モードにおいて、電子膨張弁が故障により開いたままでロックしている場合、冷媒は蒸発器にも流れ、温度センサS1の検知温度T1は、温度センサS2の検知温度T2より充分小さな値となる。この原理に基づき、冷房OFFモードのとき、T2−T1>A(基準値)により、電子膨張弁が開いたままロックしていることを検知する。また、冷房ONモードのとき、T2−T1<B(基準値)により、電子膨張弁が閉じたままロックしていることを検知する。   The abnormality detection method and air conditioner of the expansion valve disclosed in Patent Document 2 are detected by a temperature sensor S1 provided between the electronic expansion valve and the evaporator and detecting the temperature of the evaporator and a temperature sensor S2 detecting the intake air temperature. The abnormality of the electronic expansion valve is detected from the measured temperature. That is, in the cooling mode, when the electronic expansion valve is locked open due to a failure, the refrigerant also flows into the evaporator, and the detected temperature T1 of the temperature sensor S1 is a value sufficiently smaller than the detected temperature T2 of the temperature sensor S2. Become. Based on this principle, in the cooling OFF mode, it is detected by T2-T1> A (reference value) that the electronic expansion valve is locked open. In the cooling ON mode, it is detected that the electronic expansion valve is closed and locked by T2-T1 <B (reference value).

特開平7−55299号公報JP-A-7-55299 特開2000−274896号公報JP 2000-274896 A

ところで、マルチ式空気調和システムにおいては、複数の室内機のうち、いずれかの電子膨張弁が作動不良を起こした場合、空気調和システム全体では、一見正常に運転してしまうため、ある室内機の作動不良を特定して検知することは難しい。   By the way, in the multi-type air conditioning system, when any electronic expansion valve malfunctions among a plurality of indoor units, the entire air conditioning system operates normally at first glance. It is difficult to identify and detect malfunctions.

また、従来は、室内機の蒸発器の入口側冷媒温度及び出口側冷媒温度から、膨張弁の作動不良を検出している。しかし、マルチ式空気調和システムでは、各室内機の空調負荷により、特に、蒸発器の出口側冷媒温度が影響を受けてしまうため、的確な検知とはならない。また、マルチ式空気調和システムにおいては、室内側で要求される液化冷媒の総量が刻々と変化し、これにより、圧縮機の回転数や冷媒の循環量が影響され、特に、蒸発器の入口側冷媒温度がばらつく。従って、室内機の蒸発器の入口側冷媒温度及び出口側冷媒温度からだけでは、電子膨張弁の作動不良を的確に特定して検知することは難しい。   Conventionally, the malfunction of the expansion valve is detected from the inlet side refrigerant temperature and the outlet side refrigerant temperature of the evaporator of the indoor unit. However, in the multi-type air conditioning system, since the refrigerant temperature on the outlet side of the evaporator is particularly affected by the air conditioning load of each indoor unit, it cannot be accurately detected. Further, in the multi-type air conditioning system, the total amount of liquefied refrigerant required indoors changes every moment, and this affects the rotational speed of the compressor and the circulation amount of the refrigerant. The refrigerant temperature varies. Therefore, it is difficult to accurately identify and detect the malfunction of the electronic expansion valve only from the inlet side refrigerant temperature and the outlet side refrigerant temperature of the evaporator of the indoor unit.

本願の目的は、かかる課題を解決し、複数の室内機について、それぞれの電子膨張弁の作動不良を的確に特定して検知するマルチ式空気調和システムを提供することである。   An object of the present application is to solve such a problem and provide a multi-type air conditioning system that accurately identifies and detects an operation failure of each electronic expansion valve for a plurality of indoor units.

上記目的を達成するため、本発明に係るマルチ式空気調和システムは、冷媒を膨張させる膨張弁と、膨張した冷媒を蒸発させる蒸発器と、冷媒をそれらに流通させる冷媒流路とを有する複数の室内機を、室外機に接続させるマルチ式空気調和システムにおいて、各室内機の蒸発器の入口側冷媒温度t1を測定する入口側温度センサと、冷媒流路に設置され冷媒圧力を測定する冷媒圧力センサと、各室内機が冷房運転状態のときに、室内機のt1が、冷媒圧力から算出される蒸発温度t4に各室内機の機種および各室内機の配管抵抗から各室内機ごとに定まる特性を考慮した補正値t5を加えた値より大きく、各室内機のt1が、各室内機のt1のうち最も低い値である基準温度t6に各室内機の機種および各室内機の配管抵抗から各室内機ごとに定まる特性を考慮した補正値t7を加えた値より大きいときに、膨張弁が異常であることを検知する膨張弁検知手段と、を備えることを特徴とするIn order to achieve the above object, a multi-type air conditioning system according to the present invention includes a plurality of expansion valves that expand a refrigerant, an evaporator that evaporates the expanded refrigerant, and a refrigerant flow path that causes the refrigerant to flow therethrough. In a multi-type air conditioning system in which an indoor unit is connected to an outdoor unit, an inlet side temperature sensor that measures the inlet side refrigerant temperature t1 of the evaporator of each indoor unit, and a refrigerant pressure that is installed in the refrigerant flow path and measures the refrigerant pressure and the sensor, when each indoor unit is in the cooling operation state, t1 of each indoor unit is determined for each indoor unit from the pipe resistance of the model and each indoor unit of the indoor unit to the evaporation temperature t4 calculated from the refrigerant pressure The reference temperature t6 is larger than the value obtained by adding the correction value t5 in consideration of the characteristics, and t1 of each indoor unit is the lowest value among t1 of each indoor unit, from the model of each indoor unit and the piping resistance of each indoor unit. each indoor unit When bets larger than a value characteristic plus the correction value t7 taking into account the determined the expansion valve is characterized in that it comprises, an expansion valve detection means for detecting an abnormal.

また、マルチ式空気調和システムは、各室内機の蒸発器の出口側冷媒温度t2を測定する出口側温度センサと、各室内機の吸込み空気温度t3を測定する室内温度センサと、冷媒流路に設置され冷媒圧力を測定する冷媒圧力センサと、をさらに備え、膨張弁検知手段は、各室内機が送風運転状態のときに、各室内機のt1が、冷媒圧力から算出される蒸発温度t4に各室内機の機種および各室内機の配管抵抗から各室内機ごとに定まる特性を考慮した補正値t5を加えた値より小さく、各室内機のt2が、各室内機のt1に各室内機の吸込み空気温度t3を加えた値を2で除した値より小さいときに、膨張弁が異常であることを検知することが好ましい Also, multi type air conditioning system, and an outlet side temperature sensor for measuring the outlet side refrigerant temperature t2 of the evaporator of the indoor unit, an indoor temperature sensor for measuring the intake air temperature t3 of each indoor unit, the refrigerant flow path A refrigerant pressure sensor that measures the refrigerant pressure, and the expansion valve detection means is configured such that when each indoor unit is in a blowing operation state, t1 of each indoor unit is an evaporation temperature t4 calculated from the refrigerant pressure. Is smaller than a value obtained by adding a correction value t5 in consideration of characteristics determined for each indoor unit from the model of each indoor unit and the piping resistance of each indoor unit, and t2 of each indoor unit is equal to t1 of each indoor unit. It is preferable to detect that the expansion valve is abnormal when the value obtained by adding the intake air temperature t3 is smaller than the value obtained by dividing by 2 .

また、マルチ式空気調和システムは、各室内機の運転状態を、冷房運転或いは送風運転に切り替えて制御する運転制御手段を備え、運転制御手段が、第1運転時には、複数の室内機のうち、その空調能力の略半分に相当する室内機を冷房運転状態として残りの室内機を送風運転状態とし、第2運転時には、総ての室内機の運転状態を、冷房運転から送風運転へ、あるいは送風運転から冷房運転の状態へと逆転させることが好ましい。   In addition, the multi-type air conditioning system includes an operation control unit that controls the operation state of each indoor unit by switching to a cooling operation or an air blowing operation, and the operation control unit includes a plurality of indoor units during the first operation, The indoor units corresponding to approximately half of the air conditioning capacity are in the cooling operation state, the remaining indoor units are in the air blowing operation state, and during the second operation, the operation state of all the indoor units is changed from the cooling operation to the air blowing operation or It is preferable to reverse the operation to the cooling operation state.

さらに、マルチ式空気調和システムは、運転制御手段が、第1運転時には、複数の室内機のうち、その略半数を冷房運転状態として残りの半数を送風運転状態とし、第2運転時には、総ての室内機の運転状態を、冷房運転から送風運転へ、あるいは送風運転から冷房運転の状態へと逆転させることが好ましい。   Furthermore, in the multi-type air conditioning system, when the operation control means is in the first operation, approximately half of the plurality of indoor units are in the cooling operation state and the remaining half are in the air blowing operation state, and in the second operation, all are It is preferable to reverse the operation state of the indoor unit from the cooling operation to the blowing operation or from the blowing operation to the cooling operation.

上記構成により、マルチ式空気調和システムは、送風運転状態の各室内機について、蒸発器の入り口側温度と出口側温度の差温だけではなく、各室内機の吸込み空気温度もその異常の検知に用いる。これにより、室内機ごとの空調の負荷状況を考慮した膨張弁の異常状態の検知が可能となる。   With the above configuration, the multi-type air conditioning system detects not only the temperature difference between the inlet side temperature and the outlet side temperature of the evaporator but also the intake air temperature of each indoor unit for each indoor unit in the blowing operation state. Use. Thereby, it is possible to detect an abnormal state of the expansion valve in consideration of the load condition of the air conditioning for each indoor unit.

また、マルチ式空気調和システムは、冷房運転状態の各室内機について、室内機ごとに定まる特性を考慮し、各室内機の入口側温度のうち最も低い入口側温度を基準として各室内機の異常を検知する。これにより、室内機ごとにばらつく空調の配管抵抗等の特性を考慮した膨張弁の異常状態の検知が可能となる。   In addition, the multi-type air conditioning system considers the characteristics determined for each indoor unit for each indoor unit in the cooling operation state, and the abnormality of each indoor unit is based on the lowest inlet side temperature among the inlet side temperatures of each indoor unit. Is detected. As a result, it is possible to detect an abnormal state of the expansion valve in consideration of characteristics such as pipe resistance of air conditioning that varies from indoor unit to indoor unit.

以上のように、本発明に係るマルチ式空気調和システムによれば、複数の室内機について、それぞれの電子膨張弁の作動不良を的確に特定して検知することが可能となる。   As described above, according to the multi-type air conditioning system of the present invention, it is possible to accurately identify and detect the malfunction of each electronic expansion valve for a plurality of indoor units.

以下に、図面を用いて本発明に係る実施の形態につき、詳細に説明する。   Embodiments according to the present invention will be described below in detail with reference to the drawings.

図1に、マルチ式空気調和システムの1つの実施形態の概略構成をブロック図で示す。このマルチ式空気調和システム1は、圧縮機2により冷媒を圧縮し、圧縮された冷媒を室外機11に設けられた凝縮器3により凝縮し、凝縮された冷媒を各電子膨張弁4a,4bで膨張させ、室内機10に設けられた蒸発器5a,5bにより膨張した冷媒を蒸発させる冷媒循環サイクルにより各室内の空調を行う。また、この冷媒循環サイクルは、冷媒が各機器を循環する冷媒流路6により構成される。凝縮器3は、圧縮され凝縮して温度上昇した冷媒と外気との間で熱交換を行い、蒸発器5a,5bは、膨張され気化して温度低下した冷媒と室内の空気との間で熱交換を行う。室外機11の冷媒流路6には、四方弁14が設けられる。また、四方弁14内に示した実線は冷房の場合の冷媒流路6を、破線は暖房の場合の冷媒流路6を示す。また、図1中の実線で示した矢印は、冷房の場合の冷媒流路6を示し、破線で示した矢印は、暖房の場合の冷媒流路6を示す。   FIG. 1 is a block diagram showing a schematic configuration of one embodiment of a multi-type air conditioning system. The multi-type air conditioning system 1 compresses a refrigerant by a compressor 2, condenses the compressed refrigerant by a condenser 3 provided in the outdoor unit 11, and condenses the condensed refrigerant by the electronic expansion valves 4a and 4b. Each room is air-conditioned by a refrigerant circulation cycle in which the refrigerant expanded and evaporated by the evaporators 5a and 5b provided in the indoor unit 10 is evaporated. Further, this refrigerant circulation cycle is constituted by a refrigerant flow path 6 through which the refrigerant circulates through each device. The condenser 3 exchanges heat between the refrigerant that has been compressed and condensed to rise in temperature and the outside air, and the evaporators 5a and 5b are heated between the refrigerant that has been expanded and vaporized to fall in temperature, and the indoor air. Exchange. A four-way valve 14 is provided in the refrigerant flow path 6 of the outdoor unit 11. Moreover, the solid line shown in the four-way valve 14 shows the refrigerant flow path 6 in the case of cooling, and the broken line shows the refrigerant flow path 6 in the case of heating. Moreover, the arrow shown with the continuous line in FIG. 1 shows the refrigerant | coolant flow path 6 in the case of air_conditioning | cooling, and the arrow shown with the broken line shows the refrigerant | coolant flow path 6 in the case of heating.

各室内機10は、それぞれ蒸発器5、電子膨張弁4、入口側温度センサ7、出口側温度センサ8、室内温度センサ9を備える。膨張弁検知手段12は、各室内機10の入口側温度センサ7、室内温度センサ9からの、入口側冷媒温度t1、出口側冷媒温度t2、吸込み空気温度t3の信号をそれぞれ受信する。また、凝縮器3の出口側には、冷媒圧力センサ13が取り付けられ、冷媒圧力pを測定し、膨張弁検知手段12に送信する。これらの室内機10は、A群及びB群の2つの群に分けられる。図1では、A群及びB群の室内機10は、それぞれ3台ずつの場合を示す。   Each indoor unit 10 includes an evaporator 5, an electronic expansion valve 4, an inlet side temperature sensor 7, an outlet side temperature sensor 8, and an indoor temperature sensor 9. The expansion valve detection means 12 receives signals of the inlet side refrigerant temperature t1, the outlet side refrigerant temperature t2, and the intake air temperature t3 from the inlet side temperature sensor 7 and the indoor temperature sensor 9 of each indoor unit 10, respectively. A refrigerant pressure sensor 13 is attached to the outlet side of the condenser 3 to measure the refrigerant pressure p and transmit it to the expansion valve detection means 12. These indoor units 10 are divided into two groups, group A and group B. FIG. 1 shows a case where there are three indoor units 10 in each of the A group and the B group.

ここで、室内機10が1台である場合の、電子膨張弁4の異常検知方法を説明する。図2に、冷媒流路6に接続された室内機10に設けられた蒸発器5内部における冷媒の蒸発の様子を説明図により示す。図2では、斜線部分は液化冷媒の量を説明的に示し、斜線のない部分はガス化冷媒の量を説明的に示す。図中の矢印は、液化冷媒及びガス化冷媒の流れの方向を示す。また、各冷媒流路6には、入口側温度センサ7、出口側温度センサ8が取り付けられ、それぞれ入口側冷媒温度t1、出口側冷媒温度t2を測定する。さらに、各室内機10には吸込み空気温度t3を測定する室内温度センサ9が取り付けられる。   Here, the abnormality detection method of the electronic expansion valve 4 when there is one indoor unit 10 will be described. FIG. 2 is an explanatory diagram showing how the refrigerant evaporates inside the evaporator 5 provided in the indoor unit 10 connected to the refrigerant flow path 6. In FIG. 2, the shaded portion indicates the amount of the liquefied refrigerant, and the portion without the hatched indicates the amount of the gasified refrigerant. The arrows in the figure indicate the flow directions of the liquefied refrigerant and the gasified refrigerant. In addition, an inlet side temperature sensor 7 and an outlet side temperature sensor 8 are attached to each refrigerant channel 6 to measure the inlet side refrigerant temperature t1 and the outlet side refrigerant temperature t2, respectively. Furthermore, an indoor temperature sensor 9 for measuring the intake air temperature t3 is attached to each indoor unit 10.

図2(a)は、冷房運転時に電子膨張弁4の開閉状態が正常な場合を示す。この場合は、電子膨張弁4は開となり、膨張した液化冷媒は、蒸発器5内部で適切に蒸発しガス化した冷媒となる。このとき、室内機10の入口側冷媒温度t1と、出口側冷媒温度t2とは、ほぼ一定の温度となり、その差温は小さい。図2(b)は、冷房運転から送風運転に切替えたとき、電子膨張弁4が開状態でロックし完全に閉とならない場合を示す。この場合は、蒸発器5内部で必要とされる液化冷媒が供給されず、蒸発器5の途中で完全に蒸発しきってしまう。このとき、蒸発器5の入口側冷媒温度t1は、冷媒圧力pの減少により低下する。また、蒸発器5の出口側冷媒温度t2は、冷媒の流量が減少することで、出口側の過熱度が増して上昇する。従って、入口側冷媒温度t1と出口側冷媒温度t2の差温が大きくなる。図2(c)は、冷房運転時に、電子膨張弁4が開状態でロックした場合を示す。この場合は、蒸発器5内部で必要とされる以上に過剰の液化冷媒が供給されることから、冷媒は蒸発器5を通過しても完全にガス化しなくなる。このとき、室内機10の入口側冷媒温度t1と、出口側冷媒温度t2とは、ほぼ一定の温度となり、その差温は小さい。   FIG. 2A shows a case where the open / close state of the electronic expansion valve 4 is normal during the cooling operation. In this case, the electronic expansion valve 4 is opened, and the expanded liquefied refrigerant is appropriately evaporated and gasified in the evaporator 5. At this time, the inlet-side refrigerant temperature t1 and the outlet-side refrigerant temperature t2 of the indoor unit 10 are substantially constant temperatures, and the difference between the temperatures is small. FIG. 2B shows a case where the electronic expansion valve 4 is locked in the open state and is not completely closed when switching from the cooling operation to the air blowing operation. In this case, the liquefied refrigerant required inside the evaporator 5 is not supplied, and is completely evaporated in the middle of the evaporator 5. At this time, the inlet-side refrigerant temperature t1 of the evaporator 5 decreases due to the decrease in the refrigerant pressure p. Further, the outlet-side refrigerant temperature t2 of the evaporator 5 rises as the degree of superheat on the outlet side increases as the refrigerant flow rate decreases. Accordingly, the temperature difference between the inlet side refrigerant temperature t1 and the outlet side refrigerant temperature t2 becomes large. FIG. 2C shows a case where the electronic expansion valve 4 is locked in the open state during the cooling operation. In this case, since excessive liquefied refrigerant is supplied more than required inside the evaporator 5, the refrigerant is not completely gasified even when passing through the evaporator 5. At this time, the inlet-side refrigerant temperature t1 and the outlet-side refrigerant temperature t2 of the indoor unit 10 are substantially constant temperatures, and the difference between the temperatures is small.

上記電子膨張弁4の異常状態における室内機10の入口側冷媒温度t1と、出口側冷媒温度t2との温度差の変化は、室外機11と室内機10とが1対1の場合には、そのまま電子膨張弁4の異常判定に適用される。しかし、マルチ式空気調和システム1の場合には、そのまま適用することができない。これは、マルチ式空気調和システム1では、各室内機10の空調負荷により、特に、蒸発器5の出口側冷媒温度t2が影響を受けてしまうため、的確な検知とはならない。また、マルチ式空気調和システム1においては、室内側で要求される液化冷媒の総量が刻々と変化し、これにより、圧縮機2の回転数や冷媒の循環量が影響され、特に、蒸発器5の入口側冷媒温度t1がばらつくからである。   The change in temperature difference between the inlet side refrigerant temperature t1 and the outlet side refrigerant temperature t2 of the indoor unit 10 in the abnormal state of the electronic expansion valve 4 is as follows when the outdoor unit 11 and the indoor unit 10 are 1: 1. This is applied to the abnormality determination of the electronic expansion valve 4 as it is. However, the multi-type air conditioning system 1 cannot be applied as it is. This is not an accurate detection in the multi-type air conditioning system 1 because the outlet side refrigerant temperature t2 of the evaporator 5 is particularly affected by the air conditioning load of each indoor unit 10. Further, in the multi-type air conditioning system 1, the total amount of liquefied refrigerant required indoors changes every moment, and this affects the rotational speed of the compressor 2 and the circulation amount of the refrigerant. This is because the inlet side refrigerant temperature t1 varies.

(マルチ式空気調和システムの異常検知方法) (Abnormality detection method for multi-type air conditioning system)

図3に、マルチ式空気調和システム1の場合における異常検知方法の一つの実施形態をフロー図で示す。本異常検知方法では、室内機10を、空調能力が略半分ずつとなるように選別し、それぞれをA群及びB群とする。本実施形態では、マルチ式空気調和システム1の異常検知を、第1運転時及び第2運転時の2回行う。第1運転時には、2つの群に分けた空調機10のうち一方の群(例えば、A群)を冷房運転状態とし、他方の群(例えば、B群)を送風運転状態とする(S1)。この状態で各室内機10の電子膨張弁4a及び4bの異常を検知した後、一旦、総ての室内機10を冷房運転状態とし(S4)、その後、第2運転時には、2つの群に分けた空調機10のうち一方の群(例えば、A群)を送風運転状態とし、他方の群(例えば、B群)を冷房運転状態とする(S5)。このように、2つの群に分けるのは、圧縮機2を一時的にでも停止させないためである。また、マルチ式空気調和システム1の全体の液化冷媒の循環量を略一定に保つためである。従って、A群の室内機10とB群の室内機10との空調能力が略等しいことが望ましい。但し、室内機10の空調能力が総ての室内機10でほぼ同じとみなせる場合には、その略半数ずつとなるようにA群及びB群とに分割しても良い。   FIG. 3 is a flowchart showing one embodiment of the abnormality detection method in the case of the multi-type air conditioning system 1. In this abnormality detection method, the indoor units 10 are selected so that the air conditioning capacity is approximately half of each, and these are set as group A and group B, respectively. In the present embodiment, abnormality detection of the multi-type air conditioning system 1 is performed twice during the first operation and during the second operation. During the first operation, one group (for example, Group A) of the air conditioners 10 divided into two groups is set in a cooling operation state, and the other group (for example, Group B) is set in a blowing operation state (S1). After detecting the abnormality of the electronic expansion valves 4a and 4b of each indoor unit 10 in this state, all the indoor units 10 are once set in the cooling operation state (S4), and then divided into two groups during the second operation. Of the air conditioners 10, one group (for example, Group A) is set in the blowing operation state, and the other group (for example, Group B) is set in the cooling operation state (S5). The reason why the two groups are divided is that the compressor 2 is not temporarily stopped. Moreover, it is for keeping the circulation amount of the liquefied refrigerant of the whole multi-type air conditioning system 1 substantially constant. Therefore, it is desirable that the air conditioning capabilities of the group A indoor units 10 and the group B indoor units 10 are substantially equal. However, when the air conditioning capability of the indoor unit 10 can be regarded as almost the same in all the indoor units 10, the indoor unit 10 may be divided into the A group and the B group so as to be approximately half of each.

第1運転時において、冷房運転状態のA群について、その群の総ての室内機10について下記の判定基準により電子膨張弁4が開の状態でロックされているか否かを判定する(S2)。また、第2運転時において、冷房運転状態のB群について、同様の判定を行う(S7)。   At the time of the first operation, for the group A in the cooling operation state, it is determined whether or not the electronic expansion valve 4 is locked in the open state for all the indoor units 10 in the group according to the following criteria (S2). . Further, during the second operation, the same determination is performed for the group B in the cooling operation state (S7).

第1の判定式は、t1<t4+t5を満たす場合に電子膨張弁4は正常であり、満たさない場合は、その異常を検知するものである。ここに、t1は、入口側冷媒温度であり、t4は、冷媒圧力pから算出される蒸発温度であり、またt5は、室内機10ごとに定まる特性を考慮した補正値であり、各室内機10の機種およびその室内機10の配管抵抗から補正値が算出される。この判定式は、基本的には、凝縮器3の出口側に設けられた冷媒圧力センサ13が測定する冷媒圧力pから算出された蒸発温度t4を、それに対応する入口側冷媒温度t1と比較したものである。但し、マルチ式空気調和システム1の各室内機10は、例えば、それぞれ室外機11からの配管長さが異なり、配管抵抗による温度ロスが異なる。従って、その特性を考慮した補正値(温度)を考慮することで、より適切な判定とする。また、例えば、各室内機10の機種が異なる場合には、それぞれの特性を考慮した補正値(温度)を考慮することで、より適切な判定とする。つまり、その室内機10の入口側冷媒温度t1が、蒸発温度t4に補正値t5を加えた値よりも高い場合には、その室内機10は空調能力が低下し、本来の冷房が効かなくなっていると判断する。そして、その要因として電子膨張弁4の異常が検出される。蒸発温度t4は、通常のオフィスビルの空調では、略0℃である。 The first determination formula is to detect the abnormality when the electronic expansion valve 4 is normal when t1 <t4 + t5 is satisfied, and when not satisfied. Here, t1 is an inlet side refrigerant temperature, t4 is an evaporation temperature calculated from the refrigerant pressure p, and t5 is a correction value considering characteristics determined for each indoor unit 10, and each indoor unit The correction value is calculated from the ten models and the pipe resistance of the indoor unit 10. The determination equation is basically the evaporation temperature t 4 when calculated from the refrigerant pressure p of the refrigerant pressure sensor 13 provided on the outlet side is measured in the condenser 3, the inlet side refrigerant temperature t1 the corresponding It is a comparison. However, each indoor unit 10 of the multi-type air conditioning system 1 has, for example, a different pipe length from the outdoor unit 11 and a different temperature loss due to pipe resistance. Therefore, a more appropriate determination is made by considering a correction value (temperature) in consideration of the characteristics. Further, for example, when the models of the indoor units 10 are different, a more appropriate determination is made by considering a correction value (temperature) considering each characteristic. That is, the inlet side refrigerant temperature t1 of the indoor unit 10 is higher than the value obtained by adding a correction value t5 to evaporation temperature t4, the indoor unit 10 is lowered air conditioning capacity, become ineffective the inherent cooling Judge that And the abnormality of the electronic expansion valve 4 is detected as the factor . Evaporation temperature t4, in the air conditioning of a normal office building, is approximately 0 ℃.

第2の判定式は、t1<t6+t7を満たす場合に電子膨張弁4は正常であり、満たさない場合は、異常を検知するものである。ここに、t6は、各室内機10のt1のうち最も低い値で、基準となる温度である。また、t7は、室内機10ごとに定まる特性を考慮した補正値であるが、上述したt5とは異なり、各室内機10のばらつきも考慮した裕度である。この判定式は、その群の室内機10のうち、最も温度の低い入口冷媒温度を基準温度t6とし、室内機10ごとに定まる特性値に裕度を考慮して補正した値よりも高い場合には、その室内機10は空調能力が低下し、本来の冷房が効かなくなっていると判断する。そして、その要因として電子膨張弁4の異常が検出される。   The second determination formula is to detect the abnormality when the electronic expansion valve 4 is normal when t1 <t6 + t7 is satisfied, and when not satisfied. Here, t6 is the lowest value of t1 of each indoor unit 10 and is a reference temperature. Further, t7 is a correction value considering characteristics determined for each indoor unit 10, but unlike t5 described above, it is a tolerance considering the variation of each indoor unit 10. This determination formula is used when the inlet refrigerant temperature having the lowest temperature among the indoor units 10 in the group is set as the reference temperature t6 and the characteristic value determined for each indoor unit 10 is higher than a value corrected in consideration of tolerance. Determines that the indoor unit 10 has a reduced air conditioning capability and the original cooling is no longer effective. And the abnormality of the electronic expansion valve 4 is detected as the factor.

第1の判定式は、電子膨張弁4の異常ではなく、冷媒が、冷媒流路6の継手や弁で漏れて不足している場合にも満たしてしまう。この場合、冷媒が不足するため冷房が効かなくなり入口側冷媒温度t1が上昇するためである。しかし、この場合は、第2の判定式は満たさない。その室内機10の入口側冷媒温度t1が上昇するからである。従って、第2の判定式のみを適用しても良いし、2つの判定式を共に適用しても良い。この第2の判定式は、冷房運転時において、マルチ式空気調和システム1の各室内機10の電子膨張弁4の異常(空調能力の低下)を検知する基本的な判定式である。   The first determination formula is satisfied not only when the electronic expansion valve 4 is abnormal, but also when the refrigerant leaks at the joint or valve of the refrigerant flow path 6 and is insufficient. In this case, because the refrigerant is insufficient, the cooling is not effective and the inlet side refrigerant temperature t1 rises. However, in this case, the second determination formula is not satisfied. This is because the inlet side refrigerant temperature t1 of the indoor unit 10 rises. Therefore, only the second determination formula may be applied, or two determination formulas may be applied together. The second determination formula is a basic determination formula for detecting an abnormality (decrease in air conditioning capability) of the electronic expansion valve 4 of each indoor unit 10 of the multi-type air conditioning system 1 during the cooling operation.

第1運転時において、送風運転状態のB群について、その群の総ての室内機10について下記の判定基準により電子膨張弁4が開の状態でロックされているか否かを判定する(S3)。また、第2運転時において、送風運転状態のA群について、同様の判定を行う(S6)。   At the time of the first operation, for the group B in the air blowing operation state, it is determined whether or not the electronic expansion valve 4 is locked in the open state for all the indoor units 10 in the group according to the following criteria (S3). . Further, during the second operation, the same determination is performed for the group A in the blowing operation state (S6).

第1の判定式は、t1>t4+t5を満たす場合に電子膨張弁4は正常であり、満たさない場合は、その異常を検知するものである。ここに、t1は、入口側冷媒温度であり、t4は、冷媒圧力pから算出される蒸発温度であり、またt5は、室内機10ごとに定まる特性を考慮した補正値であり、各室内機10の機種およびその室内機10の配管抵抗から補正値が算出される。この判定式は、基本的には、凝縮器3の出口側に設けられた冷媒圧力センサ13が測定する冷媒圧力pから算出された蒸発温度t4を、それに対応する入口側冷媒温度t1と比較したものである。但し、マルチ式空気調和システム1の各室内機10は、例えば、それぞれ室外機11からの配管長さが異なり、配管抵抗による温度ロスが異なるため、その特性を考慮した補正値(温度)を加えることで、より適切な判定をする。また、例えば、各室内機10の機種が異なる場合には、それぞれの特性を考慮した補正値(温度)を加えることで、より適切な判定をするものである。従って、その室内機10の入口側冷媒温度t1が、蒸発温度t4に補正値t5を加えた値よりも低い場合には、その室内機10の蒸発器5には冷媒が漏れていると判断される。そして、その要因として電子膨張弁4の異常が検出される。


The first determination formula is to detect the abnormality when the electronic expansion valve 4 is normal when t1> t4 + t5 is satisfied, and when not satisfied. Here, t1 is an inlet side refrigerant temperature, t4 is an evaporation temperature calculated from the refrigerant pressure p, and t5 is a correction value considering characteristics determined for each indoor unit 10, and each indoor unit The correction value is calculated from the ten models and the pipe resistance of the indoor unit 10. The determination equation is basically the evaporation temperature t 4 when calculated from the refrigerant pressure p of the refrigerant pressure sensor 13 provided on the outlet side is measured in the condenser 3, the inlet side refrigerant temperature t1 the corresponding It is a comparison. However, each indoor unit 10 of the multi-type air conditioning system 1 has, for example, different pipe lengths from the outdoor unit 11 and different temperature loss due to pipe resistance, and therefore adds a correction value (temperature) considering its characteristics. Therefore, make a more appropriate decision. For example, when the models of the indoor units 10 are different, a more appropriate determination is made by adding a correction value (temperature) considering each characteristic. Therefore, determining that an inlet side refrigerant temperature t1 of the indoor unit 10 is lower than the value obtained by adding a correction value t5 to evaporation temperature t4, the evaporator 5 of the indoor unit 10 is leaking refrigerant Is done. And the abnormality of the electronic expansion valve 4 is detected as the factor.


第2の判定式は、t2>(t1+t3)/2を満たす場合に電子膨張弁4は正常であり、満たさない場合は、異常を検知するものである。ここに、t2は、出口側冷媒温度であり、t3は、吸込み空気温度である。この判定式は、基本的には、入口側冷媒温度t1と出口側冷媒温度t2との差温を判断するものである。しかし、マルチ式空気調和システム1の各室内機10は、上述したように、入口側冷媒温度t1及び出口側冷媒温度t2がばらつくため、適切な判断ができない。そこで、各室内機10の吸込み空気温度t3を含めて電子膨張弁4の異常を検出するものである。従って、t3の値により決定される関数fを用いて、t2>t1+f(t3)とする。本実施の形態では、これを、実務上の特性に合わせて(t1+t3)/2とした。   The second determination formula is to detect the abnormality when the electronic expansion valve 4 is normal when t2> (t1 + t3) / 2 is satisfied, and when not satisfied. Here, t2 is the outlet side refrigerant temperature, and t3 is the intake air temperature. This determination formula basically determines the temperature difference between the inlet side refrigerant temperature t1 and the outlet side refrigerant temperature t2. However, each indoor unit 10 of the multi-type air conditioning system 1 cannot make an appropriate determination because the inlet side refrigerant temperature t1 and the outlet side refrigerant temperature t2 vary as described above. Therefore, the abnormality of the electronic expansion valve 4 is detected including the intake air temperature t3 of each indoor unit 10. Therefore, t2> t1 + f (t3) is set using the function f determined by the value of t3. In the present embodiment, this is (t1 + t3) / 2 in accordance with practical characteristics.

第1の判定式は、冷房運転時の第1の判定式の裏返しであり、これらの判定式は共に適用することが好ましい。第2の判定式は、送風運転時において、従来の判定式をマルチ式空気調和システム1に拡大して適用できるように改良したものである。従って、これら第1及び第2の判定式は、それぞれ単独に判定式として適用しても良いし、2つの判定式を共に適用しても良い。   The first judgment formula is the reverse of the first judgment formula at the time of cooling operation, and it is preferable to apply these judgment formulas together. The second judgment formula is improved so that the conventional judgment formula can be expanded and applied to the multi-type air conditioning system 1 during the air blowing operation. Therefore, these first and second determination formulas may be applied independently as determination formulas, or two determination formulas may be applied together.

本発明に係るマルチ式空気調和システムの1つの実施形態の概略構成を示すブロック図である。It is a block diagram showing a schematic structure of one embodiment of a multi type air harmony system concerning the present invention. 室内機の蒸発器内部での冷媒の蒸発の様子を示す説明図である。である。It is explanatory drawing which shows the mode of the evaporation of the refrigerant | coolant inside the evaporator of an indoor unit. It is. マルチ式空気調和システムの場合の異常検知方法の一つの実施形態を示すフロー図である。It is a flowchart which shows one Embodiment of the abnormality detection method in the case of a multi-type air conditioning system. 一般的なマルチ式空気調和システムの概略の構成図である。It is a schematic block diagram of a general multi-type air conditioning system.

符号の説明Explanation of symbols

1 マルチ式空気調和システム、2 圧縮機、3 凝縮器、4,4a,4b 電子膨張弁(膨張弁)、5,5a,5b 蒸発器、6 冷媒流路、7 入口側温度センサ、8 出口側温度センサ、9 室内温度センサ、10 室内機、11 室外機、12 膨張弁検知手段、13 冷媒圧力センサ、14 四方弁、t1 入口側冷媒温度、t2 出口側冷媒温度、t3 吸込み空気温度、t4 蒸発温度、t5 補正値、t6 基準温度、t7 補正値(裕度)。   1 Multi-type air conditioning system, 2 compressor, 3 condenser, 4, 4a, 4b electronic expansion valve (expansion valve), 5, 5a, 5b evaporator, 6 refrigerant flow path, 7 inlet side temperature sensor, 8 outlet side Temperature sensor, 9 Indoor temperature sensor, 10 Indoor unit, 11 Outdoor unit, 12 Expansion valve detection means, 13 Refrigerant pressure sensor, 14 Four-way valve, t1 Inlet side refrigerant temperature, t2 Outlet side refrigerant temperature, t3 Intake air temperature, t4 Evaporation Temperature, t5 correction value, t6 reference temperature, t7 correction value (tolerance).

Claims (4)

冷媒を膨張させる膨張弁と、膨張した冷媒を蒸発させる蒸発器と、冷媒をそれらに流通させる冷媒流路とを有する複数の室内機を、室外機に接続させるマルチ式空気調和システムにおいて、
各室内機の蒸発器の入口側冷媒温度t1を測定する入口側温度センサと、
冷媒流路に設置され冷媒圧力を測定する冷媒圧力センサと、
室内機が冷房運転状態のときに、室内機のt1が、冷媒圧力から算出される蒸発温度t4に各室内機の機種および各室内機の配管抵抗から各室内機ごとに定まる特性を考慮した補正値t5を加えた値より大きく、各室内機のt1が、各室内機のt1のうち最も低い値である基準温度t6に各室内機の機種および各室内機の配管抵抗から各室内機ごとに定まる特性を考慮した補正値t7を加えた値より大きいときに、膨張弁が異常であることを検知する膨張弁検知手段と、
を備えることを特徴とするマルチ式空気調和システム。
In a multi-type air conditioning system for connecting a plurality of indoor units having an expansion valve for expanding a refrigerant, an evaporator for evaporating the expanded refrigerant, and a refrigerant flow path for circulating the refrigerant to the outdoor unit,
An inlet side temperature sensor for measuring an inlet side refrigerant temperature t1 of an evaporator of each indoor unit;
A refrigerant pressure sensor installed in the refrigerant flow path for measuring the refrigerant pressure;
When the indoor unit is in the cooling operation state, t1 of each indoor unit, taking into account the characteristics defined in the evaporation temperature t4 calculated from the refrigerant pressure from the pipe resistance of the model and the indoor unit of the indoor units for each indoor unit Each indoor unit has a reference temperature t6 that is greater than the value obtained by adding the corrected value t5 and the t1 of each indoor unit is the lowest value of t1 of each indoor unit, based on the model of each indoor unit and the piping resistance of each indoor unit. Expansion valve detection means for detecting that the expansion valve is abnormal when the value is larger than the value obtained by adding a correction value t7 in consideration of characteristics determined for each
A multi-type air conditioning system comprising:
請求項1に記載のマルチ式空気調和システムであって、
各室内機の蒸発器の出口側冷媒温度t2を測定する出口側温度センサと、
各室内機の吸込み空気温度t3を測定する室内温度センサと、
冷媒流路に設置され冷媒圧力を測定する冷媒圧力センサと、をさらに備え、
膨張弁検知手段は、室内機が送風運転状態のときに、各室内機のt1が、冷媒圧力から算出される蒸発温度t4に各室内機の機種および各室内機の配管抵抗から各室内機ごとに定まる特性を考慮した補正値t5を加えた値より小さく、各室内機のt2が、各室内機のt1に各室内機の吸込み空気温度t3を加えた値を2で除した値より小さいときに、膨張弁が異常であることを検知することを特徴とするマルチ式空気調和システム。
The multi-type air conditioning system according to claim 1,
An outlet side temperature sensor for measuring the outlet side refrigerant temperature t2 of the evaporator of each indoor unit;
An indoor temperature sensor for measuring the intake air temperature t3 of each indoor unit;
A refrigerant pressure sensor installed in the refrigerant flow path to measure the refrigerant pressure , and
When each indoor unit is in the air blowing operation state, the expansion valve detection means detects that each indoor unit t1 has an evaporation temperature t4 calculated from the refrigerant pressure based on the model of each indoor unit and the piping resistance of each indoor unit. Smaller than a value obtained by adding a correction value t5 in consideration of characteristics determined for each indoor unit, and t2 of each indoor unit is smaller than a value obtained by dividing the value obtained by adding the intake air temperature t3 of each indoor unit to t1 of each indoor unit by 2. Sometimes, the multi-type air conditioning system is characterized by detecting that the expansion valve is abnormal .
請求項1または請求項2に記載のマルチ式空気調和システムであって、各室内機の運転状態を、冷房運転或いは送風運転に切り替えて制御する運転制御手段を備え、運転制御手段は、第1運転時には、複数の室内機のうち、その空調能力の略半分に相当する室内機を冷房運転状態として残りの室内機を送風運転状態とし、第2運転時には、総ての室内機の運転状態を、冷房運転から送風運転へ、あるいは送風運転から冷房運転の状態へと逆転させることを特徴とするマルチ式空気調和システム。 3. The multi-type air conditioning system according to claim 1 or 2 , further comprising operation control means for controlling the operation state of each indoor unit by switching to a cooling operation or an air blowing operation. During operation, among the plurality of indoor units, indoor units corresponding to approximately half of the air conditioning capacity are set in the cooling operation state, and the remaining indoor units are set in the blowing operation state. During the second operation, the operation state of all the indoor units is set. A multi-type air conditioning system that reverses from a cooling operation to a blowing operation or from a blowing operation to a cooling operation. 請求項1から請求項3のいずれか1に記載のマルチ式空気調和システムであって、運転制御手段は、第1運転時には、複数の室内機のうち、その略半数を冷房運転状態として残りの半数を送風運転状態とし、第2運転時には、総ての室内機の運転状態を、冷房運転から送風運転へ、あるいは送風運転から冷房運転の状態へと逆転させることを特徴とするマルチ式空気調和システム。 The multi-type air conditioning system according to any one of claims 1 to 3, wherein during the first operation, the operation control means sets substantially half of the plurality of indoor units as a cooling operation state, Multi-type air conditioner characterized in that half of the air-conditioning operation is performed and the operation state of all indoor units is reversed from the cooling operation to the air-blowing operation or from the air-blowing operation to the air-cooling operation during the second operation. system.
JP2006161791A 2006-06-12 2006-06-12 Multi-type air conditioning system Active JP4762797B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006161791A JP4762797B2 (en) 2006-06-12 2006-06-12 Multi-type air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006161791A JP4762797B2 (en) 2006-06-12 2006-06-12 Multi-type air conditioning system

Publications (2)

Publication Number Publication Date
JP2007333219A JP2007333219A (en) 2007-12-27
JP4762797B2 true JP4762797B2 (en) 2011-08-31

Family

ID=38932861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006161791A Active JP4762797B2 (en) 2006-06-12 2006-06-12 Multi-type air conditioning system

Country Status (1)

Country Link
JP (1) JP4762797B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016098645A1 (en) * 2014-12-15 2016-06-23 ダイキン工業株式会社 Air-conditioning device
CN106500238A (en) * 2016-09-12 2017-03-15 珠海格力电器股份有限公司 Electronic expansion valve fault detection method and device and multi-online equipment system
CN110398040A (en) * 2019-08-05 2019-11-01 宁波奥克斯电气股份有限公司 Freeze adjusting method, device and air conditioner

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100174412A1 (en) * 2009-01-06 2010-07-08 Lg Electronics Inc. Air conditioner and method for detecting malfunction thereof
KR101584530B1 (en) 2009-07-06 2016-01-12 엘지전자 주식회사 Air conditioner and method for method for testing drive of air conditioner
KR101677031B1 (en) 2010-03-18 2016-11-29 엘지전자 주식회사 Air conditioner and Control method of the same
JP5115667B2 (en) * 2011-01-17 2013-01-09 ダイキン工業株式会社 Air conditioner
CN104566771A (en) * 2013-10-23 2015-04-29 珠海格力电器股份有限公司 Refrigerant control method and device of dehumidifier
JP6520045B2 (en) * 2014-10-27 2019-05-29 ダイキン工業株式会社 Operating method of air conditioner, air conditioner using the operating method
JP6604051B2 (en) * 2015-06-26 2019-11-13 ダイキン工業株式会社 Air conditioning system
CN106352472B (en) * 2016-08-19 2019-04-30 广东美的暖通设备有限公司 Multi-line system and its linkage fault detection method
CN106404371B (en) * 2016-10-10 2019-03-08 广东美的暖通设备有限公司 Electric expansion valve detection method and device, air-conditioning system
JP6628911B1 (en) 2019-02-21 2020-01-15 三菱電機株式会社 Refrigeration cycle device
CN110671777B (en) * 2019-10-21 2021-07-20 宁波奥克斯电气股份有限公司 Control method and device of air conditioner and air conditioner
CN111486560B (en) * 2020-04-21 2021-04-30 海信(山东)空调有限公司 Air conditioner and control method thereof
CN113531773B (en) * 2021-06-18 2022-11-15 宁波奥克斯电气股份有限公司 Multi-connected air conditioner fault detection method and device and multi-connected air conditioner
CN113865063B (en) * 2021-08-31 2022-11-25 宁波奥克斯电气股份有限公司 Multi-split system control method, control device, multi-split system and storage medium
CN114593515A (en) * 2022-01-20 2022-06-07 青岛海尔空调电子有限公司 Method and device for controlling multi-split system and multi-split system
CN114413418B (en) * 2022-01-26 2023-06-09 宁波奥克斯电气股份有限公司 Automatic restoration method, storage medium and system for multi-split freezing
WO2023197711A1 (en) * 2022-04-11 2023-10-19 青岛海信日立空调系统有限公司 Multi-split air-conditioning system, fault positioning method, and fault diagnosis model training method
CN115950120A (en) * 2022-12-07 2023-04-11 珠海格力电器股份有限公司 Flow curve correction method and device based on electronic expansion valve and related equipment

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63297973A (en) * 1987-05-29 1988-12-05 株式会社デンソー Refrigeration cycle device
JPH02106662A (en) * 1988-10-13 1990-04-18 Daikin Ind Ltd Freezer device
JP2000274896A (en) * 1999-03-24 2000-10-06 Tokyo Gas Co Ltd Method for sensing abnormality of expansion valve and air conditioner
JP2002071188A (en) * 2000-08-30 2002-03-08 Mitsubishi Electric Building Techno Service Co Ltd Abnormal heating medium supply detection apparatus
JP4032993B2 (en) * 2003-02-21 2008-01-16 松下電器産業株式会社 Air conditioner
JP4211432B2 (en) * 2003-02-27 2009-01-21 三菱電機株式会社 Air conditioner refrigerant relay unit
JP2005024153A (en) * 2003-07-01 2005-01-27 Matsushita Electric Ind Co Ltd Method of controlling operating frequency of compressor of multi-chamber air conditioner

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016098645A1 (en) * 2014-12-15 2016-06-23 ダイキン工業株式会社 Air-conditioning device
JP2016114299A (en) * 2014-12-15 2016-06-23 ダイキン工業株式会社 Air conditioner
EP3236177A4 (en) * 2014-12-15 2017-12-27 Daikin Industries, Ltd. Air-conditioning device
AU2015364901B2 (en) * 2014-12-15 2018-09-27 Daikin Industries, Ltd. Air conditioning apparatus
US10401060B2 (en) 2014-12-15 2019-09-03 Daikin Industries, Ltd. Conditioner determining a closed condition of an expansion valve
CN106500238A (en) * 2016-09-12 2017-03-15 珠海格力电器股份有限公司 Electronic expansion valve fault detection method and device and multi-online equipment system
CN106500238B (en) * 2016-09-12 2019-06-14 珠海格力电器股份有限公司 Electronic expansion valve fault detection method and device and multi-online equipment system
CN110398040A (en) * 2019-08-05 2019-11-01 宁波奥克斯电气股份有限公司 Freeze adjusting method, device and air conditioner
CN110398040B (en) * 2019-08-05 2021-09-21 宁波奥克斯电气股份有限公司 Refrigeration adjusting method and device and air conditioner

Also Published As

Publication number Publication date
JP2007333219A (en) 2007-12-27

Similar Documents

Publication Publication Date Title
JP4762797B2 (en) Multi-type air conditioning system
US10760798B2 (en) HVAC unit with hot gas reheat
JP5446064B2 (en) Heat exchange system
KR101479458B1 (en) Refrigeration device
JP4839861B2 (en) Air conditioner
JP2012122670A (en) Air conditioner
US20100206000A1 (en) Air conditioner and method of controlling the same
EP2891849A1 (en) Heat reclaim for a multifunction heat pump and a multifunction air conditioner
JP6479181B2 (en) Air conditioner
JP5164527B2 (en) Air conditioner
JP2011099591A (en) Refrigerating device
JP2010164270A (en) Multiple chamber type air conditioner
JP2010101569A (en) Multi-chamber type air conditioner
JP2006292214A (en) Addition method of refrigerant amount determining function of air conditioner, and air conditioner
JP2009204174A (en) Multiple chamber air conditioner
JP2013002749A (en) Air conditioning device
JP2018071864A (en) Air conditioner
KR101152936B1 (en) A multi air conditioner system and a pipe connection searching method of the multi air conditioner system
WO2016151655A1 (en) Air conditioning device and method for determining performance of same
JP2012247118A (en) Air-cooled heat pump chiller
JP2004251583A (en) Air conditioner
JP5245575B2 (en) Refrigerant amount determination method for air conditioner and air conditioner
JP5245576B2 (en) Refrigerant amount determination method for air conditioner and air conditioner
JP2018146169A (en) air conditioner
JP5199713B2 (en) Multi-type air conditioner, indoor unit indoor electronic expansion valve operation confirmation method, computer program, and fault diagnosis apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080501

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110531

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110608

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4762797

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250