JP2006210602A - 露光装置、露光方法、および微細パターンを有するデバイスの製造方法 - Google Patents

露光装置、露光方法、および微細パターンを有するデバイスの製造方法 Download PDF

Info

Publication number
JP2006210602A
JP2006210602A JP2005020003A JP2005020003A JP2006210602A JP 2006210602 A JP2006210602 A JP 2006210602A JP 2005020003 A JP2005020003 A JP 2005020003A JP 2005020003 A JP2005020003 A JP 2005020003A JP 2006210602 A JP2006210602 A JP 2006210602A
Authority
JP
Japan
Prior art keywords
exposure apparatus
reflecting mirror
multilayer film
exposure
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005020003A
Other languages
English (en)
Inventor
Takashi Aoki
貴史 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2005020003A priority Critical patent/JP2006210602A/ja
Publication of JP2006210602A publication Critical patent/JP2006210602A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

【課題】反射鏡への有機物物質の吸着をできるだけ少なくしてカーボン被膜を形成しにくくし、光学特性の劣化を抑え、オーバホールまでの寿命を長くしたEUV露光装置を提供する。
【解決手段】極端紫外光を用いて、マスクに形成されたパターンを感応基板上に露光転写するための複数の反射鏡(M1−M6)を有する投影光学系を備えた露光装置であって、前記複数の反射鏡のうち、少なくとも1つの反射鏡を外部と絶縁した状態で保持することを特徴とする露光装置である。
【選択図】図3

Description

本発明は、極端紫外線または軟X線(本明細書及び特許請求の範囲においては、波長が150nm以下の光を意味し、「EUV(Extreme Ultraviolet)光」と言うことがある)を露光光源として用いる、露光装置、露光方法及びこれらを使用した微細パターンを有するデバイスの製造方法に関するものである。
半導体素子又は液晶表示素子等をフォトリソグラフィ工程で製造する際に、マスク(本明細書および特許請求の範囲においてはレチクルを含む)に形成されたパターン像を、投影光学系を介して感光材(レジスト)が塗布されたウエハ上の各投影(ショット)領域に縮小して投影する縮小投影露光装置が使用されている。半導体素子、液晶表示素子等の回路は、上記投影露光装置でウエハやガラス上に回路パターンを露光することにより転写され、後処理によって形成される。
近年、集積回路の高密度集積化、すなわち、回路パターンの微細化が進められてきた。これに対応するため、投影露光装置における投影光も短波長化される傾向にある。すなわち、これまで主流だった水銀ランプの輝線に代わって、KrFエキシマレーザー(248 nm)が用いられるようになり、さらに短波長のArFエキシマレーザー(193 nm)を用いた投影露光装置が実用化されている。また、更なる高密度集積化をめざしてFレーザー(157 nm)を使用する露光装置や液浸機構を有する光露光機の開発も進められている。
さらに、光の回折限界によって制限される光学系の解像力を向上させるために、従来の紫外線に代えてこれより短い波長(11乃至14 nm)のEUV光を使用した投影リソグラフィが開発されている(例えば、D.Tichenor, et al. SPIE 2437 (1995) 292)。この技術は、EUVリソグラフィと呼ばれており、従来の光リソグラフィでは実現不可能な45nm以下の解像力を得られる技術として期待されている。
このような、EUV光を使用した露光装置の投影光学系の概要を図5に示す。光源31から放出されたEUV光は、コリメータミラーとして作用する凹面反射鏡34を介してほぼ平行光束となり、一対のフライアイミラー35aおよび35bからなるオプティカルインテグレータ35に入射する。一対のフライアイミラー35aおよび35bとして、たとえば特許文献1に開示されたフライアイミラーを用いることができる。なお、フライアイミラーのさらに詳細な構成および作用については、特許文献1に詳しく説明されており、かつ本発明と直接の関係がないので、その説明を省略する。
こうして、フライアイミラー35bの反射面の近傍、すなわちオプティカルインテグレータ35の射出面の近傍には、所定の形状を有する実質的な面光源が形成される。実質的な面光源からの光は平面反射鏡36により偏向された後、マスクM上に細長い円弧状の照明領域を形成する。ここで、円弧状の照明領域を形成するための開口板は、図示していない。マスクMの表面で反射された光は、その後、投影光学系37のミラーM1、M2、M3、M4、M5、M6で順に反射されて、露光光1として、マスクMの表面に形成されたパターンの像を、ウエハ2上に塗布されたレジスト3上に形成する。ここで、ミラー(反射鏡)は、屈折率の異なる2種類の物質を積層した多層膜から構成される。また、レジスト3を塗布したウエハ2を感応基板とも呼ぶ。
一般に、EUV光はあらゆる物質で吸光されるので空気中を透過しない。このため、EUV光を用いた露光装置では、露光光1をウエハ面上に十分な照度で到達させるためには、露光光路上の吸光物質を低減もしくは排除し、光路空間を高真空に保つ必要がある。このためには、放出ガスが極力少ない物質を用いて露光装置光路空間を構成する必要がある。投影光学系37を含む露光装置光路空間は、図5に図示しない真空チャンバに収納してもよい。このように、EUV光を用いた露光装置では、より微細な遮光パターンの転写が可能な一方で、吸光物質を排除する必要がある(吸光物質の放出する部材の利用が限られる)など設計が容易でない。
特開平11-312638号公報
しかし、上記の露光装置の光路空間(真空チャンバ内)には有機物質が存在する。この有機物質は、一般に、真空装置を構成する有機物部材そのものからの放出ガスや、非有機物構成部材表面に付着(吸着堆積)した有機物物質の脱離によって発生したものや、また、ポンプから逆流によってもたらされたものなどである。また、露光装置のレジスト3は有機物を主成分とした物質であるので、有機物物質を大量に放出する。さらに、レジスト3は、光照射によって絶鎖された比較的軽量で蒸気圧の高い有機物物質をより大量に放出する。光路空間中に放出された有機物物質の一部は、ミラーなどの光学素子を含む真空装置構成部材の表面に吸着する。有機物物質が光学素子表面に吸着すると、露光光との光化学反応によって、ミラーの多層膜表面にカーボン被膜が形成される。このカーボン被膜は、ミラー反射率低下の原因となる。ミラーの表面に1nmのカーボン被膜が積層されるとミラーの反射率が約1%低下する。また、ミラー表面のカーボン被膜によって収差が発生したり、照度ムラの原因となるなど反射率以外の光学特性も劣化する。さらに、光学素子のメンテナンスに起因するスループットの低下による生産性の低下や、光学素子の性能劣化に起因する装置寿命の短縮といった問題も生じる。
その一方で、従来型光露光装置と異なり、極端紫外光を用いた露光装置では光路空間にガスが充填されていないので、気流制御による有機物ガス排除が容易でない。また、多層膜表面に吸着してしまった有機物と光化学反応の反応性を低減するのは容易でない。そこで、有機物物質が光学素子表面に吸着する量そのものを低減することが、カーボン被膜による反射率劣化を防ぐ手段として有効である。
本発明はこのような事情に鑑みてなされたもので、反射鏡(ミラー)への有機物物質の吸着をできるだけ少なくしてカーボン被膜を形成しにくくし、光学特性の劣化を抑え、オーバホールまでの寿命を長くしたEUV露光装置、当該EUV露光装置を使用した露光方法、および当該露光方法を使用した微細パターンを有するデバイスの製造方法を提供することを課題とする。
前記課題を解決するための第1の手段は、極端紫外光を用いて、マスクに形成されたパターンを感応基板上に露光転写するための複数の反射鏡を有する投影光学系を備えた露光装置であって、前記複数の反射鏡のうち、少なくとも1つの反射鏡を外部と絶縁した状態で保持することを特徴とする露光装置である。
本手段によれば、反射鏡の多層膜を外部と絶縁して構成しているので、反射鏡の多層膜は、光電子の放出によって正に帯電する。このように、正に帯電した反射鏡の多層膜と、露光光で光イオン化しプラスに帯電した光路空間中にある有機物物質とが反発しあい、有機物物質が反射鏡の多層膜表面に吸着しにくくなる。このため、反射鏡の多層膜表面に吸着する有機物物質の量が低減されるので、カーボン被膜が形成されにくくなる。したがって、反射鏡の反射率の低下を抑えることができ、スループットの低下や装置寿命の劣化が低減できる。
前記課題を解決するための第2の手段は、極端紫外光を用いて、マスクに形成されたパターンを感応基板上に露光転写するための複数の反射鏡を有する投影光学系を備えた露光装置であって、前記複数の反射鏡のうち、少なくとも1つの反射鏡を外部と絶縁した状態で保持し、当該少なくとも1つの反射鏡の表面に正の電荷を帯電させておくことを特徴とする露光装置である。
本手段によれば、反射鏡の多層膜に帯電させた正の電荷と、露光光で光イオン化しプラスに帯電した光路空間中にある有機物物質とが反発しあい、有機物物質が反射鏡の多層膜表面に吸着しにくくなる。このため、反射鏡の多層膜表面に吸着する有機物物質の量が低減されるので、カーボン被膜が形成されにくくなる。したがって、反射鏡の反射率の低下を抑えることができ、スループットの低下や装置寿命の劣化が低減できる。
また、反射鏡の反射率の低下を抑えることによって、反射鏡の熱膨張による光学性能の劣化といった問題も低減できる。したがって、所望の結像性能を得ることができる。
本手段によれば、大きな設備改造を必要とせず、低いコストで上記の課題を解決することができる。
前記課題を解決するための第3の手段は、第1の手段であって、少なくとも1つの前記反射鏡に、開閉スイッチを介して接続された電圧源をさらに有することを特徴とする。
本手段によれば、反射鏡の多層膜表面の電位計測に基づいて、必要なときに開閉スイッチを閉じて電圧源から反射鏡の多層膜に正の電荷を供給すればよいので、効率よく正の電荷を維持することができる。
前記課題を解決するための第4の手段は、第1から第3のいずれかの手段を使用して、マスクに形成された露光パターンをウエハ等の感応基板上に露光転写することを特徴とする露光方法である。
本手段によれば、反射鏡への有機物物質の吸着をできるだけ少なくしてカーボン被膜の生成を低減し、反射鏡の光学特性の劣化を抑え、露光装置のオーバホールまでの寿命を長くし、スループットを向上させることができる。
前記課題を解決するための第5の手段は、第4の手段を用いて、マスクに形成されたパターンを感応基板に露光転写する工程を有することを特徴とする微細パターンを有するデバイスの製造方法である。
本手段によれば、反射鏡の光学特性の劣化を抑え、また、メンテナンス周期を長くすることにより露光装置を長期間にわたって連続運転することが可能となるので、微細パターンを有するデバイスをスループットよく製造することができる。
本発明によれば、反射鏡の多層膜表面に吸着する有機物物質の量を低減し、カーボン被膜を形成されにくくして、反射鏡の光学特性の劣化を抑え、オーバホールまでの寿命を長くしたEUV光露光装置、露光方法、およびこの露光方法を使用した微細パターンを有するデバイスの製造方法を提供することができる。
以下、本発明の実施形態について説明する。図1は、本発明の第1の実施形態によるEUV光露光装置の、反射鏡(ミラー)の構成を示す概要図である。反射鏡は、図5に示した従来のEUV光露光装置のM1乃至M6に対応する。反射鏡は、ここでは、基板105の表面に屈折率の異なるシリコン(Si)の層101およびモリブデン(Mo)の層103を交互に40乃至70層程度成膜したものである。本実施形態の反射鏡は、正の電荷109を帯電させている点で従来技術のものと異なる。なお、図示してはいないが、多層膜表面の耐酸化性を向上させるための、キャッピングレイヤが多層膜表面に成膜されていてもよい。
一般的に、有機物が多層膜表面に吸着する原因としては、大きく分類して2つ考えられる。一方は物理吸着・化学吸着による自然吸着であり、他方は電気的な吸着である。後者は、光路空間中にある有機物が露光光を受けて光イオン化し、電気的に多層膜表面に吸着するものである。一般的に、光イオン化では有機物物質はプラスに帯電しているので、反射鏡の多層膜に正の電荷を帯電させておくと反発しあい、反射鏡の多層膜表面に吸着しにくくなる。このため、反射鏡の多層膜表面に吸着する有機物物質の量が低減されるので、カーボン被膜が形成されにくくなる。したがって、反射鏡の反射率の低下を抑えることができ、露光装置のスループットの低下や装置寿命の劣化が低減できる。
反射鏡の多層膜に正の電荷を帯電させた状態を維持するためには、反射鏡の多層膜を外部と絶縁して構成する必要がある。図5において、反射鏡M1乃至M6は、鏡筒に固定されて支持される。固定部分において、周知の絶縁技術により、反射鏡の多層膜と鏡筒とを絶縁する。
反射鏡の多層膜を外部と絶縁して構成しておけば、反射鏡の多層膜は、光電子の放出によって正に帯電する。
さらに確実に反射鏡の多層膜を正に帯電させるには、いずれかの方法によって正の電荷を帯電させた物体を、外部と絶縁させた状態に維持しながら、反射鏡の多層膜に接触させることにより、反射鏡の多層膜に正の電荷を帯電させてもよい。たとえば、以下の方法による。ガラス棒を絹布でこすって、ガラス棒に正の電荷を帯電させる。このガラス棒を、外部と絶縁させた状態に維持しながら、反射鏡の多層膜に接触させて、反射鏡の多層膜に正の電荷を帯電させる。
本実施形態によれば、反射鏡の多層膜を外部と絶縁するだけで、その他の設備が不要であり、容易に上記の本発明の課題を達成することができる。
図2は、本発明の第2の実施形態によるEUV光露光装置の、反射鏡(ミラー)の構成を示す概要図である。基板105ならびにシリコン(Si)の層101およびモリブデン(Mo)の層103からなる多層膜の構成は、第1の実施形態と同様である。本実施形態は、正の電荷109を多層膜に帯電させるのに、開閉スイッチ113によって多層膜に接続された電圧源111を備えている点が第1の実施形態と異なる。電圧源の電位は、たとえば1kVとする。
多層膜表面の静電気(正電荷)は様々な理由で失われうるので、本実施形態では失われた正電荷を補うために、電圧源111を設置し、電圧が印加できるようになっている。多層膜表面の正電荷の帯電状態を確認するためには、電位計測を行う。静電気は一般的に高電圧であるが電荷量は少ない。このような静電気の測定を一般的な接触型電圧計で行うと、静電気が電圧計を通ってリークするなどの計測上の問題が生じる。したがって、電位計測には、たとえば、静電容量型などの非接触の電位計を用いればよい。
本実施形態によれば、反射鏡の多層膜表面の電位計測に基づいて、必要なときに開閉スイッチ113を閉じて電圧源111から反射鏡の多層膜に正の電荷109を供給すればよいので、効率よく正の電荷109を維持することができる。
図3は、図2に示した電圧源111および開閉スイッチ113を含む、第2の実施形態の露光装置の投影光学系を示す図である。反射鏡M5に、開閉スイッチ113を介して電圧源111が接続され、反射鏡M5の多層膜に正の電荷109が帯電している。図3には、示していないが、他の反射鏡M1乃至M4およびM6に、開閉スイッチを介して電圧源を接続してもよい。図3の投影光学系は、反射鏡M5に、開閉スイッチ113を介して電圧源111が接続され、反射鏡M5の多層膜に正の電荷が帯電している点を除いて、図5に示した従来のEUV光露光装置の投影光学系と同じである。また、露光装置の図示していない部分の構成は、図5に示した従来のEUV光露光装置と同じである。
第1および第2の実施形態に共通する点として、反射鏡の多層膜近傍における有機物物質の分圧が高いために、カーボン被膜が厚くなることが想定される反射鏡の多層膜面にはより大量の正電荷を帯電させておくとより効果的である。
以下、本発明に係わる半導体デバイスの製造方法の実施の形態の例を説明する。図4は、本発明の半導体デバイス製造方法の実施形態の一例を示すフローチャートである。この例の製造工程は以下の各工程を含む。
(1)ウエハを製造するウエハ製造工程(またはウエハを準備するウエハ準備工程)
(2)露光に使用するマスクを製作するマスク製造工程(またはマスクを準備するマスク準備工程)
(3)ウエハに必要な露光処理を行うウエハプロセッシング工程
(4)ウエハ上に形成されたチップを1個ずつ切り出し、動作可能にならしめるチップ組立工程
(5)できたチップを検査するチップ検査工程
なお、それぞれの工程はさらにいくつかのサブ工程からなっている。
これらの主工程の中で、半導体デバイスの性能に決定的な影響を及ぼす主工程がウエハプロセッシング工程である。この工程では、設計された回路パターンをウエハ上に順次積層し、メモリやMPUとして動作するチップを多数形成する。このウエハプロセッシング工程は、以下の各工程を含む。
(1)絶縁層となる誘電体膜や配線部、あるいは電極部を形成する金属薄膜などを形成する薄膜形成工程(CVDやスパッタリングなどを用いる)
(2)この薄膜層やウエハ基板を酸化する酸化工程
(3)薄膜層やウエハ基板などを選択的に加工するためにマスク(レクチル)を用いてレジストのパターンを形成するリソグラフィ工程
(4)レジストパターンにしたがって薄膜層や基板を加工するエッチング工程(たとえばドライエッチング技術を用いる)
(5)イオン・不純物注入拡散工程
(6)レジスト剥離工程
(7)さらに加工されたウエハを検査する検査工程
なお、ウエハプロセッシング工程は必要な層数だけ繰り返し行い、設計通り動作する半導体デバイスを製造する。
本実施形態においては、上記リソグラフィ工程において、上述のEUV光露光装置を使用している。よって、露光装置を長期間にわたって連続運転可能となるので、微細パターンを有するデバイスをスループットよく製造することができる。また、投影光学系を構成する光学素子の反射特性などが光学素子の部分によって変わることが少なくなるので、露光性能が劣化するのを抑えることができる。
本発明の第1の実施形態によるEUV光露光装置の、反射鏡(ミラー)の構成を示す概要図である。 本発明の第2の実施形態によるEUV光露光装置の、反射鏡(ミラー)の構成を示す概要図である。 第2の実施形態の露光装置の投影光学系を示す図である。 本発明の半導体デバイス製造方法の実施形態の一例を示すフローチャートである。 EUV光を使用した露光装置の投影光学系の概要を示す図である。
符号の説明
1…露光光、2…ウエハ、3…レジスト、109…正の電荷、111…電圧源、113…開閉スイッチ、37…投影光学系

Claims (5)

  1. 極端紫外光を用いて、マスクに形成されたパターンを感応基板上に露光転写するための複数の反射鏡を有する投影光学系を備えた露光装置であって、
    前記複数の反射鏡のうち、少なくとも1つの反射鏡を外部と絶縁した状態で保持することを特徴とする露光装置。
  2. 極端紫外光を用いて、マスクに形成されたパターンを感応基板上に露光転写するための複数の反射鏡を有する投影光学系を備えた露光装置であって、
    前記複数の反射鏡のうち、少なくとも1つの反射鏡を外部と絶縁した状態で保持し、当該少なくとも1つの反射鏡の表面に正の電荷を帯電させておくことを特徴とする露光装置。
  3. 請求項1に記載の露光装置であって、少なくとも1つの前記反射鏡に、開閉スイッチを介して接続された電圧源をさらに有することを特徴とする露光装置。
  4. 請求項1から3のいずれかに記載の露光装置を使用して、マスクに形成された露光パターンをウエハ等の感応基板上に露光転写することを特徴とする露光方法。
  5. 請求項4に記載の露光方法を用いて、マスクに形成されたパターンを感応基板に露光転写する工程を有することを特徴とする微細パターンを有するデバイスの製造方法。

JP2005020003A 2005-01-27 2005-01-27 露光装置、露光方法、および微細パターンを有するデバイスの製造方法 Pending JP2006210602A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005020003A JP2006210602A (ja) 2005-01-27 2005-01-27 露光装置、露光方法、および微細パターンを有するデバイスの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005020003A JP2006210602A (ja) 2005-01-27 2005-01-27 露光装置、露光方法、および微細パターンを有するデバイスの製造方法

Publications (1)

Publication Number Publication Date
JP2006210602A true JP2006210602A (ja) 2006-08-10

Family

ID=36967108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005020003A Pending JP2006210602A (ja) 2005-01-27 2005-01-27 露光装置、露光方法、および微細パターンを有するデバイスの製造方法

Country Status (1)

Country Link
JP (1) JP2006210602A (ja)

Similar Documents

Publication Publication Date Title
US8848163B2 (en) Photoresist materials and photolithography processes
JP4036849B2 (ja) Euvリソグラフィ用基板塗被方法およびフォトレジスト層を有する基板
US7906270B2 (en) Reduced pitch multiple exposure process
TWI413160B (zh) 半導體微影製程
JP4445438B2 (ja) リソグラフィ装置およびデバイス製造方法
CN110389500B (zh) 半导体装置的制造方法
JP2006352134A (ja) Euvマスクおよびその製造方法
CN109521648B (zh) Euv光刻中的湿度控制
JP5752786B2 (ja) 多層ミラー及びそのロバスト性を改善する方法
KR101713382B1 (ko) 극자외선 리소그래피 공정 및 마스크
JP2005244015A (ja) 露光装置、露光装置の光学素子の光洗浄方法、及び微細パターンを有するデバイスの製造方法
KR101625934B1 (ko) 다층 미러 및 리소그래피 장치
JP2004153279A (ja) リソグラフィ装置およびデバイス製造方法
JP4319642B2 (ja) デバイス製造方法
US8004657B2 (en) Exposure apparatus, control method for the same, and device manufacturing method
JP2006245255A (ja) 露光装置、露光方法、および微細パターンを有するデバイスの製造方法
JP2011077480A (ja) 反射型マスク、露光装置及び露光方法並びにデバイス製造方法
JP2005347757A (ja) かすめ入射ミラー、かすめ入射ミラーを含むリソグラフィ装置、かすめ入射ミラーを提供する方法、かすめ入射ミラーのeuv反射を強化する方法、デバイス製造方法およびそれによって製造したデバイス
JP2006208694A (ja) 光学素子、露光装置、露光方法、および微細パターンを有するデバイスの製造方法
JP2006210602A (ja) 露光装置、露光方法、および微細パターンを有するデバイスの製造方法
CN112445070A (zh) 具有低活化能配体或高显影剂溶解性配体的euv光致抗蚀剂
JP2009162851A (ja) マスク及びその製造方法、露光方法及び装置、並びにデバイス製造方法
JP2006210604A (ja) 露光装置、露光方法、および微細パターンを有するデバイスの製造方法
TWI768718B (zh) 製造半導體元件的方法
JP2011204864A (ja) 反射型マスク、露光装置、露光方法及びデバイス製造方法