JP2006207078A - Weft stretchable lining fabric - Google Patents

Weft stretchable lining fabric Download PDF

Info

Publication number
JP2006207078A
JP2006207078A JP2005022455A JP2005022455A JP2006207078A JP 2006207078 A JP2006207078 A JP 2006207078A JP 2005022455 A JP2005022455 A JP 2005022455A JP 2005022455 A JP2005022455 A JP 2005022455A JP 2006207078 A JP2006207078 A JP 2006207078A
Authority
JP
Japan
Prior art keywords
weft
lining
warp
fabric
yarn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005022455A
Other languages
Japanese (ja)
Inventor
Toshihiko Matsui
敏彦 松井
Ryozo Ueno
良造 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Fibers Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Fibers Corp filed Critical Asahi Kasei Fibers Corp
Priority to JP2005022455A priority Critical patent/JP2006207078A/en
Publication of JP2006207078A publication Critical patent/JP2006207078A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a stretchable lining fabric having large elongation in the weft direction and excellent comfortableness to wear. <P>SOLUTION: The weft stretchable lining fabric is obtained by using polyester filaments or cellulosic filaments as a warp yarn and substantially non-twist polyester filaments or cellulose filaments as a weft yarn, providing 2,000-15,000 twist multiplier (K) and twisting the warp yarn. Thereby, mutual single filaments used in the warp yarn are converged to change the cross-sectional shape of the warp yarn into a circular form. Thereby, bending hardness of the weft yarn to the warp yarn is raised. As a result, the crimp ratio of the weft yarn of a woven fabric is readily imparted. A grey fabric in which the weft yarn is readily crimped is subjected to a width reduction treatment in a stage before or after scouring to thereby improve the weft elongation of the lining fabric of the final product. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、緯方向に高い伸びを有するストレッチ裏地に関する。   The present invention relates to a stretch lining having high elongation in the weft direction.

近年、衣料分野に於いても着用快適感を求める気運が高まり、ストレッチを謳った商品が数多く見られるようになった。特に表地として使われる織物のストレッチ化が進行し、それらに併せるかたちで裏地や芯地等の副資材にもストレッチが要求されるようになった。そのため裏地でも各種方法でストレッチを持たせた商品が出つつある。例えば、糸自体がゴムのように伸びるスパンデックス糸を芯糸に用い、その周りにマルチフィラメントを巻きつけたカバリング糸を利用する方法が一般的に知られている。この方法で得られた裏地は地厚感やふかつき感が出易く、且つ、滑りも悪くなるため裏地としてはそれ程波及していない。他の手段としては仮撚加工糸の嵩高性や捲縮性を利用したものや仮撚加工糸の追撚糸や撚糸の解撚力を利用したもの等が挙げられる。これらの方法で得られる裏地もふかつき感やザラツキ感、シボ感等が発現し、裏地としての品位は低いものであった。   In recent years, in the clothing field, there has been an increase in the desire for comfortable wearing, and many stretched products have been seen. In particular, stretches of fabrics used as outer fabrics have progressed, and in addition to these, stretches have been required for auxiliary materials such as lining and interlining. For this reason, products that are stretched by various methods are emerging on the lining. For example, a method of using a covering yarn in which a spandex yarn, in which the yarn itself extends like rubber, is used as a core yarn and a multifilament is wound around the core yarn is generally known. The lining obtained by this method does not spread as much as the lining because it easily gives a sense of depth and wiping, and the slippage also deteriorates. Other means include those utilizing the bulkiness and crimping properties of false twisted yarns, those using additional twisted yarns of false twisted yarns, and untwisting force of twisted yarns. The lining obtained by these methods also exhibited a feeling of wiping, rough feeling, graininess, etc., and the quality of the lining was low.

一方、特許文献1には、上記品位を損ねることなく緯方向に5〜12%のストレッチを有する裏地が開示されている。該文献に開示された裏地の緯ストレッチ率は実質7−8%が中心である。この特許が出願された時代の表地にとって、そのストレッチ率は10%前後が平均であった為、上記裏地の伸び率でも充分対応可能であったものと推測される。しかしながら最近の表地のストレッチは15%〜20%前後ものが増えてきており、前述の裏地では表地の伸びに充分対応することが出来ないのが現実となりつつある。そのためこれら課題を克服するためには裏地自体のストレッチ率の底上げが必要不可欠となっている。このように現実的には良好な滑り性とストレッチ性を充分満たし、かつ、最近の表地のストレッチに対応できる裏地が無いのが実状である。
国際公開 WO99/31309号明細書
On the other hand, Patent Document 1 discloses a lining having a stretch of 5 to 12% in the weft direction without impairing the quality. The weft stretch rate of the lining disclosed in this document is mainly 7-8%. For the dress material at the time when this patent was filed, the average stretch rate was around 10%, so it is presumed that the stretch rate of the above-mentioned lining was sufficient. However, the recent stretch of the outer material has increased by about 15% to 20%, and it is becoming a reality that the above-mentioned lining cannot sufficiently cope with the growth of the outer material. Therefore, in order to overcome these problems, it is essential to raise the stretch rate of the lining itself. As described above, in reality, there is no lining that can sufficiently satisfy good slipperiness and stretchability and that can cope with the recent stretch of the outer material.
International Publication No. WO99 / 31309 Specification

本発明の目的は、滑り性を損ねることなく緯方向の伸びが大きなストレッチ性を有する着用快適性に優れた裏地を提供することにある。すなわち、かかる滑り性やストレッチ性能の他に裏地の表面構造の尺度となるクリンプ指数を制御することにより着用時の着脱性や縫目滑脱性、及び、動作追従性などが優れた裏地の提供を可能ならしめるものである。本発明の更なる目的は、前記機能を有するポリエステル系長繊維100%の裏地、ポリエステル系長繊維とセルロース系長繊維の交織裏地、及び、セルロース系長繊維100%の裏地を提供することにある。   An object of the present invention is to provide a lining excellent in wearing comfort having stretchability having a large elongation in the weft direction without impairing slipperiness. In other words, in addition to slipperiness and stretch performance, by controlling the crimp index, which is a measure of the surface structure of the lining, it is possible to provide a lining that is excellent in detachability and seam slipperiness at the time of wearing, and motion followability. If possible. A further object of the present invention is to provide a polyester-based long fiber 100% lining, a polyester-based long fiber and cellulosic continuous fiber lining, and a cellulose-based long fiber 100% lining having the above functions. .

本発明者らは前記課題を解決するために、緯伸び率に直接反映する緯糸のクリンプ率を如何に高めるかを詳細に検討した結果、経糸に適度な撚りを掛けることで生機に効率的に緯糸クリンプ率を付与することが可能となり、そしてその付与された生機クリンプ率の高さが前駆体となって、後工程(精練・熱処理・セット)でストレッチ率に繋がる緯糸クリンプ率が容易に増加することを見出し、本発明に到達したものである。ここで言うクリンプ率とは、生機や最終仕上げ品の織物の緯方向に20cmの印を付けた後、織物から取り出した緯糸に繊度の1/10の荷重を掛け、その時の印間の長さ(L)から次式で算出される値である。
クリンプ率(%)={(L−20)/20}×100・・・(3)
In order to solve the above problems, the present inventors have studied in detail how to increase the crimp rate of the weft yarn that directly reflects the weft elongation rate, and as a result, the warp yarn is efficiently twisted by applying an appropriate twist. It becomes possible to give the weft crimp rate, and the high crimp rate of the applied raw machine becomes a precursor, and the weft crimp rate that leads to the stretch rate in the subsequent process (scouring, heat treatment, set) easily increases The present invention has been found. The crimp rate referred to here is the length between the marks at the time when a weigh of 1/10 of the fineness is applied to the wefts taken out from the fabric after marking 20cm in the weft direction of the fabric of the raw machine or the final finished product. This is a value calculated from (L) by the following equation.
Crimp rate (%) = {(L-20) / 20} × 100 (3)

すなわち、本発明は、下式(4)で定義される撚り係数(K)が2000〜15000のポリエステル系長繊維又はセルロース系長繊維を経糸に、実質的に無撚のポリエステル系長繊維又はセルロース系長繊維の原糸を緯糸に用いて成る織物に於いて、かかる織物の緯伸び率が8〜20%、織物表面の動摩擦係数が0.20〜0.40、下式(5)で定義されるクリンプ指数(C)が0.007〜0.015であることを特徴とする緯ストレッチ裏地から構成される。
K=(0.9×D)0.5×T (4)
C=製品の緯糸のクリンプ率/{M×(D)0.5} (5)
式中、Dは経糸繊度(dtex)、Tは撚糸回数(t/m)、Mは経糸密度(本/インチ)を意味する。
また、緯伸び率と動摩擦係数は後述するKES(カトーテック社製)法で計測される値を意味する。
That is, in the present invention, a polyester-based long fiber or cellulose-based long fiber having a twist coefficient (K) defined by the following formula (4) of 2000 to 15000 is used as a warp, and a substantially untwisted polyester-based long fiber or cellulose. In a woven fabric that uses the base yarn of the long fiber as the weft, the weft elongation of the woven fabric is 8-20%, the dynamic friction coefficient of the woven fabric surface is 0.20-0.40, defined by the following formula (5) The crimp index (C) is 0.007 to 0.015, and is composed of a weft stretch lining.
K = (0.9 × D) 0.5 × T (4)
C = crimp rate of product weft / {M × (D) 0.5 } (5)
In the formula, D means warp fineness (dtex), T means the number of twists (t / m), and M means warp density (lines / inch).
Further, the weft elongation rate and the dynamic friction coefficient mean values measured by a KES (manufactured by Kato Tech Co., Ltd.) method described later.

本発明の裏地織物は、適度なストレッチ性を有するので着用時の圧迫性が低く運動追従性にも優れる。また、滑脱が起こり難く保型性にも優れる。また、滑り性も良好なため着脱が容易であるばかりか動き易さの点でも優れる。   Since the lining fabric of the present invention has an appropriate stretch property, the compressibility at the time of wearing is low and the motion following property is also excellent. In addition, slipping hardly occurs and the shape retention is excellent. Moreover, since the slipperiness is also good, it is not only easy to attach and detach, but also excellent in terms of ease of movement.

本発明について、以下具体的に説明する。
本発明の第一の特徴は、撚り係数(K)が2000〜15000のポリエステル系長繊維又はセルロース系長繊維を経糸に、実質的に無撚のポリエステル系長繊維の原糸又はセルロース系長繊維の原糸を緯糸に用いる点にある。
緯糸原糸使いの場合、緯伸び率は緯糸のクリンプ率にほぼ対応することから如何に緯糸に効率的にクリンプを付けるかが重要となる。本発明者らは種々の検討からポリエステル系長繊維であってもセルロース系長繊維であっても生機段階での緯糸のクリンプ率の大小が後工程(精練工程、熱処理工程)で発現する緯糸のクリンプ率と相関することを見出した。すなわち、生機クリンプ率が大きいものほど最終製品の緯ストレッチ率が大きくなる。
The present invention will be specifically described below.
The first feature of the present invention is that a polyester-based long fiber or cellulose-based long fiber having a twist coefficient (K) of 2000 to 15000 is used as a warp, and a substantially untwisted polyester-based long fiber or cellulose-based long fiber. The original yarn is used for the weft.
In the case of using the weft raw yarn, the weft elongation rate substantially corresponds to the crimp rate of the weft yarn, so it is important how to efficiently crimp the weft yarn. Based on various studies, the present inventors have found that the weft yarn crimp rate in the raw machine stage is manifested in the post-process (scouring process, heat treatment process), whether it is a polyester-based long fiber or a cellulose-based long fiber. It was found to correlate with the crimp rate. That is, the greater the raw machine crimp rate, the greater the weft stretch rate of the final product.

従って、緯糸の生機クリンプ率を何らかの手段で高められれば、緯ストレッチ率を向上させることが可能となる。本願発明者らはその手段を種々検討した結果、経糸に撚りを与えることで生機の緯糸クリンプ率が向上し、それらが最終製品の織物の緯クリンプ率の向上に繋がること、すなわち、緯伸びに反映されることを見出し本発明に到達したものである。
従来の経糸と緯糸が共に長繊維の原糸からなる織物の場合、織物中の経糸と緯糸の断面形状は、長繊維を構成する数十本の単糸間の拘束力が弱いため経糸は緯糸に緯糸は経糸に押え付けられ共に扁平となる。この場合、生機の緯糸のクリンプ率は極めて低いものとなり後工程を如何に工夫しても高いストレッチを達成させることはできない。
Therefore, if the raw machine crimp rate of the weft can be increased by some means, the weft stretch rate can be improved. As a result of various investigations of the means, the inventors of the present application have improved the weft crimp rate of the raw fabric by giving twist to the warp, which leads to the improvement of the weft crimp rate of the woven fabric of the final product. It has been found that this is reflected, and the present invention has been achieved.
In the case of a woven fabric in which both the conventional warp and the weft are made of a long fiber, the cross-sectional shape of the warp and the weft in the fabric is weak because the binding force between the dozens of single yarns constituting the long fiber is weak. The weft is pressed against the warp and flattened together. In this case, the crimp rate of the weft of the living machine becomes extremely low, and a high stretch cannot be achieved no matter how the subsequent process is devised.

本発明で原糸使いでも従来技術より緯ストレッチ率が向上した技術ポイントは、(1)経糸を有撚化させることにより、経糸に使われる長繊維の単糸を収束させ経糸の断面形状を円形化せしめることで緯糸のクリンプを形成し易くしたこと、(2)経糸の有撚化で緯糸対比経糸の曲げ硬さを高め、曲げ柔かい緯糸側にクリンプを付き易くしたこと、にある。すなわち、経糸に撚糸をかけることで経糸の断面形状を真円化させると共に曲げ硬さを高め、生機段階の緯糸により一層クリンプが付き易くすることに成功し、本発明の緯ストレッチ裏地の創出が可能となった。経糸の有撚化と緯糸の原糸使いが必須要件であり、後述するが緯糸には原糸の中でも曲げ柔かいものを使用することが好ましい。   The technical points that the weft stretch rate improved even with the use of the original yarn in the present invention compared to the prior art are as follows: (1) By twisting the warp yarns, the single filaments of long fibers used for the warp yarns are converged, and the cross-sectional shape of the warp yarns is circular. This makes it easier to form crimps of weft yarns, and (2) to increase the bending hardness of the weft yarns by contrasting the warp yarns, making it easier to crimp the softer weft yarns. That is, by twisting the warp, the cross-sectional shape of the warp is rounded, the bending hardness is increased, and the weft at the raw machine stage is more easily crimped, creating the weft stretch lining of the present invention. It has become possible. Twisting of warp yarn and use of weft yarn are essential requirements. As will be described later, it is preferable to use a soft one of the weft yarns.

後述する比較例2の織物断面の電子顕微鏡写真を図1に、実施例7の織物断面の電子顕微鏡写真を図2にそれぞれ示す。これらの写真は、それぞれ染色前の精練幅入れ・乾燥後の織物を、経糸断面が現われるようにカットし、金属蒸着した後電子顕微鏡で観察した(この形態が最終仕上がり品の形態にほぼ近く、精練・仕上げ加工前の生機状態での形態もこれらと相似形態を取っている)ものであり、経糸の断面形状と緯糸のクリンプ形態を示す。経糸の断面形状を比較すると、後述する撚り係数(K)=7100である撚糸使いの実施例7と、撚り係数(K)=1050であって実質的に無撚に近い糸使いの比較例2とでは、経糸断面の形状が異なり、それに伴い緯糸のクリンプ形態も大幅に違っていることが判る。   An electron micrograph of the cross section of the fabric of Comparative Example 2 described later is shown in FIG. 1, and an electron micrograph of the cross section of the fabric of Example 7 is shown in FIG. These photographs are the scouring width before dyeing and dyeing before drying, cut so that the warp cross section appears, metallized and observed with an electron microscope (this form is almost close to the form of the final finished product, The shape in the raw machine state before scouring and finishing is similar to these), and shows the cross-sectional shape of the warp and the crimped form of the weft. Comparing the cross-sectional shapes of the warps, Example 7 using a twisted yarn having a twisting coefficient (K) = 7100, which will be described later, and Comparative Example 2 using a yarn having a twisting coefficient (K) = 1050 and substantially non-twisted. It can be seen that the shape of the cross section of the warp is different and the crimp form of the weft is significantly different.

経糸の撚糸回数は用いる緯糸の繊度等によっても変化するため、本願発明では下記式(6)で示す撚り係数(K)で規定している。
撚り係数(K)=(0.9×D)0.5×T (6)
式中、Dは経糸繊度(dtex)、Tは撚糸回数(t/m)を意味する。
本発明では2000〜15000の範囲の撚り係数(K)の糸が経糸に用いられることを特徴とする。撚り係数が2000以下の場合は無撚使いよりクリンプが形成しやすいものの、経糸断面の形状がやや扁平になるので充分なストレッチ裏地を得ることが出来ない。一方、撚り係数が15000以上になると解撚し易くなりシボの発生やふかつき感が出易くなったり、見掛けの繊度が低下するため透け感が高まったり、ハリ感が出たりするので好ましくない。
Since the number of warp twists varies depending on the fineness of the weft used, etc., in the present invention, it is defined by the twist coefficient (K) shown by the following formula (6).
Twist factor (K) = (0.9 × D) 0.5 × T (6)
In the formula, D means warp fineness (dtex), and T means the number of twists (t / m).
In the present invention, a yarn having a twist coefficient (K) in the range of 2000 to 15000 is used as the warp. When the twisting coefficient is 2000 or less, crimping is easier to form than using untwisting, but the shape of the warp cross section becomes slightly flat, so that a sufficient stretch lining cannot be obtained. On the other hand, when the twisting coefficient is 15000 or more, untwisting is easy, and it becomes easy to generate wrinkles and a feeling of wiping, and the apparent fineness is lowered, so that the sense of sheer is increased and the feeling of tension is not preferable.

本発明の経糸に用いられるポリエステル系長繊維とは、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリトリメチレンテレフタレートなどのホモポリマー、これらポリマーらのポリエステル共重合体などの繊維形成性を有するポリエステル重合体からなる繊維が用いられる。滑り性等の面からポリエチレンテレフタレートからなる繊維が好ましい。繊維中に制電剤、難燃剤、耐熱剤、耐光剤、酸化チタン等の添加剤が添加されていても何ら差し支えはない。繊維の断面形状は特に制限されるものではなく、丸型の他に三角型、L型、Y型、T型、の多角形型でも良いし、多葉型、中空型や扁平型、不定形型など任意である。   The polyester-based long fibers used in the warp of the present invention are composed of a polyester polymer having fiber-forming properties such as a homopolymer such as polyethylene terephthalate, polybutylene terephthalate, polytrimethylene terephthalate, and a polyester copolymer of these polymers. Fiber is used. A fiber made of polyethylene terephthalate is preferable in terms of slipperiness and the like. There may be no problem even if additives such as antistatic agents, flame retardants, heat-resistant agents, light-proofing agents, and titanium oxide are added to the fibers. The cross-sectional shape of the fiber is not particularly limited, and may be a polygonal shape such as a triangular shape, an L shape, a Y shape, or a T shape in addition to a round shape, a multileaf shape, a hollow shape, a flat shape, or an indeterminate shape. The type is arbitrary.

また、経糸に用いられるセルロース系長繊維は、銅アンモニア法レーヨン、ビスコース法レーヨン、ポリノジックレーヨン、有機溶剤(NメチルモルフォリンNオキサイド)紡糸繊維やアセテート繊維などが代表例として挙げられる。
経糸に用いられるポリエステル系長繊維、セルロース系長繊維の繊度は好ましくは33〜133デシテックス(dtex)、より好ましくは56〜110dtexであり、単糸繊度は特に限定されるものではないが好ましくは0.5〜10dtex、より好ましくは0.5〜5dtexである。
一方、本発明の緯糸に使用できる繊維としては、実質的に仮撚りや撚糸等が施されていない無撚のポリエステル系長繊維又はセルロース系長繊維の原糸が挙げられる。これらの原糸は実質的に無撚であるがフィラメントを収束させるためにインターレースの付与や軽度の撚り(10〜200t/m程度)をかけたりしても構わない。
Representative examples of cellulose-based long fibers used for warp include copper ammonia rayon, viscose rayon, polynosic rayon, organic solvent (N methylmorpholine N oxide) spun fiber, acetate fiber, and the like.
The fineness of the polyester-based long fibers and cellulose-based long fibers used for the warp is preferably 33 to 133 dtex, more preferably 56 to 110 dtex, and the single yarn fineness is not particularly limited but is preferably 0. .5 to 10 dtex, more preferably 0.5 to 5 dtex.
On the other hand, examples of the fiber that can be used for the weft of the present invention include untwisted polyester-based long fibers or cellulose-based long fibers that are not substantially false twisted or twisted. Although these raw yarns are substantially untwisted, interlacing or light twisting (about 10 to 200 t / m) may be applied to converge the filament.

本発明の緯糸に用いられるポリエステル系長繊維としては、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリトリメチレンテレフタレートなどのホモポリマー、これらポリマーらのポリエステル共重合体などの繊維形成性を有するポリエステル重合体からなる繊維が用いられる。滑り性等の面からポリエチレンテレフタレートからなる繊維が好ましい。繊維中に制電剤、難燃剤、耐熱剤、耐光剤、酸化チタン等の添加剤が添加されていても何ら差し支えはない。
また、緯糸に用いられるセルロース系長繊維は、銅アンモニア法レーヨン、ビスコース法レーヨン、ポリノジックレーヨン、有機溶剤(NメチルモルフォリンNオキサイド)紡糸繊維やアセテート繊維などが挙げられる。
The polyester-based long fibers used in the wefts of the present invention are composed of polyester polymers having fiber-forming properties such as homopolymers such as polyethylene terephthalate, polybutylene terephthalate, polytrimethylene terephthalate, and polyester copolymers of these polymers. Fiber is used. A fiber made of polyethylene terephthalate is preferable in terms of slipperiness and the like. There may be no problem even if additives such as antistatic agents, flame retardants, heat-resistant agents, light-proofing agents, and titanium oxide are added to the fibers.
Examples of the cellulose-based long fibers used for the weft include copper ammonia rayon, viscose rayon, polynosic rayon, organic solvent (N methylmorpholine N oxide) spun fiber, acetate fiber, and the like.

緯糸に用いられるポリエステル系長繊維、セルロース系長繊維の繊度は好ましくは33〜133デシテックス(dtex)、より好ましくは56〜110dtexであり、単糸繊度は特に限定されるものではないが好ましくは0.5〜10dtex、より好ましくは0.5〜5dtexである。
繊維の断面形状は特に制限されるものではないが、緯伸びを効率良く発現させるには曲げ柔かい原糸を用いた方が望ましい。丸断面形状の場合は単糸繊度が小さいすなわち単糸径が小さい方が好ましいし、扁平度の高い原糸を用いることが特に好ましい。扁平形状は特に限定されないが、単なる扁平型ではなくW型、I型、ブーメラン型、波型、串団子型等、実質的に扁平であり特定の方向に曲げ柔かい断面構造を有する原糸が特に好ましい。
The fineness of polyester-based long fibers and cellulose-based long fibers used for wefts is preferably 33 to 133 dtex, more preferably 56 to 110 dtex, and the single yarn fineness is not particularly limited, but preferably 0. .5 to 10 dtex, more preferably 0.5 to 5 dtex.
The cross-sectional shape of the fiber is not particularly limited, but it is desirable to use a soft yarn that is flexible in order to develop the weft elongation efficiently. In the case of a round cross-sectional shape, it is preferable that the single yarn fineness is small, that is, the single yarn diameter is small, and it is particularly preferable to use a raw yarn having a high flatness. Although the flat shape is not particularly limited, the raw yarn having a cross-sectional structure that is substantially flat and flexible in a specific direction, such as W-type, I-type, boomerang type, corrugated type, skewer type, etc. preferable.

経糸と緯糸の素材の組み合わせには、ポリエステル系長繊維100%の裏地、セルロース系長繊維100%の裏地、および、ポリエステル系長繊維とセルロース系長繊維の交織裏地2種、計4種の組み合わせが存在するが何ら制限はない。
本発明の第二の特徴は、織物の緯伸び率が8〜20%、織物表面の動摩擦係数が0.20〜0.40、クリンプ指数(C)が0.007〜0.015である点にある。
The combination of warp and weft materials consists of 100% polyester long fiber lining, 100% cellulosic long fiber lining, and 2 types of polyester / fiber long interwoven lining. There is no limit.
The second feature of the present invention is that the weft elongation of the fabric is 8 to 20%, the dynamic friction coefficient of the fabric surface is 0.20 to 0.40, and the crimp index (C) is 0.007 to 0.015. It is in.

本発明の目的である着用時の縫目の滑脱や圧迫感を抑制ならびに着用快適性に優れた裏地を得るためには、裏地の緯方向の伸びと裏地表面の動摩擦係数が上記の特定範囲に設計された織物でなければならない。すなわち、本発明の裏地の緯伸びは8〜20%が好ましく、更に好ましくは10〜20%、特に好ましくは12〜20%である。本発明裏地の緯伸び率は、撚り係数(経糸繊度、撚り数)や織物密度や加工条件(幅入れ率)によって制御・調整することができる。   In order to suppress the slipping of the seams and the feeling of pressure at the time of wearing, which is the object of the present invention, and to obtain a lining having excellent wearing comfort, the elongation in the weft direction of the lining and the dynamic friction coefficient of the lining surface are within the above specified range. Must be a designed fabric. That is, the weft elongation of the backing of the present invention is preferably 8 to 20%, more preferably 10 to 20%, and particularly preferably 12 to 20%. The weft elongation of the lining of the present invention can be controlled and adjusted by the twist coefficient (warp fineness, number of twists), fabric density, and processing conditions (width filling rate).

従来の5〜10%程度の緯伸びを有する表地に対して、裏地に必要とされる緯伸びは「きせ(着心地を阻害しないために表地のサイズより大きめに裏地を裁断し縫目近辺で裏地を折り返し、裏地にゆとりを持たせること)」の存在や表地の保型性を考慮すると、表地の緯伸びの7割程度(3.5〜7%)で充分対応可能であるが、前述したように最近の表地の伸びは15〜20%前後のものが主流となりつつあり、これらのストレッチ表地に対応するためには裏地としてそれ以上の緯伸びが必要である。本発明者らが緯伸び15%の表地に緯伸びの異なる裏地を付けて着用試験を行った結果、裏地の伸びとしては8%以上あれば動作時にも圧迫感や不快感を感じることがないことを確認した。 一方、裏地の緯伸びが20%を超えると緯糸のクリンプが大きくなるなるため、表面のざらつきが増し滑り性が低下するので着用快適感が損なわれ望ましくない。   The stretch required for the lining is "Kise (cutting the lining larger than the size of the dress so as not to impair the comfort, and near the seams. Folding the lining and giving the lining a clearness) ”and the shape retention of the outer material are taken into account, but about 70% (3.5 to 7%) of the outer elongation of the outer material is sufficient. As described above, the recent growth of the outer material is about 15 to 20%, and in order to cope with these stretch outer materials, it is necessary to further extend the weft as the lining material. As a result of the wearing test with the lining having different weft elongation on the outer surface of 15% weft elongation, the present inventors do not feel pressure or discomfort during operation if the lining elongation is 8% or more. It was confirmed. On the other hand, if the weft elongation of the lining exceeds 20%, the crimp of the weft yarn becomes large, which increases the roughness of the surface and reduces the slipperiness.

また、裏地として必要とされる性能であるホツレ耐久性や緯糸の目よれ等を満足するためには、(7)式で示されるクリンプ指数(C)がある特定の範囲に収まっていることが望ましい。
クリンプ指数(C)=製品の緯糸のクリンプ率/{M×(D)0.5} (7)
式中、Dは経糸繊度(dtex)、Mは経糸密度(本/インチ)を意味する。
クリンプ指数は、織物の緯伸びと経糸のカバーファクターに関して裏地の表面構造を特定する尺度である。本発明裏地の織物単位でのクリンプ指数としては0.007〜0.015の範囲にあることが好ましい。0.007未満になると緯糸のクリンプ率が低く緯伸びが8%未満の裏地となったり、経糸密度が多すぎたり経糸繊度が太すぎると風合いが硬くなるので好ましくない。一方、0.015を越える場合は緯糸のクリンプ率が大きすぎるか経糸密度が少なすぎたり経糸繊度が小さすぎて緯糸の緩んだ織物構造となるため目よれやホツレが発生し易くなるので好ましくない。
In addition, in order to satisfy the hot endurance and the wetting of the wefts that are required as the lining, the crimp index (C) represented by the equation (7) is within a certain range. desirable.
Crimp index (C) = crimp rate of product weft / {M × (D) 0.5 } (7)
In the formula, D means warp fineness (dtex), and M means warp density (lines / inch).
The crimp index is a measure that specifies the surface structure of the backing with respect to the weft elongation of the fabric and the cover factor of the warp. The crimp index in the woven fabric unit of the present invention is preferably in the range of 0.007 to 0.015. If it is less than 0.007, the crimp ratio of the weft is low and the weft elongation is less than 8%, the warp density is too high, or the warp fineness is too thick. On the other hand, if it exceeds 0.015, the crimp ratio of the weft is too large or the warp density is too low or the warp fineness is too small, resulting in a loosely wefted fabric structure, which is likely to cause glaring and fraying. .

一方、着用快適感を左右する裏地特性として滑り性が挙げられるが、それらを満足なものにするためには裏地の動摩擦係数を0.20〜0.40の範囲にすることが必要である。緯伸び率と比例して動摩擦係数も高くなる傾向にあるが、0.40以下であれば着用感を損ねるものではない。0.4以上になると着脱性や肌触り性が悪く裏地としては好ましくない。また、0.20未満の場合、例えばスカートを着用して椅子等に腰掛けた場合に、表地や素肌やパンティストキングなどとの滑りが良すぎる為に、スカートの裾部などがずれ易くなったり体勢が崩れ易くなったりするなどの支障をきたすので好ましくない。   On the other hand, the slidability is mentioned as a lining characteristic that affects the feeling of wearing comfort, but in order to satisfy them, the dynamic friction coefficient of the lining needs to be in the range of 0.20 to 0.40. The coefficient of dynamic friction tends to increase in proportion to the rate of weft elongation, but if it is 0.40 or less, the feeling of wearing is not impaired. When it is 0.4 or more, the detachability and the touch are poor, which is not preferable as a lining. In addition, when it is less than 0.20, for example, when wearing a skirt and sitting on a chair, etc., because the sliding with the outer material, bare skin, pantyst king, etc. is too good, the skirt's hem and the like are easily displaced This is not preferable because it causes troubles such as easy to collapse.

本発明の裏地の織物組織としては、平織、綾織、朱子織などが挙げられ、何れの織組織を採用するかは裏地の用途領域、要求特性などによって適宜決定すればよい。例えば、婦人服に関しては、薄くてソフトな風合いが好まれることから、特に平組織の裏地とすることが好ましいし、紳士服の場合には、滑りとある程度の厚み感が必要となるので綾組織の裏地とすることが好ましい。   Examples of the woven fabric structure of the lining of the present invention include plain weave, twill weave and satin weaving, and which woven structure is adopted may be appropriately determined depending on the use area of the lining and required characteristics. For example, for women's clothing, a thin and soft texture is preferred, so it is particularly preferable to use a plain tissue lining. It is preferable to use as a lining.

本発明の裏地は後述する方法によって製造することができる。製造法は基本的には引用文献1に記載されている方法と同様で、生機を処理するに当たって生機の幅に対して精練前又は精練後に5〜30%の幅入れ熱処理を行なえばよい。すなわち、緯方向(幅方向)より経方向がより緊張状態となる状態で幅入れ処理することにより、緯糸密度の増加を極力抑えながら経糸密度の増加に伴う織物の幅方向の組織収縮(緯糸にクリンプを形成させる)を起こさせることにより達成できるものである。   The backing of the present invention can be produced by the method described below. The production method is basically the same as the method described in the cited document 1, and when the raw machine is processed, the width of the raw machine may be 5-30% before or after scouring. In other words, by performing the width insertion process in a state where the warp direction is more tensioned than the weft direction (width direction), the fabric shrinkage in the width direction of the fabric accompanying the increase in the warp density while suppressing the increase in the weft density as much as possible. Can be achieved by causing a crimp to form).

緯糸がポリエステル系長繊維の場合、生機織物を精練前又は精練後に生機幅に対して5〜30%の幅入れした状態で160℃〜210℃の熱処理を行うことで本発明裏地を達成することができる。これは、生機織物中に形成された緯糸のクリンプと、ポリエステル系長繊維の熱収縮率とを利用して、緯糸に高度にクリンプを形成させて緯伸びを発現させる原理からなる。例えば、織物の加工時に熱処理機として一般的に用いられているピンテンター型のヒートセッターで熱処理する場合、製織後または精練後の織物の両端を固定した状態で熱処理するが、その固定した幅を製織後または精練後の織物幅より狭くして、且つ、経方向により緊張させた状態で処理すればよい。ここで精練とは、製織後の織物に付着している油剤や経糸糊剤などを除去する工程であり、この精練で用いられる処理液としては、水または界面活性剤とアルカリを含む水溶液がよい。装置的には、織物の精練で一般的に使用されているオープンソーパー型連続精練機、液流染色機、浴中懸垂型連続精練機、ウインス精練機、ソフサ精練機などを用いればよい。   When the weft is a polyester-based continuous fiber, the lining of the present invention is achieved by performing heat treatment at 160 ° C. to 210 ° C. in a state where the raw fabric is put into a width of 5 to 30% before or after scouring. Can do. This is based on the principle that the weft is formed in the weft by using the crimp of the weft formed in the raw fabric and the heat shrinkage rate of the polyester-based long fiber to develop the weft. For example, when heat treatment is performed with a pin tenter type heat setter that is generally used as a heat treatment machine when processing a fabric, the heat treatment is performed with both ends of the fabric after weaving or scouring fixed, but the fixed width is woven. What is necessary is just to process in the state made narrower than the textile width after or after scouring, and being strained in the warp direction. Here, scouring is a process of removing oils and warp glues adhering to the woven fabric after weaving, and the treatment liquid used in this scouring is preferably water or an aqueous solution containing a surfactant and an alkali. . As an apparatus, an open soap type continuous scouring machine, a liquid dyeing machine, a suspension continuation type scouring machine, a wins scouring machine, a soft scouring machine, etc. that are generally used for scouring fabrics may be used.

幅入れ熱処理及び精練を終了した後は、裏地の一般的な加工工程である染色、仕上げ工程が適用される。風合いをよりソフトにする場合には、染色前にアルカリ減量加工を行っても差し支えない。ポリエステル系長繊維の染色加工は通常の裏地の加工方法が適用され、液流型染色機、ジッガー染色機、ビーム染色機、ウインス染色機などが使用できる。仕上げ加工についても同様で通常の裏地の加工方法を採用すればよい。この仕上げ工程で、付加的に仕上げ剤として帯電防止剤、撥水剤、吸汗剤などを付与することができる。また、織物表面の光沢、平滑性、風合いを改善するためにカレンダー処理やエンボス処理などを適用することもできる。   After finishing the width-setting heat treatment and scouring, a dyeing and finishing process, which is a general processing process for the lining, is applied. If the texture is softer, it may be subjected to alkali weight reduction before dyeing. A normal lining processing method is applied to the dyeing process of the polyester-based long fibers, and a liquid-flow dyeing machine, a jigger dyeing machine, a beam dyeing machine, a wins dyeing machine, and the like can be used. The same applies to finishing, and a normal lining processing method may be employed. In this finishing step, an antistatic agent, a water repellent, a sweat absorbing agent and the like can be additionally provided as a finishing agent. In addition, calendering or embossing can be applied to improve the gloss, smoothness and texture of the fabric surface.

緯糸にポリエステル系長繊維、経糸にセルロース系長繊維を用いた交織織物の場合の染色加工では、まず上記と同様な方法で幅入れ、精練した後にポリエステル系長繊維の染色を行う。次いで、セルロース系長繊維の染色を行う。この場合、ポリエステル系長繊維を染色した染色機と同機を用いて染色しても良いし、コールドパッドバッチ法やパッドスチーム法やジッガー法による別の染色機を用いて染色することもできる。   In the dyeing process in the case of a woven fabric using polyester long fibers for wefts and cellulose long fibers for warps, the polyester long fibers are first dyed in the same manner as described above and scoured, and then dyed. Next, cellulosic long fibers are dyed. In this case, it may be dyed using the same machine as the dyeing machine for dyeing polyester long fibers, or may be dyed using another dyeing machine using the cold pad batch method, the pad steam method, or the jigger method.

また、緯糸がセルロース系長繊維の場合、生機状態で織物に水、スチーム、アルカリ水溶液を付与した後、該織物を生機幅に対して5〜15%の幅入れした状態で100℃〜210℃の熱処理を行えばよい。これは生機織物中に形成された緯糸のクリンプとセルロース系長繊維が水によって生起する膨潤作用を最大限に利用して緯糸に高度にクリンプを形成させて緯伸び発現させる原理からなる。セルロース系長繊維が酢酸セルロースの場合は精練前に織物を生機幅に対して5〜15%の幅入れした状態で160℃〜210℃の熱処理を行えばよい。これは生機織物中に形成された緯糸のクリンプと酢酸セルロース繊維の熱収縮率とを利用して緯糸に高度にクリンプを形成させて緯伸び発現させる原理からなる。   Further, when the weft is a cellulose-based long fiber, water, steam, and an alkaline aqueous solution are applied to the woven fabric in the raw state, and then the woven fabric is placed in a width of 5 to 15% with respect to the width of the raw device. The heat treatment may be performed. This is based on the principle that the weft yarn formed in the raw fabric and the cellulose-based long fiber make maximum use of the swelling action caused by water to cause the weft yarn to form a high degree of crimp and develop the weft elongation. When the cellulosic long fibers are cellulose acetate, heat treatment at 160 ° C. to 210 ° C. may be performed in a state where the woven fabric is inserted by 5 to 15% of the width of the raw machine before scouring. This is based on the principle that the weft yarn is highly formed by using the weft crimp formed in the raw fabric and the heat shrinkage rate of the cellulose acetate fiber to develop the weft.

精練前の生機織物に水を付与するには、織物に均一に水を付与できる方法、例えば、浸漬法やスプレー法やキスロール法などが挙げられるが、加工コストや加工安定性を考慮すると浸漬法が好ましい。セルロース系長繊維の膨潤を更に大きくするために水酸化ナトリウムや水酸化カリウム、炭酸ナトリウムなどのアルカリ性化合物を10wt%程度まで添加することもできる。水付与後に熱処理機として一般的に用いられているピンテンター型のヒートセッターで熱処理する場合、製織後または精練後の織物の両端を固定した状態で熱処理するが、その固定した幅を製織後または精練後の織物幅より狭くして、且つ、経方向により緊張させた状態で処理すればよい。幅入れ熱処理及び精練を終了した後は、裏地の一般的な加工工程である染色、仕上げ工程が適用される。   In order to give water to the raw fabric before scouring, there are methods that can uniformly apply water to the fabric, for example, dipping method, spray method, kiss roll method, etc., but immersion method considering processing cost and processing stability Is preferred. In order to further increase the swelling of the cellulose-based long fibers, an alkaline compound such as sodium hydroxide, potassium hydroxide, or sodium carbonate can be added up to about 10 wt%. When heat treatment is performed with a pin tenter type heat setter, which is generally used as a heat treatment machine after water application, heat treatment is performed with both ends of the woven fabric after weaving or scouring fixed, but the fixed width is either after weaving or scouring. What is necessary is just to process in the state made narrower than the fabric width | variety of the back, and being strained by the warp direction. After finishing the width-setting heat treatment and scouring, a dyeing and finishing process, which is a general processing process for the lining, is applied.

以下、本発明を実施例で具体的に説明するが、本発明は実施例のみに限定されるものではない。尚、測定方法、評価方法等は下記の通りである。
(1)緯伸び率の評価
カトーテック(株)製のKES−FB1を用いて、20cm×20cmの織物を把持長(L)5cm、引っ張り速度0.2mm/秒で緯方向に伸長し、490N/mの応力下での伸びE(%)を次式により算出した。
E(%)=(ΔL/L)×100 (8)
ここでΔLは490N/m応力下で伸びた長さ(cm)である。
EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited only to an Example. Measurement methods, evaluation methods, etc. are as follows.
(1) Evaluation of Weft Elongation Rate Using KES-FB1 manufactured by Kato Tech Co., Ltd., a woven fabric of 20 cm × 20 cm was stretched in the weft direction with a gripping length (L) of 5 cm and a pulling speed of 0.2 mm / sec. The elongation E (%) under the stress of / m was calculated by the following formula.
E (%) = (ΔL / L) × 100 (8)
Here, ΔL is a length (cm) stretched under a stress of 490 N / m.

(2)動摩擦係数の評価
カトーテック(株)のKES−SEを用いて、金巾3号精練上がりの綿布を摩擦面寸法が1cm×1cmで重量が25gの摩擦子に取り付けて、5cm/minの速度で固定した裏地の表面上を滑らせ、その時の摩擦抵抗力から次式によって動摩擦係数(μ)を求めたものである。式中のAは測定器に掲示された摩擦抵抗力の平均値(gf)、Bは摩擦子の重量(g)をそれぞれ表わす。なお、摩擦係数は裏地の経糸方向に滑らした値と緯糸方向に滑らせたときの値の平均値を裏地の動摩擦係数とした。
動摩擦係数(μ)=A/B (9)
(2) Evaluation of Dynamic Friction Coefficient Using KES-SE of Kato Tech Co., Ltd., a cotton cloth with a scouring width of No. 3 was attached to a friction element having a friction surface size of 1 cm × 1 cm and a weight of 25 g. The coefficient of dynamic friction (μ) was obtained from the following equation from the frictional resistance force at the time of sliding on the surface of the lining fixed at speed. In the equation, A represents the average value (gf) of the frictional resistance posted on the measuring device, and B represents the weight (g) of the friction element. The friction coefficient was defined as an average value of the value of sliding in the warp direction of the lining and the value when sliding in the direction of the weft.
Coefficient of dynamic friction (μ) = A / B (9)

(3)緯糸のクリンプ率
緯糸のクリンプ率は、織物の緯糸方向に20cmの印を付けた後、織物を分解して取り出した緯糸に繊度の1/10の荷重をかけ、そのときの長さS(cm)を計測して次式により算出した。
緯糸のクリンプ率(%)={(S−20)/20}×100 ・・・(10)
(3) Weft Crimp Ratio The weft crimp ratio is the length at which the load of 1/10 of the fineness is applied to the weft taken after disassembling the fabric after marking the 20 cm mark in the weft direction of the fabric. S (cm) was measured and calculated by the following formula.
Weft crimp rate (%) = {(S-20) / 20} × 100 (10)

(4)縫目滑脱
JIS−L−1096法(B法)に準拠して測定した。着用時には緯方向に応力が加わり易いので緯方向の滑脱(緯糸が滑脱する発生する緯糸上の経糸のズレ量)を計測した。経方向10cm(幅)、緯方向17cm(長さ)のピースを長さの半分に折り、縫い代1cmで本縫いし(針11番、糸50番ポリエステル糸、5針/cm)、折り目を切断した。このピースを引っ張り試験で定荷重(5kg/インチ)の負荷を掛け、無荷重で1時間後に0.5kg/インチの荷重を掛けその時の縫目ズレ量を縫目滑脱量とした。値はn=3の平均値で算出した。
(4) Sliding of stitches Measured according to JIS-L-1096 method (B method). Since stress is easily applied in the weft direction when worn, the slippage in the weft direction (the amount of warp displacement on the weft yarn that causes the weft to slip) was measured. Fold a piece of 10cm (width) in the warp direction and 17cm (length) in the weft direction into half the length, and sew with a seam allowance of 1cm (needle No. 11, yarn No. 50 polyester yarn, 5 stitches / cm) and cut the crease did. The piece was subjected to a constant load (5 kg / inch) in a tensile test, and a load of 0.5 kg / inch was applied after 1 hour with no load, and the amount of stitch shift at that time was defined as the amount of slippage of the stitch. The value was calculated as an average value of n = 3.

以下、実施例1〜5、比較例1に於いて、経糸にポリエステル系長繊維を用いた場合の実例を開示する。
〔実施例1〕
経糸に撚り係数(K)が4260の56dtex/24fのポリエチレンテレフタレート(鞘芯構造の制電糸)、緯糸に断面形状がW型をした56dtex/30fポリエチレンテレフタレート(長径と短径の長さの比は約3:1)を用いて、経糸密度122本/インチ、緯糸密度99本/インチの平織物を製織した。
この生機をピンテンターにより、190℃×30秒の条件で生機織物幅に対して15%の幅入れを行った。次にオープンソーパー型の連続精錬機を用いて、90℃のNaOH5g/lとノニオン系界面活性剤2g/lを含む浴で処理した後、湯洗(80℃)・脱水・乾燥(120℃)し精練を行った。引き続き、パッドスチーム法(NaOH125g/l、浸透剤ネオレートNA30 10g/l、絞り率40wt%)でアルカリ減量を行った。染色は液流染色機を用い、分散染料(C.I DISPERSE BLUE 291 :1%owf)と分散剤(明成化学社製、ディスパーTL:1g/l)とPH調整剤(酢酸:0.5cc/l)からなる浴で130℃×30分染色し、その後還元洗浄を経て染色織物を得た。かかる織物を撥水剤(日華化学社製、NKガードFGN800:1wt%)と制電剤(ミヨシ油脂社製、ミュウロンAS222:1wt%)からなる水溶液を用いてパッドドライキュア法(予備乾燥100℃×1分、本乾燥180℃×30秒)で仕上げ加工を行い裏地を得た。物性結果を表1に示す。
Hereinafter, in Examples 1 to 5 and Comparative Example 1, actual examples in the case where polyester-based long fibers are used for warp are disclosed.
[Example 1]
56 dtex / 24f polyethylene terephthalate (sheath core structure antistatic yarn) having a twist coefficient (K) of 4260 for warp, and 56 dtex / 30f polyethylene terephthalate having a W-shaped cross-section for the weft (ratio of length of major axis to minor axis) Was used to weave a plain woven fabric having a warp density of 122 / inch and a weft density of 99 / inch.
This raw machine was put into a width of 15% with respect to the width of the raw machine fabric using a pin tenter under the condition of 190 ° C. × 30 seconds. Next, using an open soap type continuous refining machine, after treating in a bath containing 5 g / l of NaOH at 90 ° C. and 2 g / l of nonionic surfactant, washing with hot water (80 ° C.), dehydration and drying (120 ° C.) Scouring was done. Subsequently, alkali weight reduction was performed by the pad steam method (NaOH 125 g / l, penetrant Neolate NA30 10 g / l, drawing rate 40 wt%). For dyeing, a liquid dyeing machine was used, and a disperse dye (CI DISPERSE BLUE 291: 1% owf), a dispersant (manufactured by Meisei Chemical Co., Disper TL: 1 g / l), and a pH adjuster (acetic acid: 0.5 cc / The dyeing fabric was obtained by dyeing in a bath consisting of 1) at 130 ° C. for 30 minutes, and then subjected to reduction washing. A pad dry cure method (preliminary drying 100) is applied to the woven fabric using an aqueous solution composed of a water repellent (manufactured by Nikka Chemical Co., Ltd., NK Guard FGN 800: 1 wt%) and an antistatic agent (manufactured by Miyoshi Yushi Co., Ltd., Miuron AS222: 1 wt%). Finishing was performed at 1 ° C. × 1 minute, main drying 180 ° C. × 30 seconds) to obtain a lining. The physical property results are shown in Table 1.

〔実施例2〕
経糸に撚り係数(K)が4260の56dtex/24fのポリエチレンテレフタレート(鞘芯構造の制電糸)、緯糸に断面形状がW型をした84dtex/30fポリエチレンテレフタレート(長径と短径の長さの比は約3:1)を用いて、経糸密度117本/インチ、緯糸密度80本/インチの平織物を製織した。
この生機をピンテンターにより、195℃×30秒の条件で生機織物幅に対して18%の幅入れを行った。精練・アルカリ減量・染色・仕上げ加工は実施例1と同様の方法で行い裏地を得た。物性結果を表1に示す。
[Example 2]
56 dtex / 24f polyethylene terephthalate (sheath core antistatic yarn) with a twist coefficient (K) of 4260 for warp yarns, 84 dtex / 30f polyethylene terephthalate with a W-shaped cross section for wefts (ratio of length of major axis to minor axis) Was used to weave a plain fabric having a warp density of 117 yarns / inch and a weft density of 80 yarns / inch.
The raw machine was put in a width of 18% with respect to the width of the raw machine fabric using a pin tenter under the condition of 195 ° C. × 30 seconds. Scouring, alkali reduction, dyeing and finishing were carried out in the same manner as in Example 1 to obtain a lining. The physical property results are shown in Table 1.

〔実施例3〕
経糸に撚り係数(K)が7100の56dtex/24fのポリエチレンテレフタレート(鞘芯構造の制電糸)、緯糸に丸断面の84dtex/70fポリエチレンテレフタレートを用いて、経糸密度120本/インチ、緯糸密度82本/インチの平織物を製織した。
この生機をピンテンターにより、190℃×30秒の条件で生機織物幅に対して16%の幅入れを行った。精練・アルカリ減量・染色・仕上げ加工は実施例1と同様の方法で行い裏地を得た。物性結果を表1に示す。
Example 3
A warp yarn having a twist coefficient (K) of 7100, 56 dtex / 24f polyethylene terephthalate (an anticorrosive yarn having a sheath core structure) and a weft yarn having a round cross section of 84 dtex / 70f polyethylene terephthalate, a warp density of 120 yarns / inch, and a weft density of 82 A plain / inch plain weave was woven.
The raw machine was put in a width of 16% with respect to the width of the raw machine fabric using a pin tenter under the condition of 190 ° C. × 30 seconds. Scouring, alkali reduction, dyeing and finishing were carried out in the same manner as in Example 1 to obtain a lining. The physical property results are shown in Table 1.

〔実施例4〕
経糸に撚り係数(K)が7100の56dtex/24fのポリエチレンテレフタレート(鞘芯構造の制電糸)、緯糸に84dtex/45fのキュプラアンモニウムレーヨンを用いて、経糸密度120本/インチ、緯糸密度85本/インチの平織物を製織した。
この生機を25℃の水に約5秒浸漬した後、脱液機にて絞り率48%にしたあと連続的にピンテンターにて、製織後の織物幅に対して14%の幅入れを170℃×30秒の条件で行った。精練は実施例1と同様にオープンソーパー型連続精練機を用いて行った。染色は液流染色機を用いて130℃で60分行った。染色条件は浴比1:20、浴PH5.5、薬剤としては分散染料(C.I DISPERSE BLUE 291:1%owf)、直接染料(C.I DIRECT BLUE 291:1%owf)、分散剤(明成化学社製、ディスパーTL:1g/l)、硫酸ナトリウム50g/lを用いた。仕上げ加工はパッドドライキュア法で、樹脂にはノンホルマリン系樹脂(住友化学社製、スミテックスレジンNF−500K:5wt%)を、触媒には金属塩系触媒(住友化学社製、スミテックスACC X−110:1.5wt%)を、柔軟剤にはメチロールアミド系柔軟剤(日華化学社製、ニッカMS−1F:1wt%)を用いて、ディップ・ニップ後、予備乾燥(100℃×1分)し架橋のための熱処理(160℃×90秒)を行い、裏地を得た。物性結果を表1に示す。
Example 4
Using warp yarns with a twist coefficient (K) of 7100, 56 dtex / 24f polyethylene terephthalate (an anticorrosive yarn having a sheath core structure), and weft yarns with 84 dtex / 45f cupra ammonium rayon, a warp density of 120 / inch and a weft density of 85 A plain fabric of / inch was woven.
This green machine is immersed in water at 25 ° C. for about 5 seconds, and after a drawing rate of 48% is obtained by a dewatering machine, a width of 14% of the fabric width after weaving is continuously 170 ° C. by a pin tenter. X Performed under conditions of 30 seconds. Scouring was performed using an open soap type continuous scouring machine in the same manner as in Example 1. Dyeing was performed at 130 ° C. for 60 minutes using a liquid flow dyeing machine. The dyeing conditions were a bath ratio of 1:20, a bath pH of 5.5, a disperse dye (CI DISPERSE BLUE 291: 1% owf) as a chemical, a direct dye (CI DIRECT BLUE 291: 1% owf), a dispersant ( Meisei Chemical Co., Ltd., Disper TL: 1 g / l) and sodium sulfate 50 g / l were used. The finishing process is a pad dry cure method, the resin is a non-formalin resin (Sumitomo Chemical Co., Ltd., Smithex Resin NF-500K: 5 wt%), and the catalyst is a metal salt catalyst (Sumitomo Chemical Co., Ltd., Smithex ACC). X-110: 1.5 wt%) and methylolamide-based softener (Nikka Chemical Co., Ltd., Nikka MS-1F: 1 wt%) as the softener, followed by pre-drying (100 ° C. × 1 minute) and a heat treatment for crosslinking (160 ° C. × 90 seconds) was performed to obtain a lining. The physical property results are shown in Table 1.

〔比較例1〕
実施例1の経糸が56dtex/24fのポリエチレンテレフタレート(鞘芯構造の制電糸)の無撚使い以外は、すべて実施例1と同様の方法で行い裏地を得た。物性結果を表1に示す。
[Comparative Example 1]
A lining was obtained in the same manner as in Example 1 except that untwisted use of polyethylene terephthalate (an antistatic yarn having a sheath core structure) having a warp of 56 dtex / 24f was used. The physical property results are shown in Table 1.

〔実施例5〕
実施例3の緯糸が84dtex/36f丸型断面のポリエチレンテレフタレート使い以外は、すべて実施例2と同様の方法で行い裏地を得た。物性結果を表1に示す。
以下の実施例6〜13、比較例2〜4に於いて、経糸にセルロース系長繊維を用いた場合の実例を開示する。
Example 5
A lining was obtained in the same manner as in Example 2, except that polyethylene terephthalate was used as the weft of Example 3 having a 84 dtex / 36f round cross section. The physical property results are shown in Table 1.
In Examples 6 to 13 and Comparative Examples 2 to 4 below, actual examples in the case where cellulosic long fibers are used for warps are disclosed.

〔実施例6〜8〕
経糸に撚り係数(K)が2100(実施例6)と4260(実施例7)と7100(実施例8)の56dtex/30fのキュプラアンモニウムレーヨン、緯糸に56dtex/45fのキュプラアンモニウムレーヨンを用いて、経糸密度136本/インチ、緯糸密度103本/インチの平織物を製織した。
この生機を製織後の織物幅に対しておよそ12%の幅入れを行うためにオープンソーパー型の連続精錬機を用いて、30℃の3.15wt%NaOH水溶液(5°ボウメ)に浸漬した後、湯洗(80℃)・水洗を繰り返し脱水・乾燥(120℃)させた。実質的な幅入れ率は、撚り係数が高くなるほど高くなった(9.5%、10.2%、11.2%)。染色はコールドバッチ法で25℃で15時間行った。、染料にはビニルスルフォン系反応染料(SUMIFIX NAVY BLUE GS:1%owf)を、助剤には水酸化ナトリウム10g/lを用いた。引き続く仕上げ加工は実施例4の処方に準じて実施し、裏地を得た。但し、樹脂と触媒濃度は2倍量使用した。物性結果を表2に示す。
[Examples 6 to 8]
A warp yarn (K) having a twist coefficient (K) of 2100 (Example 6), 4260 (Example 7) and 7100 (Example 8) with a 56 dtex / 30 f cupra ammonium rayon and a weft with a 56 dtex / 45 f cupra ammonium rayon, A plain fabric having a warp density of 136 / inch and a weft density of 103 / inch was woven.
After immersing this raw machine in a 3.15 wt% NaOH aqueous solution (5 ° bow) at 30 ° C. using an open soaper type continuous refining machine in order to make a width of about 12% of the woven fabric width after weaving Then, hot water washing (80 ° C.) and water washing were repeated and dehydrated and dried (120 ° C.). The substantial width insertion ratio became higher as the twisting factor became higher (9.5%, 10.2%, 11.2%). Staining was performed by cold batch method at 25 ° C. for 15 hours. As the dye, a vinyl sulfone reactive dye (SUMIFIX NAVY BLUE GS: 1% owf) was used, and 10 g / l of sodium hydroxide was used as an auxiliary agent. Subsequent finishing was performed according to the formulation of Example 4 to obtain a lining. However, double the amount of resin and catalyst concentration was used. The physical property results are shown in Table 2.

〔比較例2〜3〕
経糸に撚り係数(K)が1060(比較例2)と16300(比較例3)の56dtex/30fのキュプラアンモニウムレーヨン、緯糸に56dtex/45fのキュプラアンモニウムレーヨンを用いて、経糸密度136本/インチ、緯糸密度103本/インチの平織物を製織した。
この生機を実施例6の方法の準じて精練・幅入れ、染色、仕上げ加工を行い、裏地を得た。物性結果を表2に示す。
[Comparative Examples 2-3]
Using 56 dtex / 30f cupra ammonium rayon with a twist coefficient (K) of 1060 (Comparative Example 2) and 16300 (Comparative Example 3) for warp, and 56 dtex / 45f cupra ammonium rayon for the weft, a warp density of 136 yarns / inch, A plain woven fabric having a weft density of 103 / inch was woven.
This raw machine was subjected to scouring / width filling, dyeing and finishing according to the method of Example 6 to obtain a lining. The physical property results are shown in Table 2.

〔実施例9〕
経糸に撚り係数(K)が14100の66dtex/36fのキュプラアンモニウムレーヨンをSSZZ2本交互使いで用い、緯糸に84dtex/54fのキュプラアンモニウムレーヨンを用いて、経糸密度118本/インチ、緯糸密度83本/インチの平織物を製織した。この生機を実施例6の方法の準じて精練・幅入れ、染色、仕上げ加工を行い、裏地を得た。物性結果を表2に示す。
Example 9
The warp yarn has a twist coefficient (K) of 14100, 66 dtex / 36 f of cupra ammonium rayon alternately used in two SSZZs, and the weft of 84 dtex / 54 f of cupra ammonium rayon, using a warp density of 118 yarns / inch and a weft density of 83 yarns / inch. Inch plain fabric was woven. This raw machine was subjected to scouring / width filling, dyeing and finishing according to the method of Example 6 to obtain a lining. The physical property results are shown in Table 2.

〔実施例10〕
経糸に撚り係数(K)が14200の84dtex/45fのキュプラアンモニウムレーヨンをSSZZ2本交互使いで用い、緯糸に84dtex/45fのキュプラアンモニウムレーヨンを用いて、経糸密度113本/インチ、緯糸密度72本/インチの平織物を製織した。この生機を実施例6の方法の準じて精練・幅入れ、染色、仕上げ加工を行い、裏地を得た。物性結果を表3に示す。
Example 10
The warp yarn has a twist coefficient (K) of 14200 with 84 dtex / 45f of cupra ammonium rayon alternately used in two SSZZs, and the weft with 84 dtex / 45f of cupra ammonium rayon with a warp density of 113 / inch and a weft density of 72 / Inch plain fabric was woven. This raw machine was subjected to scouring / width filling, dyeing and finishing according to the method of Example 6 to obtain a lining. Table 3 shows the physical property results.

〔比較例4〕
実施例10の経糸が84dtex/45fのキュプラアンモニウムレーヨンの無撚使い以外は、すべて実施例10と同様の方法で行い裏地を得た。物性結果を表3に示す。
[Comparative Example 4]
A lining was obtained in the same manner as in Example 10 except for using untwisted cupra ammonium rayon with a warp of 84 dtex / 45f. Table 3 shows the physical property results.

〔実施例11〕
経糸に撚り係数(K)が7100の56dtex/30fのキュプラアンモニウムレーヨン、緯糸に断面形状がW型をした84dtex/30fポリエチレンテレフタレート(長径と短径の長さの比は約3:1)を用いて、経糸密度136本/インチ、緯糸密度85本/インチの平織物を製織した。
この生機をピンテンターにより、190℃×30秒の条件で生機織物幅に対して12%の幅入れを行った。精練は実施例1と同様にオープンソーパー型連続精練機を用いて行った。染色は液流染色機を用いて130℃で60分行った。染色条件は浴比1:20、浴PH5.5、薬剤としては分散染料(C.I DISPERSE BLUE 291:1%owf)、直接染料(C.I DIRECT BLUE 291:1%owf)、分散剤(明成化学社製、ディスパーTL:1g/l)、硫酸ナトリウム50g/lを用いた。仕上げ加工はパッドドライキュア法で、樹脂にはノンホルマリン系樹脂(住友化学社製、スミテックスレジンNF−500K:5wt%)を、触媒には金属塩系触媒(住友化学社製、スミテックスACC X−110:1.5wt%)を、柔軟剤にはメチロールアミド系柔軟剤(日華化学社製、ニッカMS−1F:1wt%)を用いて、ディップ・ニップ後、予備乾燥(100℃×1分)し架橋のための熱処理(160℃×90秒)を行い、裏地を得た。物性結果を表3に示す。
Example 11
Use 56 dtex / 30f cupra ammonium rayon with a twist coefficient (K) of 7100 for the warp, and 84 dtex / 30f polyethylene terephthalate with a W-shaped cross section for the weft (the ratio of the length of the major axis to the minor axis is about 3: 1). A plain woven fabric having a warp density of 136 / inch and a weft density of 85 / inch was woven.
Using a pin tenter, the raw machine was placed at a width of 12% relative to the width of the raw machine fabric under the condition of 190 ° C. × 30 seconds. Scouring was performed using an open soap type continuous scouring machine in the same manner as in Example 1. Dyeing was performed at 130 ° C. for 60 minutes using a liquid flow dyeing machine. The dyeing conditions were a bath ratio of 1:20, a bath pH of 5.5, a disperse dye (CI DISPERSE BLUE 291: 1% owf) as a chemical, a direct dye (CI DIRECT BLUE 291: 1% owf), a dispersant ( Meisei Chemical Co., Ltd., Disper TL: 1 g / l) and sodium sulfate 50 g / l were used. The finishing process is a pad dry cure method, the resin is a non-formalin resin (Sumitomo Chemical Co., Ltd., Smithex Resin NF-500K: 5 wt%), and the catalyst is a metal salt catalyst (Sumitomo Chemical Co., Ltd., Smithex ACC). X-110: 1.5 wt%) and methylolamide-based softener (Nikka Chemical Co., Ltd., Nikka MS-1F: 1 wt%) as the softener, followed by pre-drying (100 ° C. × 1 minute) and a heat treatment for crosslinking (160 ° C. × 90 seconds) was performed to obtain a lining. Table 3 shows the physical property results.

〔実施例12〕
経糸に撚り係数(K)が5200の84dtex/33fのビスコース法レーヨン、緯糸に110dtex/44fのビスコース法レーヨンを用いて、経糸密度136本/インチ、緯糸密度71本/インチの綾織物を製織した。
この生機を実施例6に準拠して精練・幅入れ、染色、仕上げ加工を行い、裏地を得た。物性結果を表3に示す。
Example 12
Using a 84 dtex / 33f viscose rayon with a twist coefficient (K) of 5200 for the warp and a 110 dtex / 44f viscose rayon for the weft, a twill fabric having a warp density of 136 yarns / inch and a weft density of 71 yarns / inch is obtained. Weaved.
This raw machine was scoured, filled, dyed and finished according to Example 6 to obtain a lining. Table 3 shows the physical property results.

〔実施例13〕
経糸に撚り係数が7100の56dtex/30fのキュプラアンモニウムレーヨン、緯糸に84dtex/20fのジアセテート長繊維を用いて、経糸密度136本/インチ、緯糸密度80本/インチの平織物を製織した。
Example 13
A plain woven fabric having a warp density of 136 yarns / inch and a weft density of 80 yarns / inch was woven using 56 dtex / 30f cupra ammonium rayon having a twist coefficient of 7100 for the warp yarn and 84 dtex / 20f diacetate continuous fiber for the weft yarn.

生機を25℃の水に約5秒浸漬した後、脱液機で絞り率51%にしたあと連続的にピンテンターにて、製織後の織物幅に対して10%の幅入れを190℃×30秒の条件で行った。精練は実施例1に準拠して行った。染色はジッガー染色法で分散染料(C.I DISPERSE BLUE 291:1%owf)と分散剤(明成化学社製、ディスパーTL:1g/l)を用いて95℃で1時間ジアセテートを染めた後、直接染料(C.I DIRECT BLUE 291:1%owf)と硫酸ナトリウム50g/lを用いてキュプラアンモニウムレーヨンを染めた。仕上げ加工はパッドドライキュア法で、樹脂にはノンホルマリン系樹脂(住友化学社製、スミテックスレジンNF−500K:5wt%)を、触媒には金属塩系触媒(住友化学社製、スミテックスACC X−110:1.5wt%)を、柔軟剤にはメチロールアミド系柔軟剤(日華化学社製、ニッカMS−1F:1wt%)を用いて、ディップ・ニップ後、予備乾燥(100℃×1分)し架橋のための熱処理(160℃×90秒)を行い、裏地を得た。物性結果を表3に示す。   After immersing the raw machine in water at 25 ° C. for about 5 seconds, after reducing the drawing ratio to 51% with a dewatering machine, continuously using a pin tenter, a width of 10% with respect to the fabric width after weaving is 190 ° C. × 30 Performed under the condition of seconds. Scouring was performed according to Example 1. After dyeing diacetate with a disperse dye (CI DISPERSE BLUE 291: 1% owf) and a dispersant (manufactured by Meisei Chemical Co., Disper TL: 1 g / l) at 95 ° C. for 1 hour by the jigger dyeing method. The cupra ammonium rayon was dyed with a direct dye (C.I DIRECT BLUE 291: 1% owf) and sodium sulfate 50 g / l. The finishing process is a pad dry cure method, the resin is a non-formalin resin (Sumitomo Chemical Co., Ltd., Smithex Resin NF-500K: 5 wt%), and the catalyst is a metal salt catalyst (Sumitomo Chemical Co., Ltd., Smithex ACC). X-110: 1.5 wt%) and methylolamide-based softener (Nikka Chemical Co., Ltd., Nikka MS-1F: 1 wt%) as the softener, followed by pre-drying (100 ° C. × 1 minute) and a heat treatment for crosslinking (160 ° C. × 90 seconds) was performed to obtain a lining. Table 3 shows the physical property results.

本発明の目的は、滑り性を損ねることなく緯方向の伸びが8%以上のストレッチ裏地を提供することにあり、かかる性能により着用時の縫目の滑脱や圧迫感の少ない着用快適性に優れた裏地の提供を可能ならしめるものである。本発明の裏地は特に表地のストレッチ率が15%以上の衣料の裏地に好適である。   An object of the present invention is to provide a stretch lining having an elongation of 8% or more in the weft direction without impairing the slipperiness, and with such performance, it is excellent in wearing comfort with less slipping of the seam at the time of wearing and a feeling of pressure. This makes it possible to provide a lining material. The lining of the present invention is particularly suitable for lining garments having a stretch rate of 15% or more on the outer material.

比較例2における織物断面形状の電子顕微鏡写真である。4 is an electron micrograph of a cross-sectional shape of a fabric in Comparative Example 2. 実施例7における織物断面形状の電子顕微鏡写真である。It is an electron micrograph of the textile cross-sectional shape in Example 7. FIG.

Claims (1)

下式(1)で定義される撚り係数(K)が2000〜15000のポリエステル系長繊維又はセルロース系長繊維を経糸に、実質的に無撚のポリエステル系長繊維又はセルロース系長繊維の原糸を緯糸に用いて成る織物に於いて、かかる織物の緯伸び率が8〜20%、織物表面の動摩擦係数が0.20〜0.40、下式(2)で定義されるクリンプ指数(C)が0.007〜0.015であることを特徴とする緯ストレッチ裏地。
K=(0.9×D)0.5×T (1)
C=製品の緯糸のクリンプ率/{M×(D)0.5} (2)
式中、Dは経糸繊度(dtex)、Tは撚糸回数(t/m)、Mは経糸密度(本/インチ)を意味する。
Raw yarns of polyester-based continuous fibers or cellulose-based long fibers that are substantially untwisted polyester-based long fibers or cellulose-based long fibers having a twist coefficient (K) of 2000-15000 defined by the following formula (1) In the weft, the weft elongation of the fabric is 8 to 20%, the dynamic friction coefficient of the fabric surface is 0.20 to 0.40, and the crimp index (C ) Is 0.007 to 0.015.
K = (0.9 × D) 0.5 × T (1)
C = crimp rate of product weft / {M × (D) 0.5 } (2)
In the formula, D means warp fineness (dtex), T means the number of twists (t / m), and M means warp density (lines / inch).
JP2005022455A 2005-01-31 2005-01-31 Weft stretchable lining fabric Pending JP2006207078A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005022455A JP2006207078A (en) 2005-01-31 2005-01-31 Weft stretchable lining fabric

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005022455A JP2006207078A (en) 2005-01-31 2005-01-31 Weft stretchable lining fabric

Publications (1)

Publication Number Publication Date
JP2006207078A true JP2006207078A (en) 2006-08-10

Family

ID=36964239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005022455A Pending JP2006207078A (en) 2005-01-31 2005-01-31 Weft stretchable lining fabric

Country Status (1)

Country Link
JP (1) JP2006207078A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008012869A1 (en) * 2006-07-25 2008-01-31 Asahi Kasei Fibers Corporation Weftwise stretch lining cloth and method of producing the same
JP2008081914A (en) * 2006-09-01 2008-04-10 Toray Ind Inc Woven lining fabric
WO2008050449A1 (en) * 2006-10-27 2008-05-02 Toray Industries, Inc. Polyester stretch woven fabric and backing fabric and garment each comprising the same
JP2009079325A (en) * 2007-09-26 2009-04-16 Japan Vilene Co Ltd Stretchable nonwoven fabric and method for producing the same
JP2009102759A (en) * 2007-10-22 2009-05-14 Asahi Kasei Fibers Corp Cellulose-based lining cloth
JP2016141902A (en) * 2015-01-30 2016-08-08 旭化成株式会社 Woven fabric

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008012869A1 (en) * 2006-07-25 2008-01-31 Asahi Kasei Fibers Corporation Weftwise stretch lining cloth and method of producing the same
JP4819123B2 (en) * 2006-07-25 2011-11-24 旭化成せんい株式会社 Weft stretch lining and its manufacturing method
KR101101452B1 (en) 2006-07-25 2012-01-03 아사히 가세이 셍이 가부시키가이샤 Weftwise stretch lining cloth and method of producing the same
JP2008081914A (en) * 2006-09-01 2008-04-10 Toray Ind Inc Woven lining fabric
WO2008050449A1 (en) * 2006-10-27 2008-05-02 Toray Industries, Inc. Polyester stretch woven fabric and backing fabric and garment each comprising the same
JP2009079325A (en) * 2007-09-26 2009-04-16 Japan Vilene Co Ltd Stretchable nonwoven fabric and method for producing the same
JP2009102759A (en) * 2007-10-22 2009-05-14 Asahi Kasei Fibers Corp Cellulose-based lining cloth
JP2016141902A (en) * 2015-01-30 2016-08-08 旭化成株式会社 Woven fabric

Similar Documents

Publication Publication Date Title
JP4819123B2 (en) Weft stretch lining and its manufacturing method
JP3338029B2 (en) Lining and manufacturing method thereof
MXPA02007495A (en) Woven stretch fabric.
JP2006207078A (en) Weft stretchable lining fabric
JP5599686B2 (en) Polyester latent crimped yarn and method for producing the same
JP4117546B2 (en) Elastic composite spun yarn fabric, product using the same, and method for producing the same
JP5778400B2 (en) Water-absorbing quick-drying fabric
JP6578650B2 (en) Composite yarn and fabric using the same
JP2000355812A (en) Lining fabric for preventing blowoff
JP4014298B2 (en) Lining and manufacturing method thereof
JP5290840B2 (en) Stretch short fiber fabric and women&#39;s pants
JP5850783B2 (en) Polyester latent crimp multifilament yarn manufacturing method
JP4366644B2 (en) Stretch-spun fiber fabric and fiber product with excellent shape stability
JPH11256413A (en) Weft stretch lining fabric and its production
JP2014005574A (en) Polyamide fiber woven or knitted fabric
JPS61152849A (en) Pile cloth for interior
JP2005105455A (en) Woven fabric
JP5183179B2 (en) Manufacturing method of composite processed yarn
JP5078541B2 (en) Cellulosic lining
JP2008240182A (en) Pile fabric and method for producing the same
TW445137B (en) Lining cloth and method for producing the same
JP2002242013A (en) Stretch lining fabric
JPH10331051A (en) Suede-tone woven fabric
JP2022063987A (en) Combined filament yarn, woven or knitted fabric using the same, manufacturing method thereof and black formal clothing
JP2001303433A (en) Spun yarn and yarn structure containing cotton fiber