JP2006183628A - Exhaust emission treatment method and urea scr type automobile exhaust emission treatment device - Google Patents

Exhaust emission treatment method and urea scr type automobile exhaust emission treatment device Download PDF

Info

Publication number
JP2006183628A
JP2006183628A JP2004380519A JP2004380519A JP2006183628A JP 2006183628 A JP2006183628 A JP 2006183628A JP 2004380519 A JP2004380519 A JP 2004380519A JP 2004380519 A JP2004380519 A JP 2004380519A JP 2006183628 A JP2006183628 A JP 2006183628A
Authority
JP
Japan
Prior art keywords
exhaust gas
oxidation catalyst
exhaust emission
contact
ammonia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004380519A
Other languages
Japanese (ja)
Other versions
JP4652047B2 (en
Inventor
Oichi Suzuki
央一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Traffic Safety and Environment Laboratory
Original Assignee
National Traffic Safety and Environment Laboratory
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Traffic Safety and Environment Laboratory filed Critical National Traffic Safety and Environment Laboratory
Priority to JP2004380519A priority Critical patent/JP4652047B2/en
Publication of JP2006183628A publication Critical patent/JP2006183628A/en
Application granted granted Critical
Publication of JP4652047B2 publication Critical patent/JP4652047B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To increase denitration rate at a subsequent reduction treatment stage by making equal the generated rate of NO in mol to that of NO<SB>2</SB>in mol in treating nitrogen oxides in exhaust emission from an automobile by using SCR method. <P>SOLUTION: In this exhaust emission treatment method, a part of NO in the exhaust emission from the automobile is converted into NO<SB>2</SB>by bringing it into contact with an oxidation catalyst, an ammonia or an ammonia generating substance is added to the generated mixed gas of NO and NO<SB>2</SB>and the mixture is brought into contact with the denitration catalyst to convert NO and NO<SB>2</SB>into N<SB>2</SB>for detoxication. A prescribed amount of exhaust emission is divided before it is brought into contact with the oxidation catalyst, and only a main stream is brought into contact with the oxidation catalyst to convert a part of NO in the main stream into NO<SB>2</SB>. Then, the ratio of NO to NO<SB>2</SB>is controlled to a same mol by converging the main stream to the divided untreated exhaust emission of a prescribed amount to increase the denitration rate. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、自動車の排ガス処理方法及びそれを用いるための自動車排ガス処理装置に関するものである。   The present invention relates to an automobile exhaust gas treatment method and an automobile exhaust gas treatment apparatus using the same.

従来、自動車排ガス中の窒素酸化物(NOx)を浄化する排ガス処理方法として、排ガスを脱硝触媒に接触させその中のNOxをN2に変換し無害化する排ガス処理方法、特に排ガスを前段の酸化触媒に接触させその中のNOをNO2に変換したのち、その中へ還元剤のアンモニアや尿素などを混合し、この混合ガスを後段の脱硝触媒に接触させNO2をN2に変換して無害化したガスを大気中に排出する処理方法がよく知られている(例えば、特許文献1、2参照)。 Conventionally, as an exhaust gas treatment method for purifying nitrogen oxides (NOx) in automobile exhaust gas, an exhaust gas treatment method in which exhaust gas is brought into contact with a denitration catalyst and NOx in the exhaust gas is converted to N 2 to render it harmless, in particular, exhaust gas is oxidized in the previous stage. After contacting the catalyst and converting NO therein to NO 2 , a reducing agent such as ammonia or urea is mixed therein, and this mixed gas is contacted with a denitration catalyst at the subsequent stage to convert NO 2 into N 2. A processing method for discharging detoxified gas into the atmosphere is well known (see, for example, Patent Documents 1 and 2).

この方法は、選択的接触還元(Selective Catalytic Reduction:以下SCRと略す)として知られ、特に還元剤に尿素を用いる尿素SCRは脱硝効率が高いことから、ディーゼルエンジン搭載自動車の排ガス処理方法として地球環境保護の観点から近年注目されるようになった。   This method is known as selective catalytic reduction (hereinafter abbreviated as SCR). In particular, urea SCR using urea as a reducing agent has high denitration efficiency. In recent years, it has attracted attention from the viewpoint of protection.

SCRにおいては、排ガスを先ず酸化触媒に接触させてその中のNOをNO2に変換するが、その際、ほぼ等モルの割合のときに高い脱硝効果が得られるのでNOとNO2の割合をほぼ等モルに調節することが望ましい(特許文献3参照)。 In SCR, exhaust gas is first brought into contact with an oxidation catalyst to convert NO therein to NO 2. At that time, a high denitration effect is obtained at an approximately equimolar ratio, so the ratio of NO and NO 2 is increased. It is desirable to adjust to approximately equimolar (see Patent Document 3).

しかしながら、通常用いられる酸化触媒の酸化効率は、排ガス温度が低いと著しく低くなり、排ガス温度が高いと極度に高くなる傾向があり、NOとNO2の割合を所望のほぼ等モルの範囲内に調節することは非常にむずかしい。
一般に、酸化触媒においては、低い排ガス温度(例えば、始動時などの運転時)でのNO2転換率の向上が望まれ、低温側に広い活性温度域を有する酸化触媒の開発がなされている。
However, the oxidation efficiency of the oxidation catalyst that is usually used tends to be extremely low when the exhaust gas temperature is low, and extremely high when the exhaust gas temperature is high, so that the ratio of NO and NO 2 falls within the desired approximately equimolar range. It is very difficult to adjust.
In general, in an oxidation catalyst, it is desired to improve the NO 2 conversion rate at a low exhaust gas temperature (for example, during operation such as starting), and an oxidation catalyst having a wide active temperature range on the low temperature side has been developed.

SCRにおいても、低温での活性化向上が大きな課題となっており、NOとNO2をほぼ等モルにし得る低温側での活性を有する酸化触媒に対する要望があるが、低温での活性向上を重視すると、排気ガス温度が高く、NO排出量の多い高負荷領域では、酸化触媒のNOからNO2への転換率が高すぎ、NOx浄化率が低下するという問題を生じる。 Even in SCR, improvement of activation at low temperature is a big issue, and there is a demand for an oxidation catalyst having activity on the low temperature side that can make NO and NO 2 almost equimolar, but importance is attached to improvement of activity at low temperature. Then, in a high load region where the exhaust gas temperature is high and the amount of NO emission is large, there is a problem that the conversion rate of NO from the oxidation catalyst to NO 2 is too high and the NOx purification rate decreases.

したがって、排気ガス温度が低温から高温まで変化しても、SCR入口でのNOとNO2のモル比を1:1から大きく逸脱しないように調整する技術が求められている。 Therefore, there is a need for a technique for adjusting the molar ratio of NO and NO 2 at the SCR inlet so as not to deviate significantly from 1: 1 even when the exhaust gas temperature changes from a low temperature to a high temperature.

酸化触媒組成の調整や使用条件(排気再循環量ほか)の調整でNOとNO2の割合をその所望の範囲内に調節し得ることも知られているが、排ガスを高温下で運転したときにNOとNO2をほぼ等モル内に調節するための実用的な方法は知られていない。 It is also known that the ratio of NO and NO 2 can be adjusted within the desired range by adjusting the oxidation catalyst composition and conditions of use (exhaust gas recirculation amount, etc.), but when operating exhaust gas at high temperatures In addition, there is no known practical method for adjusting NO and NO 2 within an equimolar amount.

特開2004−138022号公報(特許請求の範囲その他)Japanese Patent Application Laid-Open No. 2004-138022 (Claims and others) 特開2001−317346号公報(特許請求の範囲その他)JP 2001-317346 A (Claims and others) 特開2004−100700号公報(請求項23及び段落[0021])JP 2004-100700 A (claim 23 and paragraph [0021])

本発明は、このような事情のもとで、自動車排ガス中の窒素酸化物をSCR法により処理するに当り、NOとNO2との生成割合をほぼ等モルにし、後続の還元処理段階における脱硝率を向上させることを目的としてなされたものである。 Under the circumstances, the present invention has a denitration rate in the subsequent reduction process step by setting the generation ratio of NO and NO 2 to be approximately equimolar when the nitrogen oxide in the automobile exhaust gas is processed by the SCR method. It was made for the purpose of improving the rate.

本発明者らは、SCR法における脱硝率を向上させるために、窒素酸化物の酸化段階における生成ガス中のNOとNO2のモル比がほぼ等しくなるように調整する方法について鋭意研究を重ねた結果、酸化処理に先立って排ガスの一部を分流し、それを酸化触媒に接触させてその中のNOをNO2に変換したのち、未処理の排ガスと合流させ、その際の分流量を調節して処理した排ガスと未処理の排ガスとの混合ガス中のNOとNO2とのモル比がほぼ等モルになるようにすれば、その目的を達成し得ることを見出し、この知見により本発明をなすに至った。 In order to improve the denitration rate in the SCR method, the present inventors have made extensive studies on a method of adjusting the molar ratio of NO and NO 2 in the product gas in the oxidation stage of nitrogen oxides to be approximately equal. As a result, a part of the exhaust gas is diverted prior to the oxidation treatment, and it is brought into contact with the oxidation catalyst to convert NO therein to NO 2 , and then merged with the untreated exhaust gas, and the flow rate at that time is adjusted. It is found that the object can be achieved if the molar ratio of NO and NO 2 in the mixed gas of the treated exhaust gas and the untreated exhaust gas is substantially equimolar. It came to make.

すなわち、本発明は、自動車排ガスを、酸化触媒に接触させてその中のNOの一部をNO2に変換したのち、生成したNOとNO2の混合ガスにアンモニア又はアンモニア発生物質を加えて、脱硝触媒と接触させ、NO及びNO2をN2に変換して無害化する排ガス処理方法において、該排ガスを酸化触媒に接触させるに先立ってその排ガスの所定量を分流し、主流のみを酸化触媒と接触させてその中のNOの一部をNO2に変換させたのち、分流した所定量の未処理の排ガスと合流させることにより、NOとNO2との割合をほぼ等モルに調節し、脱硝率を向上させることを特徴とする排ガス処理方法、及び内管部を主流通過部、外管部を分流通過部に形成した二重管からなる円筒状反応器、内管部に設けた円柱状酸化触媒層、酸化触媒層の前に配設され内管部及び外管部にそれぞれ連通した開口面積を調節可能に構成した開口部をもつ排ガス導入管、及び酸化触媒層の後に配設された内管部及び外管部の両方に導通したガス排出管を備えたことを特徴とする尿素SCR型自動車排ガス処理装置を提供するものである。 That is, the present invention provides a vehicle emissions, after converting a portion of NO therein to NO 2 is brought into contact with the oxidation catalyst, the addition of ammonia or ammonia-generating substance in a mixed gas of the produced NO and NO 2, In an exhaust gas treatment method in which NO and NO 2 are converted into N 2 and made harmless by contacting with a denitration catalyst, a predetermined amount of the exhaust gas is diverted before contacting the exhaust gas with the oxidation catalyst, and only the main stream is oxidized catalyst some of NO therein in contact after was converted into NO 2, by merging the untreated exhaust gas diverted predetermined amount, adjusted to nearly equimolar ratio between NO and NO 2 and, An exhaust gas treatment method characterized by improving the denitration rate, and a cylindrical reactor composed of a double pipe in which the inner pipe portion is formed in the main flow passage portion and the outer pipe portion is formed in the branch flow passage portion, and a circle provided in the inner pipe portion Before the columnar oxidation catalyst layer and oxidation catalyst layer Exhaust gas introduction pipe having an opening configured to be adjustable so that the opening areas respectively connected to the inner pipe section and the outer pipe section can be adjusted, and both the inner pipe section and the outer pipe section disposed after the oxidation catalyst layer The present invention provides a urea SCR type automobile exhaust gas treatment apparatus including a gas exhaust pipe that is conducted.

次に、本発明方法をさらに詳細に説明する。
SCR法により、NOxを含む自動車排ガスを無害化するには、この排ガスを先ず酸化条件下で酸化触媒と接触させて一部のNOをNO2に変換し、次いでこれに還元剤例えばアンモニアNH3又は尿素(NH22CO或いはその両方を加えて混合したのち、この混合ガスを脱硝触媒と接触させてNO2をN2に変換する。
Next, the method of the present invention will be described in more detail.
In order to render automobile exhaust gas containing NOx harmless by the SCR method, this exhaust gas is first contacted with an oxidation catalyst under oxidizing conditions to convert a part of NO into NO 2 , and then to a reducing agent such as ammonia NH 3. or urea (NH 2) 2 CO or were mixed by adding both, to convert the mixed gas is brought into contact with the denitration catalyst to NO 2 to N 2.

この際の酸化触媒は、NOをNO2に酸化し得る能力を有するものであれば特に制限はなく、慣用されている酸化触媒の中から任意に選ぶことができる。このような酸化触媒としては、例えばアルミナ、チタニア、シリカ、シリカ−アルミナ、マグネシアなどの金属酸化物又は複合金属酸化物からなる多孔質担体に、白金、ロジウム、パラジウム、イリジウムなどの貴金属を担持させたものを挙げることができる。 The oxidation catalyst at this time is not particularly limited as long as it has an ability to oxidize NO to NO 2 , and can be arbitrarily selected from conventionally used oxidation catalysts. As such an oxidation catalyst, for example, a noble metal such as platinum, rhodium, palladium, iridium is supported on a porous carrier made of a metal oxide or composite metal oxide such as alumina, titania, silica, silica-alumina, magnesia. Can be mentioned.

このNOをNO2に変換する反応は、酸素の存在下、一般に200℃程度以上の温度で行われる。次いで、このようにして生成したNO2は、アンモニアと混合したのち、混合ガスを脱硝触媒と接触させると、反応式
8NH3+6NO2 → 12H2O+7N2
に従って、NO2をN2に変換して無害化する。
The reaction for converting NO to NO 2 is generally performed at a temperature of about 200 ° C. or higher in the presence of oxygen. Next, the NO 2 produced in this way is mixed with ammonia, and then the mixed gas is brought into contact with a denitration catalyst. Then, the reaction formula 8NH 3 + 6NO 2 → 12H 2 O + 7N 2
Accordingly, NO 2 is converted to N 2 and rendered harmless.

また、上記のアンモニアの代りに尿素水を用いることができるが、この場合、尿素水は排ガス中において、反応式
(NH22CO+H2O → 2NH3+CO2
に従って加水分解し、アンモニアを生成し、これによってNO2が還元される。
この際の脱硝触媒としては、NCR法において通常用いられている脱硝触媒、いわゆるSCR触媒を用いる。
In addition, urea water can be used in place of the above ammonia. In this case, the urea water is a reaction formula (NH 2 ) 2 CO + H 2 O → 2NH 3 + CO 2 in the exhaust gas.
To produce ammonia, which reduces NO 2 .
As the denitration catalyst at this time, a denitration catalyst generally used in the NCR method, a so-called SCR catalyst is used.

自動車排ガス中には、いわゆるNOxが含まれるが、ディーゼルエンジンの排気ガスでは、NOxの大半がNOである。ところで、SCR法、特に尿素を還元剤として用いる場合には、NOとNO2の割合を1:1付近にしたときに最も効率よく無害化が行われるので、先ずこの排ガスを酸化触媒に接触させ、その中のNOの一部を反応式
2NO+O2 → NO2 (1)
に従ってNO2に変換させて、NOとNO2との1:1の混合ガスを生成させたのち、これに還元剤としてアンモニア又はアンモニア発生物質を加えて脱硝触媒と接触させ、反応式
NO+NO2+2NH3 → 2N2+3H2O (2)
に従って窒素と水に変換し、無害化する方法である。
Although so-called NOx is contained in automobile exhaust gas, most of NOx is NO in the exhaust gas of a diesel engine. By the way, when the SCR method, particularly urea is used as a reducing agent, the detoxification is most efficiently performed when the ratio of NO and NO 2 is close to 1: 1, so this exhaust gas is first brought into contact with the oxidation catalyst. , A part of NO in the reaction formula 2NO + O 2 → NO 2 (1)
By conversion to NO 2 in accordance with one of NO and NO 2: After to produce a first mixed gas, to which ammonia or ammonia-generating substance is contacted with a denitrification catalyst added as the reducing agent, reaction equation NO + NO 2 + 2NH 3 → 2N 2 + 3H 2 O (2)
According to the method, it is converted into nitrogen and water and detoxified.

この第一段階の反応(1)における酸化触媒としては、例えば白金、パラジウム、イリジウム、ロジウムなどの貴金属を、アルミナ、チタニア、シリカ−アルミナ、マグネシアのような金属酸化物又は複合金属酸化物あるいはコージェライトからなる多孔質担体に担持したものが用いられる。この反応(1)は、通常200〜300℃の温度で進行する。   Examples of the oxidation catalyst in the first stage reaction (1) include noble metals such as platinum, palladium, iridium and rhodium, metal oxides such as alumina, titania, silica-alumina, magnesia, composite metal oxides, and cordiers. Those supported on a porous carrier made of light are used. This reaction (1) usually proceeds at a temperature of 200 to 300 ° C.

また、第二段階の反応(2)における脱硝触媒としては、例えば酸化バナジウム、酸化タングステン、二酸化チタンなどが用いられるが、そのほかに鉄や銅によってイオン変換されたゼオライト例えばZSM−5、モルデナイト、ホージャサイトなどが用いられる。この反応(2)は、通常300〜550℃の温度で進行する。この反応(2)においては、アンモニアを用いることが必要であるが、アンモニアガスを用いる代りに、この反応条件下でアンモニアを発生する物質、例えばアンモニア水、尿素、炭酸アンモニウムなどを用いることもできる。   In addition, as the denitration catalyst in the second stage reaction (2), for example, vanadium oxide, tungsten oxide, titanium dioxide or the like is used. In addition, zeolite ion-converted with iron or copper, for example, ZSM-5, mordenite, fauja Sites are used. This reaction (2) usually proceeds at a temperature of 300 to 550 ° C. In this reaction (2), it is necessary to use ammonia. Instead of using ammonia gas, a substance that generates ammonia under the reaction conditions, such as aqueous ammonia, urea, ammonium carbonate, etc., can also be used. .

ところで、前記反応式(2)から分るように、このSCR法では、NOとNO2との割合が1:1近傍において最も効率よく反応することが知られている。しかしながら、排ガスの温度が高すぎると、前記反応式(1)におけるNO2への変換率が大きくなり、NOxの低減効果が低下する。 By the way, as can be seen from the reaction formula (2), in this SCR method, it is known that the reaction is most efficiently performed when the ratio of NO to NO 2 is in the vicinity of 1: 1. However, if the temperature of the exhaust gas is too high, the conversion rate to NO 2 in the reaction formula (1) increases, and the NOx reduction effect decreases.

したがって、本発明においては、酸化触媒を通過するに先立って、排ガス流を分流し、酸化触媒に接触する排ガス流量を制御し、酸化触媒通過後に再び未処理の排ガスと合流して、NOとNO2の混合割合が1:1近傍の混合ガスを形成させることが必要である。このようにして形成されたNOとNO2の割合が1:1近傍の混合ガスは、次いでアンモニア又はアンモニア発生物質と混合し、脱硝触媒と接触することにより窒素と水とに変換され、無害化される。
このようにして90%又はそれ以上の変換率で排ガス中のNOxを除去することができる。
Therefore, in the present invention, before passing through the oxidation catalyst, the exhaust gas flow is diverted, the flow rate of the exhaust gas in contact with the oxidation catalyst is controlled, and after passing through the oxidation catalyst, the untreated exhaust gas is joined again, and NO and NO It is necessary to form a mixed gas in which the mixing ratio of 2 is close to 1: 1. The gas mixture in which the ratio of NO and NO 2 formed in this way is close to 1: 1 is then mixed with ammonia or an ammonia-generating substance, and converted into nitrogen and water by contacting with a denitration catalyst, making it harmless. Is done.
In this way, NOx in the exhaust gas can be removed at a conversion rate of 90% or more.

図1は、酸化触媒と排ガスとの接触温度xと脱硝触媒に導入するときの排ガス中のNO2/(NO+NO2)比との関係を示すグラフであり、網掛け範囲はNOとNO2の割合がほぼ等モル(1:1)の範囲である。 FIG. 1 is a graph showing the relationship between the contact temperature x between the oxidation catalyst and the exhaust gas and the NO 2 / (NO + NO 2 ) ratio in the exhaust gas when introduced into the denitration catalyst, and the shaded range is NO and NO 2 . The ratio is in the range of approximately equimolar (1: 1).

図中の実線は、低温においてもNOからNO2への転換が行われる組成の酸化触媒Aについての温度に対するNO2/(NO+NO2)の転換率の変化を示したものであり、同じく点線はより高温でNOとNO2とが等モルになるような性能をもつ別個の組成の酸化触媒Bについての温度に対するNO2/(NO+NO2)の転換率の変化を示したものであって、いずれも本発明方法を用いない場合のものである。
この図から分るように、いずれの触媒を用いても、低温から高温までの広い温度範囲にわたってNOとNO2との割合を適正な範囲に調整することはできない。
一方、破線は触媒Aを用いて本発明方法を行い、NOとNO2を等モルに制御した場合を示す。
The solid line in the figure shows the change in the conversion rate of NO 2 / (NO + NO 2 ) with respect to the temperature for the oxidation catalyst A having a composition in which conversion from NO to NO 2 is performed even at low temperatures. The change in the conversion rate of NO 2 / (NO + NO 2 ) with respect to temperature for an oxidation catalyst B having a separate composition having the performance of equimolar NO and NO 2 at higher temperatures, Is the case where the method of the present invention is not used.
As can be seen from this figure, no matter which catalyst is used, the ratio of NO and NO 2 cannot be adjusted to an appropriate range over a wide temperature range from low temperature to high temperature.
On the other hand, the broken line shows the case where the method of the present invention is performed using the catalyst A and NO and NO 2 are controlled to be equimolar.

この図から分るように、従来方法においてはアイドリングの多い都市内走行などでは酸化触媒温度が低いために、比較的低温で活性化し、NO/(NO+NO2)比がほぼ0.5になる酸化触媒の使用が望ましいが、その場合には触媒温度が上昇する運転条件においては、NO/(NO+NO2)比が0.5を超え、その状態で脱硝触媒と接触するので脱硝効率が低下し、脱硝されない多量のNOxが大気中に排出されることになる。 As can be seen from this figure, in the conventional method, since the oxidation catalyst temperature is low when traveling in a city with a lot of idling, it is activated at a relatively low temperature, and the NO / (NO + NO 2 ) ratio becomes approximately 0.5. Although it is desirable to use a catalyst, in that case, the NO / (NO + NO 2 ) ratio exceeds 0.5 under the operating conditions in which the catalyst temperature rises, and the NOx removal efficiency decreases because it contacts with the NOx removal catalyst in that state, A large amount of NOx that is not denitrated is discharged into the atmosphere.

これに対し、本発明方法においては、自動車排ガスが酸化触媒に接触するに先立って、その一部を分流し、主流を酸化触媒と接触した後で、分流と再び合流させることによりNO/(NO+NO2)比を常に0.5付近に調節するので(矢印で示す)、脱硝効率が常に高い条件に維持され、排ガスは、その中のNOxが完全に除かれ無害化した状態で大気中に排出される。 In contrast, in the method of the present invention, a part of the automobile exhaust gas contacts with the oxidation catalyst prior to contact with the oxidation catalyst, and after contacting the main stream with the oxidation catalyst, it is recombined with the split flow to produce NO / (NO + NO 2 ) Since the ratio is always adjusted to around 0.5 (indicated by an arrow), the denitration efficiency is always maintained at a high level, and exhaust gas is exhausted into the atmosphere in a state where NOx in it is completely removed and rendered harmless Is done.

脱硝触媒に接触させる合流ガス中のNO/(NO+NO2)比を0.5付近に調節するには、例えば適当な位置にNO2又はNO濃度センサ及び温度センサを配置し、それらからの信号をコンピュータに入力して解析し、あらかじめ設定されている分流と主流との分配比をその情報に基づいて補正し、電子制御により操作される流量制御手段によって分流する量を変えることによって行う。この場合、温度が上昇すれば、分流する量を多くして主流中のNOのNO2への変換量を少なくし、逆に温度が低下すれば分流する量を少なくして主流中のNOのNO2への変換量を多くし、合流ガス中のNOとNO2のモル比がほぼ等量になるように調節する。
このようにして、自動車排ガスの温度が変動しても、常に脱硝効率を最良の状態に保ち、排ガス中のNOxを完全に無害化して大気中に排出することができる。
In order to adjust the NO / (NO + NO 2 ) ratio in the combined gas brought into contact with the denitration catalyst to around 0.5, for example, an NO 2 or NO concentration sensor and a temperature sensor are arranged at appropriate positions, and signals from them are sent. This is performed by inputting to a computer for analysis, correcting a distribution ratio between the divided flow and the main flow set in advance based on the information, and changing the amount of flow divided by the flow rate control means operated by electronic control. In this case, if the temperature rises, the amount to be diverted is increased to reduce the conversion amount of NO in the main stream to NO 2. Conversely, if the temperature is lowered, the amount to be diverted is decreased to reduce the amount of NO in the main stream. The amount of conversion to NO 2 is increased, and the molar ratio of NO and NO 2 in the combined gas is adjusted to be approximately equal.
In this way, even if the temperature of the automobile exhaust gas fluctuates, the NOx removal efficiency can always be kept in the best state, and NOx in the exhaust gas can be completely rendered harmless and discharged into the atmosphere.

次に添付図面に従って本発明装置を説明する。
図2は、本発明方法に用いるのに好適な排ガス処理装置の酸化反応器の1例を示す縦断面略解図である。この酸化反応器は、ガス導入部1、酸化触媒収納部2及びガス排出部3から構成されている。酸化触媒収納部2は、主流通過部を形成する内筒部4と分流通過部を形成する外筒部5からなり、この内筒部4及び外筒部5の前端はガス導入部1に、また後端はガス排出部3にそれぞれ開口している。内筒部4のほぼ中央部には酸化触媒層6が設けられ、ガス導入部1とガス排出部3に連通している。
Next, the apparatus of the present invention will be described with reference to the accompanying drawings.
FIG. 2 is a schematic longitudinal sectional view showing an example of an oxidation reactor of an exhaust gas treatment apparatus suitable for use in the method of the present invention. This oxidation reactor is composed of a gas introduction part 1, an oxidation catalyst storage part 2 and a gas discharge part 3. The oxidation catalyst storage unit 2 includes an inner cylinder part 4 that forms a main flow passage part and an outer cylinder part 5 that forms a diversion passage part, and the front ends of the inner cylinder part 4 and the outer cylinder part 5 are connected to the gas introduction part 1. In addition, the rear ends are open to the gas discharge portions 3 respectively. An oxidation catalyst layer 6 is provided substantially at the center of the inner cylinder portion 4 and communicates with the gas introduction portion 1 and the gas discharge portion 3.

自動車排ガスAは、ガス導入部1に入り、ここで分流して、その一部は外筒部5に誘導され、残りは内筒部4に誘導される。内筒部4に誘導された主流は、酸化触媒層6を通って、その中のNOの一部がNO2に変換され、NOとNO2の混合物となって、ガス排出部3に至り、ここで外筒部5を通って送られる未処理の排ガスと合流し、NOとNO2のほぼ等モルからなる混合ガスBとなって排出され、後続の脱硝工程に供給される。外筒部5を通る分流の量は、流量制御弁7,7´によって制御され、排出部から排出される混合ガス中のNOとNO2がほぼ等モルになるように調節される。 The automobile exhaust gas A enters the gas introduction part 1 and is divided here, part of which is guided to the outer cylinder part 5 and the rest is guided to the inner cylinder part 4. Mainstream induced in the inner cylinder portion 4 passes through the oxidation catalyst layer 6, a part of NO therein is converted to NO 2 and a mixture of NO and NO 2, reaches the gas discharge portion 3, Here, the untreated exhaust gas sent through the outer cylinder portion 5 is merged, discharged as a mixed gas B composed of substantially equimolar amounts of NO and NO 2 , and supplied to the subsequent denitration step. The amount of the diverted flow that passes through the outer cylinder portion 5 is controlled by the flow rate control valves 7 and 7 ′, and is adjusted so that NO and NO 2 in the mixed gas discharged from the discharge portion are approximately equimolar.

上記の円筒状反応器は、その前部及び後部を外方に向って狭めた円錐台状に形成するとともに、その中に収納した円柱状酸化触媒層を前後に移動可能とし、円錐台内壁8と触媒層の円形側壁縁部9との間の間隙で形成される外筒部のガス通過断面積を変えることによって、分流の量を制御する構造とすることもできる。   The cylindrical reactor is formed in a truncated cone shape whose front and rear portions are narrowed outward, and the columnar oxidation catalyst layer accommodated therein can be moved back and forth, and the inner wall 8 of the truncated cone It is also possible to adopt a structure in which the amount of diversion is controlled by changing the gas passage cross-sectional area of the outer cylinder portion formed by the gap between the catalyst and the circular side wall edge 9 of the catalyst layer.

図3は、その構造の機能を示す説明図であり、実線は最も分流の量を多くした状態、破線は分流の量がほとんど零になるように制御した状態を示す。そして、触媒層の円形側壁縁部9が円錐台内壁8に当接すると、分流は零となり、排ガスはすべて酸化触媒層を通過するようになる。
このような円柱状酸化触媒層の移動による分流の量の制御は、前記したNO2又はNO濃度センサ及び温度センサからの情報に基づくコンピュータ処理により自動的に行うことができる。
FIG. 3 is an explanatory diagram showing the function of the structure, in which the solid line indicates the state where the amount of diversion is the largest, and the broken line indicates a state where the amount of diversion is controlled to be almost zero. When the circular side wall edge 9 of the catalyst layer comes into contact with the frustoconical inner wall 8, the shunt flow becomes zero, and all exhaust gas passes through the oxidation catalyst layer.
Such control of the amount of diversion by movement of the cylindrical oxidation catalyst layer can be automatically performed by computer processing based on the information from the NO 2 or NO concentration sensor and the temperature sensor.

本発明装置は、このようにして酸化反応器においてNOとNO2とのモル比がほぼ1になるように調節された混合ガスに、アンモニア又はアンモニア発生物質例えば尿素を添加し、混合する混合槽(図示せず)、このようにしてアンモニア又はアンモニア発生物質を混合された混合ガスを脱硝触媒と接触させ、前記還元反応(2)を行わせるための還元反応器(図示せず)が配設されている。 The apparatus of the present invention is a mixing tank in which ammonia or an ammonia generating substance such as urea is added to and mixed with the mixed gas adjusted so that the molar ratio of NO to NO 2 is approximately 1 in the oxidation reactor. (Not shown), a reduction reactor (not shown) for bringing the ammonia or the mixed gas mixed with the ammonia generating substance into contact with the denitration catalyst and causing the reduction reaction (2) is provided. Has been.

図2及び図3における矢印は、酸化触媒層の通過前において分流され、通過後において合流されるガス流を示したものである。   The arrows in FIGS. 2 and 3 indicate the gas flows that are diverted before passing through the oxidation catalyst layer and merged after passing.

本発明方法の排ガス処理方法によれば、自動車排ガスを、酸化触媒に接触させてその中のNOをNO2に変換したのち、その中へNH3又は(NH22COを混合し、この混合ガスを脱硝触媒に接触させてNO2をN2に変換して無害化する排ガス処理方法において、排ガス高温運転時にNOとNO2との割合をほぼ等モルに調節できて、その結果、持続して高い脱硝効率を得ることができる。
さらに本発明装置の尿素SCR型自動車排ガス処理装置によれば、排ガス高温運転時に、NOとNO2との割合をほぼ等モルに調節でき、持続して高い脱硝効率を実現することができる。
According to the exhaust gas treatment method of the present invention, after the automobile exhaust gas is brought into contact with an oxidation catalyst to convert NO therein to NO 2 , NH 3 or (NH 2 ) 2 CO is mixed therein, In the exhaust gas treatment method in which the mixed gas is brought into contact with the denitration catalyst to convert NO 2 into N 2 and detoxify, the ratio of NO and NO 2 can be adjusted to approximately equimolar during exhaust gas high-temperature operation, and as a result, sustained Thus, high denitration efficiency can be obtained.
Furthermore, according to the urea SCR type automobile exhaust gas treatment device of the present invention device, the ratio of NO and NO 2 can be adjusted to approximately equimolar during exhaust gas high temperature operation, and high denitration efficiency can be realized continuously.

次に、実施例により本発明を実施するための最良の形態を説明する。   Next, the best mode for carrying out the present invention will be described by way of examples.

図2に示す構造において、ガス導入部寸法を内径10mm、長さ50mmに、酸化触媒収納部寸法を円筒部内径60mm、円筒部長さ60mm、前端及び後端円錐台長さ30mmに、ガス排出部寸法を内径10mm、長さ30mmに構成した酸化触媒装置内に径30mm、長さ60mmの円柱状に形成した白金担持シリカ−アルミナ触媒を分流通過部間隙3mmに保って収納した。
次いで、ディーゼルエンジンからの排出ガスを想定した温度300℃で、NOを600ppm、NO2を50ppm含む混合ガスを供給速度2リットル/秒で導入し、主流部と分流部の割合が2:1になるように流量制御弁7,7´を設定し、処理したところ、NOとNO2との含有比が約1:1の混合ガス排出部3から排出された。
次に、この混合ガスに、尿素水を混合ガス中のNO及びNO2を還元するのに必要な割合で添加し、混合したのち、一般に用いられているSCR触媒内蔵コンバータに約270℃で通したところ、混合ガス中のNO及びNO2では90%以上の転換率で窒素と水蒸気に還元され、所期の成果を得た。
In the structure shown in FIG. 2, the gas introduction part has an inner diameter of 10 mm and a length of 50 mm, the oxidation catalyst storage part has a cylindrical part inner diameter of 60 mm, a cylindrical part length of 60 mm, and a front end and rear end truncated cone length of 30 mm. A platinum-supporting silica-alumina catalyst formed in a columnar shape having a diameter of 30 mm and a length of 60 mm was stored in an oxidation catalyst device having dimensions of an inner diameter of 10 mm and a length of 30 mm while maintaining a separation passage passage gap of 3 mm.
Next, a mixed gas containing 600 ppm NO and 50 ppm NO 2 was introduced at a supply rate of 2 liters / second at a temperature of 300 ° C. assuming exhaust gas from a diesel engine, and the ratio of the main flow part to the diversion part was 2: 1. The flow rate control valves 7 and 7 ′ were set and processed so that they were discharged from the mixed gas discharge portion 3 having a content ratio of NO and NO 2 of about 1: 1.
Next, urea water is added to this mixed gas at a ratio necessary for reducing NO and NO 2 in the mixed gas, and after mixing, it is passed through a converter with a built-in SCR catalyst at about 270 ° C. As a result, NO and NO 2 in the mixed gas were reduced to nitrogen and water vapor at a conversion rate of 90% or more, and the desired result was obtained.

本発明は、自動車排ガス中のNOxを除去し、無害化するために有用である。   The present invention is useful for removing NOx from automobile exhaust gas and making it harmless.

酸化触媒と排ガスとの接触温度xと脱硝触媒に導入するときの排ガス中のNO2/(NO+NO2)比との関係を示すグラフ。Graph showing the relationship between the NO 2 / (NO + NO 2 ) ratio in the exhaust gas when introducing the contact temperature x and the denitration catalyst and the oxidation catalyst and the exhaust gas. 本発明方法に用いるのに好適な排ガス処理装置の酸化反応器の1例を示す縦断面略解図。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 分流の量を制御する構造。A structure that controls the amount of diversion.

符号の説明Explanation of symbols

1 ガス導入部
2 酸化触媒収納部
3 ガス排出部
4 内筒部
5 外筒部
6 酸化触媒層
7,7´流量制御弁
8 円錐台内壁
9 円形側壁縁部
DESCRIPTION OF SYMBOLS 1 Gas introduction part 2 Oxidation catalyst storage part 3 Gas discharge part 4 Inner cylinder part 5 Outer cylinder part 6 Oxidation catalyst layer 7,7 'flow control valve 8 Frustum inner wall 9 Circular side wall edge

Claims (3)

自動車排ガスを、酸化触媒に接触させてその中のNOの一部をNO2に変換したのち、生成したNOとNO2の混合ガスにアンモニア又はアンモニア発生物質を加えて、脱硝触媒と接触させ、NO及びNO2をN2に変換して無害化する排ガス処理方法において、該排ガスを酸化触媒に接触させるに先立ってその排ガスの所定量を分流し、主流のみを酸化触媒と接触させてその中のNOの一部をNO2に変換させたのち、分流した所定量の未処理の排ガスと合流させることにより、NOとNO2との割合をほぼ等モルに調節し、脱硝率を向上させることを特徴とする排ガス処理方法。 After contacting automobile exhaust gas with an oxidation catalyst and converting a portion of NO therein to NO 2 , ammonia or an ammonia-generating substance is added to the generated mixed gas of NO and NO 2 and brought into contact with the denitration catalyst. In an exhaust gas treatment method for detoxifying NO and NO 2 by converting N 2 to N 2 , a predetermined amount of the exhaust gas is diverted before contacting the exhaust gas with the oxidation catalyst, and only the main stream is brought into contact with the oxidation catalyst. After a part of the NO it was converted into NO 2, by merging the untreated exhaust gas diverted predetermined amount, adjusted to nearly equimolar ratio between NO and NO 2, to improve the denitrification rate An exhaust gas treatment method characterized by the above. 内管部を主流通過部、外管部を分流通過部に形成した二重管からなる円筒状反応器、内管部に設けた円柱状酸化触媒層、酸化触媒層の前に配設され内管部及び外管部にそれぞれ連通した開口面積を調節可能に構成した開口部をもつ排ガス導入管、及び酸化触媒層の後に配設された内管部及び外管部の両方に導通したガス排出管を備えたことを特徴とする尿素SCR型自動車排ガス処理装置。   A cylindrical reactor composed of a double pipe formed with the inner pipe as the main flow passage and the outer pipe as the diversion passage, the columnar oxidation catalyst layer provided in the inner pipe, and disposed in front of the oxidation catalyst layer Exhaust gas introduction pipe having an opening configured to be able to adjust an opening area communicating with the pipe part and the outer pipe part respectively, and gas discharge conducted to both the inner pipe part and the outer pipe part disposed after the oxidation catalyst layer A urea SCR type automobile exhaust gas treatment apparatus comprising a pipe. 円筒状反応器の前部及び後部を外方に向って狭めた円錐台状に形成するとともに円柱状酸化触媒層を前後に移動可能とし、外管部のガス通過断面積を調節可能とした請求項2記載の自動車排ガス処理装置。
Claims that the front and rear parts of the cylindrical reactor are formed in a truncated cone shape that narrows outward, the columnar oxidation catalyst layer is movable back and forth, and the gas passage cross-sectional area of the outer tube part is adjustable. Item 3. An automobile exhaust gas treatment apparatus according to Item 2.
JP2004380519A 2004-12-28 2004-12-28 Exhaust gas treatment method and urea SCR type automobile exhaust gas treatment device Active JP4652047B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004380519A JP4652047B2 (en) 2004-12-28 2004-12-28 Exhaust gas treatment method and urea SCR type automobile exhaust gas treatment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004380519A JP4652047B2 (en) 2004-12-28 2004-12-28 Exhaust gas treatment method and urea SCR type automobile exhaust gas treatment device

Publications (2)

Publication Number Publication Date
JP2006183628A true JP2006183628A (en) 2006-07-13
JP4652047B2 JP4652047B2 (en) 2011-03-16

Family

ID=36736899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004380519A Active JP4652047B2 (en) 2004-12-28 2004-12-28 Exhaust gas treatment method and urea SCR type automobile exhaust gas treatment device

Country Status (1)

Country Link
JP (1) JP4652047B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008114834A1 (en) * 2007-03-16 2008-09-25 Toyota Jidosha Kabushiki Kaisha Exhaust purification device for internal combustion engine
JP2010519458A (en) * 2007-02-21 2010-06-03 ボルボ ラストバグナー アーベー Control method for controlling exhaust aftertreatment system and exhaust aftertreatment system
KR101057342B1 (en) 2010-11-09 2011-08-22 주식회사 기스코 The de-nox efficiency improvement at low temperature and yellow plume reduction system by fast scr
DE102012201809A1 (en) * 2011-02-09 2012-09-13 Honda Motor Co., Ltd. EXHAUST GAS CLEANING SYSTEM FOR A COMBUSTION ENGINE

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5529018A (en) * 1978-08-18 1980-03-01 Fuji Heavy Ind Ltd Exhauster for internal combustion engine
JPH1026017A (en) * 1996-07-09 1998-01-27 Toyota Motor Corp Emission control system for internal combustion engine
JP2004346794A (en) * 2003-05-21 2004-12-09 Mitsubishi Fuso Truck & Bus Corp Exhaust emission control device for internal combustion engine
JP2005023921A (en) * 2003-06-12 2005-01-27 Hino Motors Ltd Exhaust emission control device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5529018A (en) * 1978-08-18 1980-03-01 Fuji Heavy Ind Ltd Exhauster for internal combustion engine
JPH1026017A (en) * 1996-07-09 1998-01-27 Toyota Motor Corp Emission control system for internal combustion engine
JP2004346794A (en) * 2003-05-21 2004-12-09 Mitsubishi Fuso Truck & Bus Corp Exhaust emission control device for internal combustion engine
JP2005023921A (en) * 2003-06-12 2005-01-27 Hino Motors Ltd Exhaust emission control device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010519458A (en) * 2007-02-21 2010-06-03 ボルボ ラストバグナー アーベー Control method for controlling exhaust aftertreatment system and exhaust aftertreatment system
WO2008114834A1 (en) * 2007-03-16 2008-09-25 Toyota Jidosha Kabushiki Kaisha Exhaust purification device for internal combustion engine
KR101057342B1 (en) 2010-11-09 2011-08-22 주식회사 기스코 The de-nox efficiency improvement at low temperature and yellow plume reduction system by fast scr
DE102012201809A1 (en) * 2011-02-09 2012-09-13 Honda Motor Co., Ltd. EXHAUST GAS CLEANING SYSTEM FOR A COMBUSTION ENGINE

Also Published As

Publication number Publication date
JP4652047B2 (en) 2011-03-16

Similar Documents

Publication Publication Date Title
RU2278281C2 (en) Device for and method of processing of waste gases formed when engine operates on lean mixtures by selective catalytic reduction of nitrogen oxides
NZ505573A (en) Reduction of toxic substances, nitrogen oxides, in waste gas emissions
JP2007182812A (en) Denitration method of exhaust gas
JP2009114930A (en) Exhaust purification device
KR20090064008A (en) Apparatus for reducing nitrogen oxide cotained in exhaust gas
JP2017006813A (en) Denitration apparatus and treatment method of nitrogen oxide
JP2008075610A (en) Exhaust gas treating device
JP2011099333A (en) Exhaust emission control device
JP4652047B2 (en) Exhaust gas treatment method and urea SCR type automobile exhaust gas treatment device
JP2741464B2 (en) Exhaust gas treatment apparatus and method
JP7102438B2 (en) Methods and systems for removing harmful compounds from engine exhaust
JPH0691138A (en) Method for processing exhaust gas and device therefor
JP2004270520A (en) Method and device for treating diesel exhaust gas
JP2006220107A (en) Method and device for denitrating and purifying exhaust gas
JP7280169B2 (en) Exhaust purification device
JP2005273614A (en) Urea water adding device
JP2008019820A (en) Exhaust emission control system and exhaust emission control method
KR100587807B1 (en) Control method of SCR
JP2007327389A (en) Exhaust gas treatment device
JP5476770B2 (en) Exhaust gas purification system and control method of exhaust gas purification system
JP2006022735A (en) Exhaust gas treatment device and treatment method for diesel internal combustion engine
KR102434015B1 (en) Method for treating exhaust gas using exhaust gas treatment apparatus
JP2019148232A (en) Exhaust gas treatment system and exhaust emission control method
JP2009275686A (en) Exhaust gas treatment method and exhaust gas treatment device
JPH09150039A (en) Apparatus and method for purifying exhaust gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071214

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20090608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100921

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101215

R150 Certificate of patent or registration of utility model

Ref document number: 4652047

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250