JP4486858B2 - Exhaust gas treatment apparatus and treatment method for diesel internal combustion engine - Google Patents

Exhaust gas treatment apparatus and treatment method for diesel internal combustion engine Download PDF

Info

Publication number
JP4486858B2
JP4486858B2 JP2004202163A JP2004202163A JP4486858B2 JP 4486858 B2 JP4486858 B2 JP 4486858B2 JP 2004202163 A JP2004202163 A JP 2004202163A JP 2004202163 A JP2004202163 A JP 2004202163A JP 4486858 B2 JP4486858 B2 JP 4486858B2
Authority
JP
Japan
Prior art keywords
denitration
exhaust gas
reducing agent
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004202163A
Other languages
Japanese (ja)
Other versions
JP2006022735A (en
Inventor
克巳 高橋
明憲 幸村
保夫 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2004202163A priority Critical patent/JP4486858B2/en
Publication of JP2006022735A publication Critical patent/JP2006022735A/en
Application granted granted Critical
Publication of JP4486858B2 publication Critical patent/JP4486858B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、ディーゼル内燃機関の排気ガス処理装置及び処理方法に係り、特に船舶、自動車、車両などの移動体用ディーゼル内燃機関の排気ガス処理装置及び処理方法に関するものである。   The present invention relates to an exhaust gas processing device and a processing method for a diesel internal combustion engine, and more particularly to an exhaust gas processing device and a processing method for a diesel internal combustion engine for a moving body such as a ship, an automobile, and a vehicle.

発電所やプラントのボイラなどに用いられる固定式(定置式)のディーゼル内燃機関の場合、排気ガス中に含まれるNOX分を除去する方法として、酸化バナジウム/酸化チタン系触媒と還元剤(アンモニア)とを用いた選択接触還元法(SCR法)が広く用いられている(例えば、特許文献1〜3参照)。図6に、この方法を用いた排気ガス処理装置60の一例を示すように、ディーゼル内燃機関61の後段に、脱硝触媒(酸化バナジウム/酸化チタン系触媒)による脱硝反応器62が設けられ、脱硝反応器62のガス導入部62aに臨んで、還元剤(アンモニア)64を供給する供給手段63が設けられる。また、脱硝反応器62の後段には、排気ガス中のCOやハイドロカーボン(HC)を酸化させると共に、粒子状物質(PM)を除塵するための酸化触媒反応器65が設けられる。さらに、ディーゼル内燃機関61の運転状況に応じて、供給手段63からの還元剤64の供給量を制御するための制御手段66が設けられる。   In the case of fixed (stationary) diesel internal combustion engines used in power plant and plant boilers, as a method to remove NOX contained in exhaust gas, vanadium oxide / titanium oxide catalyst and reducing agent (ammonia) The selective catalytic reduction method using SCR (SCR method) is widely used (see, for example, Patent Documents 1 to 3). As shown in FIG. 6, an example of an exhaust gas treatment device 60 using this method is provided with a denitration reactor 62 using a denitration catalyst (vanadium oxide / titanium oxide catalyst) at the subsequent stage of the diesel internal combustion engine 61. A supply means 63 for supplying a reducing agent (ammonia) 64 is provided facing the gas introduction part 62 a of the reactor 62. Further, an oxidation catalyst reactor 65 for oxidizing CO and hydrocarbon (HC) in the exhaust gas and removing particulate matter (PM) is provided at the subsequent stage of the denitration reactor 62. Furthermore, a control means 66 for controlling the supply amount of the reducing agent 64 from the supply means 63 according to the operating state of the diesel internal combustion engine 61 is provided.

この排気ガス処理装置60を、船舶、自動車、車両などの移動体用ディーゼルエンジンに適用し、自動車などの移動体にアンモニアガスを積載するということが、欧米などでは採用されている。   In Europe and the United States, this exhaust gas treatment device 60 is applied to a diesel engine for a moving body such as a ship, an automobile, or a vehicle, and ammonia gas is loaded on the moving body such as an automobile.

特開平05−031327号公報JP 05-031327 A 特開平08−215544号公報Japanese Patent Application Laid-Open No. 08-215544 特開平10−033947号公報Japanese Patent Laid-Open No. 10-033947

ところで、トラックやバスなどのディーゼルエンジンは、加速・減速、停止、再始動など運転状況が急変するため急激な負荷変動が生じる。このため、ディーゼルエンジンの排気ガス中のNOX濃度も急激に変動することから、過剰に投入されたアンモニアガスが、アンモニアスリップにより、そのまま大気中に放出される懸念がある。アンモニアガスは、可燃性ガスであると共に臭気を有していることから、ディーゼルエンジン搭載の移動体にアンモニアガスを積載することは、あまり好ましくない。   By the way, in a diesel engine such as a truck or a bus, an abrupt load fluctuation occurs because an operation state suddenly changes such as acceleration / deceleration, stop, and restart. For this reason, since the NOx concentration in the exhaust gas of the diesel engine also fluctuates rapidly, there is a concern that the excessively introduced ammonia gas is released into the atmosphere as it is due to ammonia slip. Since ammonia gas is a combustible gas and has an odor, it is not preferable to load ammonia gas on a moving body equipped with a diesel engine.

また、ガソリンエンジン搭載の移動体の場合、三元触媒を用いることにより、排気ガス中から未燃分とNOX分とを取り除くことができる。しかし、ディーゼルエンジンの排気ガスは酸素ガスを多く含んでおり、特に、高出力運転時の排ガスは500〜600℃と高温である。ディーゼルエンジンの排気ガスのような過剰酸素、高温雰囲気下で三元触媒を用いると、酸化反応により触媒金属がすぐに劣化してしまうことから、三元触媒をディーゼルエンジン搭載の移動体に適用することは困難である。   In addition, in the case of a moving body equipped with a gasoline engine, it is possible to remove unburned components and NOX components from the exhaust gas by using a three-way catalyst. However, the exhaust gas of a diesel engine contains a large amount of oxygen gas, and particularly the exhaust gas during high-power operation is as high as 500 to 600 ° C. If a three-way catalyst is used in an excess oxygen, high-temperature atmosphere such as exhaust gas from a diesel engine, the catalytic metal will deteriorate quickly due to the oxidation reaction, so apply the three-way catalyst to a moving body equipped with a diesel engine. It is difficult.

以上の事情を考慮して創案された本発明の目的は、酸素分を多く含む高温の排気ガス中に含まれるNOX分を高効率に除去するディーゼル内燃機関の排気ガス処理装置及び処理方法を提供することにある。   The object of the present invention, which was created in view of the above circumstances, is to provide an exhaust gas treatment apparatus and treatment method for a diesel internal combustion engine that efficiently removes NOX contained in high-temperature exhaust gas containing a large amount of oxygen. There is to do.

上記目的を達成すべく本発明に係るディーゼル内燃機関の排気ガス処理装置は、
ディーゼル内燃機関の後段に接続され、排気ガス中に含まれるNOX分を脱硝する排気ガス処理装置において、
上記ディーゼル内燃機関の後段に接続された無触媒脱硝反応器と、
その無触媒脱硝反応器の後段に接続された脱硝触媒による脱硝反応器と、
無触媒脱硝反応器及び脱硝反応器の各ガス導入部に臨んで設けられ、還元剤を噴霧する噴霧手段と、
上記ディーゼル内燃機関から排出されたガス、上記無触媒脱硝反応器を通過したガス、及び上記脱硝反応器を通過したガスの分析を行うガス分析手段と、
を備えたものである。
In order to achieve the above object, an exhaust gas treatment device for a diesel internal combustion engine according to the present invention comprises:
In the exhaust gas treatment device connected to the latter stage of the diesel internal combustion engine and denitrating NOX contained in the exhaust gas,
A non-catalytic denitration reactor connected downstream of the diesel internal combustion engine;
A denitration reactor with a denitration catalyst connected to the latter stage of the non-catalytic denitration reactor,
A spraying means for spraying a reducing agent provided facing each gas introduction part of the non-catalytic denitration reactor and the denitration reactor;
Gas analysis means for analyzing the gas discharged from the diesel internal combustion engine, the gas passed through the non-catalytic denitration reactor, and the gas passed through the denitration reactor;
It is equipped with.

ここで、脱硝反応器の後段に酸化触媒反応器を備えていることが好ましい。さらに、酸化触媒反応器を通過したガスの分析を行うガス分析手段を備えていることが好ましい。 Here, it is preferable that an oxidation catalyst reactor is provided after the denitration reactor. Furthermore, it is preferable to provide a gas analysis means for analyzing the gas that has passed through the oxidation catalyst reactor .

また、本発明に係るディーゼル内燃機関の排気ガス処理装置は、Further, an exhaust gas treatment device for a diesel internal combustion engine according to the present invention includes:
ディーゼル内燃機関の後段に接続され、排気ガス中に含まれるNOX分を脱硝する排気ガス処理装置において、In the exhaust gas treatment device connected to the latter stage of the diesel internal combustion engine and denitrating NOX contained in the exhaust gas,
上記ディーゼル内燃機関の後段に接続された酸化触媒反応器と、An oxidation catalyst reactor connected downstream of the diesel internal combustion engine;
その酸化触媒反応器の後段に接続された無触媒脱硝反応器と、A non-catalytic denitration reactor connected downstream of the oxidation catalyst reactor;
その無触媒脱硝反応器の後段に接続された脱硝触媒による脱硝反応器と、A denitration reactor with a denitration catalyst connected to the latter stage of the non-catalytic denitration reactor,
無触媒脱硝反応器及び脱硝反応器の各ガス導入部に臨んで設けられ、還元剤を噴霧する噴霧手段と、A spraying means for spraying a reducing agent provided facing each gas introduction part of the non-catalytic denitration reactor and the denitration reactor;
上記ディーゼル内燃機関から排出されたガス、上記酸化触媒反応器を通過したガス、上記無触媒脱硝反応器を通過したガス、及び上記脱硝反応器を通過したガスの分析を行うガス分析手段と、Gas analysis means for analyzing the gas discharged from the diesel internal combustion engine, the gas that has passed through the oxidation catalyst reactor, the gas that has passed through the non-catalytic denitration reactor, and the gas that has passed through the denitration reactor;
を備えたものである。It is equipped with.

これらの排気ガス処理装置は、さらに、ガス分析手段により得られたガス分析値に基づいて、噴霧手段からの噴霧量の制御を行う制御手段を備えていることが好ましい。 These exhaust gas treatment devices preferably further comprise a control means for controlling the spray amount from the spray means based on the gas analysis value obtained by the gas analysis means.

また、還元剤が、炭酸アンモニウム水溶液であることが好ましい。   Moreover, it is preferable that a reducing agent is ammonium carbonate aqueous solution.

一方、本発明に係るディーゼル内燃機関の排気ガス処理方法は、
ディーゼル内燃機関から排出された排気ガス中に含まれるNOX分を脱硝する排気ガス処理方法において、
上記ディーゼル内燃機関から排出された排気ガスを無触媒脱硝反応器に導入して無触媒下で第1還元剤を噴霧して第1脱硝処理を施し、
その第1脱硝処理後の排気ガスを脱硝触媒による脱硝反応器に導入すると共に第2還元剤を噴霧し、脱硝触媒と接触させて第2脱硝処理を施し、
かつ、上記第1脱硝処理前後のガス、及び上記第2脱硝処理前後のガスの分析を行い、そのガス分析値に基づいて、第1及び第2還元剤の噴霧量を制御するものである。
On the other hand, the exhaust gas treatment method for a diesel internal combustion engine according to the present invention is:
In an exhaust gas treatment method for denitrating NOX contained in exhaust gas discharged from a diesel internal combustion engine,
Exhaust gas discharged from the diesel internal combustion engine is introduced into a non -catalytic denitration reactor and sprayed with a first reducing agent under a non-catalytic condition to perform a first denitration treatment,
The exhaust gas after the first denitration treatment by spraying the second reducing agent is introduced into the denitration reactor according to the denitration catalyst, and facilities the second denitration treatment in contact with the denitration catalyst,
In addition, the gas before and after the first denitration treatment and the gas before and after the second denitration treatment are analyzed, and the spray amounts of the first and second reducing agents are controlled based on the gas analysis values .

ここで、第1脱硝処理前のNOX濃度が第1基準NOX濃度より大きいときには第1還元剤を一定量噴霧し、第1脱硝処理前のNOX濃度が第1基準NOX濃度以下のときには第1還元剤を噴霧せず、第1脱硝処理後のNOX濃度が第1基準NOX濃度より大きいときには上記一定量の第1還元剤の噴霧量を増量し、第1脱硝処理後のNOX濃度が第1基準NOX濃度以下のときには第1還元剤の噴霧量を減量するフィードバック制御を行うことが好ましい。また、第2脱硝処理前のNOX濃度が第2基準NOX濃度より大きいときには第2還元剤を一定量噴霧し、第2脱硝処理前のNOX濃度が第2基準NOX濃度以下のときには第2還元剤を噴霧せず、第2脱硝処理後のNOX濃度が第2基準NOX濃度より大きいときには上記一定量の第2還元剤の噴霧量を増量し、第2脱硝処理後のNOX濃度が第2基準NOX濃度以下のときには第2還元剤の噴霧量を減量するフィードバック制御を行うことが好ましい。 Here, when the NOX concentration before the first denitration treatment is higher than the first reference NOX concentration, a predetermined amount of the first reducing agent is sprayed, and when the NOX concentration before the first denitration treatment is less than the first reference NOX concentration, the first reduction is performed. When the NOX concentration after the first denitration treatment is higher than the first reference NOX concentration without spraying the agent, the spray amount of the above-mentioned constant amount of the first reducing agent is increased, and the NOX concentration after the first denitration treatment is the first reference It is preferable to perform feedback control to reduce the spray amount of the first reducing agent when the concentration is lower than the NOX concentration . Further, when the NOX concentration before the second denitration treatment is larger than the second reference NOX concentration, a certain amount of the second reducing agent is sprayed, and when the NOX concentration before the second denitration treatment is less than the second reference NOX concentration, the second reducing agent is sprayed. When the NOx concentration after the second denitration treatment is higher than the second reference NOX concentration, the spray amount of the predetermined amount of the second reducing agent is increased, and the NOx concentration after the second denitration treatment is increased to the second reference NOX concentration. When the concentration is lower than the concentration, it is preferable to perform feedback control to reduce the spray amount of the second reducing agent .

また、第1還元剤及び第2還元剤が、炭酸アンモニウム水溶液であることが好ましい。   Moreover, it is preferable that a 1st reducing agent and a 2nd reducing agent are ammonium carbonate aqueous solution.

本発明によれば、酸素分を多く含む高温の排気ガスから、NOX分を効率よく除去することができるという優れた効果を発揮する。   According to the present invention, it is possible to effectively remove NOX from high-temperature exhaust gas containing a large amount of oxygen.

以下、本発明の好適一実施の形態を添付図面に基づいて説明する。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, a preferred embodiment of the invention will be described with reference to the accompanying drawings.

脱硝触媒の反応温度依存性を図5に示すように、線51(図5中では◇印を結んだ線)で示す通常脱硝触媒は、反応温度が約320℃の時、脱硝率が最大(90%弱)となる。これに対して、線52(図5中では■印を結んだ線)で示す中温用脱硝触媒は、反応温度が約400℃の時、脱硝率が最大(80%弱)となる。また、線53(図5中では▲印を結んだ線)で示す高温用脱硝触媒は、反応温度が約450℃の時、脱硝率が最大(60%強)となる。   As shown in FIG. 5, the reaction temperature dependence of the denitration catalyst is indicated by a line 51 (indicated by a line marked with ◇ in FIG. 5). The normal denitration catalyst has a maximum denitration rate when the reaction temperature is about 320 ° C. 90%). On the other hand, the intermediate temperature denitration catalyst indicated by the line 52 (the line connected with the ■ mark in FIG. 5) has the maximum denitration rate (less than 80%) when the reaction temperature is about 400 ° C. Further, the high-temperature denitration catalyst indicated by the line 53 (line marked with ▲ in FIG. 5) has the maximum denitration rate (over 60%) when the reaction temperature is about 450 ° C.

ここで、高出力運転時のディーゼル内燃機関の排気ガスは500〜600℃と高温である。この温度領域では、通常脱硝触媒では最大で約40%以下の脱硝率しか得られず、また、高温用脱硝触媒を用いても最大で約55%弱の脱硝率しか得られず、脱硝率の低下が避けられなかった。   Here, the exhaust gas of the diesel internal combustion engine during high output operation is as high as 500 to 600 ° C. In this temperature range, a normal denitration catalyst can only obtain a denitration rate of about 40% or less, and even when a high-temperature denitration catalyst is used, a denitration rate of only about 55% or less can be obtained. A decline was inevitable.

そこで、本発明者らが鋭意研究した結果、脱硝処理を2段階に分け、前段では脱硝触媒を用いずに脱硝を行い、後段では脱硝触媒を用いて脱硝を行うことで、排気ガスの温度が500〜600℃と高温であっても、高い脱硝率が得られということを見出した。   Therefore, as a result of intensive research by the present inventors, the denitration process is divided into two stages, the denitration is performed without using the denitration catalyst in the former stage, and the denitration is performed using the denitration catalyst in the latter stage, so that the temperature of the exhaust gas can be reduced. It has been found that a high denitration rate can be obtained even at a high temperature of 500 to 600 ° C.

本発明の好適一実施の形態に係るディーゼル内燃機関の排気ガス処理装置の模式図を図1に示す。   FIG. 1 shows a schematic diagram of an exhaust gas treatment device for a diesel internal combustion engine according to a preferred embodiment of the present invention.

図1に示すように、本実施の形態に係る排気ガス処理装置10は、ディーゼル内燃機関11の後段に設けられるものであり、前段側(図1中では左側)に位置する管状の第1反応部12aと、後段側(図1中では右側)に位置する管状の第2反応部12bとで構成される。図1に示した第1反応部12a及び第2反応部12bは、長手方向(図1中では左右方向)の両端部がコーン状のテーパ接続部となっており、中央部及びその近傍が拡径部となっているが、特にこれに限定するものではなく、直管状であってもよい。   As shown in FIG. 1, an exhaust gas treatment device 10 according to the present embodiment is provided at the rear stage of a diesel internal combustion engine 11, and is a tubular first reaction located on the front stage side (left side in FIG. 1). The part 12a and the tubular second reaction part 12b positioned on the rear side (right side in FIG. 1) are configured. The first reaction part 12a and the second reaction part 12b shown in FIG. 1 have cone-shaped taper connection parts at both ends in the longitudinal direction (left and right direction in FIG. 1), and the central part and its vicinity expand. Although it is a diameter part, it is not limited to this in particular, A straight tube may be sufficient.

第1反応部12aの内部が無触媒脱硝反応器13とされる。無触媒脱硝反応器13は、単なる空間であってもよいが、第1反応部12aの内部空間に金属ハニカム体を装填したものであってもよい。金属ハニカム体を装填することで、ディーゼル内燃機関11からの排気ガスG1と後述する還元剤Rとがより均一に混合され、その混合ガス(排気ガスG1+還元剤R)の温度分布がより均一となり、無触媒脱硝反応器13における脱硝反応がより進行し易くなる。   The inside of the first reaction unit 12 a is a non-catalytic denitration reactor 13. The non-catalytic denitration reactor 13 may be a simple space, or may be one in which a metal honeycomb body is loaded in the internal space of the first reaction section 12a. By loading the metal honeycomb body, the exhaust gas G1 from the diesel internal combustion engine 11 and the reducing agent R described later are mixed more uniformly, and the temperature distribution of the mixed gas (exhaust gas G1 + reducing agent R) becomes more uniform. In addition, the denitration reaction in the non-catalytic denitration reactor 13 becomes easier to proceed.

第2反応部12bの内部には、前段側に脱硝反応器14が、後段側に酸化触媒反応器15が設けられる。   Inside the second reaction section 12b, a denitration reactor 14 is provided on the front side, and an oxidation catalyst reactor 15 is provided on the rear side.

脱硝反応器14は、第2反応部12bの内部空間に、脱硝触媒を担持させた担体を装填したものであり、前段側の還元剤分解部14bと、後段側の脱硝触媒本体部14aとで構成される。この還元剤分解部14bが、後述する供給ライン16bから噴霧された還元剤Rが、直接、脱硝触媒本体部14aに接触することを防ぐと共に、還元剤Rを分解してアンモニアを生成する領域となる。還元剤分解部14bは、単なる空間であってもよいが、第2反応部12bの内部空間に金属ハニカム体を装填したものであってもよい。金属ハニカム体を装填することで、第1脱硝処理後の排気ガスG2と還元剤Rとがより均一に混合され、その混合ガス(排気ガスG2+還元剤R)の温度分布がより均一となり、脱硝反応器14における脱硝反応がより進行し易くなる。   The denitration reactor 14 is a device in which a carrier carrying a denitration catalyst is loaded in the internal space of the second reaction unit 12b, and includes a reducing agent decomposition unit 14b on the front side and a denitration catalyst body 14a on the rear side. Composed. The reducing agent decomposition unit 14b prevents the reducing agent R sprayed from a supply line 16b, which will be described later, from coming into direct contact with the denitration catalyst main body 14a, and also generates a region by decomposing the reducing agent R and generating ammonia. Become. The reducing agent decomposing portion 14b may be a simple space, or may be one in which a metal honeycomb body is loaded in the internal space of the second reaction portion 12b. By loading the metal honeycomb body, the exhaust gas G2 after the first denitration treatment and the reducing agent R are more uniformly mixed, the temperature distribution of the mixed gas (exhaust gas G2 + reducing agent R) becomes more uniform, and the denitration is performed. The denitration reaction in the reactor 14 becomes easier to proceed.

酸化触媒反応器15としては、第2反応部12bの内部空間に酸化触媒を担持させたハニカム体を装填したもの、または酸化触媒を備えたDPF(Diesel Particulate Filter)などが挙げられる。   Examples of the oxidation catalyst reactor 15 include a reactor in which a honeycomb body carrying an oxidation catalyst is loaded in the internal space of the second reaction section 12b, or a DPF (Diesel Particulate Filter) having an oxidation catalyst.

また、排気ガス処理装置10は、無触媒脱硝反応器13のガス導入部13a及び脱硝反応器14のガス導入部14cに臨んで、還元剤Rを噴霧する噴霧手段16を備えている。噴霧手段16は、還元剤Rを貯留するタンク16cと、そのタンク16cに接続され、無触媒脱硝反応器13及び脱硝反応器14の各ガス導入部13a,14cに還元剤Rを噴霧する供給ライン16a,16bとで構成される。ここで、無触媒脱硝反応器13のガス導入部13aに還元剤Rを噴霧する供給ライン16aの噴霧口は、無触媒脱硝反応器13の長手方向(図1中では左右方向)に亘って多段に配置してもよい。各噴霧口からの還元剤Rの噴霧量を調整することで、排気ガスG1と還元剤Rとの混合具合及び第1脱硝処理後の排気ガスG2の温度を、より細かく調整することができる。   Further, the exhaust gas treatment device 10 includes a spraying means 16 for spraying the reducing agent R facing the gas introduction part 13 a of the non-catalytic denitration reactor 13 and the gas introduction part 14 c of the denitration reactor 14. The spraying means 16 is connected to the tank 16c for storing the reducing agent R, and a supply line that is connected to the tank 16c and sprays the reducing agent R to the gas introduction portions 13a and 14c of the non-catalytic denitration reactor 13 and the denitration reactor 14. 16a and 16b. Here, the spray ports of the supply line 16a for spraying the reducing agent R to the gas introduction part 13a of the non-catalytic denitration reactor 13 are multistage over the longitudinal direction of the non-catalytic denitration reactor 13 (left and right direction in FIG. 1). You may arrange in. By adjusting the spray amount of the reducing agent R from each spray port, the mixing condition of the exhaust gas G1 and the reducing agent R and the temperature of the exhaust gas G2 after the first denitration treatment can be adjusted more finely.

さらに、排気ガス処理装置10は、ディーゼル内燃機関11から排出されたガスG1、無触媒脱硝反応器13を通過したガスG2、脱硝反応器14を通過したガスG3、及び酸化触媒反応器15を通過したガスG4の分析を行うガス分析手段17を備えている。ガス分析手段17は、ガスセンサを備え、各ガスG1〜G4のデータを採取するガス分析系17a〜17dと、それらのガス分析系17a〜17dに接続され、得られた各ガスデータを基にガス分析を行う本体部17eとで構成される。   Further, the exhaust gas treatment device 10 passes through the gas G1 discharged from the diesel internal combustion engine 11, the gas G2 that has passed through the non-catalytic denitration reactor 13, the gas G3 that has passed through the denitration reactor 14, and the oxidation catalyst reactor 15. The gas analysis means 17 for analyzing the gas G4 is provided. The gas analysis means 17 includes a gas sensor, is connected to gas analysis systems 17a to 17d for collecting data of the gases G1 to G4, and the gas analysis systems 17a to 17d, and gas is based on the obtained gas data. It is comprised with the main-body part 17e which performs an analysis.

また、排気ガス処理装置10は、ディーゼル内燃機関11と電気的に接続され、ガス分析手段17及び噴霧手段16の制御を行う制御手段18を備えている。制御手段18は、ガス分析手段17により得られたガス分析値及び/又はディーゼル内燃機関11の運転状況に基づいて、噴霧手段16の各供給ライン16a,16bからの還元剤Rの噴霧量を制御する。また、制御手段18は、ガス分析値に基づいて、ディーゼル内燃機関11の運転条件を制御する。   Further, the exhaust gas treatment device 10 includes a control means 18 that is electrically connected to the diesel internal combustion engine 11 and controls the gas analysis means 17 and the spray means 16. The control unit 18 controls the spray amount of the reducing agent R from the supply lines 16 a and 16 b of the spray unit 16 based on the gas analysis value obtained by the gas analysis unit 17 and / or the operation state of the diesel internal combustion engine 11. To do. The control means 18 controls the operating conditions of the diesel internal combustion engine 11 based on the gas analysis value.

脱硝反応器14の脱硝触媒としては、例えば、V、Mo、又はWを主成分としたもの、或いはそれらの混合物が挙げられる。脱硝触媒としては、慣用的に用いられている通常脱硝触媒、中温用脱硝触媒、又は高温用脱硝触媒のいずれであってもよいが、好適反応温度が低い通常脱硝触媒が望ましい。ここで言う好適反応温度とは、脱硝率が最大となる時の温度を示している。   Examples of the denitration catalyst of the denitration reactor 14 include those containing V, Mo, or W as a main component, or a mixture thereof. The denitration catalyst may be any conventionally used normal denitration catalyst, intermediate temperature denitration catalyst, or high temperature denitration catalyst, but a normal denitration catalyst having a low preferred reaction temperature is desirable. The preferable reaction temperature here refers to the temperature at which the denitration rate is maximized.

脱硝反応器14の担体構成材としては、脱硝触媒用担体として慣用的に用いられているものが全て適用可能であり、耐熱性、耐酸化性、及び耐食性に優れたものであれば特に限定するものではなく、例えば、酸化チタンが挙げられる。   As the carrier constituent material of the denitration reactor 14, any material conventionally used as a carrier for a denitration catalyst can be applied, and it is particularly limited as long as it has excellent heat resistance, oxidation resistance, and corrosion resistance. For example, titanium oxide is used.

還元剤Rとしては、脱硝用の還元剤として慣用的に用いられているものが全て適用可能であり、特に限定するものではなく、例えば、アンモニア、尿素、炭酸水素アンモニウム、炭酸アンモニウムなどがあげられる。還元剤Rが、水溶液や固形物であれば、自動車などの移動体に積載しても安全である。特に、還元剤Rが水溶液の場合、供給量の制御が容易であり、また、霧状に供給することで、排気ガスと均一に混合させることが容易となるため、より好ましい。よって、水溶液の還元剤Rを用いることで、固体の還元剤Rを用いる場合と比較して、脱硝処理反応をより速やかに進行させることができる。また、水溶液や固形物の還元剤Rは、より低い温度でアンモニアガスに分解されるものほど、還元剤としての活性が高く、脱硝率が高い。還元剤Rの分解温度の高低による脱硝率の違いは、無触媒脱硝反応器13において特に顕著となる。   As the reducing agent R, any conventionally used reducing agent for denitration can be applied, and is not particularly limited, and examples thereof include ammonia, urea, ammonium hydrogen carbonate, ammonium carbonate and the like. . If the reducing agent R is an aqueous solution or a solid material, it can be safely loaded on a moving body such as an automobile. In particular, when the reducing agent R is an aqueous solution, the supply amount is easy to control, and it is more preferable to supply it in the form of a mist because it can be easily mixed uniformly with the exhaust gas. Therefore, by using the reducing agent R in the aqueous solution, the denitration treatment reaction can be advanced more quickly than in the case of using the solid reducing agent R. Moreover, as the reducing agent R of an aqueous solution or a solid is decomposed into ammonia gas at a lower temperature, the activity as a reducing agent is higher and the denitration rate is higher. The difference in the denitration rate depending on the decomposition temperature of the reducing agent R is particularly remarkable in the non-catalytic denitration reactor 13.

具体的に、還元剤Rとして、尿素(CO(NH2)2)と炭酸アンモニウム((NH4)2CO3)とを例に挙げて、これらの還元剤の分解温度、無触媒脱硝反応器での脱硝率、室温での溶解度を表1に示す。 Specifically, as the reducing agent R, urea (CO (NH 2 ) 2 ) and ammonium carbonate ((NH 4 ) 2 CO 3 ) are taken as examples. The decomposition temperature of these reducing agents, non-catalytic denitration reactor Table 1 shows the denitration rate and solubility at room temperature.

Figure 0004486858
Figure 0004486858

表1に示すように、炭酸アンモニウムの分解温度は58℃、尿素の分解温度は160℃であり、炭酸アンモニウムの方が分解温度が低い。分解温度が低い方が、還元剤Rとしての活性が高いため、炭酸アンモニウムの脱硝率は20〜35%程度、尿素の脱硝率は10〜30%という具合に、炭酸アンモニウムの方が脱硝率が良好となる。また、炭酸アンモニウムの溶解度は400%、尿素の溶解度は52%という具合に、炭酸アンモニウムの方が溶解度が高い。つまり、炭酸アンモニウム水溶液は、尿素水溶液と比較して濃度をより高めることができる。   As shown in Table 1, the decomposition temperature of ammonium carbonate is 58 ° C., the decomposition temperature of urea is 160 ° C., and ammonium carbonate has a lower decomposition temperature. The lower the decomposition temperature, the higher the activity as the reducing agent R. Therefore, the denitration rate of ammonium carbonate is about 20 to 35%, the denitration rate of urea is 10 to 30%, and so on. It becomes good. Ammonium carbonate has a higher solubility, such as ammonium carbonate has a solubility of 400%, urea has a solubility of 52%. That is, the concentration of the ammonium carbonate aqueous solution can be further increased as compared with the urea aqueous solution.

よって、炭酸アンモニウム水溶液を用いて、尿素水溶液と同じ脱硝率を得たい場合、同じ濃度の水溶液を用いるのであれば、炭酸アンモニウム水溶液の使用量は、尿素水溶液の使用量よりも少量で済む。また、炭酸アンモニウム水溶液を用いて、尿素水溶液と同じ脱硝率を得たい場合、同量の水溶液を用いるのであれば、炭酸アンモニウム水溶液の濃度は、尿素水溶液の濃度よりも低濃度で済む。以上より、還元剤Rとしては、炭酸アンモニウム水溶液が特に好ましい。   Therefore, when it is desired to obtain the same denitration rate as the urea aqueous solution by using the ammonium carbonate aqueous solution, the amount of the ammonium carbonate aqueous solution used may be smaller than the amount of the urea aqueous solution used if the same concentration aqueous solution is used. Further, when it is desired to obtain the same denitration rate as the urea aqueous solution by using the ammonium carbonate aqueous solution, the concentration of the ammonium carbonate aqueous solution may be lower than the concentration of the urea aqueous solution if the same amount of the aqueous solution is used. From the above, the reducing agent R is particularly preferably an aqueous ammonium carbonate solution.

次に、本実施の形態に係る排気ガス処理方法を、添付図面に基づいて説明する。   Next, an exhaust gas treatment method according to the present embodiment will be described with reference to the accompanying drawings.

ディーゼル内燃機関11の排気ガスは、酸素分を多く含み、かつ、約500〜600℃と高温であるため、通常脱硝触媒を用いるとNOXをあまり除去できないことから、高温用脱硝触媒が使用されていた。しかし、高温用脱硝触媒は、通常脱硝触媒と比較して脱硝率が劣るため、高効率にNOX除去を行うことができなかった。   Since the exhaust gas of the diesel internal combustion engine 11 contains a large amount of oxygen and has a high temperature of about 500 to 600 ° C., NOx cannot be removed so much when a normal denitration catalyst is used. Therefore, a high-temperature denitration catalyst is used. It was. However, since the denitration catalyst for high temperature has a lower denitration rate than the normal denitration catalyst, NOX removal cannot be performed with high efficiency.

本実施の形態に係る排気ガス処理装置10は、NOX除去を2段階以上に分け、脱硝触媒を用いたNOX除去を行う前に、無触媒下で水溶液状の還元剤RによるNOX除去を行うことに特長がある。   The exhaust gas treatment apparatus 10 according to the present embodiment divides NOX removal into two or more stages, and performs NOX removal with an aqueous reducing agent R in the absence of a catalyst before performing NOX removal using a denitration catalyst. Has the features.

先ず、図3に示すように、ディーゼル内燃機関11から排出された高温(約500〜600℃)の排気ガスG1は、ガス分析系17a及び本体部17eによりガス分析(NOX濃度、SOX濃度、PM濃度、CO濃度、HC濃度など)がなされる。排気ガスG1のNOX濃度CAが第1基準NOX濃度S1よりも大きい場合(CA>S1)、つまり分岐命令BI1がyesの場合、無触媒脱硝反応器13の前段において、CA≦S1とすべく供給ライン16aから水溶液状の還元剤R(第1還元剤)が一定量(V1)噴霧される(stepA)。これによって、排気ガスG1と還元剤Rとが混合、接触される。また、CA≦S1の場合、つまり分岐命令BI1がnoの場合、供給ライン16aから還元剤Rは噴霧されず、無触媒脱硝反応器13内で脱硝処理はなされない。ここで、第1基準NOX濃度S1は、無触媒脱硝反応器13の脱硝能力に基づいて予め決められる。また、噴霧量V1は、NOX濃度CAに応じて決定される。   First, as shown in FIG. 3, the high-temperature (about 500 to 600 ° C.) exhaust gas G1 discharged from the diesel internal combustion engine 11 is analyzed by a gas analysis system 17a and a main body portion 17e (NOX concentration, SOX concentration, PM). Concentration, CO concentration, HC concentration, etc.). When the NOx concentration CA of the exhaust gas G1 is larger than the first reference NOx concentration S1 (CA> S1), that is, when the branch instruction BI1 is yes, the supply is made so that CA ≦ S1 before the non-catalytic denitration reactor 13 A fixed amount (V1) of the aqueous reducing agent R (first reducing agent) is sprayed from the line 16a (step A). As a result, the exhaust gas G1 and the reducing agent R are mixed and contacted. When CA ≦ S1, that is, when the branch instruction BI1 is no, the reducing agent R is not sprayed from the supply line 16a, and the denitration process is not performed in the non-catalytic denitration reactor 13. Here, the first reference NOX concentration S1 is determined in advance based on the denitration capability of the non-catalytic denitration reactor 13. Further, the spray amount V1 is determined according to the NOX concentration CA.

排気ガスG1と還元剤Rとの気液接触によって、還元剤Rは蒸発、分解され、(1)式に示すように、アンモニアガスが発生する。この時、還元剤Rとして炭酸アンモニウム水溶液を用いることで、最も反応性(効率)よくアンモニアガスを発生させることができる。また、還元剤Rが蒸発する際の気化熱により、第1混合ガス(排気ガスG1+アンモニアガス)の温度が低下する。この温度低下の度合いは、還元剤Rの噴霧量を制御することで、ある一定の範囲で自在に調整することができる。
(NH4)2CO3(又はCO(NH2)2)+H2O→NH3 …(1)
By the gas-liquid contact between the exhaust gas G1 and the reducing agent R, the reducing agent R is evaporated and decomposed, and ammonia gas is generated as shown in the equation (1). At this time, by using an aqueous ammonium carbonate solution as the reducing agent R, ammonia gas can be generated with the highest reactivity (efficiency). Further, the temperature of the first mixed gas (exhaust gas G1 + ammonia gas) decreases due to the heat of vaporization when the reducing agent R evaporates. The degree of the temperature decrease can be freely adjusted within a certain range by controlling the spray amount of the reducing agent R.
(NH 4 ) 2 CO 3 (or CO (NH 2 ) 2 ) + H 2 O → NH 3 (1)

還元剤Rが分解して発生したアンモニアガスは、無触媒脱硝反応器13において排気ガスG1と反応し、(2)式に示すように、排気ガスG1中に含まれるNOXの一部が窒素ガスに還元される(還元割合は、全NOX量の約10〜30%)。つまり、無触媒脱硝反応器13において、排気ガスG1に対して第1脱硝処理がなされ、排気ガスG2となる。NOXの還元割合は、無触媒脱硝反応器13の容積が大きいほど高くなり、また、還元剤Rの噴霧量V1及び/又は還元剤Rの水溶液濃度を制御することで、ある一定の範囲で自在に調整することができる。
NOX+NH3+O2→N2 …(2)
The ammonia gas generated by the decomposition of the reducing agent R reacts with the exhaust gas G1 in the non-catalytic denitration reactor 13, and as shown in the formula (2), a part of NOx contained in the exhaust gas G1 is nitrogen gas. (The reduction ratio is about 10 to 30% of the total NOx amount). That is, in the non-catalytic denitration reactor 13, the exhaust gas G1 is subjected to the first denitration process to become the exhaust gas G2. The reduction ratio of NOX increases as the volume of the non-catalytic denitration reactor 13 increases, and can be freely controlled within a certain range by controlling the spray amount V1 of the reducing agent R and / or the aqueous solution concentration of the reducing agent R. Can be adjusted.
NOX + NH 3 + O 2 → N 2 (2)

第1脱硝処理後の排気ガスG2は、ガス分析系17b及び本体部17eによりガス分析がなされる。ここで、排気ガスG2のNOX濃度CBが、前述の第1基準NOX濃度S1よりも大きい場合(CB>S1)、つまり分岐命令BI2がyesの場合、還元剤Rの噴霧量V1を増量し(stepB1)、CBS1の場合、つまり分岐命令BI2がnoの場合、還元剤Rの噴霧量V1を減量する(stepB2)というフィードバック制御を行う。 The exhaust gas G2 after the first denitration treatment is subjected to gas analysis by the gas analysis system 17b and the main body portion 17e. Here, when the NOX concentration CB of the exhaust gas G2 is larger than the first reference NOX concentration S1 (CB> S1), that is, when the branch instruction BI2 is yes, the spray amount V1 of the reducing agent R is increased ( stepB1), if CB S1, that is, if the branch instruction BI2 is no, feedback control is performed to reduce the spray amount V1 of the reducing agent R (step B2).

次に、排気ガスG2のNOX濃度CBが第2基準NOX濃度S2よりも大きい場合(CB>S2)、つまり分岐命令BI3がyesの場合、脱硝反応器14の前段において、CB≦S2とすべく供給ライン16bから水溶液状の還元剤R(第2還元剤)が一定量(V2)噴霧される(stepC)。これによって、排気ガスG2と還元剤Rとが混合、接触される。また、CB≦S2の場合、つまり分岐命令BI3がnoの場合、供給ライン16bから還元剤Rは噴霧されず、排気ガスG2はそのままの状態で脱硝反応器14内に導入される。ここで、第2基準NOX濃度S2は、脱硝反応器14の脱硝能力に基づいて予め決められる。また、噴霧量V2は、NOX濃度CB及び/又は脱硝触媒の反応温度に応じて決定される。   Next, when the NOx concentration CB of the exhaust gas G2 is larger than the second reference NOx concentration S2 (CB> S2), that is, when the branch instruction BI3 is yes, CB ≦ S2 should be set before the denitration reactor 14 A fixed amount (V2) of the aqueous reducing agent R (second reducing agent) is sprayed from the supply line 16b (step C). Thereby, the exhaust gas G2 and the reducing agent R are mixed and contacted. In the case of CB ≦ S2, that is, when the branch instruction BI3 is no, the reducing agent R is not sprayed from the supply line 16b, and the exhaust gas G2 is introduced into the denitration reactor 14 as it is. Here, the second reference NOX concentration S2 is determined in advance based on the denitration capability of the denitration reactor 14. The spray amount V2 is determined according to the NOX concentration CB and / or the reaction temperature of the denitration catalyst.

排気ガスG2と還元剤Rとの気液接触によって、還元剤Rは蒸発、分解され、(1)式に示したように、アンモニアガスが発生する。このアンモニアガスの発生は、脱硝反応器14の前段に設けた還元剤分解部14b(アンモニア生成領域)においてなされる。還元剤分解部14bを設けることで、還元剤Rが、直接、脱硝触媒本体部14aに接触するのが防がれる。また、還元剤分解部14bにおいて、排気ガスG2は、第2混合ガス(排気ガスG2+アンモニアガス)となるが、還元剤Rが蒸発する際の気化熱により、再び温度低下される。これによって、第2混合ガスの温度は脱硝触媒の好適反応温度近傍まで十分に低下される。さらに、還元剤分解部14bは、無触媒脱硝反応器とみることもできるため、還元剤分解部14bにおいても、一部の排気ガスG2の脱硝処理がなされる。   By the gas-liquid contact between the exhaust gas G2 and the reducing agent R, the reducing agent R is evaporated and decomposed, and ammonia gas is generated as shown in the equation (1). The generation of the ammonia gas is performed in the reducing agent decomposition unit 14b (ammonia generation region) provided in the front stage of the denitration reactor 14. By providing the reducing agent decomposition part 14b, the reducing agent R can be prevented from coming into direct contact with the denitration catalyst main body part 14a. In the reducing agent decomposing portion 14b, the exhaust gas G2 becomes the second mixed gas (exhaust gas G2 + ammonia gas), but the temperature is lowered again by the heat of vaporization when the reducing agent R evaporates. As a result, the temperature of the second mixed gas is sufficiently lowered to near the preferred reaction temperature of the denitration catalyst. Furthermore, since the reducing agent decomposition unit 14b can be regarded as a non-catalytic denitration reactor, a part of the exhaust gas G2 is also denitrated in the reducing agent decomposition unit 14b.

次に、還元剤分解部14bで生成したアンモニアガスは、排気ガスG2と混合された状態で、脱硝反応器14に導入される。脱硝触媒下において、排気ガスG2はアンモニアガスと反応し、(2)式に示したように、排気ガスG2中に含まれるNOXのほとんどが窒素ガスに還元される。つまり、脱硝反応器14において、排気ガスG2に対して第2脱硝処理がなされ、排気ガスG3となる。NOXの還元割合は、脱硝反応器14の脱硝能力が大きいほど高くなり、また、還元剤Rの噴霧量V2及び/又は還元剤Rの水溶液濃度を制御することで、ある一定の範囲で自在に調整することができる。   Next, the ammonia gas generated in the reducing agent decomposition unit 14b is introduced into the denitration reactor 14 while being mixed with the exhaust gas G2. Under the denitration catalyst, the exhaust gas G2 reacts with ammonia gas, and as shown in the equation (2), most of the NOx contained in the exhaust gas G2 is reduced to nitrogen gas. That is, in the denitration reactor 14, the second denitration process is performed on the exhaust gas G2, and the exhaust gas G3 is obtained. The reduction rate of NOX increases as the denitration capacity of the denitration reactor 14 increases, and can be freely controlled within a certain range by controlling the spray amount V2 of the reducing agent R and / or the aqueous solution concentration of the reducing agent R. Can be adjusted.

第2脱硝処理後の排気ガスG3は、ガス分析系17c及び本体部17eによりガス分析がなされる。ここで、排気ガスG3のNOX濃度CCが、前述の第2基準NOX濃度S2よりも大きい場合(CC>S2)、つまり分岐命令BI4がyesの場合、還元剤Rの噴霧量V2を増量し(stepD1)、CCS2の場合、つまり分岐命令BI4がnoの場合、還元剤Rの噴霧量V2を減量する(stepD2)というフィードバック制御を行う。 The exhaust gas G3 after the second denitration treatment is subjected to gas analysis by the gas analysis system 17c and the main body portion 17e. Here, when the NOX concentration CC of the exhaust gas G3 is larger than the second reference NOX concentration S2 (CC> S2), that is, when the branch instruction BI4 is yes, the spray amount V2 of the reducing agent R is increased ( stepD1), when CC S2, that is, when the branch instruction BI4 is no, feedback control is performed to reduce the spray amount V2 of the reducing agent R (stepD2).

その後、排気ガスG3は、酸化触媒反応器15に導入され、(3)式、(4)式に示すように、排気ガスG3中に含まれるCOやHCなどが酸化される(stepE)。この時、フィルターやDPFなどを用いてPMを除塵、除去するようにしてもよい。
CO+O2→CO2 …(3)
HC+O2→CO2 …(4)
Thereafter, the exhaust gas G3 is introduced into the oxidation catalyst reactor 15, and the CO, HC, etc. contained in the exhaust gas G3 are oxidized (step E) as shown in the equations (3) and (4). At this time, PM may be removed and removed using a filter, DPF, or the like.
CO + O 2 → CO 2 (3)
HC + O 2 → CO 2 (4)

最後に、酸化、除塵された排気ガスG4は、大気中に排出される(stepF)。この時、ガス分析系17d及び本体部17eを用いて排気ガスG4のガス分析を行うようにしてもよい。このガス分析値に基づいて、酸化触媒反応器15の性能の劣化具合を知ることができる。   Finally, the oxidized exhaust gas G4 is discharged into the atmosphere (step F). At this time, the gas analysis of the exhaust gas G4 may be performed using the gas analysis system 17d and the main body 17e. Based on this gas analysis value, it is possible to know the degree of deterioration of the performance of the oxidation catalyst reactor 15.

また、ガス分析系17a〜17d及び本体部17eを用いて得られた各ガス分析値に基づいて、ディーゼル内燃機関11の燃焼条件のフィードバック制御を行うようにしてもよい。   Further, feedback control of the combustion conditions of the diesel internal combustion engine 11 may be performed based on each gas analysis value obtained using the gas analysis systems 17a to 17d and the main body portion 17e.

さらに、本実施の形態に係る排気ガス処理方法に基づいて排気ガス処理装置10を長期間に亘って運転することで、運用データが蓄積される。この運用データを予め求めておき、ディーゼル内燃機関11の運転状況に応じて、直接、還元剤Rの噴霧量V1,V2の制御を行うようにしてもよい。   Furthermore, operation data is accumulated by operating the exhaust gas treatment device 10 for a long period of time based on the exhaust gas treatment method according to the present embodiment. The operation data may be obtained in advance, and the spray amounts V1 and V2 of the reducing agent R may be directly controlled in accordance with the operation state of the diesel internal combustion engine 11.

また、還元剤Rの水溶液濃度を一定としたまま、噴霧量V1,V2を制御する代わりに、還元剤Rの噴霧量V1,V2を一定としたまま、水溶液濃度を制御するようにしてもよい。   Further, instead of controlling the spray amounts V1 and V2 while keeping the aqueous solution concentration of the reducing agent R constant, the aqueous solution concentration may be controlled while keeping the spray amounts V1 and V2 of the reducing agent R constant. .

以上述べたように、本実施の形態に係る排気ガス処理装置10は、NOX除去を2段階以上に分け、脱硝触媒を用いたNOX除去を行う前に、無触媒下で水溶液状の還元剤RによるNOX除去を行うことで、酸素分を多く含む高温の排気ガスG1であっても、効率よくNOX除去を行うことができる。   As described above, the exhaust gas treatment apparatus 10 according to the present embodiment divides NOX removal into two or more stages, and before performing NOX removal using the denitration catalyst, the reducing agent R in the form of an aqueous solution under no catalyst. By performing the NOx removal by the NOx removal, the NOx removal can be efficiently performed even with the high-temperature exhaust gas G1 containing a large amount of oxygen.

また、移動体に搭載されたディーゼルエンジンは、加速・減速、停止、再始動など運転状況の急変によって急激な負荷変動が生じる。しかし、本実施の形態に係る排気ガス処理装置10によれば、装置各部においてガス分析を行ってNOX濃度を測定すると共に、装置各部において適切な量の還元剤Rを供給することで、排気ガス中に含まれるNOX分を効率よく低減、除去することができる。   In addition, the diesel engine mounted on the moving body undergoes a sudden load fluctuation due to a sudden change in the operating condition such as acceleration / deceleration, stop, and restart. However, according to the exhaust gas processing apparatus 10 according to the present embodiment, exhaust gas is analyzed by performing gas analysis in each part of the apparatus to measure the NOX concentration and supplying an appropriate amount of reducing agent R in each part of the apparatus. The NOX content contained therein can be efficiently reduced and removed.

さらに、還元剤Rとして水溶液を用いることで、急激な負荷変動に対して迅速に対処することができる。特に、還元剤Rとして炭酸アンモニウム水溶液を用いることで、従来使われている尿素水溶液と比較して、排気ガス中に含まれるNOX分をより効率よく低減、除去することができる。   Furthermore, by using an aqueous solution as the reducing agent R, it is possible to quickly cope with sudden load fluctuations. In particular, by using an aqueous ammonium carbonate solution as the reducing agent R, it is possible to more efficiently reduce and remove the NOx content contained in the exhaust gas as compared with a conventionally used urea aqueous solution.

本実施の形態に係る排気ガス処理装置10は、定置型又は移動型のディーゼル内燃機関に適用可能であり、特に、移動体(船舶、自動車、耕耘機やトラクターなどの農作業用機器)に搭載されるディーゼルエンジンの排気ガス処理装置として好適である。   The exhaust gas treatment apparatus 10 according to the present embodiment can be applied to a stationary or mobile diesel internal combustion engine, and is particularly mounted on a moving body (agricultural equipment such as a ship, an automobile, a tiller or a tractor). It is suitable as an exhaust gas treatment device for a diesel engine.

次に、本発明の他の実施の形態を添付図面に基づいて説明する。   Next, another embodiment of the present invention will be described with reference to the accompanying drawings.

本発明の他の好適一実施の形態に係るディーゼル内燃機関の排気ガス処理装置の模式図を図2に示す。尚、図1と同様の部材には同じ符号を付しており、これらの部材については説明を省略する。   A schematic diagram of an exhaust gas treatment device for a diesel internal combustion engine according to another preferred embodiment of the present invention is shown in FIG. In addition, the same code | symbol is attached | subjected to the member similar to FIG. 1, and description is abbreviate | omitted about these members.

図1に示した前実施の形態に係る排気ガス処理装置10は、脱硝反応器14の後段に酸化触媒反応器15を有するものであった。   The exhaust gas treatment apparatus 10 according to the previous embodiment shown in FIG. 1 has an oxidation catalyst reactor 15 at the rear stage of the denitration reactor 14.

図2に示すように、本実施の形態に係る排気ガス処理装置20は、基本的な構成は前実施の形態に係る排気ガス処理装置10と同じである。排気ガス処理装置20と排気ガス処理装置10とが異なる点は、酸化触媒反応器の位置であり、排気ガス処理装置20は、ディーゼル内燃機関11と無触媒脱硝反応器13との間に酸化触媒反応器25を有する。   As shown in FIG. 2, the exhaust gas processing apparatus 20 according to the present embodiment has the same basic configuration as the exhaust gas processing apparatus 10 according to the previous embodiment. The difference between the exhaust gas treatment device 20 and the exhaust gas treatment device 10 is the position of the oxidation catalyst reactor. The exhaust gas treatment device 20 is provided between the diesel internal combustion engine 11 and the non-catalytic denitration reactor 13. It has a reactor 25.

排気ガス処理装置20は、ディーゼル内燃機関11から排出されたガスG1、酸化触媒反応器25を通過したガスG5、無触媒脱硝反応器13を通過したガスG6、及び脱硝反応器14を通過したガスG7の分析を行うガス分析手段27を備えている。ガス分析手段27は、ガスセンサを備え、各ガスG1,G5〜G7のデータを採取するガス分析系27d,17a〜17cと、それらのガス分析系27d,17a〜17cに接続され、得られた各ガスデータを基にガス分析を行う本体部17eとで構成される。   The exhaust gas treatment device 20 includes a gas G1 discharged from the diesel internal combustion engine 11, a gas G5 that has passed through the oxidation catalyst reactor 25, a gas G6 that has passed through the non-catalytic denitration reactor 13, and a gas that has passed through the denitration reactor 14. Gas analysis means 27 for performing G7 analysis is provided. The gas analysis means 27 includes a gas sensor, and is connected to the gas analysis systems 27d, 17a to 17c for collecting data of the gases G1, G5 to G7, and the gas analysis systems 27d, 17a to 17c. And a main body 17e that performs gas analysis based on the gas data.

また、排気ガス処理装置20は、ディーゼル内燃機関11と電気的に接続され、ガス分析手段27及び噴霧手段16の制御を行う制御手段28を備えている。制御手段28は、ガス分析手段27により得られたガス分析値及び/又はディーゼル内燃機関11の運転状況に基づいて、噴霧手段16の各供給ライン16a,16bからの還元剤Rの噴霧量を制御する。また、制御手段18は、ガス分析値に基づいて、ディーゼル内燃機関11の運転条件を制御する。   Further, the exhaust gas processing device 20 includes a control means 28 that is electrically connected to the diesel internal combustion engine 11 and controls the gas analysis means 27 and the spray means 16. The control means 28 controls the spray amount of the reducing agent R from the supply lines 16 a and 16 b of the spray means 16 based on the gas analysis value obtained by the gas analysis means 27 and / or the operation status of the diesel internal combustion engine 11. To do. The control means 18 controls the operating conditions of the diesel internal combustion engine 11 based on the gas analysis value.

次に、本実施の形態に係る排気ガス処理方法を、添付図面に基づいて説明する。   Next, an exhaust gas treatment method according to the present embodiment will be described with reference to the accompanying drawings.

先ず、図4に示すように、ディーゼル内燃機関11から排出された高温(約500〜600℃)の排気ガスG1は、酸化触媒反応器25に導入され、(3)式、(4)式に示したように、排気ガスG1中に含まれるCOやHCなどが酸化され、また、排気ガスG1中に含まれるPMが除塵される(stepE)。   First, as shown in FIG. 4, the high-temperature (about 500 to 600 ° C.) exhaust gas G1 discharged from the diesel internal combustion engine 11 is introduced into the oxidation catalyst reactor 25, and is expressed by Equations (3) and (4). As shown, CO and HC contained in the exhaust gas G1 are oxidized, and PM contained in the exhaust gas G1 is removed (step E).

酸化、除塵された排気ガスG5は、ガス分析系17a及び本体部17eによりガス分析がなされる。その後は、前実施の形態に係る排気ガス処理方法と同様の手順で排気ガスの処理がなされる。排気ガスは、排気ガスG5→排気ガスG6→排気ガスG7の順に処理された後、大気中に排出される(stepF)。   The exhaust gas G5 subjected to oxidation and dust removal is subjected to gas analysis by the gas analysis system 17a and the main body portion 17e. Thereafter, the exhaust gas is processed in the same procedure as the exhaust gas processing method according to the previous embodiment. The exhaust gas is processed in the order of exhaust gas G5 → exhaust gas G6 → exhaust gas G7, and then discharged into the atmosphere (step F).

ここで、酸化触媒反応器25の前段及び後段において、ガス分析系27d,17a及び本体部17eを用いて排気ガスG1,G5のガス分析を行うことで、排気ガスG1,G5のガス分析値に基づいて、酸化触媒反応器25の性能の劣化具合を知ることができる。   Here, in the front stage and the rear stage of the oxidation catalyst reactor 25, the gas analysis values of the exhaust gases G1 and G5 are obtained by performing the gas analysis of the exhaust gases G1 and G5 using the gas analysis systems 27d and 17a and the main body portion 17e. Based on this, it is possible to know the degree of deterioration of the performance of the oxidation catalyst reactor 25.

本実施の形態に係る排気ガス処理装置20においても、図1に示した前実施の形態に係る排気ガス処理装置10と同様の作用効果が得られる。   Also in the exhaust gas processing apparatus 20 according to the present embodiment, the same effects as those of the exhaust gas processing apparatus 10 according to the previous embodiment shown in FIG. 1 can be obtained.

また、近年、ディーゼル内燃機関11の排気ガス排出部直後には、フィルターなどの除塵手段が設けられることが多い。このため、この除塵手段に酸化触媒を組み込んで一体化し、酸化触媒反応器25とすることで、本実施の形態に係る排気ガス処理装置20は、排気ガス処理装置10と比較して、装置容積の減少を図ることができる。   In recent years, a dust removing means such as a filter is often provided immediately after the exhaust gas discharge part of the diesel internal combustion engine 11. For this reason, the exhaust gas treatment device 20 according to the present embodiment has an apparatus volume that is greater than that of the exhaust gas treatment device 10 by incorporating an oxidation catalyst into the dust removing means and integrating them into the oxidation catalyst reactor 25. Can be reduced.

以上、本発明は、上述した実施の形態に限定されるものではなく、他にも種々のものが想定されることは言うまでもない。   As described above, the present invention is not limited to the above-described embodiment, and it goes without saying that various other things are assumed.

次に、本発明について、実施例に基づいて説明するが、本発明はこの実施例に限定されるものではない。   Next, although this invention is demonstrated based on an Example, this invention is not limited to this Example.

ディーゼル発電機に、図1に示した排気ガス処理装置10を接続し、排気ガスのNOX除去を行った。NOX除去は、還元剤Rとして、炭酸アンモニウム水溶液を用いた場合と尿素水溶液を用いた場合の、2例行った。初期排気ガスのNOX濃度は200ppm、各水溶液の濃度は10wt%とした。   The exhaust gas treatment device 10 shown in FIG. 1 was connected to the diesel generator, and NOX removal of the exhaust gas was performed. NOX removal was performed in two cases, using an ammonium carbonate aqueous solution and a urea aqueous solution as the reducing agent R. The NOx concentration of the initial exhaust gas was 200 ppm, and the concentration of each aqueous solution was 10 wt%.

還元剤の違いによる脱硝率の違いを表2に示す。脱硝率は、第1脱硝処理後の排気ガス(無触媒脱硝反応器を通過後の排気ガス)及び第2脱硝処理後の排気ガス(脱硝反応器を通過後の排気ガス)について測定した。   Table 2 shows the difference in the denitration rate due to the difference in the reducing agent. The denitration rate was measured for the exhaust gas after the first denitration treatment (exhaust gas after passing through the non-catalytic denitration reactor) and the exhaust gas after the second denitration treatment (exhaust gas after passing through the denitration reactor).

Figure 0004486858
Figure 0004486858

表2に示すように、第1脱硝処理後の排気ガスの脱硝率は、還元剤として炭酸アンモニウム水溶液を用いた場合が28%、還元剤として尿素水溶液を用いた場合が19%であった。また、第2脱硝処理後の排気ガスの脱硝率は、還元剤として炭酸アンモニウム水溶液を用いた場合が84%、還元剤として尿素水溶液を用いた場合が58%であった。   As shown in Table 2, the denitration rate of the exhaust gas after the first denitration treatment was 28% when the ammonium carbonate aqueous solution was used as the reducing agent, and 19% when the urea aqueous solution was used as the reducing agent. Further, the denitration rate of the exhaust gas after the second denitration treatment was 84% when the ammonium carbonate aqueous solution was used as the reducing agent, and 58% when the urea aqueous solution was used as the reducing agent.

以上より、脱硝反応器の前段において無触媒脱硝反応器による脱硝を行うことで、排気ガス中に含まれる全NOX量の約20〜30%を除去することができた。   From the above, it was possible to remove about 20-30% of the total amount of NOx contained in the exhaust gas by performing denitration with a non-catalytic denitration reactor in the previous stage of the denitration reactor.

また、還元剤として炭酸アンモニウム水溶液を用いることで、還元剤として尿素水溶液を用いた場合と比較して、第1,第2脱硝処理の脱硝率が共に40%以上も向上することが確認された。   It was also confirmed that the use of an aqueous ammonium carbonate solution as the reducing agent improved both the NOx removal rates of the first and second denitration treatments by 40% or more compared to the case of using an aqueous urea solution as the reducing agent. .

本発明の好適一実施の形態に係るディーゼル内燃機関の排気ガス処理装置の模式図である。1 is a schematic diagram of an exhaust gas treatment device for a diesel internal combustion engine according to a preferred embodiment of the present invention. 本発明の他の好適一実施の形態に係るディーゼル内燃機関の排気ガス処理装置の模式図である。It is a schematic diagram of the exhaust-gas processing apparatus of the diesel internal combustion engine which concerns on other preferable one Embodiment of this invention. 図1の排気ガス処理装置の排気ガス処理方法のフローを示す図である。It is a figure which shows the flow of the exhaust-gas processing method of the exhaust-gas processing apparatus of FIG. 図2の排気ガス処理装置の排気ガス処理方法のフローを示す図である。It is a figure which shows the flow of the exhaust-gas processing method of the exhaust-gas processing apparatus of FIG. 脱硝触媒の反応温度と脱硝率との関係を示す図である。It is a figure which shows the relationship between the reaction temperature of a denitration catalyst, and a denitration rate. 従来のディーゼル内燃機関の排気ガス処理装置の模式図である。It is a schematic diagram of the exhaust gas processing apparatus of the conventional diesel internal combustion engine.

符号の説明Explanation of symbols

10 排気ガス処理装置
11 ディーゼル内燃機関
13 無触媒脱硝反応器
13a ガス導入部
14 脱硝反応器
14a ガス導入部
16 噴霧手段
G1 排気ガス
R 還元剤
DESCRIPTION OF SYMBOLS 10 Exhaust gas treatment apparatus 11 Diesel internal combustion engine 13 Non-catalytic denitration reactor 13a Gas introduction part 14 Denitration reactor 14a Gas introduction part 16 Spray means G1 Exhaust gas R Reducing agent

Claims (10)

ディーゼル内燃機関の後段に接続され、排気ガス中に含まれるNOX分を脱硝する排気ガス処理装置において、
上記ディーゼル内燃機関の後段に接続された無触媒脱硝反応器と、
その無触媒脱硝反応器の後段に接続された脱硝触媒による脱硝反応器と、
無触媒脱硝反応器及び脱硝反応器の各ガス導入部に臨んで設けられ、還元剤を噴霧する噴霧手段と、
上記ディーゼル内燃機関から排出されたガス、上記無触媒脱硝反応器を通過したガス、及び上記脱硝反応器を通過したガスの分析を行うガス分析手段と、
を備えたことを特徴とするディーゼル内燃機関の排気ガス処理装置。
In the exhaust gas treatment device connected to the latter stage of the diesel internal combustion engine and denitrating NOX contained in the exhaust gas,
A non-catalytic denitration reactor connected downstream of the diesel internal combustion engine;
A denitration reactor with a denitration catalyst connected to the latter stage of the non-catalytic denitration reactor,
A spraying means for spraying a reducing agent provided facing each gas introduction part of the non-catalytic denitration reactor and the denitration reactor;
Gas analysis means for analyzing the gas discharged from the diesel internal combustion engine, the gas passed through the non-catalytic denitration reactor, and the gas passed through the denitration reactor;
An exhaust gas treatment device for a diesel internal combustion engine, comprising:
上記脱硝反応器の後段に酸化触媒反応器を備えた請求項1記載のディーゼル内燃機関の排気ガス処理装置。   The exhaust gas treatment apparatus for a diesel internal combustion engine according to claim 1, further comprising an oxidation catalyst reactor at a stage subsequent to the denitration reactor. 記酸化触媒反応器を通過したガスの分析を行うガス分析手段を備えた請求項記載のディーゼル内燃機関の排気ガス処理装置。 Exhaust gas treatment apparatus for a diesel internal combustion engine according to claim 2, further comprising a gas analysis means for analyzing a gas that has passed through the upper hexane catalyst reactor. ディーゼル内燃機関の後段に接続され、排気ガス中に含まれるNOX分を脱硝する排気ガス処理装置において、
上記ディーゼル内燃機関の後段に接続された酸化触媒反応器と、
その酸化触媒反応器の後段に接続された無触媒脱硝反応器と、
その無触媒脱硝反応器の後段に接続された脱硝触媒による脱硝反応器と、
無触媒脱硝反応器及び脱硝反応器の各ガス導入部に臨んで設けられ、還元剤を噴霧する噴霧手段と、
上記ディーゼル内燃機関から排出されたガス、上記酸化触媒反応器を通過したガス、上記無触媒脱硝反応器を通過したガス、及び上記脱硝反応器を通過したガスの分析を行うガス分析手段と、
を備えたことを特徴とするディーゼル内燃機関の排気ガス処理装置。
In the exhaust gas treatment device connected to the latter stage of the diesel internal combustion engine and denitrating NOX contained in the exhaust gas,
An oxidation catalyst reactor connected downstream of the diesel internal combustion engine;
A non-catalytic denitration reactor connected downstream of the oxidation catalyst reactor;
A denitration reactor with a denitration catalyst connected to the latter stage of the non-catalytic denitration reactor,
A spraying means for spraying a reducing agent provided facing each gas introduction part of the non-catalytic denitration reactor and the denitration reactor;
Gas discharged from the diesel engine, and the gas passing through the oxidation catalyst reactor, the gas passing through the non-catalytic denitration reactor, and a gas analysis means for analyzing a gas that has passed through the denitration reactor,
An exhaust gas treatment device for a diesel internal combustion engine, comprising:
上記ガス分析手段により得られたガス分析値に基づいて、上記噴霧手段からの噴霧量の制御を行う制御手段を備えた請求項1から4いずれかに記載のディーゼル内燃機関の排気ガス処理装置。The exhaust gas treatment apparatus for a diesel internal combustion engine according to any one of claims 1 to 4, further comprising a control means for controlling a spray amount from the spray means based on a gas analysis value obtained by the gas analysis means. 上記還元剤が、炭酸アンモニウム水溶液である請求項1から5いずれかに記載のディーゼル内燃機関の排気ガス処理装置。The exhaust gas treatment device for a diesel internal combustion engine according to any one of claims 1 to 5, wherein the reducing agent is an aqueous ammonium carbonate solution. ディーゼル内燃機関から排出された排気ガス中に含まれるNOX分を脱硝する排気ガス処理方法において、In an exhaust gas treatment method for denitrating NOX contained in exhaust gas discharged from a diesel internal combustion engine,
上記ディーゼル内燃機関から排出された排気ガスを無触媒脱硝反応器に導入して無触媒下で第1還元剤を噴霧して第1脱硝処理を施し、The exhaust gas discharged from the diesel internal combustion engine is introduced into a non-catalytic denitration reactor and sprayed with a first reducing agent in the absence of a catalyst to perform a first denitration treatment,
その第1脱硝処理後の排気ガスを脱硝触媒による脱硝反応器に導入すると共に第2還元剤を噴霧し、脱硝触媒と接触させて第2脱硝処理を施し、The exhaust gas after the first denitration treatment is introduced into the denitration reactor using the denitration catalyst and sprayed with the second reducing agent, and is contacted with the denitration catalyst to perform the second denitration treatment.
かつ、上記第1脱硝処理前後のガス、及び上記第2脱硝処理前後のガスの分析を行い、そのガス分析値に基づいて、第1及び第2還元剤の噴霧量を制御することを特徴とするディーゼル内燃機関の排気ガス処理方法。In addition, the gas before and after the first denitration treatment and the gas before and after the second denitration treatment are analyzed, and the spray amounts of the first and second reducing agents are controlled based on the gas analysis values. An exhaust gas treatment method for a diesel internal combustion engine.
上記第1脱硝処理前のNOX濃度が第1基準NOX濃度より大きいときには第1還元剤を一定量噴霧し、第1脱硝処理前のNOX濃度が第1基準NOX濃度以下のときには第1還元剤を噴霧せず、When the NOX concentration before the first denitration treatment is larger than the first reference NOX concentration, a predetermined amount of the first reducing agent is sprayed, and when the NOX concentration before the first denitration treatment is less than or equal to the first reference NOX concentration, the first reducing agent is sprayed. Without spraying
第1脱硝処理後のNOX濃度が第1基準NOX濃度より大きいときには上記一定量の第1還元剤の噴霧量を増量し、第1脱硝処理後のNOX濃度が第1基準NOX濃度以下のときには第1還元剤の噴霧量を減量するフィードバック制御を行う請求項7記載のディーゼル内燃機関の排気ガス処理方法。When the NOx concentration after the first denitration treatment is greater than the first reference NOx concentration, the spray amount of the first reducing agent is increased, and when the NOx concentration after the first denitration treatment is less than the first reference NOx concentration, The exhaust gas treatment method for a diesel internal combustion engine according to claim 7, wherein feedback control for reducing the spray amount of 1 reducing agent is performed.
上記第2脱硝処理前のNOX濃度が第2基準NOX濃度より大きいときには第2還元剤を一定量噴霧し、第2脱硝処理前のNOX濃度が第2基準NOX濃度以下のときには第2還元剤を噴霧せず、When the NOX concentration before the second denitration treatment is higher than the second reference NOX concentration, a predetermined amount of the second reducing agent is sprayed. When the NOX concentration before the second denitration treatment is less than or equal to the second reference NOX concentration, the second reducing agent is sprayed. Without spraying
第2脱硝処理後のNOX濃度が第2基準NOX濃度より大きいときには上記一定量の第2還元剤の噴霧量を増量し、第2脱硝処理後のNOX濃度が第2基準NOX濃度以下のときには第2還元剤の噴霧量を減量するフィードバック制御を行う請求項7又は8記載のディーゼル内燃機関の排気ガス処理方法。When the NOX concentration after the second denitration treatment is larger than the second reference NOX concentration, the spray amount of the predetermined amount of the second reducing agent is increased, and when the NOx concentration after the second denitration treatment is less than the second reference NOX concentration, The exhaust gas treatment method for a diesel internal combustion engine according to claim 7 or 8, wherein feedback control for reducing the spray amount of the reducing agent is performed.
上記第1還元剤及び第2還元剤が、炭酸アンモニウム水溶液である請求項7から9いずれかに記載のディーゼル内燃機関の排気ガス処理方法。The exhaust gas treatment method for a diesel internal combustion engine according to any one of claims 7 to 9, wherein the first reducing agent and the second reducing agent are aqueous ammonium carbonate solutions.
JP2004202163A 2004-07-08 2004-07-08 Exhaust gas treatment apparatus and treatment method for diesel internal combustion engine Expired - Fee Related JP4486858B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004202163A JP4486858B2 (en) 2004-07-08 2004-07-08 Exhaust gas treatment apparatus and treatment method for diesel internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004202163A JP4486858B2 (en) 2004-07-08 2004-07-08 Exhaust gas treatment apparatus and treatment method for diesel internal combustion engine

Publications (2)

Publication Number Publication Date
JP2006022735A JP2006022735A (en) 2006-01-26
JP4486858B2 true JP4486858B2 (en) 2010-06-23

Family

ID=35796189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004202163A Expired - Fee Related JP4486858B2 (en) 2004-07-08 2004-07-08 Exhaust gas treatment apparatus and treatment method for diesel internal combustion engine

Country Status (1)

Country Link
JP (1) JP4486858B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5258319B2 (en) * 2008-02-15 2013-08-07 ボッシュ株式会社 Failure diagnosis device for oxidation catalyst, failure diagnosis method for oxidation catalyst, and exhaust purification device for internal combustion engine
US7806064B2 (en) 2008-03-12 2010-10-05 Wellman John G Friction reducing pollution control system for marine vehicles
JP5274971B2 (en) * 2008-10-07 2013-08-28 ヤンマー株式会社 Vegetable harvesting machine
JP5442411B2 (en) * 2009-12-01 2014-03-12 住友重機械工業株式会社 Exhaust gas treatment apparatus, combustion furnace, and exhaust gas treatment method

Also Published As

Publication number Publication date
JP2006022735A (en) 2006-01-26

Similar Documents

Publication Publication Date Title
US7550125B2 (en) Exhaust gas purification system
US10267198B2 (en) Device and method for impacting the amount of nitrogen oxides in exhaust gases from an internal combustion engine
JP4960559B2 (en) Exhaust gas apparatus for selective catalytic reduction of nitrogen oxides under lean gas conditions and method for removing nitrogen oxides from lean exhaust gases of internal combustion engines
RU2736984C2 (en) Method and device for operation of exhaust gas neutralization system
US9061245B2 (en) Method for reducing nitrogen oxides in diesel-engine exhaust gases and exhaust gas aftertreatment system for carrying out the method
EP2071149B1 (en) System for controlling urea injection of selective catalyst reduction apparatus and method thereof
KR20040060716A (en) NOx AFTERTREATMENT SYSTEM AND METHOD FOR INTERNAL COMBUSTION ENGINES
DE102005048117A1 (en) Method and device for reducing the proportion of nitrogen oxide in the exhaust gas of an internal combustion engine
EP3631178B1 (en) Process and apparatus for reducing nox emissions
WO2013022516A1 (en) Method and system for mitigating n2o output from exhaust gas systems
Latha et al. A review on scr system for nox reduction in diesel engine
JP2017006813A (en) Denitration apparatus and treatment method of nitrogen oxide
JP4486858B2 (en) Exhaust gas treatment apparatus and treatment method for diesel internal combustion engine
JP2741464B2 (en) Exhaust gas treatment apparatus and method
JP5930493B2 (en) Exhaust gas aftertreatment system in which an activating material is added to the reducing agent supplied to the catalytic converter
JP4652047B2 (en) Exhaust gas treatment method and urea SCR type automobile exhaust gas treatment device
EP1941134A1 (en) Method for operating a nitrogen oxide storage catalyst in a diesel engine
JP2007218108A (en) Exhaust emission control device
JP7280169B2 (en) Exhaust purification device
JP3713634B2 (en) Nitrogen oxide removal method and flue gas denitration equipment in exhaust gas
JP2005023895A (en) Method and device for exhaust-emission control for lean-burn-system internal combustion engine
JP2021080876A (en) Exhaust emission control device
KR20050080532A (en) Control method of scr
JP2864642B2 (en) NO ▲ lower x ▼ Gas treatment method
JP2864677B2 (en) NOx gas treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100309

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100329

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees