JP2864677B2 - NOx gas treatment method - Google Patents
NOx gas treatment methodInfo
- Publication number
- JP2864677B2 JP2864677B2 JP2182901A JP18290190A JP2864677B2 JP 2864677 B2 JP2864677 B2 JP 2864677B2 JP 2182901 A JP2182901 A JP 2182901A JP 18290190 A JP18290190 A JP 18290190A JP 2864677 B2 JP2864677 B2 JP 2864677B2
- Authority
- JP
- Japan
- Prior art keywords
- gas
- reaction
- present
- azide compound
- azide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/20—Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02C—CAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
- Y02C20/00—Capture or disposal of greenhouse gases
- Y02C20/10—Capture or disposal of greenhouse gases of nitrous oxide (N2O)
Landscapes
- Treating Waste Gases (AREA)
Description
【発明の詳細な説明】 A.産業上の利用分野 本発明はNOxガスの処理方法に関し、特にディーゼル
機関およびガスタービン原動機の排気ガス中のNOxガス
の処理方法に関する。DETAILED DESCRIPTION OF THE INVENTION relates to method of processing A. INDUSTRIAL APPLICABILITY The present invention is NO x gases, in particular relates to a process for the treatment of the NO x gases in the exhaust gas of a diesel engine and a gas turbine engine.
B.発明の概要 本発明はNOxガスの処理方法において、 NOxガス、及びプラズマ及び酸素から選ばれる少なく
とも一種を導入し、前記NOxガスと前記アジ化化合物と
反応させることにより、有害で危険なアンモニアを使用
することなくNOxガスを低減することを可能とする。B. SUMMARY OF THE INVENTION The invention is in the treatment method of the NO x gas, NO x gas, and introducing at least one selected from a plasma and oxygen, by reaction with the azide compound with the NOx gas, dangerous and harmful It makes it possible to reduce the NO x gas without the use of such ammonia.
C.従来の技術 従来、NOxガスは排煙脱硝技術として実用化されてい
る。排煙脱硝方法としては乾式法と湿式法に大別され、
最も進んでいるのは乾式法の選択接触還元法である。こ
の方法の利点としては次の3点が挙げられる。C. Description of the Related Art conventionally, NO x gases are practically used as denitrification technology. The flue gas denitration method is roughly divided into a dry method and a wet method.
The most advanced is the dry catalytic selective catalytic reduction method. This method has the following three advantages.
(1)システムが簡単である。(1) The system is simple.
(2)高脱硝率が可能である。(2) High denitration rate is possible.
(3)NOxが無害なN2とH2Oに分解され排出処理等が不要
である。(3) NO x is decomposed into harmless N 2 and H 2 O, so that no exhaust treatment is required.
この選択接触還元法では還元剤としてアンモニア、炭
化水素,一酸化炭素が使用されている。この中でアンモ
ニアは酸素が共存していても選択的にNOxと反応するが
他の還元剤は酸素と反応する。このため特にディーゼル
およびガスタービン原動機の場合は酸素が共存していて
も選択的にNOxと反応するアンモニアガスが用いられて
いる。また、この反応に使用する触媒としてはPtなどの
貴金属系やAl2O3,TiO2などに担持させた各種金属酸化物
などが挙げられる。ディーゼルおよびガスタービン原動
機の燃焼で生成するNOxの成分はほとんどがNOでありNO2
は5%程度である。このためNOをアンモニアガスと混合
させて、この混合気体を触媒上で接触還元させてN2とH2
Oに分解している。次にこの反応式を示す。In this selective catalytic reduction method, ammonia, hydrocarbon, and carbon monoxide are used as reducing agents. Among them, ammonia reacts selectively with NO x even when oxygen coexists, but other reducing agents react with oxygen. For this reason, especially in the case of diesel and gas turbine prime movers, ammonia gas that selectively reacts with NO x is used even when oxygen coexists. Examples of the catalyst used in this reaction include a noble metal such as Pt and various metal oxides supported on Al 2 O 3 and TiO 2 . Component of the NO x generated in the combustion of diesel and gas turbine engine are mostly NO NO 2
Is about 5%. Therefore, NO is mixed with ammonia gas, and this mixed gas is catalytically reduced on a catalyst to form N 2 and H 2.
Decomposed into O. Next, this reaction formula is shown.
しかしながら、上記反応式で示した選択的接触還元法
では次に示すような問題点があった。 However, the selective catalytic reduction method shown in the above reaction formula has the following problems.
(1)NOxを分解するために有害で危険なアンモニアガ
スを使用しなくてはならない。(1) must be used toxic and hazardous ammonia gas to decompose the NO x.
(2)アンモニアガスによる還元触媒性能が劣化する。
特に還元触媒は排気されるガス成分によっても劣化する
ため、交換等を必要としてその操作が面倒である。(2) The performance of the reduction catalyst by ammonia gas is deteriorated.
In particular, since the reduction catalyst is deteriorated by the exhaust gas component, it requires replacement or the like, and its operation is troublesome.
(3)使用温度の範囲が制限される。(3) The operating temperature range is limited.
即ち、高温(1000℃程度)では触媒成分の焼結が進行
し、結晶の相転移により触媒性能が劣化する。また、32
0℃以下ではアンモニアガスと水分がSOxを含む排気ガス
と反応して酸性硫安などの化合物を生じ、脱硝性能の低
下を生じる。これらのことから、従来の還元法の使用温
度の範囲は320〜450℃であった。従って使用温度範囲が
制限されると共に常温での使用が困難であった。That is, at a high temperature (about 1000 ° C.), the sintering of the catalyst component proceeds, and the catalytic performance deteriorates due to the phase transition of the crystal. Also, 32
At 0 ° C. or lower, ammonia gas and moisture react with the exhaust gas containing SO x to generate compounds such as acidic ammonium sulfate, which lowers the denitration performance. From these facts, the range of operating temperature in the conventional reduction method was 320 to 450 ° C. Therefore, the working temperature range is limited, and it is difficult to use at room temperature.
(4)処理装置全体の小型化が困難である。(4) It is difficult to reduce the size of the entire processing apparatus.
このことは、上記反応式からNOxの還元反応は等モル
であるため、脱硝率に合せてNOx量にほぼ等しいアンモ
ニアガスを排気ガス中へ注入しなければならず、そのた
めアンモニアガスボンベ、触媒等が大型となり装置全体
の小型化が困難なためである。This means that since the reduction reaction of NO x is equimolar from the above reaction formula, it is necessary to inject ammonia gas approximately equal to the amount of NO x into the exhaust gas in accordance with the denitration rate. This is because it is difficult to reduce the size of the entire apparatus due to large size.
このため本発明者らは上記問題点を解決すべく鋭意研
究した結果、有害で危険なアンモニアガスに代えてアジ
化ナトリウムを用いること、及びプラズマ及び酸素から
選ばれる少なくとも一種を用いることにより著しくNOx
を低減できることを見い出しNOxガスの処理方法及びそ
の装置を完成した(特願平第2−29255号)。Therefore, the present inventors have conducted intensive studies to solve the above problems, and as a result, the use of sodium azide instead of harmful and dangerous ammonia gas, and the use of at least one selected from plasma and oxygen significantly reduce NO. x
To complete the processing method and apparatus of the NO x gases found that can reduce (Japanese Patent Application No. 2-29255).
D.発明が解決しようとする課題 しかしながら、上記出願では酸性条件下でアジ化ナト
リウムを水溶液中で解離させる方法を提案したが、その
後の研究結果からアジ化ナトリウムのモル濃度の違いに
よりNOx処理率が変動することが判明した。Problems D. INVENTION However, in the above application has been proposed a method for dissociating sodium azide in aqueous solution under acidic conditions, NO x treatment due to differences in molar concentration of sodium azide from further studies The rates were found to fluctuate.
従って本発明は上記出願に係る問題点を解決するため
に創案されたものであって、アジ化化合物のモル濃度を
0.02M以上にすることにより、常に高いNOx処理率の達成
を可能とすることを目的とする。Accordingly, the present invention has been made in order to solve the problems according to the above-mentioned application, and has been made to reduce the molar concentration of the azide compound.
By the above 0.02 M, and an object thereof is to enable very high achievement of the NO x process rate.
E.課題を解決するための手段及び作用 本発明者らは上記問題点を解決すべく鋭意研究した結
果、アジ化化合物のモル濃度を0.02M以上にすることに
より、常に高いNOx処理率を達成できることを見い出
し、本発明に係る方法を完成した。E. SUMMARY and effects the present inventors for solving the result of extensive studies to solve the above problems, by the molar concentration of the azide compound to the above 0.02 M, a consistently high NO x treatment rate We have found what can be achieved and completed the method according to the invention.
即ち、本発明に係るNOxガスの処理方法は酸性条件下
でアジ化化合物を溶解し、該アジ化化合物を0.02M以上
に調製した水溶液にNOx、及びプラズマ及び酸素から選
ばれる少なくとも一種を導入し、前記NOxガスと前記ア
ジ化化合物を反応させて、前記NOxガスを還元除去する
こと、をその解決手段としている。That is, the processing method of the NO x gases according to the present invention is soluble azide compound under acidic conditions, NO x the azide compound in an aqueous solution prepared above 0.02 M, and at least one selected from a plasma and oxygen The solution is to introduce and react the NO x gas with the azide compound to reduce and remove the NO x gas.
以下、本発明について更に詳細に説明する。 Hereinafter, the present invention will be described in more detail.
本発明に係る方法は特に理論にこだわるつもりはない
が、アジ化化合物(ここではNaN3を具体例として例示す
る。)を水に溶解し、この水溶液とNOxガスとの反応でN
OxをN2+H2Oに化学的に変えることをその原理とする。Although the method according to the present invention is not particularly limited to theory, an azide compound (here, NaN 3 is exemplified as a specific example) is dissolved in water, and N 2 is obtained by reacting this aqueous solution with NO x gas.
The principle is to chemically change O x to N 2 + H 2 O.
即ち、この反応は次の3つの式から説明される。 That is, this reaction is explained by the following three equations.
NO+NO2+H2O→2HNO2 ……(1) 6NaN3+6HCl→6N3H+6NaCl ……(2) 2HNO2+6N3H→10N2+4H2O ……(3) 通常、ガスを液体に吸収させるのは非常に効率が悪
い。上記(1)式はNO,NO2を水に吸収させてHNO2にする
反応であり、この反応が全反応速度を支配するいわゆる
律速段階である。従ってこの段階の反応が効率よく行う
ことができれば、上記(3)式の反応は容易に進行す
る。このことが本発明が解決せんとする中心課題と言え
る。 NO + NO 2 + H 2 O → 2HNO 2 ...... (1) 6NaN 3 + 6HCl → 6N 3 H + 6NaCl ...... (2) 2HNO 2 + 6N 3 H → 10N 2 + 4H 2 O ...... (3) Normally, to absorb the gas in the liquid Is very inefficient. The above equation (1) is a reaction in which NO and NO 2 are absorbed into water to form HNO 2 , and this reaction is a so-called rate-determining step that controls the overall reaction rate. Therefore, if the reaction at this stage can be carried out efficiently, the reaction of the above formula (3) proceeds easily. This can be said to be a central problem to be solved by the present invention.
即ち本発明に係る方法では上記(1)式の反応をプラ
ズマ及び酸素から選ばれる少なくとも一種を用いること
で効率よく進行させることができる。また、酸素を含む
限り、空気を用いることもでき、いずれを用いても本発
明の目的は十分達成し得るが、上記(1)式をより効率
的に進行させるためには酸素濃度は高い方が好ましい。That is, in the method according to the present invention, the reaction of the above formula (1) can efficiently proceed by using at least one selected from plasma and oxygen. As long as oxygen is contained, air can be used, and any of them can sufficiently achieve the object of the present invention. Is preferred.
次に本発明で最も特徴をなす上記(2)式の反応条件
について説明する。Next, the reaction condition of the above formula (2) which is the most characteristic of the present invention will be described.
上記(2)式の反応は予め別に行い、これによりアジ
化化合物はアジ化水素に変換される。この際、上記
(2)式の反応を完全に進行させ、これにより上記
(3)式の反応を容易に進行させるためにはアジ化化合
物のモル濃度を0.02M以上にする必要がある。このこと
はアジ化化合物のモル濃度が0.02M未満となるとNOxガス
の処理率が著しく低減することに起因している。なお酸
性条件はpHを3以下が好ましく、例えば塩酸,硫酸,硝
酸,酢酸などが用いられる。The reaction of the above formula (2) is performed separately in advance, whereby the azide compound is converted into hydrogen azide. At this time, the molar concentration of the azide compound needs to be 0.02 M or more in order to allow the reaction of the above formula (2) to proceed completely, thereby facilitating the reaction of the above formula (3). This is due to the fact that when the molar concentration of the azide compound is less than 0.02M, the processing rate of the NO x gas is remarkably reduced. The acidic condition preferably has a pH of 3 or less. For example, hydrochloric acid, sulfuric acid, nitric acid, acetic acid and the like are used.
また、この条件で解離し得るアジ化化合物としては、
例えばアジ化ナトリウム,アジ化アンモニウム,アジ化
カリウムなどが挙げられる。Further, as azide compounds that can be dissociated under these conditions,
For example, sodium azide, ammonium azide, potassium azide and the like can be mentioned.
更に、上記(3)式の反応は上記(1)式で得られた
HNO2を上記(2)で得られたN3Hにより還元してN2とH2O
に分解する。こうして処理されたN2を処理ガスとして排
出する。Further, the reaction of the above formula (3) was obtained by the above formula (1).
HNO 2 is reduced with N 3 H obtained in the above (2) to reduce N 2 and H 2 O
Decompose into The N 2 thus treated is discharged as a treated gas.
なお、本発明に係る方法が使用できる装置としてはNa
N3水溶液噴霧方式(特願平1−30236号)、スクラバー
方式(特願平2−29255号)などが挙げられる。In addition, as an apparatus in which the method according to the present invention can be used, Na is used.
An N 3 aqueous solution spraying method (Japanese Patent Application No. 1-30236), a scrubber method (Japanese Patent Application No. 2-29255) and the like can be mentioned.
F.実施例 以下、本発明に係るNOxガスの処理方法の詳細な説明
を実施例に基づいて説明する。F. Examples will be described below with reference to the detailed description of the processing method of the NO x gases according to the present invention in the Examples.
まず、NaN3のモル濃度を0.1〜0.001に調製したNaN3
水溶液1000ml中に塩酸を数滴加えた。First, NaN 3 was prepared the molar concentration of NaN 3 in 0.1 to 0.001
A few drops of hydrochloric acid were added to 1000 ml of the aqueous solution.
次に、このNaN3水溶液と共にNOxガス1/分をNaN
3水溶液噴霧方式を用いて噴霧しNOxガスを処理した。Next, the NO x gas 1 / min along with this NaN 3 solution NaN
Sprayed with 3 aqueous spray method were treated with NO x gases.
更に、この反応により発生する気体をNOx濃度分析
計(島津製作所製:島津ポータブルNOx分析計NOA−305
形)で測定した。Further, the gas and concentration of NO x analyzer (manufactured by Shimadzu Corporation generated by the reaction: Shimadzu Portable NO x analyzer NOA-305
Shape).
その測定結果を第1図に示す。第1図に示すように
NaN3のモル濃度が0.2MまではNOxガス処理率がほぼ100%
であるのに対し、0.01M以下になるとNOxガス処理率が70
%まで低下することがわかる。FIG. 1 shows the measurement results. As shown in FIG.
NaN 3 molar concentration of almost 100% NO x gas treat rate to 0.2M
To which the at will 0.01M below the NO x gas processing rate of 70
%.
G.発明の効果 (1)本発明はアジ化化合物のモル濃度を0.02M以上に
することにより、常に高いNOx処理率を達成することを
可能とする。G. Effect (1) The present invention is achieved by setting the molar concentration of the azide compound to the above 0.02 M, it makes it possible to achieve consistently high NO x treatment rate.
(2)本発明は上述のように構成されているので、次に
記載する効果も同時に奏する。(2) Since the present invention is configured as described above, the following effects can be simultaneously obtained.
本発明に係る方法によれば、アジ化化合物を使用す
るため有害で危険なアンモニアを使用することなくNOx
を低減できる。According to the method of the present invention, without the use of hazardous and dangerous ammonia for using azide compound NO x
Can be reduced.
本発明に係る方法によれば、プラズマ及び酸素が反
応促進剤として働くことにより、窒素酸化物排出基準値
に比し著しくNOxを低減できる。According to the method of the present invention, by the plasma and oxygen acts as a reaction accelerator can be reduced significantly NO x than the nitrogen oxides emission standard value.
本発明に係る方法によれば、還元触媒を必要としな
いことから装置全体を小型化でき、その操作も簡便化で
きる。According to the method of the present invention, since no reduction catalyst is required, the entire apparatus can be miniaturized, and its operation can be simplified.
本発明に係る方法によれば、室温でNOxガスの還元
反応が可能となり、NOxガスの処理を容易に行うことが
できる。According to the method of the present invention enables the reduction reaction of the NO x gases at room temperature, the processing of the NO x gas can be easily performed.
第1図はNaN3モル濃度(M)とNOxガス処理率の関係を
示すグラフである。Figure 1 is a graph showing the relationship between NaN 3 molar (M) and NO x gas processing rate.
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平3−270713(JP,A) 特開 平3−270714(JP,A) 特開 平3−270715(JP,A) 特開 平3−270716(JP,A) 特開 平3−270717(JP,A) 特開 平3−232518(JP,A) 特開 平2−211218(JP,A) (58)調査した分野(Int.Cl.6,DB名) B01D 53/34,53/56────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-3-270713 (JP, A) JP-A-3-270714 (JP, A) JP-A-3-270715 (JP, A) JP-A-3-270715 270716 (JP, A) JP-A-3-270717 (JP, A) JP-A-3-232518 (JP, A) JP-A-2-211218 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) B01D 53 / 34,53 / 56
Claims (1)
ジ化化合物を0.02M以上に調製した水溶液にNOxガス、及
びプラズマ及び酸素から選ばれる少なくとも一種を導入
し、前記NOxガスと前記アジ化化合物を反応させて、前
記NOxガスを還元除去することを特徴とするNOxガスの処
理方法。1. A dissolving azide compound under acidic conditions, to introduce at least one selected the azide compound NO x gases in aqueous solution prepared above 0.02 M, and the plasma and oxygen, the NO x gas and the azide compound by reacting, processing method of the NO x gas and said reducing removing the NO x gas.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2182901A JP2864677B2 (en) | 1990-07-11 | 1990-07-11 | NOx gas treatment method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2182901A JP2864677B2 (en) | 1990-07-11 | 1990-07-11 | NOx gas treatment method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0471617A JPH0471617A (en) | 1992-03-06 |
JP2864677B2 true JP2864677B2 (en) | 1999-03-03 |
Family
ID=16126364
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2182901A Expired - Lifetime JP2864677B2 (en) | 1990-07-11 | 1990-07-11 | NOx gas treatment method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2864677B2 (en) |
-
1990
- 1990-07-11 JP JP2182901A patent/JP2864677B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0471617A (en) | 1992-03-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101863940B1 (en) | Method and apparatus for denoxing exhaust gas | |
JPH05103953A (en) | Method for removing nitrogen oxide in exhaust gas and removal catalyst | |
JP2864677B2 (en) | NOx gas treatment method | |
JP2864642B2 (en) | NO ▲ lower x ▼ Gas treatment method | |
JPH0691138A (en) | Method for processing exhaust gas and device therefor | |
JP2864643B2 (en) | NO ▲ lower x ▼ Gas treatment method | |
JP2864644B2 (en) | NO ▲ lower x ▼ Gas treatment method | |
EP3250312B1 (en) | Urea-metal nitrate scr system | |
JP2864689B2 (en) | NOx gas treatment method | |
CN111318148A (en) | Device and method for removing nitrate from dimethylamine or trimethylamine tail gas in heat-accumulating-type high-temperature oxidation furnace | |
JP4486858B2 (en) | Exhaust gas treatment apparatus and treatment method for diesel internal combustion engine | |
JP3713634B2 (en) | Nitrogen oxide removal method and flue gas denitration equipment in exhaust gas | |
KR100406510B1 (en) | Method and system for removing nitrogen oxide using oxidation catalyst | |
JP2864640B2 (en) | NO ▲ lower x gas processing equipment | |
JP2864641B2 (en) | NO ▲ lower x gas processing equipment | |
AU644073B2 (en) | Method and apparatus for processing nitrogen oxide gas | |
JPH05337336A (en) | Method for purifying exhaust gas | |
JPS5889987A (en) | Treatment for purification of waste water after desulfurization and denitration | |
JPH0487623A (en) | Treatment of nox gas and its device | |
JPH03232518A (en) | Method and apparatus for treating gaseous nox | |
KR0126862B1 (en) | Method of non-catalyst reduction utilizing the hydrazine | |
JPH0471618A (en) | Treatment of gaseous nox | |
JPH0487620A (en) | Treatment of nox gas | |
JPH08108172A (en) | Treatment of waste water containing oxide form nitrogen | |
JPH1085560A (en) | Removal of nitrogen dioxide |