JPH0471618A - Treatment of gaseous nox - Google Patents

Treatment of gaseous nox

Info

Publication number
JPH0471618A
JPH0471618A JP2182902A JP18290290A JPH0471618A JP H0471618 A JPH0471618 A JP H0471618A JP 2182902 A JP2182902 A JP 2182902A JP 18290290 A JP18290290 A JP 18290290A JP H0471618 A JPH0471618 A JP H0471618A
Authority
JP
Japan
Prior art keywords
gas
nox
treatment
absorbance
rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2182902A
Other languages
Japanese (ja)
Inventor
Yoshihiko Asano
義彦 浅野
Hoki Haba
方紀 羽場
Fukuji Shoji
東海林 福治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2182902A priority Critical patent/JPH0471618A/en
Publication of JPH0471618A publication Critical patent/JPH0471618A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)

Abstract

PURPOSE:To easily judge the time when an azido compd. is exchanged without using an NOx analyzer by measuring the absorbance of HN3 formed by the dissociation of the azido compd. and calculating the rate of treatment of NOx. CONSTITUTION:NOx and at least one of plasma and oxygen are introduced into an aq. soln. prepd. by dissolving azido compd. under acidic conditions and the NOx is reduced and removed by a reaction with the azido compd. At this time, the absorbance of hydrogen azide formed by the dissociation of the azido compd. is measured and the rate of treatment of the NOx is calculated. The rate of remaining of the azido compd. is predicted from the calculated value, accordingly it is made possible to easily judge the time when the azido compd. is exchanged without using an NOx analyzer.

Description

【発明の詳細な説明】 A、産業上の利用分野 本発明はNOXガスの処理方法に関し、特にディーゼル
機関およびガスタービン原動機の排気ガス中のN08ガ
スの処理方法に関する。
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to a method for treating NOx gas, and particularly to a method for treating N08 gas in exhaust gas from diesel engines and gas turbine engines.

B1発明の概要 本発明はNOXガス、及びプラズマ及び酸素から選ばれ
る少なくとも一種を導入し、前記NOXガスと前記アジ
化化合物と反応させることによりNOXガスを低減する
NOXガスの処理方法において、 前記アジ化化合物が解離して生成するアジ化水素(以下
、HN、という)の吸光度を測定しNO。
B1 Summary of the Invention The present invention provides a NOX gas treatment method for reducing NOX gas by introducing NOX gas and at least one selected from plasma and oxygen and reacting the NOX gas with the azide compound. The absorbance of hydrogen azide (hereinafter referred to as HN) produced by the dissociation of the NO compound is measured.

ガスの処理率を求めることにより、 N08ガス分析計を用いなくともアジ化化合物の交換時
期を知ることができるNO!ガスの処理方法である。。
By determining the gas treatment rate, you can know when to replace the azide compound without using an N08 gas analyzer.NO! This is a gas processing method. .

C0従来の技術 従来、NOXガス処理は排煙脱硝技術として実用化され
ている。排煙脱硝方法としては乾式法と湿式法に大別さ
れ、最も進んでいるのは乾式法の選択接触還元法である
。この方法の利点としては次の3点が挙げられる。
C0 Prior Art Conventionally, NOX gas treatment has been put to practical use as a flue gas denitrification technology. Flue gas denitrification methods are broadly divided into dry methods and wet methods, and the most advanced dry method is the selective catalytic reduction method. This method has the following three advantages.

(1)システムが簡単である。(1) The system is simple.

(2)高脱硝率が可能である。(2) High denitrification rate is possible.

(3)NOXが無害なN2とN20に分解され排出処理
等が不要である。
(3) NOX is decomposed into harmless N2 and N20, eliminating the need for discharge treatment.

この選択接触還元法では還元剤としてアンモニア、炭化
水素、−酸化炭素が使用されている。この中でアンモニ
アは酸素が共存していても選択的にNOつと反応するが
他の還元剤は酸素と反応する。このため特にディーゼル
およびガスタービン原動機の場合は酸素が共存していて
も選択的にNOXと反応するアンモニアガスが用いられ
ている。また、この反応に使用する触媒としてはPtな
どの貴金属系やAl2O3,T i02などに担持させ
た各種金属酸化物などが挙げられる。ディーゼルおよび
ガスタービン原動機の燃焼で生成するNOXの成分はほ
とんどがNoでありNO2は5%程度である。このため
NOをアンモニアガスと混合させて、この混合気体を触
媒上で接触還元させてN2とN20に分解している。次
にこの反応式しかしなから、上記反応式で示した選択的
接触還元法では次に示すような問題点があった。
In this selective catalytic reduction method, ammonia, hydrocarbons, and carbon oxides are used as reducing agents. Among these, ammonia selectively reacts with NO even in the presence of oxygen, while other reducing agents react with oxygen. For this reason, particularly in the case of diesel and gas turbine engines, ammonia gas is used, which selectively reacts with NOx even if oxygen is present. Further, examples of catalysts used in this reaction include noble metals such as Pt, and various metal oxides supported on Al2O3, Ti02, and the like. Most of the components of NOx generated by combustion in diesel and gas turbine prime movers are No, and NO2 accounts for about 5%. For this purpose, NO is mixed with ammonia gas, and this gas mixture is catalytically reduced on a catalyst to be decomposed into N2 and N20. Next, due to this reaction formula, the selective catalytic reduction method shown in the above reaction formula has the following problems.

(1)NOXを分解するために有害で危険なアンモニア
ガスを使用しなくてはならない。
(1) Harmful and dangerous ammonia gas must be used to decompose NOX.

(2)アンモニアガスによる還元触媒性能が劣化する。(2) The performance of the reduction catalyst caused by ammonia gas deteriorates.

(3)使用温度の範囲が制限される。(3) The operating temperature range is limited.

(4)処理装置全体の小型化が困難である。(4) It is difficult to downsize the entire processing device.

このため本発明者らは上記問題点を解決すべく鋭意研究
した結果、有害で危険なアンモニアガスに代えてアジ化
ナトリウムを用いること、及びプラズマ及び酸素から選
ばれる少なくとも一種を用いることにより著しくNOX
を低減できることを見い出しNOXガスの処理方法及び
その装置を完成した(特願平1−30236号、2−2
9255号、2−68905号、2−68906号、2
−68907号、2−68908号、2−68909号
)。
Therefore, as a result of intensive research to solve the above problems, the present inventors have found that by using sodium azide instead of harmful and dangerous ammonia gas and by using at least one selected from plasma and oxygen, NOx can be significantly reduced.
He discovered that NOx gas can be reduced and completed a method and device for treating NOX gas (Japanese Patent Application No. 1-30236, 2-2).
No. 9255, No. 2-68905, No. 2-68906, 2
-68907, 2-68908, 2-68909).

そして、これらの出願に係る方法及び装置ではNOXガ
スの処理率の低下からアジ化化合物の交換時期を知るの
にNOXガス分析計を用いていた。
In the methods and apparatuses related to these applications, a NOX gas analyzer was used to determine when to replace the azide compound from a decrease in the treatment rate of NOX gas.

D0発明が解決しようとする課題 本発明は上記出願に係るNOXガスの処理方法において
、 アジ化化合物が解離して生成するHN3の吸光度を測定
しNOoガスの処理率を求めることにより、NOXガス
分析計を用いなくとも容易にアジ化化合物の交換時期を
知ることができるNOXガスの処理方法を提供すること
を目的とする。
D0 Problems to be Solved by the Invention The present invention provides a method for treating NOX gas according to the above-mentioned application, in which the absorbance of HN3 produced by dissociation of an azide compound is measured and the treatment rate of NOo gas is determined. An object of the present invention is to provide a method for treating NOX gas that allows the user to easily know when to replace an azide compound without using a meter.

E0課題を解決するための手段及び作用本発明者らはア
ジ化化合物が解離して生成するHN3がNOXガスと反
応して消費されていくので、HN3の量をモニターする
ことでNOXガス分析計を用いなくとも容易にアジ化化
合物の交換時期を知ることができることを見い出し、本
発明に係るNOXガスの処理方法を完成した。
Means and Effect for Solving the E0 Problem The present inventors have developed a NOX gas analyzer by monitoring the amount of HN3, since HN3 produced by dissociation of an azide compound reacts with NOX gas and is consumed. The inventors have discovered that it is possible to easily know when to replace the azide compound without using the method, and have completed the method for treating NOX gas according to the present invention.

即ち、本発明に係るNOxガスの処理方法は酸性条件下
でアジ化化合物を溶解した水溶液にNO。
That is, the method for treating NOx gas according to the present invention is to add NOx to an aqueous solution in which an azide compound is dissolved under acidic conditions.

ガス、及びプラズマ及び酸素から選ばれる少なくとも一
種を導入し、前記NOXガスと前記アジ化化合物を反応
させて、前記N08ガスを還元除去することを特徴とす
るNOXガスの処理方法において、 前記アジ化化合物が解離して生成するHN3の吸光度を
測定しN08ガスの処理率を求めることを、その解決手
段としている。
A method for treating NOx gas, characterized in that the NOx gas is reduced and removed by introducing at least one selected from a gas, plasma, and oxygen, and causing the NOx gas and the azide compound to react, and the azide compound is reduced. The solution is to measure the absorbance of HN3 produced by dissociation of the compound and determine the treatment rate of N08 gas.

以下、本発明について更に詳細に説明する。The present invention will be explained in more detail below.

先の出願に係る方法(特願平1−30236号等)では
特に理論にこだわるつもりはないが、アジ化化合物(こ
こではNaN3を具体例として例示する。)を水に溶解
し、この水溶液とNOXガスとの反応でNOoをN 2
+H2oに化学的に変えることをその原理としていた。
In the method related to the earlier application (Japanese Patent Application No. 1-30236, etc.), an azide compound (NaN3 is exemplified as a specific example here) is dissolved in water, and this aqueous solution and NOo is converted into N2 by reaction with NOX gas.
The principle was to chemically change it to +H2o.

即ち、この反応は次の3つの式から説明される。That is, this reaction can be explained by the following three equations.

N O+ N O2+ H20→2 HN Oz   
  ・・・・・・(1)6 N a N3+ 6 HC
I →6 N3H+ 6 NaC1−−(2)2HNO
z+6NsH−> 1 ON2+4H20・・・・・・
(3)通常、ガスを液体に吸収させるのは非常に効率が
悪い。上記(1)式はNOXNO2を水に吸収させてH
NO2にする反応であり、この反応が全反応速度を支配
するいわゆる律速段階である。従ってこの段階の反応が
効率よく行うことができれば、上記(3)式の反応は容
易に進行する。
N O+ N O2+ H20→2 HN Oz
・・・・・・(1) 6 N a N3+ 6 HC
I →6 N3H+ 6 NaC1--(2)2HNO
z+6NsH-> 1 ON2+4H20...
(3) Normally, it is very inefficient to absorb gas into liquid. Equation (1) above shows that NOXNO2 is absorbed into water and H
This is a reaction to convert NO2, and this reaction is the so-called rate-determining step that controls the overall reaction rate. Therefore, if the reaction at this stage can be carried out efficiently, the reaction of the above formula (3) will proceed easily.

即ちこの方法では上記(1)式の反応をプラズマ及び酸
素から選ばれる少なくとも一種を用いることで効率よく
進行させることができる。また、酸素を含む限り、空気
を用いることもでき、いずれを用いても本発明の目的は
十分達成し得るが、上記(1)式をより効率的に進行さ
せるためには酸素濃度は高い方が好ましい。
That is, in this method, the reaction of the above formula (1) can proceed efficiently by using at least one selected from plasma and oxygen. In addition, air can be used as long as it contains oxygen, and the purpose of the present invention can be fully achieved using either of them. is preferred.

上記(2)式の反応は予め別に行い、これによりNaN
3 をHN3に変換する。この際、上記(2)式の反応
を完全に進行させ、これにより上記(3)式の反応を容
易に進行させるためには酸性条件下、好ましくはpH3
以下にする必要がある。
The reaction of the above formula (2) is carried out separately in advance, so that NaN
Convert 3 to HN3. At this time, in order to allow the reaction of the above formula (2) to proceed completely and thereby to facilitate the reaction of the above formula (3), the condition should be acidic, preferably at pH 3.
It is necessary to do the following.

また、この条件で解離し得るアジ化化合物としては、例
えばアジ化ナトリウム、アジ化アンモニウム、アジ化カ
リウムなどが挙げられる。
Examples of azide compounds that can be dissociated under these conditions include sodium azide, ammonium azide, and potassium azide.

更に、上記(3)式の反応は上記(1)式で得られたH
NO2を上記(2)式で得られたHN3により還元して
N2とN20に分解する。こうして処理されたN2を処
理ガスとして排出する。
Furthermore, the reaction of the above formula (3) is performed using the H obtained in the above formula (1).
NO2 is reduced by HN3 obtained by the above formula (2) and decomposed into N2 and N20. The N2 treated in this way is discharged as a treatment gas.

以上説明したように、この方法ではアジ化化合物が解離
して生成するHN3がNOXガスと反応しで消費される
ことから、常に高いNOXガスの処理率を得るためには
アジ化化合物の交換時期を容易に知る必要がある。即ち
、本発明に係る方法ではHNsの吸光度(波長2’59
nm)を測定し、NOXガスの処理率を求めることがで
き、これにより従来の方法であるNOXガス分析計を用
いなくともアジ化化合物の交換時期を容易に知ることが
できる。
As explained above, in this method, HN3 generated by dissociation of the azide compound reacts with NOX gas and is consumed, so in order to always obtain a high treatment rate of NOX gas, it is important to replace the azide compound. need to be easily known. That is, in the method according to the present invention, the absorbance of HNs (wavelength 2'59
It is possible to determine the treatment rate of NOX gas by measuring the NOx gas (nm), and thereby it is possible to easily know when to replace the azide compound without using a NOX gas analyzer, which is a conventional method.

なお、本発明に係る方法が使用できる装置としてはNa
N3水溶液噴霧方式(特願平1−30236号)、スク
ラバ一方式(特願平2−29255号)などが挙げられ
る。
Note that the apparatus in which the method according to the present invention can be used is Na
Examples include the N3 aqueous solution spraying method (Japanese Patent Application No. 1-30236) and the one-side scrubber method (Japanese Patent Application No. 2-29255).

F、実施例 以下、本発明に係るNO0ガスの処理方法の詳細な説明
を実施例に基づいて説明する。
F. Examples Hereinafter, a detailed explanation of the NO0 gas processing method according to the present invention will be explained based on examples.

実施例1 ■ NaN5O,1モル水溶液11に塩酸を数滴加え、
水溶液中でNaN3を解離させてHN3を生成させ、H
N3の吸光度(波長259nm)をUVスペクトル装置
(日立社製)を用いて測定した。
Example 1 ■ Add a few drops of hydrochloric acid to a 1 molar aqueous solution 11 of NaN5O,
NaN3 is dissociated in an aqueous solution to generate HN3, and H
The absorbance of N3 (wavelength: 259 nm) was measured using a UV spectrum device (manufactured by Hitachi).

■ 次に、この溶液にN08ガスIJ/minを通じ、
NOXガスの処理を行い、10分間毎にHN3の吸光度
を■と同様に測定した。
■ Next, pass N08 gas IJ/min through this solution,
NOX gas treatment was performed, and the absorbance of HN3 was measured every 10 minutes in the same manner as in (2).

■ その結果を第1図に示す。第1図に示すようにHN
ffの吸光度からNOXの処理率を求めることができる
■ The results are shown in Figure 1. As shown in Figure 1, HN
The NOX treatment rate can be determined from the absorbance of ff.

G0発明の効果 本発明はアジ化化合物が解離して生成するHN3の吸光
度を測定しNOXガスの処理率を求めることによりアジ
化化合物の残存率を知る手段となる。
G0 Effects of the Invention The present invention provides a means for determining the residual rate of the azide compound by measuring the absorbance of HN3 produced by dissociation of the azide compound and determining the treatment rate of NOX gas.

従って本発明に係る方法によれば従来の方法であるNO
Xガス分析計を用いなくともアジ化化合物の交換時期を
容易に知ることができる。
Therefore, according to the method according to the present invention, compared to the conventional method, NO.
It is possible to easily know when to replace the azide compound without using an X gas analyzer.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はHN3の吸光度とNOXガス処理率の関係を示
すグラフである。
FIG. 1 is a graph showing the relationship between the absorbance of HN3 and the NOx gas treatment rate.

Claims (1)

【特許請求の範囲】[Claims] (1)酸性条件下でアジ化化合物を溶解した水溶液にN
O_Xガス、及びプラズマ及び酸素から選ばれる少なく
とも一種を導入し、前記NO_Xガスと前記アジ化化合
物を反応させて、前記NO_Xガスを還元除去すること
を特徴とするNO_Xガスの処理方法において、 前記アジ化化合物が解離して生成するアジ化水素の吸光
度を測定しNO_Xガスの処理率を求めることを特徴と
するNO_Xガスの処理方法。
(1) Add N to an aqueous solution containing an azide compound under acidic conditions.
A method for treating NO_X gas, characterized in that the NO_X gas is reduced and removed by introducing O_X gas and at least one selected from plasma and oxygen, and causing the NO_X gas and the azide compound to react. 1. A method for treating NO_X gas, which comprises determining the treatment rate of NO_X gas by measuring the absorbance of hydrogen azide produced by dissociation of a chemical compound.
JP2182902A 1990-07-11 1990-07-11 Treatment of gaseous nox Pending JPH0471618A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2182902A JPH0471618A (en) 1990-07-11 1990-07-11 Treatment of gaseous nox

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2182902A JPH0471618A (en) 1990-07-11 1990-07-11 Treatment of gaseous nox

Publications (1)

Publication Number Publication Date
JPH0471618A true JPH0471618A (en) 1992-03-06

Family

ID=16126377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2182902A Pending JPH0471618A (en) 1990-07-11 1990-07-11 Treatment of gaseous nox

Country Status (1)

Country Link
JP (1) JPH0471618A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10385149B2 (en) 2015-03-04 2019-08-20 Jsr Corporation Copolymer, polymer composition, and crosslinked polymer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10385149B2 (en) 2015-03-04 2019-08-20 Jsr Corporation Copolymer, polymer composition, and crosslinked polymer

Similar Documents

Publication Publication Date Title
CA2312652C (en) Reduction of toxic substances in waste gas emissions
Zhou et al. Experimental study on removal performance of SO2 and NOx in marine exhaust gas using seawater/urea peroxide solution and analysis of ions concentration change
JP3838611B2 (en) Nitrogen oxide / sulfur oxide purification method and purification device
JPH0471618A (en) Treatment of gaseous nox
JPH1133359A (en) Flue gas denitrification process and equipment thereof
JPS62163731A (en) Method for removing nitrogen oxide contained in exhaust gas
JPH04247218A (en) Method for treating exhaust gas and device therefor
JP4652047B2 (en) Exhaust gas treatment method and urea SCR type automobile exhaust gas treatment device
JPH02214524A (en) Method for removing nitrogen oxide
JP2864677B2 (en) NOx gas treatment method
JPH03270716A (en) Treatment of nox gas
JP2864642B2 (en) NO ▲ lower x ▼ Gas treatment method
JPH0487622A (en) Treatment of nox gas
JP2003343241A (en) Exhaust gas denitration method
JPH0487621A (en) Treatment of nox gas
JPH04110021A (en) Nox gas treating device
JP2864641B2 (en) NO ▲ lower x gas processing equipment
JPH03270717A (en) Treatment of nox gas
JPH0487620A (en) Treatment of nox gas
JP2864640B2 (en) NO ▲ lower x gas processing equipment
JPH02203921A (en) Wet removal of nitrogen oxide in various combustion exhaust gases
JPS6388024A (en) Removal of mercury in exhaust gas
JPH0487623A (en) Treatment of nox gas and its device
JPH03232518A (en) Method and apparatus for treating gaseous nox
JPH0751536A (en) Denitration of combustion exhaust gas