JPH02214524A - Method for removing nitrogen oxide - Google Patents

Method for removing nitrogen oxide

Info

Publication number
JPH02214524A
JPH02214524A JP1038102A JP3810289A JPH02214524A JP H02214524 A JPH02214524 A JP H02214524A JP 1038102 A JP1038102 A JP 1038102A JP 3810289 A JP3810289 A JP 3810289A JP H02214524 A JPH02214524 A JP H02214524A
Authority
JP
Japan
Prior art keywords
exhaust gas
nox
gas
gaseous
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1038102A
Other languages
Japanese (ja)
Inventor
Shigenori Onizuka
鬼塚 重則
Toshio Hama
利雄 濱
Akio Hirotsune
広常 晃生
Toshiji Kobayashi
利治 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP1038102A priority Critical patent/JPH02214524A/en
Publication of JPH02214524A publication Critical patent/JPH02214524A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)

Abstract

PURPOSE:To make NOX in exhaust gas perfectly harmless independently of concn. by dry treatment in the absence of a catalyst by adding gaseous bromine and gaseous ammonia to the exhaust gas to be treated. CONSTITUTION:Gaseous bromine and gaseous ammonia are added to exhaust gas to be treated. The required amt of the gaseous Br2 added is 1/2mol per 1mol NO and that of the gaseous NH3 is 2mol. By this method, the reduction removing reactions of NOX are allowed to proceed in a perfectly vapor phase without requiring a catalyst at all. NOX can be selectively reduced and removed in an exhaust gas system in which O2 is present in large quantities and NOX is reduced and removed in a temp. range of ordinary temp. to >=70 deg.C.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、石炭、石油、天然ガスなどの燃焼ボイラ、
各種加熱炉、産業廃棄物や都市ごみなどの焼却炉、さら
には固定の内燃機関や、自動車エンジンのような移動の
内燃機関などの各種排ガス中に含まれる窒素酸化物(N
OX)を無触媒下で乾式で効果的に除去する方法に関す
る。
[Detailed Description of the Invention] [Industrial Application Field] This invention is applicable to combustion boilers for coal, oil, natural gas, etc.
Nitrogen oxides (N
The present invention relates to a method for effectively dry removing OX) without a catalyst.

[従来技術およびその問題点] 排ガス中のNOxを除去する方法としては、すでに様々
なものが提案され、現実に多くの実用装置が稼動してい
る。NOxの除去技術は大きくは乾式法と湿式法に分け
られる。前者はさらに触媒法と無触媒法に分けられ、触
媒法の実用装置が最も多く稼動している。とりわけ、還
元剤としてアンモニア(NHa)を使用するいわゆるN
H,選択触媒還元法が主流である。NH3選択触媒還元
法は排ガス中に酸素(02)が存在している状態でも、
NOxを効果的に還元除去できるので、比較的有利な方
法である。
[Prior art and its problems] Various methods have already been proposed for removing NOx from exhaust gas, and many practical devices are actually in operation. NOx removal techniques can be broadly divided into dry methods and wet methods. The former is further divided into catalytic and non-catalytic methods, and the catalytic method has the most practical equipment in operation. In particular, the so-called N
H, selective catalytic reduction method is mainstream. The NH3 selective catalytic reduction method works even when oxygen (02) is present in the exhaust gas.
This is a relatively advantageous method because NOx can be effectively reduced and removed.

それでも、触媒費、装置費などに多額の費用を要し、そ
のため安価で運転容易な方法の開発が望まれている。
Even so, a large amount of cost is required for catalysts, equipment, etc., and therefore there is a desire to develop a method that is inexpensive and easy to operate.

還元剤としてNH,以外に一酸化炭素(CO)あるいは
水素(H2)を使用する触媒法がある。
There is a catalytic method that uses carbon monoxide (CO) or hydrogen (H2) in addition to NH as a reducing agent.

しかし、これらの方法は、排ガス中に02が存在する場
合には、COあるいはH2がNOxと反応するよりも0
2と優先的に反応するために多大の還元剤を必要とし、
実用的な方法ではない。ボイラ排ガスなど02を含むガ
ス系では、NOxを選択的に還元除去できることが最も
重要な条件である。
However, in these methods, when 02 is present in the exhaust gas, the amount of 0
Requires a large amount of reducing agent to react preferentially with 2,
It's not a practical method. In a gas system containing 02 such as boiler exhaust gas, the most important condition is that NOx can be selectively reduced and removed.

自動車のガソリンエンジンの排ガス処理では、排ガス中
に02がほとんどなく、逆に還元剤としてのCOSH2
、炭化水素が過剰に含まれているため、三元触媒と呼ば
れる白金触媒に排ガスを通すだけでNOx除去が達成さ
れる。しかし、この場合でも、白金触媒が高価であるこ
とや、同触媒が有鉛ガソリン車には適用できないなどの
問題が残っている。鉛は触媒毒であるため、日本では無
鉛ガソリンが普及しているが、世界的にはガソリンの無
鉛化は進んでおらず、有鉛ガソリン車に対するNOx除
去対策が望まれるところである。
In the exhaust gas treatment of automobile gasoline engines, there is almost no 02 in the exhaust gas, and on the contrary, COSH2 as a reducing agent.
Since the exhaust gas contains an excess of hydrocarbons, NOx removal can be achieved simply by passing the exhaust gas through a platinum catalyst called a three-way catalyst. However, even in this case, problems remain, such as the high cost of platinum catalysts and the inability to apply them to leaded gasoline vehicles. Since lead is a catalyst poison, unleaded gasoline is popular in Japan, but lead-free gasoline is not progressing around the world, and measures to remove NOx from leaded gasoline vehicles are desired.

現在、その処理対策が最も困難とされているのは、ヂー
ゼルエンジンの排気ガスである。これは、排ガス中に0
2が存在し、NOx濃度も高いためで、有効な対策は皆
無と言ってよい。
Currently, it is diesel engine exhaust gas that is considered to be the most difficult to treat. This means 0 in the exhaust gas.
2 exists and the NOx concentration is high, so it can be said that there are no effective countermeasures.

したがって、NH3による選択触媒還元法をこの種の移
動発生源に適用することは、技術的にも経済的にも問題
がある。
Therefore, the application of selective catalytic reduction with NH3 to this type of mobile source is technically and economically problematic.

一方、無触媒の条件下、1000℃付近の高温排ガス中
にNH3を注入して脱硝するいわゆる無触媒脱硝法が知
られている。ただし、この方法は最適温度域が狭く、脱
硝率も50%以下であり、実用上は限定された用途にし
か用いられていない。
On the other hand, a so-called non-catalytic denitrification method is known in which NH3 is injected into high-temperature exhaust gas at around 1000° C. to denitrate the exhaust gas under non-catalytic conditions. However, this method has a narrow optimum temperature range and a denitrification rate of less than 50%, so it is practically used only for limited purposes.

湿式法についてもまた多くの研究例があるが、はとんど
実用化されていない。これは、NOxが各種水溶液のい
ずれに対しても極めて低い反応性しか示さず、また水に
対する溶解度も低いためである。勿論、湿式法では排水
処理の問題があり、排ガスが降温するのに伴って白煙が
発生する可能性もあるため、湿式法は乾式法はど普及し
ていないこともある。
There are also many examples of research on wet methods, but they have hardly been put into practical use. This is because NOx exhibits extremely low reactivity with any of various aqueous solutions and also has low solubility in water. Of course, the wet method has problems with wastewater treatment, and white smoke may be generated as the temperature of the exhaust gas decreases, so the wet method is not as popular as the dry method.

以上述べたように、排ガス脱硝における従来技術では、
乾式法で02を含む排ガス処理が可能なNH3還元法の
研究が進んでいるが、まだ多くの問題を残している。理
想的な脱硝法は、触媒を使用せず、乾式法でしかも比較
的低い温度域で高い脱硝率が得られる方法であり、この
ような方法の開発が強く要望せられている。
As mentioned above, in the conventional technology for exhaust gas denitrification,
Research is progressing on the NH3 reduction method that can treat exhaust gas containing 02 using a dry method, but many problems still remain. The ideal denitrification method is a dry method that does not use a catalyst and can achieve a high denitrification rate at a relatively low temperature range, and there is a strong demand for the development of such a method.

[問題点の解決手段] この発明による排ガス中のNOx除去法は、極めて簡単
な手段および方法でありながら多大の効果を奏するもの
で、低濃度のNOxから高濃度のNOxまで完全に処理
無害化することができる。
[Means for solving the problem] The method for removing NOx from exhaust gas according to the present invention is an extremely simple means and method, but has great effects, and can completely treat and detoxify everything from low-concentration NOx to high-concentration NOx. can do.

具体的には、この発明による方法は、処理すべき排ガス
中に臭素ガス(B r2)をNH3ガスを添加すること
を特徴とするものである。
Specifically, the method according to the invention is characterized in that bromine gas (Br2) and NH3 gas are added to the exhaust gas to be treated.

このように排ガス中にBr2ガスとNH,ガスを添加す
ることの効果は劇的なものであって、NOxの低濃度領
域から高濃度領域まで80%以上という高効率でNOx
の除去が達成される。
The effect of adding Br2 gas, NH, and gas to the exhaust gas is dramatic, with a high efficiency of over 80% from the low NOx concentration region to the high NOx concentration region.
is achieved.

特に顕著な効果ないし特徴とするところは、つぎのとお
りである。第1に、従来の乾式NH3選択触媒還元脱硝
法とは異なり、触媒を全く必要とせず、完全に気相中で
NOxの還元除去反応が進行する。第2には、o2が多
量に存在する排ガス系で選択的にNOxが還元除去され
る。
Particularly notable effects or features are as follows. First, unlike the conventional dry NH3 selective catalytic reduction denitrification method, no catalyst is required, and the NOx reduction reaction proceeds completely in the gas phase. Secondly, NOx is selectively reduced and removed in the exhaust gas system where a large amount of O2 exists.

第3には、前述の乾式NH3選択触媒還元脱硝法が通常
300′℃以上450℃位の反応温度を必要とするのに
対して、この発明の方法では常温ないしは70℃以上の
温度域でNOxの還元除去が達成できる。
Thirdly, while the dry NH3 selective catalytic reduction denitrification method described above usually requires a reaction temperature of 300'C to 450C, the method of this invention can reduce NOx in the temperature range of room temperature to 70C or more. Reductive removal of can be achieved.

このような観点から、この発明によるNOx除去方法は
、従来の方法とは全く技術思想を異にするものであると
言える。その反応機構は完全には解明されていないが、
次のような反応を経過するものと考えられる。
From this point of view, it can be said that the NOx removal method according to the present invention has a completely different technical idea from conventional methods. Although the reaction mechanism is not completely elucidated,
It is thought that the following reaction occurs.

NO+l/2 B r2   NOB r−・−−−−
(1)NOBr+NH3→ N2 + HB r + H20・”−−(2)HBr
+NH3→NH4Br・・・・・・・・・(3)上記反
応式(1)はNoとBr2の反応を示し、これは氷点以
下の温度域でも進行するものである。そして、こうして
生成したN0Brは、反応式(2)で示すように、NH
3によって還元される。この時、HBrも同時に生成さ
れるが、これは反応式(3)で示すように過剰のNH3
と反応し、NH4Brを生成する。したがって、全体で
は、(1) 、(2) 、 (1)式を加算することに
よって、つぎの(4)式が得られる。
NO+l/2 B r2 NOB r-・----
(1) NOBr+NH3→ N2 + HB r + H20・”--(2) HBr
+NH3→NH4Br (3) The above reaction formula (1) shows the reaction between No and Br2, which proceeds even in a temperature range below the freezing point. Then, the N0Br generated in this way is converted into NH
It is reduced by 3. At this time, HBr is also produced at the same time, but this is due to excess NH3 as shown in reaction formula (3).
reacts with and produces NH4Br. Therefore, in total, the following equation (4) is obtained by adding equations (1), (2), and (1).

N O+ l/2 B r 2 + 2 N Ha→N
2 + H20+ N H4B r・・・・・・(4)
反応機構的には、下記式(5) (6)で示すように、
容易にN2とN20を生成する性質を有するNH4No
2の存在を中間体として考えねばならないかもしれない
N O+ l/2 B r 2 + 2 N Ha→N
2 + H20+ N H4B r...(4)
In terms of reaction mechanism, as shown in the following formulas (5) and (6),
NH4No, which has the property of easily generating N2 and N20
We may have to consider the existence of 2 as an intermediate.

NOB r+NH3+H20→ NH4NO2+HB r・・・・・・・・・(5)NH
4NO2→N2 +2H20・・・・・・(6)これら
の反応は、20℃付近のいわゆる常温から数100℃に
達する温度までの非常に広い温度域で起こる。ただし、
低温度域での脱硝反応はN0Brの生成、中間生成物と
してのNH4No2の生成は起るが、NH4NO2のN
2およびH20への分解速度が遅いかもしれない。
NOB r+NH3+H20→ NH4NO2+HB r・・・・・・・・・(5)NH
4NO2→N2 +2H20 (6) These reactions occur in a very wide temperature range from so-called normal temperature around 20°C to temperatures reaching several 100°C. however,
In the denitrification reaction in the low temperature range, N0Br is produced and NH4No2 is produced as an intermediate product, but N of NH4NO2
The rate of decomposition to 2 and H20 may be slow.

NH4NO2の効果的な分解は50℃以上、好ましくは
70℃以上である。高温度域でのN。
Effective decomposition of NH4NO2 is at temperatures above 50°C, preferably above 70°C. N in high temperature range.

X除去率の低下は、下記式(7) (8)で示すような
NH3の酸化による還元剤の不足ないしは新たなNOx
の生成によるものと思われる。
The decrease in the X removal rate is due to the lack of reducing agent due to oxidation of NH3 or the addition of new NOx, as shown in equations (7) and (8) below.
This is thought to be due to the generation of

4NH3+302→ 2N2 +6H20・・・・・・・・・・・・(7)4
NH3+502→ 4NO+6H20・・・・・・・・・・・・(8)すな
わち、高温度域では還元反応速度は早くなるが、NH,
不足のために全体としてはNOX除去率は低下する。
4NH3+302→ 2N2 +6H20・・・・・・・・・・・・(7)4
NH3 + 502 → 4NO + 6H20 (8) In other words, the reduction reaction rate becomes faster in the high temperature range, but NH,
Due to the shortage, the NOX removal rate decreases as a whole.

Br2ガスおよびNH3ガスの添加量は、(4)式から
れかるように、No1モルに対しBr2は172モル、
NH3は2モル必要である。ただし、NH3の1モルは
Br21/2と反応し、NH4Brを生成するため、純
粋にNo還元のために消費されるNH3fiは1モルで
ある。
As can be seen from equation (4), the amounts of Br2 gas and NH3 gas added are 172 mol of Br2 per 1 mol of No.
2 moles of NH3 are required. However, since 1 mole of NH3 reacts with Br21/2 to produce NH4Br, 1 mole of NH3fi is consumed purely for No reduction.

NH4Brは白色結晶であって、バグフィルタ−などの
集塵機、水洗塔での捕集が可能であり、電気分解反応に
よってNH3とBr2への転換がなされる。勿論、排ガ
ス処理量が少なく、NH4Brの生成量が小さい場合に
は、これを冷却捕集するだけで、必ずしもNH4Brの
再利用を行なう必要はない。再生利用の必要性の有無は
経済性の問題である。
NH4Br is a white crystal that can be collected using a dust collector such as a bag filter or a water washing tower, and is converted into NH3 and Br2 through an electrolysis reaction. Of course, if the amount of exhaust gas to be processed is small and the amount of NH4Br produced is small, it is not necessary to recycle NH4Br by simply cooling and collecting it. Whether or not there is a need for recycling is an economic issue.

[発明の効果] この発明によるNOx除去法は、上述の如く全く新しい
概念と現象に基づくもので、単に排ガス中にBr2ガス
およびNH3ガスを添加するだけで、はぼ完全なNOx
除去が達成される。
[Effects of the Invention] The NOx removal method according to the present invention is based on a completely new concept and phenomenon as described above, and by simply adding Br2 gas and NH3 gas to the exhaust gas, almost complete NOx removal can be achieved.
Elimination is achieved.

したがって、従来のNOx除去方法および装置に比較し
て大幅な簡略化がなされ、そのためその経済効果は非常
に大きい。またこの方法は単純な方法であるだけに、各
種燃焼排ガスを始めとして、内燃機関など従来処理困難
とされ放置されていた排ガスのNOx除去法として、多
種に渡る用途に適用することができる。
Therefore, it is greatly simplified compared to conventional NOx removal methods and devices, and therefore its economic benefits are significant. Furthermore, since this method is a simple method, it can be applied to a wide variety of applications, including various types of combustion exhaust gases, as well as NOx removal methods for exhaust gases such as internal combustion engines, which have traditionally been difficult to treat and have been left untreated.

〔実 施 例] 次に、この発明を実施例および比較例を以て説明する。〔Example] Next, the present invention will be explained using Examples and Comparative Examples.

実施例1および2 第1図に実験装置を示す。本装置は大きくB「2発生器
(1)と反応塔(2)に分けられる。Br2発生器(1
)は、−直径30m5、高さ5105mのパイレックス
製の垂直管(3)と、その内部に充填された平均粒径2
mmの球形ガラスピーズ(4)と、管(3)全体を被う
温水ジャケット(5)とで構成されている。ガラスピー
ズ(4)は、高さ331■にわたって充填されており、
Br2発生器(1)は温水ジャケット(5)によって7
0℃に加熱保温されている。
Examples 1 and 2 Figure 1 shows the experimental apparatus. This equipment is roughly divided into a B2 generator (1) and a reaction column (2).
) is a Pyrex vertical pipe (3) with a diameter of 30 m5 and a height of 5105 m, and the inside of it is filled with particles with an average diameter of 2
It consists of spherical glass beads (4) with a diameter of 1.2 mm and a hot water jacket (5) that covers the entire tube (3). The glass beads (4) are filled to a height of 331 cm,
Br2 generator (1) is connected to 7 by hot water jacket (5)
It is heated and kept at 0°C.

この構造のBr2発生器(1)においてBr2を発生さ
せるために、HBrによってpHを0゜5に維持したN
aBr0水溶液をBr2発生器(1)の頂部へ流入した
。この時のNaBr0濃度は0.03%、水溶液流量は
1.317時とした。処理すべき実験用排ガスとしては
、ボンベ詰めNoを空気で濃度80ppmに希釈したガ
スを用いた。希釈用ガスは空気の代わりに窒素ガスでも
よい。この実験用排ガスをBr2発生器(1)の底部へ
導入した。ガス流量は217分であった。Br2発生器
(1)の頂部から出た実験用排ガスを反応塔(2)の頂
部へ送った。Br2発生器(1)から反応塔(2)への
途中に、水ミストを除くためのりん酸バブラー(6)を
設置し、さらにその下流側にNOx分析計(7)を設置
した。
In order to generate Br2 in the Br2 generator (1) with this structure, N
The aBr0 aqueous solution was flowed into the top of the Br2 generator (1). At this time, the NaBr0 concentration was 0.03%, and the aqueous solution flow rate was 1.317 hours. As the experimental exhaust gas to be treated, a gas obtained by diluting bottled No. 1 with air to a concentration of 80 ppm was used. The diluting gas may be nitrogen gas instead of air. This experimental exhaust gas was introduced into the bottom of the Br2 generator (1). The gas flow rate was 217 minutes. The experimental exhaust gas leaving the top of the Br2 generator (1) was sent to the top of the reaction column (2). A phosphoric acid bubbler (6) for removing water mist was installed on the way from the Br2 generator (1) to the reaction tower (2), and a NOx analyzer (7) was further installed downstream of the phosphoric acid bubbler (6).

反応塔(2)の直前で還元剤としてNH3を注入した。NH3 was injected as a reducing agent just before the reaction column (2).

NH3ガスとしては窒素ガスで希釈したものを用いた。As the NH3 gas, one diluted with nitrogen gas was used.

この時のNH,濃度は実験用排ガス基準で1601)I
)■であった。
At this time, the NH concentration was 1601) I based on the experimental exhaust gas standard.
)■ It was.

反応塔(2)は、直径10■、高さ400m麿のパイレ
ックス製の垂直管(8)と、その外面に巻装された温度
制御可能なリボンヒータ(9)と、管(8)内に充填さ
れた直径3■、長さ5IIIのラシヒリング(10)と
で構成されている。そして反応塔(2)を通る排ガスを
リボンヒータ(9)によって均一に加熱した。
The reaction tower (2) consists of a Pyrex vertical tube (8) with a diameter of 10 cm and a height of 400 m, a temperature-controllable ribbon heater (9) wrapped around the outside of the tube, and a It consists of a filled Raschig ring (10) with a diameter of 3 mm and a length of 5 III. Then, the exhaust gas passing through the reaction tower (2) was uniformly heated by a ribbon heater (9).

反応塔(2)の底部から出た処理排ガスを、同塔下流側
に設けられた氷水による冷却槽(11)を通して、水分
その他を除去した。さらにこれの下流側でNOx分析計
(12)によって出口側処理排ガス中のNOx濃度を測
定した。
The treated exhaust gas discharged from the bottom of the reaction tower (2) was passed through an ice water cooling tank (11) provided on the downstream side of the tower to remove moisture and other components. Furthermore, on the downstream side of this, the NOx concentration in the outlet-side treated exhaust gas was measured using a NOx analyzer (12).

実験結果を第1表に示す。実施例1と2の反応条件の相
違は反応温度のみであり、他の条件は全て同一である。
The experimental results are shown in Table 1. The only difference in the reaction conditions between Examples 1 and 2 is the reaction temperature, and all other conditions are the same.

上記実験条件を、後述する表2にまとめて示す。The above experimental conditions are summarized in Table 2 below.

第1表から明らかなように、Br2ガスとNH3ガスの
添加によって低い反応温度域でも高い脱硝率が得られた
As is clear from Table 1, by adding Br2 gas and NH3 gas, a high denitrification rate was obtained even in a low reaction temperature range.

実施例3 実施例1の装置を用いて、第2表に示す条件で脱硝を行
なった。その結果、脱硝率は90%であった。この実験
を3時間連続して実施した。
Example 3 Denitration was carried out using the apparatus of Example 1 under the conditions shown in Table 2. As a result, the denitrification rate was 90%. This experiment was conducted continuously for 3 hours.

この間、脱硝率90%は維持された。During this period, the denitrification rate of 90% was maintained.

冷却槽(11)の内壁に白色析出物の生成が認められた
。そこで、この白色析出物をX線回折解析したところ、
第2図の結果が得られ、NH4B「の結晶であることが
確認された。また、この物質中のNO3−の確認をブル
シン吸光法で行ない、NO2−の確認をナフチルアミン
吸収法で行なったが、これらイオンはいずれも検出でき
なかった。
Formation of white precipitates was observed on the inner wall of the cooling tank (11). Therefore, when we analyzed this white precipitate by X-ray diffraction, we found that
The results shown in Figure 2 were obtained, and it was confirmed that it was a crystal of NH4B.Also, NO3- in this substance was confirmed by brucine absorption method, and NO2- was confirmed by naphthylamine absorption method. , none of these ions could be detected.

比較例1〜9 実施例1の装置を用いて、ガス組成と反応温度だけを変
え、その他の条件を実施f!N11と同じくし、NOx
除去率を測定した。その結果を第3表に示す。なお、こ
の表では実施例1の条件と異なる条件のみを示す。
Comparative Examples 1 to 9 Using the apparatus of Example 1, only the gas composition and reaction temperature were changed, and other conditions were carried out f! Same as N11, NOx
The removal rate was measured. The results are shown in Table 3. Note that this table shows only conditions different from those of Example 1.

同表から明らかなように、Br2ガスとNH3ガスを共
に添加しなければ、高い脱硝率は得られない。
As is clear from the table, a high denitrification rate cannot be obtained unless both Br2 gas and NH3 gas are added.

第1表 (以下余白) 4、Table 1 (Margin below) 4,

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例を示すフローシート、第2図
はX線回折解析図である。 以上
FIG. 1 is a flow sheet showing an example of the present invention, and FIG. 2 is an X-ray diffraction analysis diagram. that's all

Claims (1)

【特許請求の範囲】[Claims] 処理すべき排ガス中に臭素ガスおよびアンモニアガスを
添加することを特徴とする窒素酸化物除去方法。
A method for removing nitrogen oxides, which comprises adding bromine gas and ammonia gas to the exhaust gas to be treated.
JP1038102A 1989-02-16 1989-02-16 Method for removing nitrogen oxide Pending JPH02214524A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1038102A JPH02214524A (en) 1989-02-16 1989-02-16 Method for removing nitrogen oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1038102A JPH02214524A (en) 1989-02-16 1989-02-16 Method for removing nitrogen oxide

Publications (1)

Publication Number Publication Date
JPH02214524A true JPH02214524A (en) 1990-08-27

Family

ID=12516111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1038102A Pending JPH02214524A (en) 1989-02-16 1989-02-16 Method for removing nitrogen oxide

Country Status (1)

Country Link
JP (1) JPH02214524A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5234477A (en) * 1992-04-28 1993-08-10 Shell Oil Company Method of reducing NOx emissions in gasoline vehicles
US5351482A (en) * 1992-04-28 1994-10-04 Shell Oil Company Method of maintaining catalytic converter activity in gasoline vehicles
CN1111078C (en) * 1999-12-30 2003-06-11 赵善茂 Complex utilization method for boiler fume
JP2006043536A (en) * 2004-08-02 2006-02-16 Central Glass Co Ltd Method for decomposing nitrogen compound
CN112495365A (en) * 2020-11-22 2021-03-16 浙江盛旺环境工程有限公司 Medium-low temperature vanadium titanium-based SCR denitration catalyst and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4958074A (en) * 1972-10-09 1974-06-05

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4958074A (en) * 1972-10-09 1974-06-05

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5234477A (en) * 1992-04-28 1993-08-10 Shell Oil Company Method of reducing NOx emissions in gasoline vehicles
US5351482A (en) * 1992-04-28 1994-10-04 Shell Oil Company Method of maintaining catalytic converter activity in gasoline vehicles
CN1111078C (en) * 1999-12-30 2003-06-11 赵善茂 Complex utilization method for boiler fume
JP2006043536A (en) * 2004-08-02 2006-02-16 Central Glass Co Ltd Method for decomposing nitrogen compound
JP4498053B2 (en) * 2004-08-02 2010-07-07 セントラル硝子株式会社 Method for decomposing nitrogen compounds
CN112495365A (en) * 2020-11-22 2021-03-16 浙江盛旺环境工程有限公司 Medium-low temperature vanadium titanium-based SCR denitration catalyst and preparation method thereof
CN112495365B (en) * 2020-11-22 2022-07-29 浙江盛旺环境工程有限公司 Medium-low temperature vanadium titanium-based SCR denitration catalyst and preparation method thereof

Similar Documents

Publication Publication Date Title
US9308496B2 (en) System and method for controlling and reducing NOx emissions
Skalska et al. Intensification of NOx absorption process by means of ozone injection into exhaust gas stream
CN101810996B (en) Method for producing ammonium sulfate and ammonium nitrate by simultaneously desulfurizing and denitrating ammonia water and cobaltic ethylenediamine (II)
HUT77699A (en) Regeneration of catalyst/absorber
JPS62176524A (en) Method of reducing nitrogen oxide conetnt in flue gas from boiler for power plant
Guo et al. Simultaneous removal of SO2 and NOx with ammonia combined with gas-phase oxidation of NO using ozone
KR102607313B1 (en) Method and system for removing hazardous compounds from flue gas using SCR catalyst
FI88149B (en) FOERFARANDE FOER MINSKNING AV KVAEVEOXIDEMISSIONER
WO2013065850A1 (en) Method for removing nitrogen oxides
US4024219A (en) Process for removing nitrogen oxide from a waste gas
US5087431A (en) Catalytic decomposition of cyanuric acid and use of product to reduce nitrogen oxide emissions
JPH02214524A (en) Method for removing nitrogen oxide
KR101449244B1 (en) The De-NOx system for combined LNG gas turbine exhaust gas
CN107206315B (en) Low temperature urea-SCR operation in the presence of high sulfur flue gas
JPS62163731A (en) Method for removing nitrogen oxide contained in exhaust gas
JP3863610B2 (en) Ammonia detoxification method and apparatus
CN111097269A (en) Method and device for simultaneously removing SOx and NOx in flue gas and producing compound fertilizer
JP3713634B2 (en) Nitrogen oxide removal method and flue gas denitration equipment in exhaust gas
CN108970356A (en) A method of nitric acid is produced using flue gas
JP5911350B2 (en) Exhaust gas purification method and apparatus
JPS581616B2 (en) Denitrification reaction tower
CN207654947U (en) A kind of cleaning equipment of nitrogen oxide containing gas
JPS5841893B2 (en) Hiengasu Shiyorihouhou
Yizhe Comprehensive Analysis of Nitrogen Oxide Treatment Methods in Nitric Acid Exhaust Gases
JPS62183842A (en) Method for removing co and nox in exhaust gas of combined system