JPH04247218A - Method for treating exhaust gas and device therefor - Google Patents

Method for treating exhaust gas and device therefor

Info

Publication number
JPH04247218A
JPH04247218A JP3010749A JP1074991A JPH04247218A JP H04247218 A JPH04247218 A JP H04247218A JP 3010749 A JP3010749 A JP 3010749A JP 1074991 A JP1074991 A JP 1074991A JP H04247218 A JPH04247218 A JP H04247218A
Authority
JP
Japan
Prior art keywords
exhaust gas
nox
plasma
denitrification
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3010749A
Other languages
Japanese (ja)
Other versions
JP2993133B2 (en
Inventor
Takashi Sakukawa
貴志 佐久川
Masayuki Terajima
寺嶋 正之
Yoshihiko Asano
義彦 浅野
Hoki Haba
方紀 羽場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP3010749A priority Critical patent/JP2993133B2/en
Publication of JPH04247218A publication Critical patent/JPH04247218A/en
Application granted granted Critical
Publication of JP2993133B2 publication Critical patent/JP2993133B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To effectively decompose and remove remaining NOx by passing an exhaust gas in a sprayed atmosphere of a hydrogen azide soln. to reduce and remove the NOx, then passing the exhaust gas in a discharge plasma atmosphere at the time of removing the NOx from the exhaust gas. CONSTITUTION:This device consists of a wet process denitrificationtreating section 1 and a plasma denitrification treating section 2. The wet process denitrification-treating section 1 is constituted by providing a spraying nozzle 8, to which a soln. mixture composed of sodium azide and hydrochloric acid in a tank 6 is fed by a pump 7, in a wet process denitrification--treating container 3 connected with exhaust gas flow pipes 4, 5 and reduces and removes the NOx by passing the exhaust gas into the sprayed atmosphere of the hydrogen azide soln. The plasma denitrification-treating section 2 is constituted by providing a cylindrical electrode 11 and a needle electrode 12 in a plasma denitrification treating container 9 connected to exhaust gas flow pipes 5, 10 and decomposes and removes the NOx remaining in the exhaust gas by passing the exhaust gas in the discharge plasma atmosphere.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は放電プラズマを用いて
、内燃機関や焼却炉等からの排気ガス中の窒素酸化物(
NOx)を除去する排気ガス処理方法および装置に関す
る。
[Industrial Application Field] This invention uses discharge plasma to remove nitrogen oxides (
The present invention relates to an exhaust gas treatment method and device for removing NOx).

【0002】0002

【従来の技術】ディーゼルエンジン,ガスエンジン及び
ガスタービンエンジン等の内燃機関においては燃焼によ
りNOxが発生する。このNOx低減対策としては大き
く分けると、燃料転換,燃焼改善及び排気ガス脱硝があ
る。このうち燃料転換及び燃焼改善ではNOxの低減効
果に限界があり(20%〜50%)、大気汚染防止法等
の規制強化に対応しにくい。
2. Description of the Related Art NOx is generated by combustion in internal combustion engines such as diesel engines, gas engines, and gas turbine engines. Measures to reduce NOx can be roughly divided into fuel conversion, combustion improvement, and exhaust gas denitrification. Among these, fuel conversion and combustion improvement have a limited NOx reduction effect (20% to 50%), making it difficult to respond to stricter regulations such as the Air Pollution Control Act.

【0003】脱硝技術としては乾式法と湿式法があり、
現在良く使用されているのは湿式法の選択接触還元法(
以下アンモニア脱硝法と称す)である。アンモニア脱硝
法は排ガス中にアンモニアを注入して下流に設置された
脱硝触媒に接触させ、次に示す還元反応によりNOxを
無害な窒素と水に分解するものである。触媒としてはV
2O5−WO3−TiO3系が主流である。
[0003] There are two types of denitrification technology: dry method and wet method.
Currently, the wet selective catalytic reduction method (
(hereinafter referred to as the ammonia denitrification method). In the ammonia denitrification method, ammonia is injected into exhaust gas and brought into contact with a denitrification catalyst installed downstream, and NOx is decomposed into harmless nitrogen and water through the following reduction reaction. V as a catalyst
The 2O5-WO3-TiO3 system is the mainstream.

【0004】   4NO+4NH3+O2→4N2+6H2O   
         …(1)  NO+NO2+2NH
3→2N2+3H2O            …(2
)また、乾式法としては放電プラズマを利用した排気ガ
ス処理装置がある。
4NO+4NH3+O2→4N2+6H2O
...(1) NO+NO2+2NH
3→2N2+3H2O…(2
) Furthermore, as a dry method, there is an exhaust gas treatment device that uses discharge plasma.

【0005】[0005]

【発明が解決しようとする課題】上述したアンモニア脱
硝法による排気ガス処理装置としては次に述べるような
問題がある。
[Problems to be Solved by the Invention] The exhaust gas treatment apparatus using the ammonia denitration method described above has the following problems.

【0006】(1)NOxを分解するためにアンモニア
が必要となる。このアンモニアは、有害で危険なガスで
あるため、その取り扱いに細心の注意を要し、法規上も
毒・劇物取締法、高圧ガス取締法、悪臭防止法、大気汚
染防止法、労働安全衛生法、危険物船舶運送及び貯蔵規
則、港則法、航空法などで規制されている。
(1) Ammonia is required to decompose NOx. This ammonia is a harmful and dangerous gas, so it must be handled with great care, and is also subject to legal regulations such as the Poisonous and Deleterious Substances Control Act, the High Pressure Gas Control Act, the Offensive Odor Control Act, the Air Pollution Control Act, and the Industrial Safety and Health Act. It is regulated by laws such as the Dangerous Goods Ship Transportation and Storage Regulations, the Port Regulations Law, and the Aviation Law.

【0007】(2)使用温度に320〜400℃と制限
がある。320℃以下では脱硝率の低下や触媒の劣化を
招き、450℃以上では触媒機能の低下を招く。
(2) The operating temperature is limited to 320 to 400°C. If the temperature is below 320°C, the denitrification rate will decrease and the catalyst will deteriorate, and if it is above 450°C, the catalyst function will deteriorate.

【0008】(3)小型化が困難である。前述した反応
式から判るようにNOxの置元反応は等モルであるため
、脱硝するNOx量にほぼ等しいアンモニアを排ガス中
に注入しなければならず、アンモニア貯蔵設備、触媒等
が大型となる。
(3) Miniaturization is difficult. As can be seen from the above-mentioned reaction equation, since the NOx displacement reaction is equimolar, it is necessary to inject into the exhaust gas approximately the same amount of ammonia as the amount of NOx to be denitrified, which increases the size of the ammonia storage equipment, catalyst, etc.

【0009】(4)脱硝率に50〜80%と限界がある
(4) There is a limit to the denitrification rate of 50 to 80%.

【0010】(5)触媒が劣化する。寿命約2年(80
00時間)排気ガス成分(煤塵SOx等)により劣化が
進む。触媒は貴金属系で高価なため、経済的に不利であ
る。
(5) The catalyst deteriorates. Lifespan approximately 2 years (80
00 hours) Deterioration progresses due to exhaust gas components (soot dust, SOx, etc.). Since the catalyst is based on precious metals and is expensive, it is economically disadvantageous.

【0011】このように湿式法によるアンモニア脱硝法
では種々の問題がある。
[0011] As described above, the wet ammonia denitrification method has various problems.

【0012】また、乾式法である放電プラズマを利用し
た排気ガス処理装置では、大気圧での放電となるために
花火放電になりやすい等の理由により効率が悪く、高い
脱硝率を得るには大電力が必要となる。コロナ放電を用
いて放電電流を小さくし、放電領域を広げるためには、
電極の複雑化を招く。これらの問題により、放電プラズ
マを利用した排気ガス処理装置は、NOx排気量の多い
ディーゼルエンジン等には適用することが困難である。
In addition, exhaust gas treatment equipment that uses discharge plasma, which is a dry method, is inefficient due to the fact that discharge occurs at atmospheric pressure, which tends to cause fireworks discharge, and it takes a long time to obtain a high denitrification rate. Electricity is required. In order to reduce the discharge current and expand the discharge area using corona discharge,
This leads to complicated electrodes. Due to these problems, it is difficult to apply an exhaust gas treatment device using discharge plasma to a diesel engine or the like that has a large amount of NOx emissions.

【0013】この発明は、このような問題点を解決し、
簡便で脱硝率の高い排気ガス処理技術を提供することを
目的とする。
[0013] This invention solves these problems,
The purpose is to provide a simple exhaust gas treatment technology with a high denitrification rate.

【0014】[0014]

【課題を解決するための手段】請求項1に記載された発
明は、NOxを含有する排気ガスからNOxを除去する
方法において、次の工程を順次行うものである。
The invention as set forth in claim 1 is a method for removing NOx from exhaust gas containing NOx, in which the following steps are sequentially performed.

【0015】(1)アジ化水素溶液の噴霧雰囲気中にて
排気ガスを流通させることによりNOxを還元・除去す
る工程。
(1) A step of reducing and removing NOx by circulating exhaust gas in an atmosphere in which a hydrogen azide solution is sprayed.

【0016】(2)放電プラズマ雰囲気中にて排気ガス
を流通させることにより残存するNOxを分解・除去す
る工程。
(2) A step of decomposing and removing remaining NOx by circulating exhaust gas in a discharge plasma atmosphere.

【0017】また、請求項2に記載された発明は、NO
xを含有する排気ガスからNOxを除去する装置におい
て、次の手段(1)(2)を設けるものである。
[0017] Furthermore, the invention stated in claim 2
In an apparatus for removing NOx from exhaust gas containing x, the following means (1) and (2) are provided.

【0018】(1)排気ガスに対して第1の脱硝処理を
行う湿式脱硝処理部。この湿式脱硝処理部は次の手段(
a)〜(d)を備えている。
(1) A wet denitration treatment section that performs a first denitration treatment on exhaust gas. This wet denitrification processing section uses the following means (
It is equipped with a) to (d).

【0019】(a)アジ化水素溶液を蓄えるタンク。(a) Tank for storing hydrogen azide solution.

【0020】(b)(a)のタンクから溶液を搬送する
搬送装置。
(b) A transport device for transporting the solution from the tank of (a).

【0021】(c)排気ガスが内部を流通する湿式処理
容器。
(c) A wet processing container through which exhaust gas flows.

【0022】(d)(a)のタンクから搬送される溶液
を湿式処理容器の内部に噴霧する噴霧装置。
(d) A spraying device for spraying the solution conveyed from the tank in (a) into the wet processing container.

【0023】(2)第1の脱硝処理後のガスに対して放
電プラズマによる第2の脱硝処理を行うプラズマ脱硝処
理部。このプラズマ脱硝処理部は、次の手段(e)〜(
g)を備えている。
(2) A plasma denitrification processing section that performs a second denitrification process using discharge plasma on the gas after the first denitrification process. This plasma denitrification processing section includes the following means (e) to (
g).

【0024】(e)湿式処理容器から流出した排気ガス
が内部を流通するプラズマ処理容器。
(e) A plasma processing vessel through which exhaust gas flowing out from the wet processing vessel flows.

【0025】(f)プラズマ処理容器の内部に設置され
たプラズマ発生用電極。
(f) A plasma generation electrode installed inside the plasma processing container.

【0026】(g)プラズマ発生用電極に電圧を印加す
るプラズマ発生用電源。
(g) A plasma generation power source that applies voltage to the plasma generation electrode.

【0027】[0027]

【作用】この発明によれば、排気ガスはまず湿式処理部
に流入し、第1の脱硝処理が施される。すなわち、搬送
装置によりアジ化水素溶液が噴霧装置に搬送され、噴霧
装置によりその溶液が噴霧される。これにより湿式処理
容器の内部にアジ化水素溶液の噴霧雰囲気が生成される
。この雰囲気中を排気ガスが流通することにより、排気
ガス中のNOxがアジ化水素と反応して還元・除去され
る。この湿式脱硝処理では、NOX濃度の高い排気ガス
であっても、ある程度のNOX濃度の低減は容易に行え
る。
According to the present invention, the exhaust gas first flows into the wet treatment section and is subjected to the first denitration treatment. That is, the hydrogen azide solution is transported to the spray device by the transport device, and the solution is sprayed by the spray device. As a result, a spray atmosphere of hydrogen azide solution is generated inside the wet processing container. As the exhaust gas flows through this atmosphere, NOx in the exhaust gas reacts with hydrogen azide to be reduced and removed. In this wet denitrification treatment, even if the exhaust gas has a high NOX concentration, the NOX concentration can be easily reduced to a certain degree.

【0028】この後、排気ガスはプラズマ脱硝処理部に
流入し、第2の脱硝処理(プラズマ脱硝処理)が行われ
る。すなわち、プラズマ発生用電源を駆動して電圧をプ
ラズマ発生用電極に印加することにより、プラズマ処理
容器の内部には放電プラズマが生成される。この放電プ
ラズマ雰囲気中を排気が流通することにより、排気ガス
中に残存しているNOxを分解・除去する。湿式脱硝処
理によりあらかじめ排気ガスのNOX濃度が低減されて
いるので、このプラズマ脱硝処理により効果的な脱硝処
理が行われ、高脱硝率が実現できる。
After this, the exhaust gas flows into the plasma denitrification processing section, and a second denitration processing (plasma denitration processing) is performed. That is, by driving the plasma generation power source and applying a voltage to the plasma generation electrode, discharge plasma is generated inside the plasma processing container. By flowing the exhaust gas through this discharge plasma atmosphere, NOx remaining in the exhaust gas is decomposed and removed. Since the NOX concentration of the exhaust gas has been reduced in advance by wet denitrification treatment, effective denitrification treatment is performed by this plasma denitrification treatment, and a high denitrification rate can be achieved.

【0029】[0029]

【実施例】以下、図面に基づいてこの発明の実施例を説
明する。
Embodiments Hereinafter, embodiments of the present invention will be described based on the drawings.

【0030】図1は、この発明の実施例に係る排気ガス
処理装置の概要を示す。図において、矢印は排気ガスの
流れを示す。この装置は、湿式脱硝処理部1およびプラ
ズマ脱硝処理部2からなる。
FIG. 1 shows an outline of an exhaust gas treatment apparatus according to an embodiment of the present invention. In the figure, arrows indicate the flow of exhaust gas. This apparatus consists of a wet denitrification processing section 1 and a plasma denitration processing section 2.

【0031】湿式脱硝処理部1において、3は湿式脱硝
処理容器である。この処理容器3には排気ガス流通管4
,5が連結されており、排気ガスが管4から処理容器3
の内部に流入し、管5を通って流出する構成となってい
る。
In the wet denitration processing section 1, 3 is a wet denitration processing container. This processing container 3 has an exhaust gas distribution pipe 4.
, 5 are connected, and the exhaust gas is passed from the pipe 4 to the processing vessel 3.
The water flows into the interior of the pipe 5 and flows out through the pipe 5.

【0032】タンク6は、アジ化ナトリウムと塩酸の混
合溶液を蓄えるものである。ポンプ7は、この混合溶液
を噴霧ノズル8に搬送するものである。噴霧ノズル8は
、処理容器3の内部に取り付けられ、混合溶液を管4の
開口部に向かって噴霧するものである。
Tank 6 is for storing a mixed solution of sodium azide and hydrochloric acid. Pump 7 transports this mixed solution to spray nozzle 8. The spray nozzle 8 is installed inside the processing container 3 and sprays the mixed solution toward the opening of the tube 4 .

【0033】また、プラズマ脱硝処理部2において、9
はプラズマ脱硝処理容器である。このプラズマ脱硝処理
容器9には排気ガス流通管5,10が連結されており、
湿式脱硝処理部1で処理された排気ガスが管5を通って
処理容器9に流入し、管10を通って外部に流出する構
成となっている。
Further, in the plasma denitrification processing section 2, 9
is a plasma denitrification treatment vessel. Exhaust gas distribution pipes 5 and 10 are connected to this plasma denitrification processing container 9,
Exhaust gas treated in the wet denitrification processing section 1 flows into a processing container 9 through a pipe 5, and flows out through a pipe 10 to the outside.

【0034】処理容器9の内部には、円筒電極11およ
び針状電極12が設けられている。円筒電極11は、管
5の開口部に設けられており、管5から流入する排気ガ
スが円筒電極11を流通するようになっている。針状電
極6は、円筒電極11の軸心上の位置に固定されている
。プラズマ発生用電極13は、プラズマを発生させるた
めの高電圧(直流・交流・高周波・パルスのいずれでも
可)を電極11,12に印加するものである。電極11
,12のいずれを正極・負極として用いるかは任意に選
択できる。
A cylindrical electrode 11 and a needle electrode 12 are provided inside the processing container 9. The cylindrical electrode 11 is provided at the opening of the tube 5 so that exhaust gas flowing from the tube 5 flows through the cylindrical electrode 11. The needle electrode 6 is fixed at a position on the axis of the cylindrical electrode 11. The plasma generation electrode 13 applies a high voltage (direct current, alternating current, high frequency, or pulse) to the electrodes 11 and 12 to generate plasma. Electrode 11
, 12 can be arbitrarily selected to be used as the positive electrode or the negative electrode.

【0035】以上の構成において、ディーゼルエンジン
などから排出される排気ガスは管4を通ってまず湿式脱
硝部1に至る。このとき、ポンプ7が駆動することによ
り、タンク6内の混合溶液が噴霧ノズル8から噴霧され
、管4の開口部近傍に混合溶液の噴霧雰囲気14が形成
されている。管4から処理容器3に流入した排気ガスが
この噴霧雰囲気14を流通する過程で、排気ガス中のN
Oxが還元・除去される。この主反応は、次の(3)〜
(5)式で表される。
In the above structure, exhaust gas discharged from a diesel engine or the like passes through the pipe 4 and first reaches the wet denitrification section 1. At this time, by driving the pump 7, the mixed solution in the tank 6 is sprayed from the spray nozzle 8, and a spray atmosphere 14 of the mixed solution is formed near the opening of the pipe 4. During the process in which the exhaust gas that has flowed into the processing container 3 from the pipe 4 flows through this spray atmosphere 14, N in the exhaust gas is
Ox is reduced and removed. This main reaction is as follows (3) ~
It is expressed by equation (5).

【0036】   NO+NO2+H2O→2HNO2       
           …(3)  6NaN3+6H
Cl→6N3H+6NaCl       …(4) 
 2HNO2+6N3H→10N2+4H2O    
       …(5)混合溶液を管4の開口部に向か
って噴霧しているので、管4から流れ出た排気ガスは噴
霧雰囲気中を流通することとなり、(3)式の反応が効
果的に生ずる。また、(4)式に示すように混合溶液中
に酸(HCl)を加えることによりN3+を遊離させて
いるので、(5)式の反応が進む。混合溶液に加える酸
としては、塩酸の他に硫酸・硝酸・酢酸などを使用でき
ることが確認された。この湿式脱硝処理では、NOx濃
度が100〜150ppmに低減する程度に処理を行え
ばよい。したがって試薬(NaN3等)の消費量は少な
くて済む。
NO+NO2+H2O→2HNO2
...(3) 6NaN3+6H
Cl→6N3H+6NaCl…(4)
2HNO2+6N3H→10N2+4H2O
(5) Since the mixed solution is sprayed toward the opening of the tube 4, the exhaust gas flowing out from the tube 4 flows through the spray atmosphere, and the reaction of equation (3) occurs effectively. Furthermore, as shown in equation (4), N3+ is liberated by adding acid (HCl) to the mixed solution, so the reaction in equation (5) proceeds. It was confirmed that in addition to hydrochloric acid, sulfuric acid, nitric acid, acetic acid, etc. can be used as acids to be added to the mixed solution. In this wet denitration treatment, the treatment may be performed to such an extent that the NOx concentration is reduced to 100 to 150 ppm. Therefore, the consumption of reagents (such as NaN3) can be reduced.

【0037】この後、排気ガスは管5を通り、円筒電極
11を通過して管10に導かれる。ここで、プラズマ発
生用電源13を駆動することにより、電極11,12間
にコロナ放電が発生している。円筒電極11から流れ出
た排気ガスが放電プラズマ雰囲気15を通過するときに
、次の(6)式に示すように湿式脱硝処理で除去できず
に排気ガス中に残存しているNOxが分解・除去される
After this, the exhaust gas passes through the tube 5 and is led to the tube 10 through the cylindrical electrode 11. Here, by driving the plasma generation power source 13, corona discharge is generated between the electrodes 11 and 12. When the exhaust gas flowing out from the cylindrical electrode 11 passes through the discharge plasma atmosphere 15, NOx remaining in the exhaust gas that could not be removed by the wet denitration process is decomposed and removed, as shown in the following equation (6). be done.

【0038】   2NO→N2+O2              
                  …(6)コロナ
放電の放電路は、円筒電極11の開口部に帽子状に形成
されており、流入する排気ガスは必ずプラズマ雰囲気中
を通過するので分解処理効率が高められる。また、プラ
ズマ脱硝処理は、NOx濃度が高い場合は脱硝率が低い
が、NOx濃度が低い場合は脱硝率が高い。NOx濃度
が100〜150ppm以下の場合、80%以上の脱硝
率が得られる。上記のように湿式脱硝処理によってNO
x濃度100〜150ppm程度まで処理しているので
、プラズマ脱硝処理によってNOx濃度20ppm以下
まで処理することが可能となった。
2NO→N2+O2
...(6) The discharge path of the corona discharge is formed in the shape of a cap at the opening of the cylindrical electrode 11, and the inflowing exhaust gas always passes through the plasma atmosphere, so that the decomposition processing efficiency is improved. Furthermore, in the plasma denitrification process, the denitration rate is low when the NOx concentration is high, but the denitration rate is high when the NOx concentration is low. When the NOx concentration is 100 to 150 ppm or less, a denitrification rate of 80% or more can be obtained. As mentioned above, wet denitrification treatment reduces NO
Since the NOx concentration is treated to about 100 to 150 ppm, it is possible to reduce the NOx concentration to 20 ppm or less by plasma denitrification treatment.

【0039】この排気ガス処理装置は、NOxを含む排
気ガスすべての処理に適用可能であり、特にNOx濃度
の高いディーゼルエンジン等の排気ガスの処理に好適で
ある。
This exhaust gas treatment device is applicable to the treatment of all types of exhaust gas containing NOx, and is particularly suitable for treating exhaust gas from diesel engines and the like with a high concentration of NOx.

【0040】[0040]

【発明の効果】以上説明したようにこの発明によれば、
アジ化水素溶液の噴霧雰囲気中にて排気ガスを流通させ
ることにより第1の脱硝処理を行い、この後、放電プラ
ズマ雰囲気中にて排気ガスを流通させることにより第2
の脱硝処理を行うので、次のような効果がある。
[Effects of the Invention] As explained above, according to the present invention,
A first denitrification process is performed by circulating exhaust gas in a spray atmosphere of a hydrogen azide solution, and then a second denitration process is performed by circulating exhaust gas in a discharge plasma atmosphere.
Since the denitrification process is carried out, it has the following effects.

【0041】(1)第1の脱硝処理で還元・除去しきれ
ずに残存しているNOxを第2の脱硝処理により分解・
除去するので、特にNOX濃度が高い排気ガスであって
も高脱硝率が可能となる。
(1) The remaining NOx that was not completely reduced and removed by the first denitrification process is decomposed and removed by the second denitrification process.
Since NOx is removed, a high denitrification rate is possible even for exhaust gas with a particularly high concentration of NOx.

【0042】(2)取り扱いの面倒なアンモニアが不要
であり、液剤(たとえばアジ化化合物水溶液および酸溶
液)を使用して処理を行えるので、取り扱いが容易にな
り、しかも装置の小型化も可能となる。さらに、第1の
脱硝処理では、必ずしも高脱硝率が要求されないので、
液剤の使用量が少なくて済む。
(2) Ammonia, which is troublesome to handle, is not required, and the treatment can be carried out using a liquid agent (for example, an azide compound aqueous solution and an acid solution), so handling is easy and the equipment can be made smaller. Become. Furthermore, since the first denitrification treatment does not necessarily require a high denitrification rate,
The amount of liquid used can be reduced.

【0043】(3)アンモニア脱硝法に比べて使用温度
範囲が広がる。
(3) The usable temperature range is wider than that of the ammonia denitrification method.

【0044】(4)触媒を使用しないので、触媒の交換
作業等が不要となり、経済的にも有利となる。
(4) Since no catalyst is used, there is no need to replace the catalyst, which is economically advantageous.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】この発明の一実施例に係る排気ガス処理装置の
概要図。
FIG. 1 is a schematic diagram of an exhaust gas treatment device according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…湿式脱硝処理部 2…プラズマ脱硝処理部 3,9…処理容器 6…タンク 7…ポンプ 8…噴霧ノズル 11,12…電極 13…プラズマ発生用電源 1...Wet denitrification processing section 2...Plasma denitrification processing section 3,9...processing container 6...Tank 7...Pump 8...Spray nozzle 11, 12...electrode 13...Power supply for plasma generation

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  NOx含有の排気ガスからNOxを除
去する方法において、アジ化水素溶液の噴霧雰囲気中に
て排気ガスを流通させることによりNOxを還元・除去
し、この後、放電プラズマ雰囲気中にて排気ガスを流通
させることにより残存するNOxを分解・除去すること
を特徴とする排気ガス処理方法。
Claim 1: In a method for removing NOx from NOx-containing exhaust gas, NOx is reduced and removed by flowing the exhaust gas in a hydrogen azide solution spray atmosphere, and then in a discharge plasma atmosphere. An exhaust gas treatment method characterized in that residual NOx is decomposed and removed by circulating exhaust gas.
【請求項2】  NOx含有の排気ガスからNOxを除
去する装置において、前記排気ガスに対して第1の脱硝
処理を行う湿式脱硝処理部と、第1の脱硝処理後のガス
に対して放電プラズマによる第2の脱硝処理を行うプラ
ズマ脱硝処理部とを備え、前記湿式脱硝処理部は、アジ
化水素溶液を蓄えるタンクと、このタンクから溶液を搬
送する搬送装置と、前記排気ガスが内部を流通する湿式
処理容器と、前記タンクから搬送される溶液を湿式処理
容器の内部に噴霧する噴霧装置とを備え、前記プラズマ
脱硝処理部は、湿式処理容器から流出した排気ガスが内
部を流通するプラズマ処理容器と、このプラズマ処理容
器の内部に設置されたプラズマ発生用電極と、このプラ
ズマ発生用電極に電圧を印加するプラズマ発生用電源と
を備えたことを特徴とする排気ガス処理装置。
2. An apparatus for removing NOx from NOx-containing exhaust gas, comprising: a wet denitration treatment section that performs a first denitration treatment on the exhaust gas; and a discharge plasma treatment unit that performs a first denitration treatment on the exhaust gas; a plasma denitrification processing section that performs a second denitration processing using The plasma denitrification processing section includes a wet processing container that carries out a process, and a spraying device that sprays a solution conveyed from the tank into the wet processing container, and the plasma denitrification processing unit is configured to perform plasma processing in which exhaust gas flowing out from the wet processing container circulates inside the wet processing container. An exhaust gas treatment device comprising: a container; a plasma generation electrode installed inside the plasma processing container; and a plasma generation power source that applies voltage to the plasma generation electrode.
JP3010749A 1991-01-31 1991-01-31 Exhaust gas treatment method and apparatus Expired - Lifetime JP2993133B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3010749A JP2993133B2 (en) 1991-01-31 1991-01-31 Exhaust gas treatment method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3010749A JP2993133B2 (en) 1991-01-31 1991-01-31 Exhaust gas treatment method and apparatus

Publications (2)

Publication Number Publication Date
JPH04247218A true JPH04247218A (en) 1992-09-03
JP2993133B2 JP2993133B2 (en) 1999-12-20

Family

ID=11758962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3010749A Expired - Lifetime JP2993133B2 (en) 1991-01-31 1991-01-31 Exhaust gas treatment method and apparatus

Country Status (1)

Country Link
JP (1) JP2993133B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6146599A (en) * 1999-02-24 2000-11-14 Seagate Technology Llc Dielectric barrier discharge system and method for decomposing hazardous compounds in fluids
US6451252B1 (en) 2000-01-20 2002-09-17 Regents Of The University Of Minnesota Odor removal system and method having ozone and non-thermal plasma treatment
US6562386B2 (en) 2001-05-07 2003-05-13 Regents Of The University Of Minnesota Method and apparatus for non-thermal pasteurization
US6911225B2 (en) 2001-05-07 2005-06-28 Regents Of The University Of Minnesota Method and apparatus for non-thermal pasteurization of living-mammal-instillable liquids
US7011790B2 (en) 2001-05-07 2006-03-14 Regents Of The University Of Minnesota Non-thermal disinfection of biological fluids using non-thermal plasma
US7160521B2 (en) 2001-07-11 2007-01-09 Applied Materials, Inc. Treatment of effluent from a substrate processing chamber
US7931811B2 (en) 2006-10-27 2011-04-26 Regents Of The University Of Minnesota Dielectric barrier reactor having concentrated electric field

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6146599A (en) * 1999-02-24 2000-11-14 Seagate Technology Llc Dielectric barrier discharge system and method for decomposing hazardous compounds in fluids
US6451252B1 (en) 2000-01-20 2002-09-17 Regents Of The University Of Minnesota Odor removal system and method having ozone and non-thermal plasma treatment
US6562386B2 (en) 2001-05-07 2003-05-13 Regents Of The University Of Minnesota Method and apparatus for non-thermal pasteurization
US6911225B2 (en) 2001-05-07 2005-06-28 Regents Of The University Of Minnesota Method and apparatus for non-thermal pasteurization of living-mammal-instillable liquids
US7011790B2 (en) 2001-05-07 2006-03-14 Regents Of The University Of Minnesota Non-thermal disinfection of biological fluids using non-thermal plasma
US7160521B2 (en) 2001-07-11 2007-01-09 Applied Materials, Inc. Treatment of effluent from a substrate processing chamber
US7931811B2 (en) 2006-10-27 2011-04-26 Regents Of The University Of Minnesota Dielectric barrier reactor having concentrated electric field

Also Published As

Publication number Publication date
JP2993133B2 (en) 1999-12-20

Similar Documents

Publication Publication Date Title
KR101910880B1 (en) Process for the reduction of nitrogen oxides and sulphur oxides in the exhaust gas from internal combustion engine
JP2001025646A (en) Removal of nitrogen oxide from waste gas stream
KR20160084527A (en) EXHAUST GAS TREATMENT DEVICE REDUCING NOx AND SOx
JPH04247218A (en) Method for treating exhaust gas and device therefor
CN105736094A (en) Gaseous ammonia generating system used for marine tail gas purification device
CN206845280U (en) A kind of exhaust gas purification system of marine diesel engine
KR20160102649A (en) Scr system and control method thereof
KR102150737B1 (en) Apparatus and method for controlling ammonia slip of scr system
CN204412068U (en) A kind of marine internal combustion engine tail gas desulfurization denitrification apparatus
KR102350269B1 (en) Plasma nitrogen oxide control method and apparatus for ships using SNCR
JPH06178914A (en) Waste gas treatment device
WO2005065805A1 (en) Method of treating exhaust gas and apparatus therefor
CN206778192U (en) Low temperature plasma pre-oxidizes joint SCR desulphurization denitration noise reduction dedusting set composites
CN104785092A (en) An SNCR flue gas denitration device
KR100268029B1 (en) Method and device for removal of nitrogen oxide using oxidants
US9782721B2 (en) Low temperature urea-Scr operation in the presence of high sulphur flue gas
JPH04110013A (en) Exhaust gas treating device
JPH04244216A (en) Exhaust gas treatment device
CN207111210U (en) NOX selective catalytic reduction device in a kind of engine of boat and ship exhaust contaminant
JPH04256415A (en) Device for treating exhaust gas
CN206054060U (en) A kind of gaseous ammonia for exhaust gas cleaner peculiar to vessel generates system
KR20200033161A (en) NOx and SOx removal device and removal process in wet scrubber using pyrolysis of hydrogen peroxide
JPH04131122A (en) Denitration apparatus
JP7319653B2 (en) Exhaust gas treatment method, exhaust gas treatment system and ship equipped with exhaust gas treatment system
CN207111206U (en) NOX SNCR device in a kind of engine of boat and ship exhaust contaminant