JP4472638B2 - Exhaust gas treatment method and apparatus - Google Patents

Exhaust gas treatment method and apparatus Download PDF

Info

Publication number
JP4472638B2
JP4472638B2 JP2005516807A JP2005516807A JP4472638B2 JP 4472638 B2 JP4472638 B2 JP 4472638B2 JP 2005516807 A JP2005516807 A JP 2005516807A JP 2005516807 A JP2005516807 A JP 2005516807A JP 4472638 B2 JP4472638 B2 JP 4472638B2
Authority
JP
Japan
Prior art keywords
exhaust gas
reactor
discharge
discharge method
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005516807A
Other languages
Japanese (ja)
Other versions
JPWO2005065805A1 (en
Inventor
雅章 大久保
俊昭 山本
智之 黒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OSAKA FOUNDATION FOR TRADE AND INDUSTRY
Original Assignee
OSAKA FOUNDATION FOR TRADE AND INDUSTRY
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OSAKA FOUNDATION FOR TRADE AND INDUSTRY filed Critical OSAKA FOUNDATION FOR TRADE AND INDUSTRY
Publication of JPWO2005065805A1 publication Critical patent/JPWO2005065805A1/en
Application granted granted Critical
Publication of JP4472638B2 publication Critical patent/JP4472638B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/79Injecting reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/54Nitrogen compounds
    • B01D53/56Nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/10Gas phase, e.g. by using aerosols
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/10Capture or disposal of greenhouse gases of nitrous oxide (N2O)

Description

本発明は、排ガスの処理方法及びその処理装置に関し、排ガス中の反応副生成物(例えばN2O,HNO2,HNO3,NO3 -,CO)を抑制し、かつ、効率よく窒素酸化物を浄化する方法及び浄化装置に関する。 TECHNICAL FIELD The present invention relates to an exhaust gas treatment method and an apparatus for treating the same, and suppresses reaction by-products (eg, N 2 O, HNO 2 , HNO 3 , NO 3 , CO) in the exhaust gas, and efficiently converts nitrogen oxides. The present invention relates to a method and a purification device.

一般に、発電所やディ−ゼルエンジン等に代表されるエネルギーの供給及びこれらのエネルギ−の消費に伴って一酸化窒素(NO)や、二酸化窒素(NO2)等の窒素酸化物が排出される。環境中に排出された窒素酸化物は光化学スモッグ等の原因となり、大都市での環境問題の重要課題としてその対策が検討されている。また一酸化二窒素(N2O)は、近年問題となっている地球温暖化ガスの原因としても注目されている。 In general, nitrogen oxides such as nitrogen monoxide (NO) and nitrogen dioxide (NO 2 ) are discharged with the supply of energy represented by power plants and diesel engines and the consumption of such energy. . Nitrogen oxides discharged into the environment cause photochemical smog and the like, and countermeasures are being considered as an important issue for environmental problems in large cities. Further, dinitrogen monoxide (N 2 O) has attracted attention as a cause of global warming gas, which has become a problem in recent years.

窒素酸化物を低減させる方法として、燃焼方式、触媒方式、選択触媒還元方式(SCR)、アンモニア噴射方式、また、近年においては、前記触媒方式や、非熱プラズマ、電子ビ−ム等の技術を結合して、窒素酸化物を低減させる方法や、その他前記方式とアンモニア、過酸化水素及び塩化カルシウム等の化学物質や触媒等を用いた方式との結合により、窒素酸化物を低減する方法が知られている。   As a method for reducing nitrogen oxides, a combustion method, a catalyst method, a selective catalytic reduction method (SCR), an ammonia injection method, and, in recent years, technologies such as the catalyst method, non-thermal plasma, and electron beam There are known methods for reducing nitrogen oxides by combining them, and other methods for reducing nitrogen oxides by combining the above methods with methods using chemical substances or catalysts such as ammonia, hydrogen peroxide, and calcium chloride. It has been.

その中で注目を集めているのが、プラズマ・ケミカルハイブリッド法である。この原理にもとづく、直接非熱プラズマ法に関しては、下記特許文献1〜3が提案されている。
特開2000−117049号公報 特開2000−51653号公報 特開2001−300257号公報
Among them, the plasma-chemical hybrid method is attracting attention. Regarding the direct non-thermal plasma method based on this principle, the following Patent Documents 1 to 3 have been proposed.
Japanese Patent Application Laid-Open No. 2000-117049 JP 2000-51653 A Japanese Patent Laid-Open No. 2001-300257

しかし、従来のSCR法などの触媒を使用した方法では、窒素酸化物の除去効率を高くするためには、多大なコストがかかるという問題があった。その他、低温非平衡プラズマを用いた従来方式においては、環境中の窒素酸化物を分解除去するために、反応過程において、一酸化二窒素(N2O)や、硝酸イオン(NO3 -)、亜硝酸(HNO2)、及び硝酸(HNO3)等の副生成物が大量に生産されてしまい、これらの副生成物の除去がなされていないという問題があった。これらの副生成物を酸化・還元により浄化するためには、更なるコストの高騰につながるという問題があった。プラズマを用いる方法では、処理する排気ガスをリアクタに直接流し込み、非熱プラズマを用いてNOからNO2に酸化させ、ケミカルスクラバーで処理する2段階方法(前記特許文献1〜2)、すなわち非熱ダイレクトプラズマ法が提案されているが、エネルギー効率が比較的低い。高温ガスをプラズマリアクタに流すため、処理効率が低下する。また腐食性の排ガスをプラズマリアクタに流すため、電極等の腐食が生じる等の問題があった。 However, the conventional method using a catalyst such as the SCR method has a problem that it takes a great deal of cost to increase the removal efficiency of nitrogen oxides. In addition, in the conventional method using low temperature non-equilibrium plasma, in order to decompose and remove nitrogen oxides in the environment, in the reaction process, dinitrogen monoxide (N 2 O), nitrate ions (NO 3 ), There was a problem that by-products such as nitrous acid (HNO 2 ) and nitric acid (HNO 3 ) were produced in large quantities, and these by-products were not removed. In order to purify these by-products by oxidation / reduction, there is a problem that the cost increases further. In the method using plasma, exhaust gas to be treated is directly flowed into a reactor, oxidized from NO to NO 2 using non-thermal plasma, and treated with a chemical scrubber (Patent Documents 1 and 2), that is, non-thermal. A direct plasma method has been proposed, but the energy efficiency is relatively low. Since high temperature gas is allowed to flow through the plasma reactor, the processing efficiency is reduced. Further, since corrosive exhaust gas is caused to flow through the plasma reactor, there are problems such as corrosion of electrodes and the like.

また前記特許文献3の方法は、排気ガスを一旦冷却し、排気ガスに含まれる有害ガスを吸着剤に吸着しこれを直接プラズマ分解するが、腐食性の排気ガスをプラズマリアクタに直接流すため、電極等の腐食が生じる問題は残り、またプラズマ分解した後のガスの副生成物の除去がなされていないという問題があった。   In the method of Patent Document 3, the exhaust gas is once cooled, the harmful gas contained in the exhaust gas is adsorbed on the adsorbent and directly decomposed into plasma, but the corrosive exhaust gas flows directly into the plasma reactor. There remains a problem that the electrodes and the like are corroded, and that a gas byproduct after plasma decomposition is not removed.

本発明は、前記従来の問題を解決するため、排ガス中の反応副生成物(例えば、N2O,HNO2,HNO3,NO3 -,CO)を抑制し、かつ、効率よく排気ガスを処理できる装置及び方法を提供する。 In order to solve the above-mentioned conventional problems, the present invention suppresses reaction by-products (for example, N 2 O, HNO 2 , HNO 3 , NO 3 , CO) in exhaust gas and efficiently emits exhaust gas. An apparatus and method capable of processing are provided.

本発明の排気ガスの処理方法は、窒素酸化物を含む排気ガスを浄化する方法であって、空気を大気圧低温非平衡放電プラズマ反応器に供給してラジカルガスを生成し、前記ラジカルガスを酸化反応領域に供給し、前記排気ガスを前記ラジカルガス生成ラインとは別個のラインから前記酸化反応領域に供給することにより、前記排気ガス中の窒素酸化物を前記ラジカルガスによりNO2を含む酸化ガスに酸化し、次に、前記酸化ガスをNa 2 SO 3 ,Na 2 S,及びNa 2 2 3 から選ばれる少なくとも1つの化合物を含む還元剤溶液と還元反応領域で接触させることにより、NO2を窒素ガス(N2)に還元反応させるに際し、前記酸化反応領域と前記還元反応領域が1つの湿式反応器に存在し、前記湿式反応器の下部が前記酸化反応領域であり、前記湿式反応器の上部が前記還元反応領域であり、かつ前記還元剤水溶液を循環させることを特徴とする。 The exhaust gas treatment method of the present invention is a method for purifying exhaust gas containing nitrogen oxides, supplying air to an atmospheric pressure low temperature non-equilibrium discharge plasma reactor to generate radical gas, Supplying the exhaust gas to the oxidation reaction region and supplying the exhaust gas from a line separate from the radical gas generation line to the oxidation reaction region, thereby oxidizing nitrogen oxide in the exhaust gas with NO 2 by the radical gas oxidized to the gas, then the oxidizing gas Na 2 SO 3, Na 2 S , and by contacting at least the reduction reaction area with the reducing agent aqueous solution containing one compound selected from Na 2 S 2 O 3 , by reduction reaction NO 2 to nitrogen gas (N 2) Runisaishi, wherein the reduction reaction region and the oxidation reaction zone is present on one wet reactor, the lower said oxidation reaction zone of the wet reactor There is a top the reduction reaction area of the wet reactor, and is characterized by circulating the aqueous solution of the reducing agent.

本発明の排気ガスの処理装置は、窒素酸化物を含む排気ガスを浄化する装置であって、空気をラジカルガスにするための大気圧低温非平衡放電プラズマ反応器と、前記ラジカルガスを酸化反応領域に供給するラインと、前記排気ガスを前記ラジカルガス生成ラインとは別個のラインから前記酸化反応領域に供給するラインと、前記排気ガス中の窒素酸化物を前記ラジカルガスによりNO2を含む酸化ガスに酸化するための前記酸化反応領域と、前記酸化ガスをNa 2 SO 3 ,Na 2 S,及びNa 2 2 3 から選ばれる少なくとも1つの化合物を含む還元剤溶液と還元反応領域で接触させることにより、NO2を窒素ガス(N2)に還元反応させる還元反応領域を含み、前記酸化反応領域と前記還元反応領域が1つの湿式反応器に存在し、前記湿式反応器の下部が前記酸化反応領域であり、前記湿式反応器の上部が前記還元反応領域であり、かつ前記還元剤水溶液は循環式であることを特徴とする。 The exhaust gas treatment apparatus of the present invention is an apparatus for purifying exhaust gas containing nitrogen oxides, which is an atmospheric pressure low temperature non-equilibrium discharge plasma reactor for converting air into radical gas, and oxidation reaction of the radical gas. A line supplying the region, a line supplying the exhaust gas to the oxidation reaction region from a line separate from the radical gas generation line, and oxidizing the nitrogen oxide in the exhaust gas with NO 2 by the radical gas and said oxidation reaction zone for oxidizing the gas, the oxidizing gas Na 2 SO 3, Na 2 S , and Na 2 S 2 O 3 at least one reducing reaction area with the reducing agent aqueous solution containing a compound selected from by contacting the NO 2 comprises a reduction reaction region for reduction in nitrogen gas (N 2), present in the oxidation reaction zone and the reducing reaction zone one wet reactor, before A lower said oxidation reaction zone of the wet reactor, wherein a top the reduction reaction area of the wet reactor and the reducing agent aqueous solution is characterized in that it is a circulating.

本発明の方法及び装置は、大気圧低温非平衡プラズマでラジカル化された空気と、別途に排気ガスを酸化反応領域に供給し、排気ガス中の窒素酸化物をラジカルガスによりNO2を含む酸化ガスに酸化し、次に酸化ガスを還元剤溶液と接触させることにより、NO2を窒素ガス(N2)に還元する。これにより、排ガス中の反応副生成物(例えば、N2O,HNO2,HNO3,NO3 -,CO)を抑制し、かつ、効率よく除去することができる。 The method and apparatus of the present invention supplies air radicalized by atmospheric pressure low-temperature non-equilibrium plasma and separately supplies exhaust gas to the oxidation reaction region, and oxidizes nitrogen oxide in the exhaust gas with NO 2 by radical gas. NO 2 is reduced to nitrogen gas (N 2 ) by oxidizing to gas and then contacting the oxidizing gas with a reducing agent solution. Thereby, reaction by-products (for example, N 2 O, HNO 2 , HNO 3 , NO 3 , CO) in the exhaust gas can be suppressed and efficiently removed.

本発明は、空気を大気圧低温非平衡プラズマ(以下「低温非平衡プラズマ」という。)で処理してラジカルガスを生成させ、これを酸化反応領域に供給し、別途供給された排気ガスと反応させて排気ガス中の窒素酸化物をラジカルガスによりNO2を含む酸化ガスに酸化し、次に酸化ガスを還元剤溶液と接触させることにより、NO2を窒素ガス(N2)に還元する。前記において、酸化反応領域と還元反応領域は1つの湿式反応器内に存在させることが好ましい。 In the present invention, air is treated with atmospheric low-temperature non-equilibrium plasma (hereinafter referred to as “low-temperature non-equilibrium plasma”) to generate radical gas, which is supplied to the oxidation reaction region and reacted with separately supplied exhaust gas. Thus, the nitrogen oxide in the exhaust gas is oxidized to an oxidizing gas containing NO 2 by the radical gas, and then the oxidizing gas is brought into contact with the reducing agent solution to reduce NO 2 to nitrogen gas (N 2 ). In the above, the oxidation reaction region and the reduction reaction region are preferably present in one wet reactor.

本発明は、プラズマリアクタに空気を送り込み、低温非平衡プラズマで励起された空気成分のラジカルガスを湿式反応器の下部で排気ガスと混合し、NOをNO2に酸化させ、次にケミカルスクラバー(湿式反応器)で還元除去する。以下本発明の方法を、「非熱リモートプラズマ・ケミカルハイブリッド法」ともいう。 The present invention introduces air into a plasma reactor, mixes radical gas of air component excited by low temperature non-equilibrium plasma with exhaust gas at the bottom of the wet reactor, oxidizes NO to NO 2 , and then chemical scrubber ( Reduction with a wet reactor). Hereinafter, the method of the present invention is also referred to as “non-thermal remote plasma / chemical hybrid method”.

本発明で用いる低温非平衡プラズマとは、ガス温度が通常の気体の燃焼温度(700〜1000℃程度)より相当低い電離状態のプラズマをいい、通常300℃以下のプラズマをいう。下限の温度は例えば−200℃であっても使用できる。より好ましい条件は、温度:100℃以下、とくに好ましくは常温(0〜40℃)である。他の好ましい条件は、圧力:大気圧程度、相対湿度:60%以下、印加電圧:10〜100kV、ピーク電流1〜100A、周波数:250Hz〜1000Hzの範囲である。   The low temperature non-equilibrium plasma used in the present invention means an ionized plasma whose gas temperature is considerably lower than a normal gas combustion temperature (about 700 to 1000 ° C.), and usually means a plasma of 300 ° C. or lower. Even if the lower limit temperature is −200 ° C., it can be used. More preferable conditions are temperature: 100 ° C. or less, particularly preferably normal temperature (0 to 40 ° C.). Other preferable conditions are pressure: atmospheric pressure, relative humidity: 60% or less, applied voltage: 10 to 100 kV, peak current 1 to 100 A, frequency: 250 Hz to 1000 Hz.

本発明においては、前記酸化反応領域と前記還元反応領域は、1つの湿式反応器に存在することが好ましい。とくに前記湿式反応器が塔式又はカラム式反応器であり、前記湿式反応器の下部に前記酸化反応領域が存在し、前記湿式反応器の上部に前記還元反応領域が存在することが好ましい。このようにすると装置の小型ができる。   In the present invention, it is preferable that the oxidation reaction region and the reduction reaction region exist in one wet reactor. In particular, it is preferable that the wet reactor is a tower type or column type reactor, the oxidation reaction region is present in the lower part of the wet reactor, and the reduction reaction region is present in the upper part of the wet reactor. In this way, the device can be downsized.

前記還元剤溶液は、Na2SO3,Na2S,NaOH,Na223及びCa(OH)2から選ばれる少なくとも1つの化合物を含む水溶液であることが好ましい。これらの化合物を含む水溶液は還元作用が高く、リサイクルして使用できる。 The reducing agent solution is preferably an aqueous solution containing at least one compound selected from Na 2 SO 3 , Na 2 S, NaOH, Na 2 S 2 O 3 and Ca (OH) 2 . An aqueous solution containing these compounds has a high reducing action and can be recycled.

本発明で処理可能な排気ガスは燃焼排気ガスであり、その被処理成分が、NO,NO2,N2O,N25,SO2,SO3,揮発性有機化合物(VOCs),ダイオキシン類に代表される環境汚染物質,炭化水素,CO,CO2及び水蒸気(H2O)から選ばれる少なくとも一つが好ましい。例えばNO,NO2,N2O,N25等の窒素酸化物(NOx)は窒素ガス(N2)に還元し、SO2,SO3等の硫黄酸化物(SOx)、炭化水素,CO,CO2、トルエン、ベンゼン、キシレン等の揮発性有機化合物(VOCs)や、ダイオキシン類、ハロゲン化芳香族物質、高縮合度芳香族炭化水素等の環境汚染物質は無害な物質あるいは環境負荷の低い物質に分解又は変換できる。 The exhaust gas that can be treated in the present invention is combustion exhaust gas, and the components to be treated are NO, NO 2 , N 2 O, N 2 O 5 , SO 2 , SO 3 , volatile organic compounds (VOCs), dioxins. At least one selected from environmental pollutants, hydrocarbons, CO, CO 2, and water vapor (H 2 O), which are typified by a class, is preferable. For example, nitrogen oxides (NO x ) such as NO, NO 2 , N 2 O, and N 2 O 5 are reduced to nitrogen gas (N 2 ), sulfur oxides (SO x ) such as SO 2 and SO 3 , and carbonization. Volatile organic compounds (VOCs) such as hydrogen, CO, CO 2 , toluene, benzene, xylene, and environmental pollutants such as dioxins, halogenated aromatic substances, and highly condensed aromatic hydrocarbons are harmless substances or the environment. It can be decomposed or converted into a low-load substance.

本発明における低温非平衡プラズマの利点を以下に示す。
(1)プラズマ処理される気体が排気ガスに比べ少量で低温のため、リアクタ内の滞留時間が増し、活性化されたラジカルが効率よく形成される。
(2)単位流量あたりのプラズマ消費エネルギーを下げることができる。
(3)小流量のラジカルで最適化を図れば数十倍のNOを酸化できる。したがって、リアクターを小型化できる。
(4)高温排ガスに対して適応することができる。例えば300℃以上の高温排ガスを、室温(27℃)程度の低温リモートプラズマにより効率よくNO2に酸化できる。
The advantages of the low temperature non-equilibrium plasma in the present invention are shown below.
(1) Since the gas to be plasma-treated is smaller and lower in temperature than the exhaust gas, the residence time in the reactor is increased, and activated radicals are efficiently formed.
(2) Plasma consumption energy per unit flow rate can be reduced.
(3) By optimizing with a small amount of radicals, it is possible to oxidize tens of times more NO. Therefore, the reactor can be miniaturized.
(4) Adaptable to high temperature exhaust gas. For example, high temperature exhaust gas of 300 ° C. or higher can be efficiently oxidized to NO 2 by low temperature remote plasma of about room temperature (27 ° C.).

本発明の一実施例は、排ガスの処理方法及びその処理装置に関し、排気ガスラインとは別に設置された大気圧の低温非平衡プラズマにより形成されたラジカルガスを、還元剤溶液を用いた湿式ケミカルスクラバーに注入するリモート処理により、排ガス中の反応副生成物(N2O、HNO2、HNO3、NO3 -、CO等)を抑制し、かつ、効率よく処理できる装置及び方法を提供する。 An embodiment of the present invention relates to an exhaust gas processing method and an apparatus for processing the same, and relates to a wet chemical using a reducing agent solution from a radical gas formed by low-temperature non-equilibrium plasma at atmospheric pressure installed separately from an exhaust gas line. Provided are an apparatus and a method capable of suppressing and efficiently treating reaction by-products (N 2 O, HNO 2 , HNO 3 , NO 3 , CO, etc.) in exhaust gas by remote treatment injected into a scrubber.

本発明の一実施例は、排ガス流路外に設置された低温非熱プラズマリアクタ及びそれによって活性化されたラジカルが注入される湿式ケミカルスクラバー(湿式反応器)を直結させている。これにより、低温非熱プラズマリアクタには空気のみ供給するので、常運転させることができる。すなわち、排気ガス流量が変動しても、プラズマガスの発生量を最大必要量以上に設定しておけば、低温非熱プラズマリアクタの運転条件を変動させなくてよい。その上、エネルギー効率が高く、処理効率も高い。加えて、プラズマリアクタには空気しか流さないので、電極等の腐食問題も改善される。 In one embodiment of the present invention, a low-temperature non-thermal plasma reactor installed outside an exhaust gas flow channel and a wet chemical scrubber (wet reactor) into which radicals activated thereby are directly connected. Thus, the low-temperature non-thermal plasma reactor so supplying only air, it is possible to steady operation. That is, even if the exhaust gas flow rate fluctuates, it is not necessary to fluctuate the operating conditions of the low-temperature non-thermal plasma reactor if the plasma gas generation amount is set to the maximum required amount or more. In addition, energy efficiency is high and processing efficiency is also high. In addition, since only air flows in the plasma reactor, the problem of corrosion of electrodes and the like is also improved.

低温非熱プラズマリアクタの種類及び発生させるプラズマの種類は特に限定されないが、下記実施例に記載の非平衡プラズマリアクタを好適例としてあげることができる。その他、プラズマを印加する方法は、交流又は直流電圧によるパルス放電方式、無声放電方式、コロナ放電方式、沿面放電方式、バリア放電方式、ハニカム放電方式、ペレット充てん層放電方式、アーク放電方式、誘導結合型放電方式、容量結合型放電方式、マイクロ波励起放電方式、レーザ誘起放電方式、電子線誘起放電方式、粒子線誘起放電方式、又はこれらの結合方式が使用できる。すなわち、本発明で使用されるプラズマリアクタは、プラズマを印加する各方式に従って、それに適した、考え得る種々の方式を採用することができる。とくに前記非平衡プラズマが、パルスコロナ放電により発生した非平衡プラズマであると使用するのに都合が良い。   Although the kind of low-temperature non-thermal plasma reactor and the kind of generated plasma are not particularly limited, the non-equilibrium plasma reactor described in the following examples can be given as a suitable example. Other methods of applying plasma are pulse discharge method by AC or DC voltage, silent discharge method, corona discharge method, creeping discharge method, barrier discharge method, honeycomb discharge method, pellet packed bed discharge method, arc discharge method, inductive coupling Type discharge method, capacitively coupled discharge method, microwave excitation discharge method, laser induced discharge method, electron beam induced discharge method, particle beam induced discharge method, or a combination method thereof can be used. That is, the plasma reactor used in the present invention can adopt various conceivable methods suitable for each method of applying plasma. In particular, it is convenient to use the non-equilibrium plasma as a non-equilibrium plasma generated by pulse corona discharge.

湿式ケミカルスクラバーの種類も特に限定されず、種々の形式のものを使用することができるが、下記の実施例1で説明するラシヒリング充てん式の一般的なケミカルスクラバーを好適例としてあげることができる。そのほか、液相への気泡吹き込み型のケミカルスクラバーを好適例としてあげることができる。   The type of wet chemical scrubber is not particularly limited, and various types of wet chemical scrubbers can be used, but a Raschig ring-filled general chemical scrubber described in Example 1 below can be cited as a preferred example. In addition, a bubble scrubbing chemical scrubber can be cited as a suitable example.

(1)反応の説明
本実施例では、非平衡プラズマプロセスと湿式の化学反応プロセスを複合させたハイブリッドプロセスによりディーゼルエンジンや火力発電所等から排出される窒素酸化物NOx等の大気汚染物質の除去を目的としている。このプロセスの化学反応は、以下の2つの反応を複合させたものである。
(1) Explanation of reaction In this embodiment, removal of air pollutants such as nitrogen oxides NOx discharged from diesel engines, thermal power plants, etc. by a hybrid process combining a non-equilibrium plasma process and a wet chemical reaction process. It is an object. The chemical reaction of this process is a combination of the following two reactions.

プラズマプロセス:NO+O*(酸素ラジカル)+M(第三体物体)→NO2+M (1)
湿式化学反応プロセス:2NO2+4Na2SO3→N2+4Na2SO4 (2)
前記反応(1)により排ガス中の大部分を占めるNOはNO2に低コストで酸化され、前記反応(2)によりNO2は無害で水溶性のNa2SO4とN2に還元される。なおNa2SO3とは異なる薬剤(例えばNa2S,NaOH,Na223, Ca(OH)2等)を使用しても良い。
Plasma process: NO + O * (oxygen radical) + M (third body object) → NO 2 + M (1)
Wet chemical reaction process: 2NO 2 + 4Na 2 SO 3 → N 2 + 4Na 2 SO 4 (2)
NO which occupies most of the exhaust gas by the reaction (1) is oxidized to NO 2 at a low cost, and NO 2 is reduced to harmless water-soluble Na 2 SO 4 and N 2 by the reaction (2). An agent different from Na 2 SO 3 (for example, Na 2 S, NaOH, Na 2 S 2 O 3 , Ca (OH) 2, etc.) may be used.

本実施例では非平衡プラズマプロセス(前記反応(1))において、従来の直接プラズマ法に対し、非熱リモート(間接)プラズマ法を用いて実験を行い、両者の性能を比較した。ここで、処理する排気ガスをリアクタに直接流し、NOをNO2に酸化させる方法を直接プラズマ法と名付ける。これに対し、空気あるいは少量の添加剤(炭化水素、アンモニアなど)をプラズマリアクタに流し、励起されたラジカルガスを排気ガス流路に注入し、NOをNO2に酸化させる方法を非熱リモート(間接)プラズマ法と名付ける。
(2)本実施例の実験装置
本発明の非熱リモートプラズマ法を用いた実験装置50の概略を図1に示す。
In this example, in a non-equilibrium plasma process (the above reaction (1)), an experiment was performed using a non-thermal remote (indirect) plasma method compared with a conventional direct plasma method, and the performances of the two were compared. Here, the method of flowing the exhaust gas to be treated directly into the reactor and oxidizing NO to NO 2 is named the direct plasma method. On the other hand, a method of flowing air or a small amount of additives (hydrocarbon, ammonia, etc.) into the plasma reactor, injecting excited radical gas into the exhaust gas flow path, and oxidizing NO to NO 2 is a non-thermal remote ( Indirect) Plasma method.
(2) Experimental apparatus of the present embodiment An outline of an experimental apparatus 50 using the non-thermal remote plasma method of the present invention is shown in FIG.

コンプレッサー32から圧縮空気を、エアフィルターを備えたドライヤー33に供給して乾燥空気をつくり、この乾燥空気をマスフローコントローラ35により所定の流量で非熱プラズマリアクタ1に供給する。非熱プラズマリアクタ1には、IGBTパルス電源(増田研究所製、PPCP Pulsar SMC(30/1000)21により発生させた高速立ち上がり短幅パルス高電圧を印加する。これにより、O3、O*、OH、N等のラジカルを含む活性化ガスを生成した。非熱プラズマリアクタ1の印加電圧、電流、消費電力はオシロスコープ(横河電機社製DL 1740)37と高電圧プローブ、電流プローブ(Sony Tektronix社製、P6015A及びP6021)で測定し、瞬時電力の積分値から消費電力を求めた。このようにして得られた活性化ガスは、湿式反応器のケミカルスクラバー11に直接注入する。 Compressed air is supplied from the compressor 32 to a dryer 33 equipped with an air filter to produce dry air, and this dry air is supplied to the nonthermal plasma reactor 1 by the mass flow controller 35 at a predetermined flow rate. A fast rising short pulse high voltage generated by an IGBT pulse power source (manufactured by Masuda Laboratories, PPCP Pulsar SMC (30/1000) 21) is applied to the non-thermal plasma reactor 1. Thereby, O 3 , O * , An activated gas containing radicals such as OH and N was generated, and applied voltage, current, and power consumption of the nonthermal plasma reactor 1 were an oscilloscope (DL 1740 manufactured by Yokogawa Electric Corporation) 37, a high voltage probe, and a current probe (Sony Tektronix). The power consumption was determined from the integral value of the instantaneous power, and the activated gas thus obtained is directly injected into the chemical scrubber 11 of the wet reactor.

一方、排気ガスのモデルガスであるNOガスは、2%NOボンベ31からマスフローコントローラ34により所定の流量で供給し、空気供給ライン51からマスフローコントローラ52により所定の流量で供給し、NOと混合して、NOが所定の濃度に調整された模擬排ガス(空気希釈NOx、濃度300ppm)を、ケミカルスクラバー11に直接注入する。前記反応(1)はケミカルスクラバー11の下部の酸化反応領域10で起こり、前記反応(2)はケミカルスクラバー11の下部より上の部分で起こる。このようにしてケミカルスクラバー11内で、前記反応(1)及び(2)を連続的に起こさせる。生成ガスは、オゾン除去ヒーター38を通し、ガス分析計(堀場製作所製PG−235及びVIA−510)39によってNO、NOX、CO、N2O、CO2、O2の濃度を測定した。40はガス排出口、41はNa2SO3水溶液タンクである。
(3)本実施例のプラズマリアクタ
非熱プラズマリアクタの概略断面図を図2に示す。非熱プラズマリアクタ1は、内径20mm、外径24mmのパイレックス(登録商標)ガラス(石英ガラス)製円筒2の内部空間に、直径1.5mmのステンレス製放電線電極3を通し、円筒状の反応管2の外壁に銅製メッシュ(有効長260mm)を巻いて接地電極4とした。放電線電極3と接地電極4との間にはパルス高電圧電源21を接続した。円筒2の下と上の中空部は、シリコーンゴム栓5,6により密閉した。7はポリテトラフルオロエチレン製の多孔板、8はガス供給口、9はガス排出口、a、bはガス流を示す。このプラズマリアクタにより前記反応(1)を実現する。
(4)本実施例の湿式反応器
湿式反応器であるケミカルスクラバー(充てん塔)11の概略断面図を図3に示す。内径55.5mm、外径60.5mmのステンレス管12の下部から上部へ被処理ガスを流し、上部から液噴霧(スプレー)ノズル13によりNa2SO3水溶液14を噴霧して気液接触により前記湿式化学反応(2)を行う。内部には反応を促進させるためにラシヒリング(円筒型ガラス製、内径5mm、外径7mm、幅7.2mm)15を充てんしている。15aはラシヒリングの拡大形状である。ラシヒリング15の充てん高さは160mm、液噴霧ノズル13の高さはガス注入口16から340mm、ガス注入口16からラシヒリング開始点までの高さの差は100mmである。17はガス排出口、c、dはガス流を示す。18は液の高さを測るためのマノメーター、19はバルブ、20は液(ドレイン)排出口、eは排出液流を示す。
(5)比較例で用いた直接プラズマ法の実験装置
直接プラズマ法の実験装置30の概略を図4に示す。2%NOガスボンベ31からNOガスをマスフローコントローラ34により所定の流量で供給する。一方、コンプレッサー32から圧縮空気を、エアフィルターを備えたドライヤー33に供給して乾燥空気をつくり、この乾燥空気をマスフローコントローラ35により所定の流量で供給する。その後、NOと混合して、NOが所定の濃度に調整された模擬排ガス(空気希釈NOx、濃度300ppm)を、プラズマリアクタ1に供給する。プラズマリアクタ1には、IGBTパルス電源(増田研究所製、PPCP Pulsar SMC(30/1000)21により発生させた高速立ち上がり短幅パルス高電圧を印加する。これにより、前記反応(1)を起こさせ、次にケミカルスクラバー11にて前記還元処理反応(2)を行う。次にオゾン除去ヒーター38を通し、ガス分析計(堀場製作所製PG−235及びVIA−510)39によってNO、NOX、CO、N2O、CO2、O2の濃度を測定した。非熱プラズマリアクタ1の印加電圧、電流、消費電力はオシロスコープ(横河電機社製 DL 1740)37と高電圧プローブ、電流プローブ(Sony Tektronix社製、P6015A及びP6021)で測定し、瞬時電力の積分値から消費電力を求めた。40はガス排出口、41はNa2SO3水溶液タンクである。
On the other hand, NO gas, which is an exhaust gas model gas, is supplied from the 2% NO cylinder 31 at a predetermined flow rate by the mass flow controller 34, supplied from the air supply line 51 at a predetermined flow rate by the mass flow controller 52, and mixed with NO. Then, the simulated exhaust gas (air diluted NOx, concentration 300 ppm) in which NO is adjusted to a predetermined concentration is directly injected into the chemical scrubber 11. The reaction (1) occurs in the oxidation reaction region 10 below the chemical scrubber 11, and the reaction (2) occurs in a portion above the bottom of the chemical scrubber 11. In this way, the reactions (1) and (2) are continuously caused in the chemical scrubber 11. Product gas passed through the ozone removing heater 38 was measured NO, NO X, CO, N 2 O, the concentration of CO 2, O 2 by a gas analyzer (Horiba PG-235 and VIA-510) 39. Reference numeral 40 denotes a gas discharge port, and reference numeral 41 denotes a Na 2 SO 3 aqueous solution tank.
(3) Plasma reactor of this example A schematic cross-sectional view of a non-thermal plasma reactor is shown in FIG. The non-thermal plasma reactor 1 has a cylindrical reaction by passing a stainless steel discharge wire electrode 3 having a diameter of 1.5 mm through an internal space of a cylinder 2 made of Pyrex (registered trademark) glass (quartz glass) having an inner diameter of 20 mm and an outer diameter of 24 mm. A copper mesh (effective length 260 mm) was wound around the outer wall of the tube 2 to form the ground electrode 4. A pulse high voltage power source 21 was connected between the discharge line electrode 3 and the ground electrode 4. The hollow portions below and above the cylinder 2 were sealed with silicone rubber stoppers 5 and 6. 7 is a perforated plate made of polytetrafluoroethylene, 8 is a gas supply port, 9 is a gas discharge port, and a and b are gas flows. The reaction (1) is realized by this plasma reactor.
(4) Wet reactor of the present example FIG. 3 shows a schematic cross-sectional view of a chemical scrubber (packed tower) 11 which is a wet reactor. A gas to be treated is caused to flow from the lower part to the upper part of the stainless steel tube 12 having an inner diameter of 55.5 mm and an outer diameter of 60.5 mm, and the Na 2 SO 3 aqueous solution 14 is sprayed from the upper part by a liquid spraying (spraying) nozzle 13. Wet chemical reaction (2) is performed. A Raschig ring (made of cylindrical glass, inner diameter 5 mm, outer diameter 7 mm, width 7.2 mm) 15 is filled in the interior to promote the reaction. 15a is an enlarged shape of the Raschig ring. The filling height of the Raschig ring 15 is 160 mm, the height of the liquid spray nozzle 13 is 340 mm from the gas inlet 16, and the difference in height from the gas inlet 16 to the Raschig ring start point is 100 mm. Reference numeral 17 denotes a gas outlet, and c and d denote gas flows. 18 is a manometer for measuring the height of the liquid, 19 is a valve, 20 is a liquid (drain) discharge port, and e is a discharged liquid flow.
(5) Experimental apparatus for direct plasma method used in comparative example FIG. 4 shows an outline of an experimental apparatus 30 for direct plasma method. NO gas is supplied from the 2% NO gas cylinder 31 by the mass flow controller 34 at a predetermined flow rate. On the other hand, compressed air is supplied from the compressor 32 to a dryer 33 equipped with an air filter to produce dry air, and this dry air is supplied by the mass flow controller 35 at a predetermined flow rate. Thereafter, mixed with NO and supplied to the plasma reactor 1 is a simulated exhaust gas (air diluted NOx, concentration 300 ppm) in which NO is adjusted to a predetermined concentration. A fast rising short pulse high voltage generated by an IGBT pulse power source (manufactured by Masuda Laboratories, PPCP Pulsar SMC (30/1000) 21) is applied to the plasma reactor 1. This causes the reaction (1) to occur. Next, the reduction treatment reaction (2) is carried out in the chemical scrubber 11. Next, the ozone analyzer 38 is passed through the ozone removal heater 38, and NO, NO x , CO are analyzed by a gas analyzer (PG-235 and VIA-510 manufactured by Horiba, Ltd.) 39. , N 2 O, CO 2 , and O 2 concentrations were measured, and the applied voltage, current, and power consumption of the non-thermal plasma reactor 1 were measured using an oscilloscope (DL 1740 manufactured by Yokogawa Electric Corporation) 37, a high-voltage probe, and a current probe (Sony). Measured with Tektronix, P6015A and P6021), the power consumption was determined from the integrated value of the instantaneous power. Scan outlet 41 is aqueous solution of Na 2 SO 3 tank.

(実施例1、比較例1〜3)
実施例1は図1に示す装置を用い、比較例1は図4の直接プラズマ処理装置30のみ、比較例2は図4に示す直接プラズマ装置30と湿式反応器11を直結した処理、比較例3は図1に示す非熱リモートプラズマ装置50のみとし、それぞれ模擬ガスの流量を5.0L/minとしたときのNOXの除去実験を行った。
(Example 1, Comparative Examples 1-3)
Example 1 uses the apparatus shown in FIG. 1, Comparative Example 1 is only the direct plasma processing apparatus 30 shown in FIG. 4, and Comparative Example 2 is a process in which the direct plasma apparatus 30 and wet reactor 11 shown in FIG. 3 is only the non-thermal remote plasma apparatus 50 shown in FIG. 1, and an NO x removal experiment was conducted when the flow rate of the simulated gas was 5.0 L / min.

模擬排ガスの流量を5.0L/min、リモート時のラジカルガスの流量を0.5L/min、NOの初期濃度は300ppmとした。湿式反応器11を用いる場合は、充てん塔に流す還元剤水溶液の流量は0.20L/minとし、Na2SO3の濃度は2.0g/Lとした。また、IGBTパルス電源の周波数は420Hzに設定した。この時のプラズマリアクタにおける滞留時間は直接法の場合で0.84s、リモート法の場合8.4sであった。 The simulated exhaust gas flow rate was 5.0 L / min, the remote radical gas flow rate was 0.5 L / min, and the initial NO concentration was 300 ppm. When the wet reactor 11 was used, the flow rate of the reducing agent aqueous solution flowing through the packed tower was 0.20 L / min, and the concentration of Na 2 SO 3 was 2.0 g / L. The frequency of the IGBT pulse power supply was set to 420 Hz. The residence time in the plasma reactor at this time was 0.84 s for the direct method and 8.4 s for the remote method.

以上の結果を図5A−B、図6A−Bに示す。図5Aは直接プラズマ法のみ(比較例1)、図5Bは直接プラズマ法と湿式反応器を直結した処理(比較例2)、図6Aは非熱リモートプラズマ法のみ(比較例3)、図6Bは非熱リモートプラズマ法と湿式反応器を直結した処理(実施例1)のデータである。   The above results are shown in FIGS. 5A-B and 6A-B. 5A shows only the direct plasma method (Comparative Example 1), FIG. 5B shows a process in which the direct plasma method and a wet reactor are directly connected (Comparative Example 2), FIG. 6A shows only the non-thermal remote plasma method (Comparative Example 3), and FIG. These are the data of the process (Example 1) which connected the non-thermal remote plasma method and the wet reactor directly.

図5A−B、図6A−Bを比較すると、直接プラズマ法(図5A−B)に比べ、非熱リモートプラズマ法(図6A−B)のほうが、リアクタ消費電力が小さく、NO、NOxの減少量も大きいことがわかる。また、図6A−Bを比較すると、図6Bのほうが、リアクタ消費電力が小さく、NO、NOxの減少量も大きいことがわかる。プラズマ印加時に有害な副生成物としてN2OやCOの発生が懸念されたが、本発明の実施例である図6Bは、N2Oは10ppm前後、COは7ppm以下であった。また、CO2の濃度は360ppm前後で、数ppmの減少が見られた。 Comparing FIGS. 5A-B and 6A-B, the non-thermal remote plasma method (FIGS. 6A-B) consumes less reactor power and the NO and NOx decrease compared to the direct plasma method (FIGS. 5A-B). It can be seen that the amount is large. Also, comparing FIGS. 6A-B, it can be seen that FIG. 6B has lower reactor power consumption and a greater reduction in NO and NOx. Although there were concerns about the generation of N 2 O and CO as harmful by-products when plasma was applied, FIG. 6B, which is an example of the present invention, had N 2 O of around 10 ppm and CO of 7 ppm or less. The CO 2 concentration was around 360 ppm, and a decrease of several ppm was observed.

(実施例2、比較例4〜6)
実施例2は図1に示す装置を用い、比較例4は図4の直接プラズマ処理装置30のみ、比較例5は図4に示す直接プラズマ装置30と湿式反応器11を直結した処理、比較例6は図1に示す非熱リモートプラズマ装置50のみとし、それぞれ模擬ガスの流量を7.0L/minとしたときのNOXの除去実験を行った。
(Example 2, Comparative Examples 4 to 6)
Example 2 uses the apparatus shown in FIG. 1, Comparative Example 4 is only the direct plasma processing apparatus 30 of FIG. 4, and Comparative Example 5 is a process in which the direct plasma apparatus 30 and wet reactor 11 shown in FIG. 6 is only the non-thermal remote plasma apparatus 50 shown in FIG. 1, and an NO x removal experiment was performed when the flow rate of the simulated gas was 7.0 L / min.

次に模擬排ガスの流量7.0L/min、リモート時のラジカルガスを0.7L/min、NOの初期濃度は300ppmとした。湿式反応器11を用いる場合は、充てん塔に流す還元剤水溶液の流量は0.20L/minとし、Na2SO3の濃度は2.0g/Lとした。また、IGBTパルス電源の周波数は420Hzに設定した。この時のプラズマリアクタにおける滞留時間は直接法の場合で0.6s、リモート法の場合6.0sであった。 Next, the flow rate of simulated exhaust gas was 7.0 L / min, the remote radical gas was 0.7 L / min, and the initial concentration of NO was 300 ppm. When the wet reactor 11 was used, the flow rate of the reducing agent aqueous solution flowing through the packed tower was 0.20 L / min, and the concentration of Na 2 SO 3 was 2.0 g / L. The frequency of the IGBT pulse power supply was set to 420 Hz. The residence time in the plasma reactor at this time was 0.6 s for the direct method and 6.0 s for the remote method.

結果を図7A−B、図8A−Bに示す。図7Aは直接プラズマ法のみ(比較例4)、図7Bは直接プラズマ法と湿式反応器を直結した処理(比較例5)、図8Aは非熱リモートプラズマ法のみ(比較例6)、図8Bは非熱リモートプラズマ法と湿式反応器を直結した処理(実施例2)のデータである。   The results are shown in FIGS. 7A-B and FIGS. 8A-B. 7A shows only the direct plasma method (Comparative Example 4), FIG. 7B shows a process in which the direct plasma method and a wet reactor are directly connected (Comparative Example 5), FIG. 8A shows only the non-thermal remote plasma method (Comparative Example 6), and FIG. These are the data of the process (Example 2) which connected the non-thermal remote plasma method and the wet reactor directly.

図7A−B、図8A−Bを比較すると、図5A−B、図6A−Bの場合と同様に非熱リモートプラズマ法(図8A−B)のほうがリアクタ消費電力は小さい。また、図8A−Bを比較すると、図8Bのほうが、リアクタ消費電力が小さく、NO、NOxの減少量も大きいことがわかる。本発明の実施例である図8Bは、N2Oは10ppm前後、COは7ppm以下であった。CO2の濃度は370ppm前後で、数ppmの減少が見られた。 7A-B and 8A-B are compared, the non-thermal remote plasma method (FIGS. 8A-B) consumes less reactor power as in FIGS. 5A-B and 6A-B. Also, comparing FIGS. 8A-B, it can be seen that FIG. 8B has lower reactor power consumption and a greater reduction in NO and NOx. In FIG. 8B which is an example of the present invention, N 2 O was around 10 ppm and CO was 7 ppm or less. The concentration of CO 2 was around 370 ppm, and a decrease of several ppm was observed.

なお、図9A−Bにそれぞれ図8A−Bに対応する電圧及び電流波形の例を示す。   9A-B show examples of voltage and current waveforms corresponding to FIGS. 8A-B, respectively.

(実施例3、比較例7)
図1に示す非熱リモートプラズマ法と湿式反応器を直結した処理(実施例3)と、図4に示す直接プラズマ法と湿式反応器を直結した処理(比較例7)について、単位処理ガス体積あたりのプラズマ消費エネルギー(SED)と除去効率の関係を検討した。すなわち、リアクタ消費電力からSED(単位処理ガス体積あたりのプラズマ消費エネルギー)を算出し、SEDとNO、NOxの除去効率の関係を調べた。
(Example 3, Comparative Example 7)
Unit processing gas volume for the non-thermal remote plasma method and the wet reactor shown in FIG. 1 (Example 3) and the direct plasma method and the wet reactor shown in FIG. 4 (Comparative Example 7) The relation between the plasma consumption energy (SED) and the removal efficiency was investigated. That is, SED (plasma consumption energy per unit processing gas volume) was calculated from the reactor power consumption, and the relationship between SED, NO, and NOx removal efficiency was examined.

その結果を図10に示す。これは流量7L/minの場合にプラズマ処理と湿式化学処理を同時に行った結果である。図10より、非熱リモートプラズマ法を用いた場合(remote)は、直接プラズマ法(direct)を用いた場合の約30%のSED=35J/L=10Wh/m3で80%程度のNO、NOxを還元除去していることがわかる。 The result is shown in FIG. This is a result of performing plasma treatment and wet chemical treatment simultaneously at a flow rate of 7 L / min. From FIG. 10, when using the non-thermal remote plasma method (remote), about 30% SED = 35 J / L = 10 Wh / m 3 when using the direct plasma method (direct), about 80% NO, It can be seen that NOx is reduced and removed.

以上の実験から、本実施例の非熱リモートプラズマ法を用いたプラズマ・ケミカルハイブリットプロセスでは、エネルギー効率の大幅な改善が見られ、直接プラズマ法を用いた場合と比べ、約30%の単位流量当たりのエネルギーでNOxを還元除去することが確認できた。   From the above experiments, in the plasma-chemical hybrid process using the non-thermal remote plasma method of this example, the energy efficiency is greatly improved, and the unit flow rate is about 30% as compared with the case using the direct plasma method. It was confirmed that NOx was reduced and removed with the hit energy.

以上の実験から判明した非熱リモートプラズマ法の利点を以下に示す。
(a)プラズマ処理される気体が排気ガスに比べ少量のため、同じ大きさのプラズマリアクタを使用した場合、滞留時間が増し、小型化が可能となる。
(b)単位流量あたりのプラズマ消費エネルギーを下げ、エネルギー効率をさらに改善することができる。
(c)小流量の注入で最適化を図れば数十倍のNOを酸化できる。
The advantages of the non-thermal remote plasma method found from the above experiments are shown below.
(A) Since the amount of gas to be plasma-treated is smaller than that of exhaust gas, when a plasma reactor of the same size is used, the residence time is increased, and the size can be reduced.
(B) The plasma energy consumption per unit flow rate can be reduced, and the energy efficiency can be further improved.
(C) If optimization is performed by injection with a small flow rate, it is possible to oxidize tens of times more NO.

(実施例4)
実施例4においては、本発明のリモート非熱プラズマ・ケミカルハイブリットプロセス技術を立証するため、実際のボイラーを使用したパイロット試験を実施した。
Example 4
In Example 4, a pilot test using an actual boiler was conducted to verify the remote non-thermal plasma-chemical hybrid process technology of the present invention.

実験装置図を図11に示す。図1と共通する装置には同一の符号を付与し、説明は省略する。ボイラーはA重油を燃料とした炉筒煙管式スモールボイラー60を用いた。このボイラー60からの排ガスは、排気ガス供給ライン23からケミカルスクラバー11の下部の酸化反応領域10に供給した。非熱プラズマリアクタ1にはパルス放電リアクタを用いた。21高電圧電源である。ケミカルスクラバー11内は気液接触反応を促進させるために図3に示すような充てん材が充てんされている。また、Na2SO3水溶液はタンク41からケミカルスクラバー11上部からスプレー42に供給して噴霧し、底の部分で回収し、ポンプを用いて再び上部に戻す循環式とした。 An experimental apparatus diagram is shown in FIG. The same reference numerals are given to the devices common to FIG. 1, and the description thereof is omitted. The boiler used was a smoke tube type small boiler 60 using A heavy oil as fuel. The exhaust gas from the boiler 60 was supplied from the exhaust gas supply line 23 to the oxidation reaction region 10 below the chemical scrubber 11. A pulse discharge reactor was used as the non-thermal plasma reactor 1. 21 High voltage power supply. The chemical scrubber 11 is filled with a filler as shown in FIG. 3 in order to promote the gas-liquid contact reaction. The aqueous solution of Na 2 SO 3 was supplied from the tank 41 to the spray 42 from the top of the chemical scrubber 11 and sprayed, recovered at the bottom, and returned to the top again using a pump.

外気を吸入し、非熱プラズマリアクタ1で発生させたラジカルガスは、モーターで回転するファン61によって運ばれ、排ガス煙道に注入され、ケミカルスクラバー11の下部の酸化反応領域10に供給された。排ガス中のNOはオゾンなどのラジカルによりNO2に酸化され、ケミカルスクラバー11内でNO2はNa2SO3によりN2に還元除去され、ケミカルスクラバー11の上部から排気された
ボイラー60からの排ガス流量Qg=450〜1170Nm3/h、ラジカルガス流量Qr=50〜180Nm3/hと変化させたときの単位処理ガス体積あたりのプラズマ消費エネルギーとNO,NOx除去効率の関係を図12に示す。図12から、高温の排ガスであってもNO,NOxを効率よく除去できることが確認できた。
The radical gas sucked in outside air and generated in the non-thermal plasma reactor 1 was carried by a fan 61 rotated by a motor, injected into an exhaust gas flue, and supplied to the oxidation reaction region 10 below the chemical scrubber 11. NO in the exhaust gas is oxidized to NO 2 by radicals such as ozone, NO 2 is reduced and removed to N 2 by Na 2 SO 3 in the chemical scrubber 11, and exhaust gas from the boiler 60 exhausted from the top of the chemical scrubber 11 FIG. 12 shows the relationship between the plasma consumption energy per unit processing gas volume and the NO and NOx removal efficiency when the flow rate Q g = 450 to 1170 Nm 3 / h and the radical gas flow rate Q r = 50 to 180 Nm 3 / h. Show. From FIG. 12, it was confirmed that NO and NOx can be efficiently removed even with high-temperature exhaust gas.

この結果、本発明のリモート非熱プラズマ・ケミカルハイブリットプロセス技術は、実際のボイラー排ガスにも有効であることが示された。   As a result, it was shown that the remote non-thermal plasma / chemical hybrid process technology of the present invention is also effective for actual boiler exhaust gas.

本発明の排気ガス処理方法及び装置は、ディーゼルエンジン、ボイラー、ガスタービン、焼却炉等の燃焼システムに連結させて適用できる。   The exhaust gas treatment method and apparatus of the present invention can be applied to a combustion system such as a diesel engine, a boiler, a gas turbine, or an incinerator.

本発明の一実施例における本発明の非熱リモートプラズマ処理を行うリアクタと湿式反応器を直結した装置の概略図。BRIEF DESCRIPTION OF THE DRAWINGS Schematic of the apparatus which directly connected the reactor and wet reactor which perform the non-thermal remote plasma processing of this invention in one Example of this invention. 同、非熱プラズマリアクタの概略断面図。The schematic sectional drawing of a non-thermal plasma reactor. 同、ケミカルスクラバー(充てん塔)の概略断面図。The schematic sectional drawing of a chemical scrubber (packing tower). 比較例の直接プラズマ法の実験装置の概略図。The schematic of the experimental apparatus of the direct plasma method of a comparative example. A−Bは比較例の直接プラズマ処理法における濃度変化を示すグラフ。AB is a graph which shows the density | concentration change in the direct plasma processing method of a comparative example. Aは比較例の濃度変化を示すグラフ、Bは本発明の一実施例における非熱リモートプラズマを行うリアクタと湿式反応器を直結した処理法における濃度変化を示すグラフ。A is a graph showing a concentration change of a comparative example, and B is a graph showing a concentration change in a treatment method in which a reactor for performing non-thermal remote plasma and a wet reactor are directly connected in one embodiment of the present invention. A−Bは比較例の直接プラズマ処理法における濃度変化を示すグラフ。AB is a graph which shows the density | concentration change in the direct plasma processing method of a comparative example. Aは比較例の濃度変化を示すグラフ、Bは本発明の一実施例における非熱リモートプラズマ法と湿式反応器を直結した処理法における濃度変化を示すグラフ。A is a graph showing a concentration change in a comparative example, and B is a graph showing a concentration change in a treatment method in which a non-thermal remote plasma method and a wet reactor are directly connected in one example of the present invention. A−Bは同、電圧、電流波形を示すグラフ。AB is a graph showing voltage and current waveforms. 同、単位処理ガス体積あたりのプラズマ消費エネルギーと窒素酸化物の除去効率を示すグラフ。The graph which shows the removal efficiency of the plasma consumption energy per unit process gas volume, and nitrogen oxide. 本発明の実施例4におけるボイラーの排ガスを本発明の非熱リモートプラズマ法と湿式反応器を用いて処理した装置の概略図。The schematic of the apparatus which processed the waste gas of the boiler in Example 4 of this invention using the non-thermal remote plasma method and wet reactor of this invention. 同実施例4のNO,NOx除去効率と、単位処理ガス体積あたりのプラズマ消費エネルギーの関係を調べた実験データのグラフ。The graph of the experimental data which investigated the relationship of NO and NOx removal efficiency of Example 4 and the plasma consumption energy per unit process gas volume .

Claims (16)

窒素酸化物を含む排気ガスを浄化する方法であって、
空気を大気圧低温非平衡放電プラズマ反応器に供給してラジカルガスを生成し、前記ラジカルガスを酸化反応領域に供給し、
前記排気ガスを前記ラジカルガス生成ラインとは別個のラインから前記酸化反応領域に供給することにより、前記排気ガス中の窒素酸化物を前記ラジカルガスによりNO2を含む酸化ガスに酸化し、
次に、前記酸化ガスをNa2SO3,Na2S,及びNa223から選ばれる少なくとも1つの化合物を含む還元剤水溶液と還元反応領域で接触させることにより、NO2を窒素ガス(N2)に還元反応させるに際し、
前記酸化反応領域と前記還元反応領域が1つの湿式反応器に存在し、
前記湿式反応器の下部が前記酸化反応領域であり、前記湿式反応器の上部が前記還元反応領域であり、
かつ前記還元剤水溶液を循環させる
ことを特徴とする排気ガスの処理方法。
A method for purifying exhaust gas containing nitrogen oxides,
Supplying air to an atmospheric pressure low temperature non-equilibrium discharge plasma reactor to generate radical gas, supplying the radical gas to the oxidation reaction region,
By supplying the exhaust gas to the oxidation reaction region from a line separate from the radical gas generation line, nitrogen oxides in the exhaust gas are oxidized into an oxidizing gas containing NO 2 by the radical gas,
Next, the oxidizing gas is brought into contact with an aqueous reducing agent solution containing at least one compound selected from Na 2 SO 3 , Na 2 S, and Na 2 S 2 O 3 in a reduction reaction region, whereby NO 2 is nitrogen gas. Runisaishi by reduction reaction (N 2),
The oxidation reaction region and the reduction reaction region are present in one wet reactor;
The lower part of the wet reactor is the oxidation reaction region, the upper part of the wet reactor is the reduction reaction region,
And the exhaust gas treatment method, wherein the reducing agent aqueous solution is circulated .
前記湿式反応器が塔式又はカラム式反応器である請求項1に記載の排気ガスの処理方法。Method of processing an exhaust gas according to claim 1 wherein the wet reactor is tower or column reactor. 前記低温非平衡放電プラズマ反応器における反応温度が300℃以下である請求項1に記載の排気ガスの処理方法。The exhaust gas treatment method according to claim 1, wherein a reaction temperature in the low-temperature non-equilibrium discharge plasma reactor is 300 ° C. or lower. 前記低温非平衡放電プラズマ反応器における反応温度が100℃以下である請求項に記載の排気ガスの処理方法。The exhaust gas treatment method according to claim 3 , wherein a reaction temperature in the low-temperature nonequilibrium discharge plasma reactor is 100 ° C. or lower. 前記プラズマ発生手段が、交流又は直流電圧によるパルス放電方式、無声放電方式、コロナ放電方式、沿面放電方式、バリア放電方式、ハニカム放電方式、ペレット充填層放電方式、アーク放電方式、誘導結合型放電方式、容量結合型放電方式、マイクロ波励起放電方式、レーザ誘起放電方式、電子線誘起放電方式、粒子線誘起放電方式、又はこれらの結合である請求項1に記載の排気ガスの処理方法。  The plasma generating means is a pulse discharge method by AC or DC voltage, silent discharge method, corona discharge method, creeping discharge method, barrier discharge method, honeycomb discharge method, pellet packed bed discharge method, arc discharge method, inductively coupled discharge method. The exhaust gas processing method according to claim 1, which is a capacitively coupled discharge method, a microwave excitation discharge method, a laser induced discharge method, an electron beam induced discharge method, a particle beam induced discharge method, or a combination thereof. 前記空気をラジカル化させる非平衡放電プラズマ反応器における非平衡放電プラズマの発生条件は、印加電圧:10〜100kV、周波数:250Hz〜1000Hzの範囲である請求項1に記載の排気ガスの処理方法。2. The exhaust gas processing method according to claim 1, wherein the non-equilibrium discharge plasma generation conditions in the non-equilibrium discharge plasma reactor for radicalizing air are applied voltage: 10 to 100 kV and frequency: 250 Hz to 1000 Hz. 前記非平衡放電プラズマが、パルスコロナ放電により発生した非平衡放電プラズマである請求項1に記載の排気ガスの処理方法。The non-equilibrium discharge plasma treatment method of exhaust gas according to claim 1, wherein the non-equilibrium discharge plasma generated by pulse corona discharge. 前記空気を供給する大気圧低温非平衡放電プラズマ反応器を定常運転させる請求項1に記載の排気ガスの処理方法。The exhaust gas processing method according to claim 1, wherein the atmospheric pressure low-temperature nonequilibrium discharge plasma reactor for supplying the air is operated in a steady state. 窒素酸化物を含む排気ガスを浄化する装置であって、
空気をラジカルガスにするための大気圧低温非平衡放電プラズマ反応器と、
前記ラジカルガスを酸化反応領域に供給するラインと、
前記排気ガスを前記ラジカルガス生成ラインとは別個のラインから前記酸化反応領域に供給するラインと、
前記排気ガス中の窒素酸化物を前記ラジカルガスによりNO2を含む酸化ガスに酸化するための前記酸化反応領域と、
前記酸化ガスをNa2SO3,Na2S,及びNa223から選ばれる少なくとも1つの化合物を含む還元剤水溶液と還元反応領域で接触させることにより、NO2を窒素ガス(N2)に還元反応させる還元反応領域を含み、
前記酸化反応領域と前記還元反応領域が1つの湿式反応器に存在し、
前記湿式反応器の下部が前記酸化反応領域であり、前記湿式反応器の上部が前記還元反応領域であり、
かつ前記還元剤水溶液は循環式である
ことを特徴とする排気ガスの処理装置。
An apparatus for purifying exhaust gas containing nitrogen oxides,
An atmospheric low temperature non-equilibrium discharge plasma reactor to turn air into a radical gas;
A line for supplying the radical gas to the oxidation reaction region;
A line for supplying the exhaust gas to the oxidation reaction region from a line separate from the radical gas generation line;
The oxidation reaction region for oxidizing nitrogen oxide in the exhaust gas to an oxidizing gas containing NO 2 by the radical gas;
By contacting the oxidizing gas with a reducing agent aqueous solution containing at least one compound selected from Na 2 SO 3 , Na 2 S, and Na 2 S 2 O 3 in a reduction reaction region , NO 2 is nitrogen gas (N 2 Including a reduction reaction region for reduction reaction,
The oxidation reaction region and the reduction reaction region are present in one wet reactor;
The lower part of the wet reactor is the oxidation reaction region, the upper part of the wet reactor is the reduction reaction region,
The exhaust gas treatment apparatus is characterized in that the reducing agent aqueous solution is a circulation type .
前記湿式反応器が塔式又はカラム式反応器であり、下部に前記ラジカルガスと前記排気ガスの供給口が存在する請求項に記載の排気ガスの処理装置。The exhaust gas processing apparatus according to claim 9 , wherein the wet reactor is a tower-type or column-type reactor, and a supply port for the radical gas and the exhaust gas is present in a lower part. 前記低温非平衡放電プラズマ反応器における反応温度が300℃以下である請求項に記載の排気ガスの処理装置。The exhaust gas treatment apparatus according to claim 9 , wherein a reaction temperature in the low-temperature nonequilibrium discharge plasma reactor is 300 ° C. or less. 前記低温非平衡放電プラズマ反応器における反応温度が100℃以下である請求項11に記載の排気ガスの処理装置。The exhaust gas treatment apparatus according to claim 11 , wherein a reaction temperature in the low-temperature nonequilibrium discharge plasma reactor is 100 ° C or lower. 前記プラズマ発生手段が、交流又は直流電圧によるパルス放電方式、無声放電方式、コロナ放電方式、沿面放電方式、バリア放電方式、ハニカム放電方式、ペレット充填層放電方式、アーク放電方式、誘導結合型放電方式、容量結合型放電方式、マイクロ波励起放電方式、レーザ誘起放電方式、電子線誘起放電方式、粒子線誘起放電方式、又はこれらの結合である請求項に記載の排気ガスの処理装置。The plasma generating means is a pulse discharge method using AC or DC voltage, silent discharge method, corona discharge method, creeping discharge method, barrier discharge method, honeycomb discharge method, pellet packed bed discharge method, arc discharge method, inductively coupled discharge method. The exhaust gas processing apparatus according to claim 9 , which is a capacitively coupled discharge method, a microwave excitation discharge method, a laser induced discharge method, an electron beam induced discharge method, a particle beam induced discharge method, or a combination thereof. 前記空気をラジカル化させる非平衡放電プラズマ反応器における非平衡放電プラズマの発生条件は、印加電圧:10〜100kV、周波数:250Hz〜1000Hzの範囲である請求項に記載の排気ガスの処理装置。The exhaust gas processing apparatus according to claim 9 , wherein the non-equilibrium discharge plasma generation conditions in the non-equilibrium discharge plasma reactor for radicalizing air are applied voltage: 10 to 100 kV and frequency: 250 Hz to 1000 Hz. 前記非平衡放電プラズマが、パルスコロナ放電により発生した非平衡プラズマである請求項に記載の排気ガスの処理装置。The exhaust gas processing apparatus according to claim 9 , wherein the non-equilibrium discharge plasma is a non-equilibrium plasma generated by pulse corona discharge. 前記空気を供給する大気圧低温非平衡放電プラズマ反応器を定常運転させる請求項9に記載の排気ガスの処理装置。The exhaust gas processing apparatus according to claim 9, wherein the atmospheric pressure low temperature non-equilibrium discharge plasma reactor supplying the air is operated in a steady state.
JP2005516807A 2004-01-07 2004-11-17 Exhaust gas treatment method and apparatus Expired - Fee Related JP4472638B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004002207 2004-01-07
JP2004002207 2004-01-07
PCT/JP2004/017049 WO2005065805A1 (en) 2004-01-07 2004-11-17 Method of treating exhaust gas and apparatus therefor

Publications (2)

Publication Number Publication Date
JPWO2005065805A1 JPWO2005065805A1 (en) 2007-12-20
JP4472638B2 true JP4472638B2 (en) 2010-06-02

Family

ID=34747022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005516807A Expired - Fee Related JP4472638B2 (en) 2004-01-07 2004-11-17 Exhaust gas treatment method and apparatus

Country Status (2)

Country Link
JP (1) JP4472638B2 (en)
WO (1) WO2005065805A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104772014A (en) * 2015-04-10 2015-07-15 无锡华光新动力环保科技股份有限公司 Combined denitration device for flue gas of cement rotary kiln and denitration technology for flue gas

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101110667B1 (en) 2007-02-21 2012-02-17 도꾸리쯔교세이호징 가가꾸 기쥬쯔 신꼬 기꼬 Method and apparatus for processing exhaust gas
NZ590827A (en) * 2008-07-29 2011-12-22 Union Engineering As A method for recovery of high purity carbon dioxide
JP4611409B2 (en) 2008-09-03 2011-01-12 晃俊 沖野 Plasma temperature control device
KR101408337B1 (en) 2012-08-07 2014-06-17 엠엔테크(주) Exhaust reduction device for recycling systems
US10940471B1 (en) 2019-10-30 2021-03-09 W. L. Gore & Associates, Inc. Catalytic efficiency of flue gas filtration
US11071947B2 (en) 2019-10-30 2021-07-27 W. L. Gore & Associates, Inc. Catalytic efficiency of flue gas filtration
EP3858466A1 (en) 2020-01-28 2021-08-04 Samsung Electronics Co., Ltd. Device and method for purifying air

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6168126A (en) * 1984-09-10 1986-04-08 Ishikawajima Harima Heavy Ind Co Ltd Wet method for desulfurizing and denitrating stack gas

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104772014A (en) * 2015-04-10 2015-07-15 无锡华光新动力环保科技股份有限公司 Combined denitration device for flue gas of cement rotary kiln and denitration technology for flue gas

Also Published As

Publication number Publication date
JPWO2005065805A1 (en) 2007-12-20
WO2005065805A1 (en) 2005-07-21

Similar Documents

Publication Publication Date Title
Yamamoto et al. Plasma-assisted chemical process for NO/sub x/control
JP4590618B2 (en) Exhaust gas treatment method and treatment apparatus
JP3068040B2 (en) Corona discharge pollutant destruction equipment for treating nitrogen oxides
JP4472638B2 (en) Exhaust gas treatment method and apparatus
WO2016123843A1 (en) Plasma denitrification method for waste gas in medium or small-sized boiler
JP5153748B2 (en) Nitrous oxide reduction method and reduction apparatus
JPH10146515A (en) Nitrogen oxide reducing method in corona discharge pollution causing factor destroying apparatus
JP3838611B2 (en) Nitrogen oxide / sulfur oxide purification method and purification device
Brandenburg et al. Plasma-based depollution of exhausts: principles, state of the art and future prospects
KR100355179B1 (en) Desulferrization and denitride method of exhaust gas depend on ozone and there of apparatus
Hashim et al. Discharge based processing systems for nitric oxide remediation
KR100614882B1 (en) Method of treating exhaust gas by using dielectric barrier discharge and reducing agents, and device for treating the method
JPH06178914A (en) Waste gas treatment device
JP2001187319A (en) Method and device for cleaning gas
Yamamoto et al. Plasma-assisted chemical reactor for NO/sub x/decomposition
JPH0564721A (en) Method and apparatus for treating air containing nitrogen oxide in low concentration
Zhang et al. Removal of SO2 from simulated flue gases using non-thermal plasma-based microgap discharge
JP2007209897A (en) Apparatus and method for decomposing and removing nitrogen oxide in combustion exhaust gas
JP2006239691A (en) Removing method for nitrogen oxide and sulfur oxide and removing apparatus therefor
Yamamoto et al. Simultaneous removal of NO/sub x/and SO/sub x/in flue gas emission using plasma-chemical hybrid process
Koizumi et al. An experimental NOx treatment in diesel engine combustion exhaust gases by non-thermal plasma and activated carbon filter combinations
Jun et al. Reduction of NOx and SO2 in a non-thermal plasma reactor combined with catalyst and methanol
JP2000051653A (en) Method and apparatus for purifying nitrogen oxide
Yamasaki et al. Plasma–Chemical from Semiconductor Hybrid Manufacturing NOx Removal Industries in Flue Using Gas a Blade-Dielectric Barrier-Type Plasma Reactor
KR102394099B1 (en) Plasma system for removal of nitrogen oxides

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100225

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100303

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4472638

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140312

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees