WO2005065805A1 - Method of treating exhaust gas and apparatus therefor - Google Patents

Method of treating exhaust gas and apparatus therefor Download PDF

Info

Publication number
WO2005065805A1
WO2005065805A1 PCT/JP2004/017049 JP2004017049W WO2005065805A1 WO 2005065805 A1 WO2005065805 A1 WO 2005065805A1 JP 2004017049 W JP2004017049 W JP 2004017049W WO 2005065805 A1 WO2005065805 A1 WO 2005065805A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
gas
discharge system
reactor
reaction zone
Prior art date
Application number
PCT/JP2004/017049
Other languages
French (fr)
Japanese (ja)
Inventor
Masaaki Okubo
Toshiaki Yamamoto
Tomoyuki Kuroki
Original Assignee
Osaka Industrial Promotion Organization
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Industrial Promotion Organization filed Critical Osaka Industrial Promotion Organization
Priority to JP2005516807A priority Critical patent/JP4472638B2/en
Publication of WO2005065805A1 publication Critical patent/WO2005065805A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/79Injecting reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/54Nitrogen compounds
    • B01D53/56Nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/10Gas phase, e.g. by using aerosols
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/10Capture or disposal of greenhouse gases of nitrous oxide (N2O)

Definitions

  • the present invention relates to a method and apparatus for treating exhaust gas, and a reaction by-product in exhaust gas.
  • the present invention relates to a method and apparatus for cleaning.
  • nitrogen acids such as nitrogen monoxide (NO) and nitrogen dioxide (NO 2).
  • Nitrogen oxides discharged into the environment are the cause of photochemical smog, etc., and measures are being considered as an important issue of environmental problems in large cities.
  • one acid, two nitrogen (NO) is also attracting attention as a cause of global warming gas, which has become a problem in recent years.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2000-117049
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2000-51653
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2001-300257
  • the exhaust gas to be treated is flowed directly into the reactor, and the non-thermal plasma is used to acidify NO NO to NO and the two-step method of treating with a chemical scrubber.
  • the non-thermal direct plasma method has been proposed with relatively low energy efficiency. Since the high temperature gas flows into the plasma reactor, the processing efficiency is reduced. In addition, since the corrosive exhaust gas is allowed to flow into the plasma reactor, there is a problem such as corrosion of electrodes and the like.
  • the present invention can suppress reaction by-products (eg, NO, HNO, HNO, NO-, CO) in exhaust gas and can process exhaust gas efficiently.
  • reaction by-products eg, NO, HNO, HNO, NO-, CO
  • the method for treating exhaust gas according to the present invention is a method for purifying an exhaust gas containing nitrogen oxide, wherein air is supplied to an atmospheric pressure low temperature non-equilibrium plasma reactor to generate a radical gas,
  • the nitrogen oxide in the exhaust gas can be supplied by supplying a gas to the acid reaction region and supplying the exhaust gas to a line force separate from the radical gas generation line. Oxidize to NO containing oxidizing gas by radical gas, then
  • NO is reduced to nitrogen gas (N 2) by bringing the acid gas into contact with the reducing agent solution.
  • the exhaust gas treatment apparatus of the present invention is an apparatus for purifying an exhaust gas containing nitrogen oxide, which comprises an atmospheric pressure low-temperature non-equilibrium plasma reactor for converting air into a radical gas, and the radical gas.
  • a line for supplying an acid reaction region, a line for supplying the exhaust gas to the oxidation reaction region from a line separate from the radical gas generation line, and nitrogen oxides in the exhaust gas are included in the radical To acidify NO-containing oxidizing gas by gas By contacting the oxidation reaction region and the oxidizing gas with a reducing agent solution, NO can be nitrogenated.
  • reaction area is directly connected.
  • FIG. 1 is a schematic view of an apparatus in which a nonthermal remote plasma method of the present invention and a wet reactor are connected in one embodiment of the present invention.
  • FIG. 2 The same, a schematic cross sectional view of a non-thermal plasma reactor.
  • FIG. 4 The schematic of the experiment apparatus of the direct plasma method of a comparative example.
  • FIG. 5 is a graph showing the concentration change in the direct plasma processing method of the comparative example.
  • FIG. 6A is a graph showing the change in concentration in the comparative example
  • FIG. 6B is a graph showing the change in concentration in the treatment method in which the non-thermal remote plasma method and the wet reactor are directly linked in one example of the present invention.
  • FIG. 7] AB is a graph which shows the density
  • FIG. 8A is a graph showing the change in concentration in the comparative example
  • FIG. 8B is a graph showing the change in concentration in the treatment method in which the non-thermal remote plasma method and the wet reactor are directly linked in one example of the present invention.
  • FIG. 9 is a graph showing the same voltage and current waveforms.
  • FIG. 10 A graph showing the plasma consumption energy per unit processing gas volume and the removal efficiency of nitrogen oxides.
  • FIG. 11 is a schematic view of an apparatus in which boiler exhaust gas in Example 4 of the present invention is treated using the non-thermal remote plasma method of the present invention and a wet reactor.
  • the method and apparatus of the present invention comprises: air radicalized with atmospheric pressure low temperature non-equilibrium plasma;
  • the exhaust gas is supplied to the oxidation reaction area, the nitrogen oxides in the exhaust gas are oxidized by the radical gas to the oxidation gas containing NO, and then the oxidation gas is brought into contact with the reducing agent solution about
  • the present invention refers to air as atmospheric pressure low temperature non-equilibrium plasma (hereinafter referred to as “low temperature non-equilibrium plasma”!).
  • radical gas which is supplied to the oxidation reaction zone, reacted with separately supplied exhaust gas, and nitrogen oxides in the exhaust gas contain NO by the radical gas.
  • the present invention feeds air into a plasma reactor, mixes the radical gas of the air component excited by the low temperature non-equilibrium plasma with the exhaust gas at the bottom of the wet reactor, and oxidizes NO to NO
  • non-thermal remote plasma-chemical nod method remove by reduction with a chemical scrubber (wet reactor).
  • a chemical scrubber wet reactor
  • the low-temperature non-equilibrium plasma used in the present invention means that the gas temperature is considerably lower than the combustion temperature (about 700-1000 ° C.) of a normal gas, and the plasma in the ionizing state is usually 300 ° C. or less I say plasma.
  • the lower limit temperature may be, for example, 200 ° C.
  • More preferable conditions are temperature: 100 ° C. or less, particularly preferably normal temperature (0-40 ° C.).
  • Other preferable conditions are: pressure: about atmospheric pressure, relative humidity: 60% or less, applied voltage: 10-100 kV, peak current 1 1 100 A, frequency: 250 Hz-1000 Hz.
  • the oxidation reaction zone and the reduction reaction zone are preferably present in one wet reactor.
  • the wet reactor be a column or column reactor
  • the oxidation reaction zone be present at the lower part of the wet reactor
  • the reduction reaction zone be present at the upper part of the wet reactor. ,. This will make the device smaller.
  • the reducing agent solution is selected from Na 2 SO 4, Na 2 S, NaOH, Na 2 S 2 O, and Ca (OH).
  • aqueous solution containing at least one compound is preferable that it is an aqueous solution containing at least one compound.
  • Aqueous solutions containing these compounds can be recycled with high reducibility.
  • the exhaust gas that can be treated by the present invention is combustion exhaust gas, and the components to be treated are: soot, soot
  • At least one selected from dyestuff, hydrocarbon, CO, CO and steam (H 0) is preferred .
  • nitrogen oxides (NO 2) such as soot, soot, soot, soot, etc. are reduced to nitrogen gas (soot), SO 2, SO 3
  • Volatilization of sulfur oxides such as 2 2 2 5 x 2 2 3 etc., hydrocarbons, CO, CO, toluene, benzene, xylene, etc.
  • Environmental pollutants such as volatile organic compounds (VOCs), dioxins, halogenated aromatics, and highly condensed aromatic hydrocarbons can be decomposed or converted into harmless substances or substances with low environmental impact.
  • VOCs volatile organic compounds
  • dioxins dioxins
  • halogenated aromatics halogenated aromatics
  • highly condensed aromatic hydrocarbons can be decomposed or converted into harmless substances or substances with low environmental impact.
  • high temperature exhaust gas of 300 ° C. or more can be efficiently oxidized to NO by low temperature remote plasma at room temperature (27 ° C.).
  • One embodiment of the present invention relates to a method and apparatus for treating exhaust gas, which uses a reducing agent solution for radical gas formed by low-temperature non-equilibrium plasma at atmospheric pressure installed separately from the exhaust gas line.
  • Reaction by-products N 0
  • a low temperature non-thermal plasma reactor installed outside the exhaust gas flow path and a wet chemical scrubber (wet reactor) into which activated radicals are injected are directly connected.
  • a wet chemical scrubber wet reactor
  • the type of low temperature non-thermal plasma reactor and the type of plasma to be generated are not particularly limited.
  • V can be exemplified as a preferred example of the non-equilibrium plasma reactor described in the following examples.
  • a pulse discharge method by alternating current or direct current voltage no Voice discharge method, corona discharge method, creeping discharge method, barrier discharge method, honeycomb discharge method, pellet packed bed discharge method, arc discharge method, inductively coupled discharge method, capacitively coupled discharge method, microwave excitation discharge method, laser induced A discharge method, an electron beam induced discharge method, a particle beam induced discharge method, or a combination of these can be used. That is, the plasma reactor used in the present invention can adopt various conceivable methods suitable for each method of applying plasma. It is particularly convenient to use the non-equilibrium plasma generated by the non-equilibrium plasma force pulse corona discharge.
  • the type of wet chemical scrubber is also not particularly limited, and the ability to use various types of scrubbers.
  • a typical chemical scrubber of the Raschig ring filling type described in Example 1 below is a preferred example.
  • a bubble scrubbing type chemical scrubber in a liquid phase can be mentioned as a suitable example.
  • the purpose is to remove air pollutants such as nitrogen oxides, NOx and the like emitted from diesel engines and thermal power plants by the hybrid process combining non-equilibrium plasma process and wet chemical reaction process.
  • the chemical reaction of this process is a combination of the following two reactions.
  • Plasma process NO + 0 * (oxygen radical) + M (third body object) ⁇ NO + M (1)
  • reaction (1) accounts for the majority of the exhaust gas NO is oxidized to NO at low cost
  • a drug such as Na 2 S 2, 2 3 2 3 3 (eg, Na 2 S, NaOH, Na 2 S 2 O 3, Ca (OH), etc.) may be used.
  • non-thermal remote method is to flow air or a small amount of additive (hydrocarbon, ammonia, etc.) into the plasma reactor, inject excited radical gas into the exhaust gas flow path, and oxidize NO to NO. Name it (indirect) plasma method.
  • FIG. 1 An outline of an experimental apparatus 50 using the non-thermal remote plasma method of the present invention is shown in FIG.
  • Compressed air is supplied from the compressor 32 to a dryer 33 equipped with an air filter to produce dry air, and this dry air is supplied to the non-thermal plasma reactor 1 at a predetermined flow rate by a mass flow controller 35.
  • the non-thermal plasma reactor 1 is applied with a high-speed rising short width pulse high voltage generated by an IGBT pulse power supply (PPCP Pulsar SMC-30 / 1000, manufactured by Masuda Laboratories) 21.
  • IGBT pulse power supply PPCP Pulsar SMC-30 / 1000, manufactured by Masuda Laboratories
  • the applied voltage, current, and power consumption of the non-thermal plasma reactor 1 are measured with an oscilloscope (Yokogawa DL1740) 37, a high voltage probe, and a current probe (SonyTektronix, P6015A and P6021), and the integrated value of instantaneous power I asked for power consumption.
  • the activated gas thus obtained is directly injected into the chemical scrubber 11 of the wet reactor.
  • NO gas which is a model gas of exhaust gas
  • a mass flow controller 34 supplied at a predetermined flow rate from an air supply line 51 by a mass flow controller 52.
  • the simulated exhaust gas air-diluted NOx, concentration 300 ppm in which NO is adjusted to a predetermined concentration is directly injected into the chemical scrubber 11 by mixing with NO.
  • the reaction (1) takes place in the lower acid reaction zone 10 of the chemical scrubber 11 and the reaction
  • the non-thermal plasma reactor 1 has a cylindrical reaction tube which has a 1.5 mm diameter stainless steel discharge wire electrode 3 passing through an inner space of a Pyrex (registered trademark) glass (quartz glass) cylinder 2 with an inner diameter of 20 mm and an outer diameter of 24 mm.
  • a copper mesh (effective length: 260 mm) was placed on the outer wall of 2 to form a ground electrode 4.
  • a pulsed high voltage power supply 21 was connected between the discharge wire electrode 3 and the ground electrode 4.
  • the lower and upper hollow portions of the cylinder 2 were sealed by silicone rubber stoppers 5 and 6.
  • 7 is a porous plate made of polytetrafluoroethylene
  • 8 is a gas supply port
  • 9 Indicates a gas outlet
  • a and b indicate gas flows.
  • the reaction (1) is realized by this plasma reactor.
  • FIG. 1 A schematic cross-sectional view of a chemical scrubber (packed column) 11 which is a wet reactor is shown in FIG.
  • the gas to be treated is made to flow from the lower part to the upper part of the stainless steel tube 12 with an inner diameter of 55.5 mm and an outer diameter of 60.5 mm, and the Na 2 SO 4 aqueous solution 14 is sprayed from the upper part by a spray nozzle 13
  • the wet chemical reaction (2) is carried out.
  • the inside is filled with Raschig ring (made of cylindrical glass, inner diameter 5 mm, outer diameter 7 mm, width 7.2 mm) 15 in order to accelerate the reaction.
  • the reference numeral 15a is an enlarged shape of the lashing.
  • the filling height of the Raschig ring 15 is 160 mm
  • the height of the liquid spray nozzle 13 is from the gas inlet 16 to 340 mm
  • the difference in height from the gas inlet 16 to the Raschig start point is 100 mm.
  • 17 shows a gas outlet
  • c and d show gas flows.
  • the numeral 18 is a manometer for measuring the height of the liquid
  • 19 is a valve
  • 20 is a liquid (drain) outlet
  • e is the flow of the discharged liquid.
  • FIG. 2% NO gas cylinder 31 Force et al. NO gas is supplied by a mass flow controller 34 at a predetermined flow rate.
  • compressed air is supplied from the compressor 32 to a dryer 33 equipped with an air filter to produce dry air, and this dry air is supplied by a mass flow controller 35 at a predetermined flow rate.
  • the plasma reactor 1 is supplied with a simulated exhaust gas (air diluted NOx, concentration 300 ppm) in which NO is adjusted to a predetermined concentration by mixing with NO.
  • the plasma reactor 1 is applied with a high-speed rising short width pulse high voltage generated by an IGBT pulse power supply (PPCP Pulsar SMC-30 / 1000, manufactured by Masuda Laboratory) 21. This causes the reaction (1) to occur, and then the reduction treatment reaction (2) is performed in the chemical scrubber 11. Next, let it pass through the ozone removal heater 38, gas analyzer (HORIBA's PG-235 and VIA-510) 39 and NO, NO CO, N 0, CO,
  • IGBT pulse power supply PPCP Pulsar SMC-30 / 1000, manufactured by Masuda Laboratory
  • the power consumption was determined from the integrated value of instantaneous power by measuring with a scope (Yokogawa Electric Corporation DL 1740) 37, a high voltage probe, and a current probe (P6015A and P6021 manufactured by Sony Tektronix).
  • 40 is a gas outlet
  • 41 is a Na 2 SO 4 aqueous solution tank.
  • Example Comparative Example 1 1 uses the apparatus shown in FIG. 1, Comparative Example 1 deals with the direct plasma processing apparatus 30 of FIG. 4 only, and Comparative Example 2 deals with the direct plasma apparatus 30 and wet reactor 11 shown in FIG. In Comparative Example 3, only the non-thermal remote plasma apparatus 50 shown in FIG. 1 was used, and the removal experiment of NO was performed when the flow rate of the simulated gas was 5.0 L / min.
  • the flow rate of the simulated exhaust gas was 5.0 L / min
  • the flow rate of the radical gas at remote was 0.5 L / min
  • the initial concentration of NO was 300 ppm.
  • the flow rate of the reducing agent aqueous solution to be flowed to the packed column is 0.20 L / min
  • the concentration of Na 2 SO 4 is 2.0 g / L.
  • IGBT pulse power IGBT pulse power
  • the source frequency was set to 420 Hz.
  • the residence time in the plasma reactor at this time was 0.84 s for the direct method and 8.4 s for the remote method.
  • FIGS. 5A-B and 6A-B The above results are shown in FIGS. 5A-B and 6A-B.
  • Fig. 5A shows the direct plasma method only (Comparative Example 1)
  • Fig. 5B shows the process in which the direct plasma method and the wet reactor are directly connected
  • Fig. 6A shows the non-thermal remote plasma method only (Comparative Example 3)
  • 6B is data of a process in which a nonthermal remote plasma method and a wet reactor are directly connected (Example 1).
  • FIGS. 5A-B and 6A-B Comparing FIGS. 5A-B and 6A-B, the non-thermal remote plasma method (FIGS. 6A-B) consumes less reactor power than the direct plasma method (FIGS. 5A-B). It can be seen that the reduction in NOx is also large. In addition, comparing Figs. 6A-B, it can be seen that the reduction amount of NO and NOx in which the power consumption of the reactor is smaller is larger in Fig. 6B. Forces that concern about the generation of N 0 and CO as harmful by-products when the plasma is applied As shown in FIG.
  • CO was less than 7 ppm.
  • concentration of CO is around 360 ppm, several ppm
  • Example 2 uses the apparatus shown in FIG. 1, Comparative Example 4 deals with the direct plasma processing apparatus 30 of FIG. 4 only, and Comparative Example 5 deals with the direct plasma apparatus 30 and wet reactor 11 shown in FIG. In Comparative Example 6, only the non-thermal remote plasma apparatus 50 shown in FIG. 1 was used, and NO removal experiments were conducted when the flow rate of the simulated gas was 7.0 L / min.
  • the flow rate of the simulated exhaust gas was 7.0 L / min
  • the radical gas at the remote was 0.7 L / min
  • the initial concentration of NO was 300 ppm.
  • the flow rate of the reducing agent aqueous solution to be flowed to the packed column was 0.20 L / min
  • the concentration of Na 2 SO was 2.0 g / L.
  • the frequency was set to 420 Hz.
  • the residence time in the plasma reactor at this time was 0.6 s for the direct method and 6.0 s for the remote method.
  • FIGS. 7A-B and 8A-B The results are shown in FIGS. 7A-B and 8A-B.
  • Fig. 7A shows the direct plasma method only (Comparative Example 4)
  • Fig. 7B shows the process in which the direct plasma method and the wet reactor are directly connected
  • Fig. 8A shows the non-thermal remote plasma method only
  • FIGS. 7A-B and 8A-B Comparing FIGS. 7A-B and 8A-B, as in the cases of FIGS. 5A-B and 6A-B, the non-thermal remote plasma method (FIGS. 8A-B) consumes less reactor power.
  • Fig. 8B also shows that the reduction amount of NO and NOx, where the reactor power consumption is smaller, is larger.
  • NO was about 10 ppm and CO was 7 ppm or less.
  • the concentration of CO was around 370 ppm, with a few ppm decrease.
  • FIGS. 9A-B show examples of voltage and current waveforms corresponding to FIGS. 8A-B, respectively.
  • Unit treatment gas volume for the treatment in which the nonthermal remote plasma method shown in FIG. 1 and the wet reactor are directly connected (Example 3) and the treatment in which the direct plasma method and the wet reactor shown in FIG.
  • SED per unit plasma consumption energy
  • the plasma-chemical nanolibritt process using the non-thermal remote plasma method of the present example shows a significant improvement in energy efficiency, and it is approximately compared to the case where the direct plasma method is used. It was confirmed that NOx was reduced and removed with energy per unit flow rate of 30%.
  • the energy consumption can be further reduced by lowering the plasma consumption energy per unit flow rate.
  • Example 4 a pilot test using an actual boiler was conducted to demonstrate the remote non-thermal plasma 'chemical no-e-blit process technology of the present invention.
  • FIG. 1 An experimental device diagram is shown in FIG. The same reference numerals are given to the devices common to FIG. 1 and the description is omitted.
  • a small-sized smoke pipe type small boiler 60 using A fuel oil as fuel was used as a boiler.
  • the exhaust gas from the boiler 60 was supplied from the exhaust gas supply line 23 to the oxidation reaction zone 10 in the lower part of the chemical scrubber 11.
  • a non-thermal plasma reactor 1 was a pulse discharge reactor. 21 high voltage power supply.
  • the chemical scrubber 11 is filled with a filler as shown in FIG. 3 to promote gas-liquid contact reaction. Also, the Na 2 SO 4 aqueous solution is
  • the chemical scrubber 11 was supplied from the top of the 2 3 4 tank 41 to the spray 42 to be sprayed, collected at the bottom, and pumped back to the top.
  • the radical gas generated by the non-thermal plasma reactor 1 by sucking the outside air is carried by the fan 61 rotated by the motor, injected into the exhaust gas flue, and oxidized in the lower part of the chemical scrubber 11.
  • NO in exhaust gas is oxidized to NO by radicals such as ozone, and in the chemical scrubber 11, NO is reduced and removed to Na by Na 2 SO 4,
  • Figure 12 shows the relationship between plasma consumption energy per unit process gas volume and NO, NOx removal efficiency when changing to 0-180 Nm 3 Zh. From Fig. 12, it can be confirmed that NO and NOx can be removed efficiently even with high temperature exhaust gas.
  • the exhaust gas treatment method and apparatus of the present invention are a diesel engine, a boiler, a gaster It can be connected to combustion systems such as bottles and incinerators.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Treating Waste Gases (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

A method of purifying an exhaust gas containing nitrogen oxides; and an apparatus therefor. The apparatus includes atmospheric pressure low temperature nonequilibrium plasma reactor (1) for converting air to radical gas; line (22) for feeding the radical gas to oxidation reaction zone (10); line (23) for feeding the exhaust gas to the oxidation reaction zone (10) separately from the radical gas formation line; the oxidation reaction zone (10) for oxidizing the nitrogen oxides contained in the exhaust gas with the radical gas into oxidized gas containing NO2; and reduction reaction zone (11) for bringing the oxidized gas into contact with a reducing agent solution so as to effect reduction reaction of NO2 into nitrogen gas (N2), wherein the oxidation reaction zone (10) and the reduction reaction zone (11) are directly connected to each other. Thus, there are provided an exhaust gas treating apparatus and treating method that suppress the occurrence of reaction by-products (for example, N2O, HNO2, HNO3, NO3- and CO) in the exhaust gas, realizing high efficiency.

Description

明 細 書  Specification
排気ガスの処理方法及び装置  Method and apparatus for exhaust gas treatment
技術分野  Technical field
[0001] 本発明は、排ガスの処理方法及びその処理装置に関し、排ガス中の反応副生成物  TECHNICAL FIELD [0001] The present invention relates to a method and apparatus for treating exhaust gas, and a reaction by-product in exhaust gas.
(例えば N O, HNO , HNO , NO―, CO)を抑制し、かつ、効率よく窒素酸化物を  (Eg NO, HNO, HNO, NO-, CO) and suppress nitrogen oxides efficiently
2 2 3 3  2 2 3 3
浄ィ匕する方法及び浄ィ匕装置に関する。  The present invention relates to a method and apparatus for cleaning.
背景技術  Background art
[0002] 一般に、発電所やディーゼルエンジン等に代表されるエネルギーの供給及びこれら のエネルギーの消費に伴って一酸ィ匕窒素 (NO)や、二酸化窒素 (NO )等の窒素酸  Generally, along with the supply of energy represented by power stations and diesel engines and the consumption of such energy, nitrogen acids such as nitrogen monoxide (NO) and nitrogen dioxide (NO 2).
2  2
化物が排出される。環境中に排出された窒素酸ィ匕物は光化学スモッグ等の原因とな り、大都市での環境問題の重要課題としてその対策が検討されている。また一酸ィ匕 二窒素 (N O)は、近年問題となっている地球温暖化ガスの原因としても注目されて  Waste is discharged. Nitrogen oxides discharged into the environment are the cause of photochemical smog, etc., and measures are being considered as an important issue of environmental problems in large cities. In addition, one acid, two nitrogen (NO) is also attracting attention as a cause of global warming gas, which has become a problem in recent years.
2  2
いる。  There is.
[0003] 窒素酸化物を低減させる方法として、燃焼方式、触媒方式、選択触媒還元方式 (S CR)、アンモニア噴射方式、また、近年においては、前記触媒方式や、非熱プラズマ 、電子ビ-ム等の技術を結合して、窒素酸化物を低減させる方法や、その他前記方 式とアンモニア、過酸ィ匕水素及び塩ィ匕カルシウム等の化学物質や触媒等を用いた方 式との結合により、窒素酸ィ匕物を低減する方法が知られている。  [0003] As a method of reducing nitrogen oxides, a combustion system, a catalytic system, a selective catalytic reduction system (SCR), an ammonia injection system, and in recent years, the catalytic system, the nonthermal plasma, the electron beam And other techniques to reduce nitrogen oxides, or by combining the above method with a method using chemicals such as ammonia, hydrogen peroxide, calcium chloride and the like, catalysts, and the like. Methods of reducing nitrogen oxides are known.
[0004] その中で注目を集めて!/、るのが、プラズマ ·ケミカルハイブリッド法である。この原理 にもとづぐ直接非熱プラズマ法に関しては、下記特許文献 1一 3が提案されている。 特許文献 1:特開 2000-117049号公報  [0004] Among them, the plasma / chemical hybrid method attracts attention! With respect to the direct non-thermal plasma method based on this principle, the following Patent Documents 1 to 3 have been proposed. Patent Document 1: Japanese Patent Application Laid-Open No. 2000-117049
特許文献 2:特開 2000-51653号公報  Patent Document 2: Japanese Patent Application Laid-Open No. 2000-51653
特許文献 3:特開 2001-300257号公報  Patent Document 3: Japanese Patent Application Laid-Open No. 2001-300257
[0005] しかし、従来の SCR法などの触媒を使用した方法では、窒素酸化物の除去効率を 高くするためには、多大なコストがかかるという問題があった。その他、低温非平衡プ ラズマを用いた従来方式においては、環境中の窒素酸ィ匕物を分解除去するために、 反応過程において、一酸化二窒素 (N O)や、硝酸イオン (NO―)、亜硝酸 (HNO ) 、及び硝酸 (HNO )等の副生成物が大量に生産されてしまい、これらの副生成物の However, in the method using a catalyst such as the conventional SCR method, there has been a problem that a large cost is required to increase the nitrogen oxide removal efficiency. In addition, in the conventional method using low temperature non-equilibrium plasma, in order to decompose and remove nitrogen oxides in the environment, dinitrogen monoxide (NO), nitrate ion (NO-), Nitrite (HNO) And by-products such as nitric acid (HNO.sub.2) are produced in large quantities.
3  3
除去がなされて 、な 、と 、う問題があった。これらの副生成物を酸化 ·還元により浄 化するためには、更なるコストの高騰につながるという問題があった。プラズマを用い る方法では、処理する排気ガスをリアクタに直接流し込み、非熱プラズマを用いて NO 力ら NOに酸ィ匕させ、ケミカルスクラバーで処理する 2段階方法 (前記特許文献 1一 2 There was a problem that the removal was done. In order to purify these by-products by oxidation and reduction, there has been a problem that they lead to a further increase in costs. In the method using plasma, the exhaust gas to be treated is flowed directly into the reactor, and the non-thermal plasma is used to acidify NO NO to NO and the two-step method of treating with a chemical scrubber.
2 2
)、すなわち非熱ダイレクトプラズマ法が提案されている力 エネルギー効率が比較的 低い。高温ガスをプラズマリアクタに流すため、処理効率が低下する。また腐食性の 排ガスをプラズマリアクタに流すため、電極等の腐食が生じる等の問題があった。  In other words, the non-thermal direct plasma method has been proposed with relatively low energy efficiency. Since the high temperature gas flows into the plasma reactor, the processing efficiency is reduced. In addition, since the corrosive exhaust gas is allowed to flow into the plasma reactor, there is a problem such as corrosion of electrodes and the like.
[0006] また前記特許文献 3の方法は、排気ガスをー且冷却し、排気ガスに含まれる有害ガ スを吸着剤に吸着しこれを直接プラズマ分解するが、腐食性の排気ガスをプラズマリ ァクタに直接流すため、電極等の腐食が生じる問題は残り、またプラズマ分解した後 のガスの副生成物の除去がなされて 、な 、と 、う問題があった。 [0006] In the method of Patent Document 3, although the exhaust gas is cooled, the harmful gas contained in the exhaust gas is adsorbed on the adsorbent and the plasma decomposition is performed directly, but the corrosive exhaust gas is subjected to a plasma reactor. There is still the problem that corrosion of the electrodes and the like will occur, and removal of byproducts of the gas after plasma decomposition has been carried out.
発明の開示  Disclosure of the invention
[0007] 本発明は、前記従来の問題を解決するため、排ガス中の反応副生成物 (例えば、 N O, HNO , HNO , NO―, CO)を抑制し、かつ、効率よく排気ガスを処理できる In order to solve the above-mentioned conventional problems, the present invention can suppress reaction by-products (eg, NO, HNO, HNO, NO-, CO) in exhaust gas and can process exhaust gas efficiently.
2 2 3 3 2 2 3 3
装置及び方法を提供する。  An apparatus and method are provided.
[0008] 本発明の排気ガスの処理方法は、窒素酸化物を含む排気ガスを浄化する方法で あって、空気を大気圧低温非平衡プラズマ反応器に供給してラジカルガスを生成し、 前記ラジカルガスを酸ィ匕反応領域に供給し、前記排気ガスを前記ラジカルガス生成 ラインとは別個のライン力 前記酸ィ匕反応領域に供給することにより、前記排気ガス 中の窒素酸ィ匕物を前記ラジカルガスにより NOを含む酸化ガスに酸化し、次に、前  The method for treating exhaust gas according to the present invention is a method for purifying an exhaust gas containing nitrogen oxide, wherein air is supplied to an atmospheric pressure low temperature non-equilibrium plasma reactor to generate a radical gas, The nitrogen oxide in the exhaust gas can be supplied by supplying a gas to the acid reaction region and supplying the exhaust gas to a line force separate from the radical gas generation line. Oxidize to NO containing oxidizing gas by radical gas, then
2  2
記酸ィ匕ガスを還元剤溶液と接触させることにより、 NOを窒素ガス (N )に還元反応さ  NO is reduced to nitrogen gas (N 2) by bringing the acid gas into contact with the reducing agent solution.
2 2  twenty two
せることを特徴とする。  It is characterized by
[0009] 本発明の排気ガスの処理装置は、窒素酸化物を含む排気ガスを浄化する装置で あって、空気をラジカルガスにするための大気圧低温非平衡プラズマ反応器と、前記 ラジカルガスを酸ィヒ反応領域に供給するラインと、前記排気ガスを前記ラジカルガス 生成ラインとは別個のラインから前記酸化反応領域に供給するラインと、前記排気ガ ス中の窒素酸ィ匕物を前記ラジカルガスにより NOを含む酸化ガスに酸ィ匕するための 前記酸化反応領域と、前記酸化ガスを還元剤溶液と接触させることにより、 NOを窒 The exhaust gas treatment apparatus of the present invention is an apparatus for purifying an exhaust gas containing nitrogen oxide, which comprises an atmospheric pressure low-temperature non-equilibrium plasma reactor for converting air into a radical gas, and the radical gas. A line for supplying an acid reaction region, a line for supplying the exhaust gas to the oxidation reaction region from a line separate from the radical gas generation line, and nitrogen oxides in the exhaust gas are included in the radical To acidify NO-containing oxidizing gas by gas By contacting the oxidation reaction region and the oxidizing gas with a reducing agent solution, NO can be nitrogenated.
2 素ガス (N )に還元反応させる還元反応領域を含み、前記酸化反応領域と前記還元  A reduction reaction zone for reduction reaction to nitrogen gas (N 2), the oxidation reaction zone and the reduction
2  2
反応領域を直結させたことを特徴とする。  It is characterized in that the reaction area is directly connected.
図面の簡単な説明  Brief description of the drawings
[0010] [図 1]本発明の一実施例における本発明の非熱リモートプラズマ法と湿式反応器を直 結した装置の概略図。  FIG. 1 is a schematic view of an apparatus in which a nonthermal remote plasma method of the present invention and a wet reactor are connected in one embodiment of the present invention.
[図 2]同、非熱プラズマリアクタの概略断面図。  [Fig. 2] The same, a schematic cross sectional view of a non-thermal plasma reactor.
[図 3]同、ケミカルスクラバー(充てん塔)の概略断面図。  [Figure 3] The same, schematic cross-sectional view of the chemical scrubber (packing tower).
[図 4]比較例の直接プラズマ法の実験装置の概略図。  [FIG. 4] The schematic of the experiment apparatus of the direct plasma method of a comparative example.
[図 5]A— Bは比較例の直接プラズマ処理法における濃度変化を示すグラフ。  [FIG. 5] AB is a graph showing the concentration change in the direct plasma processing method of the comparative example.
[図 6]Aは比較例の濃度変化を示すグラフ、 Bは本発明の一実施例における非熱リモ ートプラズマ法と湿式反応器を直結した処理法における濃度変化を示すグラフ。  FIG. 6A is a graph showing the change in concentration in the comparative example, and FIG. 6B is a graph showing the change in concentration in the treatment method in which the non-thermal remote plasma method and the wet reactor are directly linked in one example of the present invention.
[図 7]A— Bは比較例の直接プラズマ処理法における濃度変化を示すグラフ。  [FIG. 7] AB is a graph which shows the density | concentration change in the direct plasma processing method of a comparative example.
[図 8]Aは比較例の濃度変化を示すグラフ、 Bは本発明の一実施例における非熱リモ ートプラズマ法と湿式反応器を直結した処理法における濃度変化を示すグラフ。  FIG. 8A is a graph showing the change in concentration in the comparative example, and FIG. 8B is a graph showing the change in concentration in the treatment method in which the non-thermal remote plasma method and the wet reactor are directly linked in one example of the present invention.
[図 9]A— Bは同、電圧、電流波形を示すグラフ。  [Fig. 9] AB is a graph showing the same voltage and current waveforms.
[図 10]同、単位処理ガス体積あたりのプラズマ消費エネルギーと窒素酸ィ匕物の除去 効率を示すグラフ。  [FIG. 10] A graph showing the plasma consumption energy per unit processing gas volume and the removal efficiency of nitrogen oxides.
[図 11]本発明の実施例 4におけるボイラーの排ガスを本発明の非熱リモートプラズマ 法と湿式反応器を用いて処理した装置の概略図。  FIG. 11 is a schematic view of an apparatus in which boiler exhaust gas in Example 4 of the present invention is treated using the non-thermal remote plasma method of the present invention and a wet reactor.
[図 12]同実施例 4の NOx除去効率と、排ガス量 (Q )Zラジカルガス量 (Q )の関係  [Figure 12] Relationship between the NOx removal efficiency and the amount of exhaust gas (Q) Z radical gas (Q) in Example 4
G a を調べた実験データのグラフ。  Graph of experimental data for examining G a.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0011] 本発明の方法及び装置は、大気圧低温非平衡プラズマでラジカル化された空気と[0011] The method and apparatus of the present invention comprises: air radicalized with atmospheric pressure low temperature non-equilibrium plasma;
、別途に排気ガスを酸ィ匕反応領域に供給し、排気ガス中の窒素酸ィ匕物をラジカルガ スにより NOを含む酸化ガスに酸化し、次に酸ィ匕ガスを還元剤溶液と接触させること Separately, the exhaust gas is supplied to the oxidation reaction area, the nitrogen oxides in the exhaust gas are oxidized by the radical gas to the oxidation gas containing NO, and then the oxidation gas is brought into contact with the reducing agent solution about
2  2
により、 NOを窒素ガス (N )に還元する。これにより、排ガス中の反応副生成物(例  Reduces NO to nitrogen gas (N 2). As a result, reaction by-products in the exhaust gas (eg
2 2  twenty two
えば、 N O, HNO, HNO, NO―, CO)を抑制し、かつ、効率よく除去することが できる。 For example, to suppress and efficiently remove NO, HNO, HNO, NO-, CO) it can.
[0012] 本発明は、空気を大気圧低温非平衡プラズマ (以下「低温非平衡プラズマ」と!、う。  The present invention refers to air as atmospheric pressure low temperature non-equilibrium plasma (hereinafter referred to as “low temperature non-equilibrium plasma”!).
)で処理してラジカルガスを生成させ、これを酸化反応領域に供給し、別途供給され た排気ガスと反応させて排気ガス中の窒素酸ィ匕物をラジカルガスにより NOを含む  ) To generate radical gas, which is supplied to the oxidation reaction zone, reacted with separately supplied exhaust gas, and nitrogen oxides in the exhaust gas contain NO by the radical gas.
2 酸ィ匕ガスに酸ィ匕し、次に酸ィ匕ガスを還元剤溶液と接触させることにより、 NOを窒素  2 Acidic acid gas and then contacting the acid gas with a reducing agent solution
2 ガス (N )に還元する。前記において、酸化反応領域と還元反応領域は 1つの湿式 2 Reduce to gas (N 2). In the above, the oxidation reaction zone and the reduction reaction zone are one wet process
2 2
反応器内に存在させることが好まし 、。  Preferred to be present in the reactor.
[0013] 本発明は、プラズマリアクタに空気を送り込み、低温非平衡プラズマで励起された 空気成分のラジカルガスを湿式反応器の下部で排気ガスと混合し、 NOを NOに酸化 The present invention feeds air into a plasma reactor, mixes the radical gas of the air component excited by the low temperature non-equilibrium plasma with the exhaust gas at the bottom of the wet reactor, and oxidizes NO to NO
2 させ、次にケミカルスクラバー (湿式反応器)で還元除去する。以下本発明の方法を、 「非熱リモートプラズマ ·ケミカルノヽイブリツド法」とも ヽぅ。  Then remove by reduction with a chemical scrubber (wet reactor). Hereinafter, the method of the present invention is also referred to as "non-thermal remote plasma-chemical nod method".
[0014] 本発明で用いる低温非平衡プラズマとは、ガス温度が通常の気体の燃焼温度(70 0— 1000°C程度)より相当低 、電離状態のプラズマを 、 、、通常 300°C以下のプラ ズマをいう。下限の温度は例えば 200°Cであっても使用できる。より好ましい条件は 、温度: 100°C以下、とくに好ましくは常温 (0— 40°C)である。他の好ましい条件は、 圧力:大気圧程度、相対湿度: 60%以下、印加電圧: 10— 100kV、ピーク電流 1一 100A、周波数: 250Hz— 1000Hzの範囲である。  The low-temperature non-equilibrium plasma used in the present invention means that the gas temperature is considerably lower than the combustion temperature (about 700-1000 ° C.) of a normal gas, and the plasma in the ionizing state is usually 300 ° C. or less I say plasma. The lower limit temperature may be, for example, 200 ° C. More preferable conditions are temperature: 100 ° C. or less, particularly preferably normal temperature (0-40 ° C.). Other preferable conditions are: pressure: about atmospheric pressure, relative humidity: 60% or less, applied voltage: 10-100 kV, peak current 1 1 100 A, frequency: 250 Hz-1000 Hz.
[0015] 本発明にお 、ては、前記酸化反応領域と前記還元反応領域は、 1つの湿式反応 器に存在することが好ま ヽ。とくに前記湿式反応器が塔式又はカラム式反応器であ り、前記湿式反応器の下部に前記酸化反応領域が存在し、前記湿式反応器の上部 に前記還元反応領域が存在することが好ま U、。このようにすると装置の小型ができ る。  In the present invention, the oxidation reaction zone and the reduction reaction zone are preferably present in one wet reactor. In particular, it is preferable that the wet reactor be a column or column reactor, the oxidation reaction zone be present at the lower part of the wet reactor, and the reduction reaction zone be present at the upper part of the wet reactor. ,. This will make the device smaller.
[0016] 前記還元剤溶液は、 Na SO ,Na S,NaOH,Na S O及び Ca(OH)力 選ばれる少なく  [0016] The reducing agent solution is selected from Na 2 SO 4, Na 2 S, NaOH, Na 2 S 2 O, and Ca (OH).
2 3 2 2 2 3 2  2 3 2 2 2 3 2
とも 1つの化合物を含む水溶液であることが好ま 、。これらの化合物を含む水溶液 は還元作用が高ぐリサイクルして使用できる。  It is preferable that it is an aqueous solution containing at least one compound. Aqueous solutions containing these compounds can be recycled with high reducibility.
[0017] 本発明で処理可能な排気ガスは燃焼排気ガスであり、その被処理成分が、 ΝΟ,ΝΟ  The exhaust gas that can be treated by the present invention is combustion exhaust gas, and the components to be treated are: soot, soot
,Ν Ο,Ν O ,SO ,SO,揮発性有機化合物 (VOCs),ダイォキシン類に代表される環境汚 Environmental pollution represented by Ν, Ο, Ν O, SO, SO, volatile organic compounds (VOCs) and dioxins
2 2 2 5 2 3 2 2 2 5 2 3
染物質,炭化水素, CO,CO及び水蒸気 (H 0)から選ばれる少なくとも一つが好ましい 。例えば ΝΟ,ΝΟ ,Ν Ο,Ν Ο等の窒素酸化物 (NO )は窒素ガス (Ν )に還元し、 SO ,SO At least one selected from dyestuff, hydrocarbon, CO, CO and steam (H 0) is preferred . For example, nitrogen oxides (NO 2) such as soot, soot, soot, soot, etc. are reduced to nitrogen gas (soot), SO 2, SO 3
2 2 2 5 x 2 2 3 等の硫黄酸化物 (SO ),炭化水素, CO,CO、トルエン、ベンゼン、キシレン等の揮発  Volatilization of sulfur oxides (SO 4) such as 2 2 2 5 x 2 2 3 etc., hydrocarbons, CO, CO, toluene, benzene, xylene, etc.
2  2
性有機化合物 (VOCs)や、ダイォキシン類、ハロゲンィ匕芳香族物質、高縮合度芳香 族炭化水素等の環境汚染物質は無害な物質あるいは環境負荷の低い物質に分解 又は変換できる。  Environmental pollutants such as volatile organic compounds (VOCs), dioxins, halogenated aromatics, and highly condensed aromatic hydrocarbons can be decomposed or converted into harmless substances or substances with low environmental impact.
[0018] 本発明における低温非平衡プラズマの利点を以下に示す。  The advantages of the low temperature non-equilibrium plasma in the present invention are shown below.
(1)プラズマ処理される気体力 S排気ガスに比べ少量で低温のため、リアクタ内の滞留 時間が増し、活性化されたラジカルが効率よく形成される。  (1) Gas force to be plasma-treated Because of the small amount and low temperature compared with the S exhaust gas, the residence time in the reactor is increased, and activated radicals are efficiently formed.
(2)単位流量あたりのプラズマ消費エネルギーを下げることができる。  (2) The plasma consumption energy per unit flow rate can be reduced.
(3)小流量のラジカルで最適化を図れば数十倍の NOを酸ィ匕できる。したがって、リア クタ一を小型化できる。  (3) Several tens of times of NO can be oxidized by optimization with small flow rate radicals. Therefore, the reactor can be miniaturized.
(4)高温排ガスに対して適応することができる。例えば 300°C以上の高温排ガスを、室 温(27°C)程度の低温リモートプラズマにより効率よく NOに酸ィ匕できる。  (4) Adaptable to high temperature exhaust gas. For example, high temperature exhaust gas of 300 ° C. or more can be efficiently oxidized to NO by low temperature remote plasma at room temperature (27 ° C.).
2  2
[0019] 本発明の一実施例は、排ガスの処理方法及びその処理装置に関し、排気ガスライ ンとは別に設置された大気圧の低温非平衡プラズマにより形成されたラジカルガスを 、還元剤溶液を用いた湿式ケミカルスクラバーに注入するリモート処理により、排ガス 中の反応副生成物(N 0  One embodiment of the present invention relates to a method and apparatus for treating exhaust gas, which uses a reducing agent solution for radical gas formed by low-temperature non-equilibrium plasma at atmospheric pressure installed separately from the exhaust gas line. Reaction by-products (N 0
2 、 HNO  2, HNO
2、 HNO  2, HNO
3、 NO―  3, NO-
3、 CO等)を抑制し、かつ、効率よく 処理できる装置及び方法を提供する。  3. Provide an apparatus and method capable of suppressing and efficiently treating CO, etc.).
[0020] 本発明の一実施例は、排ガス流路外に設置された低温非熱プラズマリアクタ及び それによつて活性ィ匕されたラジカルが注入される湿式ケミカルスクラバー (湿式反応 器)を直結させている。これにより、低温非熱プラズマリアクタには空気のみ供給する ので、常運転させることができる。すなわち、排気ガス流量が変動しても、プラズマガ スの発生量を最大必要量以上に設定しておけば、低温非熱プラズマリアクタの運転 条件を変動させなくてよい。その上、エネルギー効率が高ぐ処理効率も高い。加え て、プラズマリアクタには空気しか流さないので、電極等の腐食問題も改善される。  In one embodiment of the present invention, a low temperature non-thermal plasma reactor installed outside the exhaust gas flow path and a wet chemical scrubber (wet reactor) into which activated radicals are injected are directly connected. There is. As a result, since only air is supplied to the low temperature non-thermal plasma reactor, it can be operated at all times. That is, even if the exhaust gas flow rate fluctuates, the operating condition of the low-temperature non-thermal plasma reactor does not have to be fluctuated if the plasma gas generation amount is set to the maximum required amount or more. Moreover, the processing efficiency is high, as it is energy efficient. In addition, since only the air flows in the plasma reactor, the corrosion problems of the electrodes and the like are also improved.
[0021] 低温非熱プラズマリアクタの種類及び発生させるプラズマの種類は特に限定されな V、が、下記実施例に記載の非平衡プラズマリアクタを好適例としてあげることができる 。その他、プラズマを印加する方法は、交流又は直流電圧によるパルス放電方式、無 声放電方式、コロナ放電方式、沿面放電方式、バリア放電方式、ハニカム放電方式 、ペレット充てん層放電方式、アーク放電方式、誘導結合型放電方式、容量結合型 放電方式、マイクロ波励起放電方式、レーザ誘起放電方式、電子線誘起放電方式、 粒子線誘起放電方式、又はこれらの結合方式が使用できる。すなわち、本発明で使 用されるプラズマリアクタは、プラズマを印加する各方式に従って、それに適した、考 え得る種々の方式を採用することができる。とくに前記非平衡プラズマ力 パルスコロ ナ放電により発生した非平衡プラズマであると使用するのに都合が良い。 The type of low temperature non-thermal plasma reactor and the type of plasma to be generated are not particularly limited. V can be exemplified as a preferred example of the non-equilibrium plasma reactor described in the following examples. Besides, as a method of applying plasma, a pulse discharge method by alternating current or direct current voltage, no Voice discharge method, corona discharge method, creeping discharge method, barrier discharge method, honeycomb discharge method, pellet packed bed discharge method, arc discharge method, inductively coupled discharge method, capacitively coupled discharge method, microwave excitation discharge method, laser induced A discharge method, an electron beam induced discharge method, a particle beam induced discharge method, or a combination of these can be used. That is, the plasma reactor used in the present invention can adopt various conceivable methods suitable for each method of applying plasma. It is particularly convenient to use the non-equilibrium plasma generated by the non-equilibrium plasma force pulse corona discharge.
[0022] 湿式ケミカルスクラバーの種類も特に限定されず、種々の形式のものを使用するこ とができる力 下記の実施例 1で説明するラシヒリング充てん式の一般的なケミカルス クラバーを好適例としてあげることができる。そのほか、液相への気泡吹き込み型の ケミカルスクラバーを好適例としてあげることができる。  The type of wet chemical scrubber is also not particularly limited, and the ability to use various types of scrubbers. A typical chemical scrubber of the Raschig ring filling type described in Example 1 below is a preferred example. Can. Besides, a bubble scrubbing type chemical scrubber in a liquid phase can be mentioned as a suitable example.
実施例  Example
[0023] (1)反応の説明 (1) Description of Reaction
本実施例では、非平衡プラズマプロセスと湿式の化学反応プロセスを複合させたノヽ イブリツドプロセスによりディーゼルエンジンや火力発電所等力 排出される窒素酸 化物 NOx等の大気汚染物質の除去を目的としている。このプロセスの化学反応は、 以下の 2つの反応を複合させたものである。  In this embodiment, the purpose is to remove air pollutants such as nitrogen oxides, NOx and the like emitted from diesel engines and thermal power plants by the hybrid process combining non-equilibrium plasma process and wet chemical reaction process. . The chemical reaction of this process is a combination of the following two reactions.
プラズマプロセス: NO+0* (酸素ラジカル) +M (第三体物体)→NO +M (1)  Plasma process: NO + 0 * (oxygen radical) + M (third body object) → NO + M (1)
2  2
湿式化学反応プロセス: 2NO +4Na SO→N +4Na SO (2)  Wet chemical reaction process: 2NO + 4Na SO → N + 4Na SO (2)
2 2 3 2 2 4  2 2 3 2 2 4
前記反応 (1)により排ガス中の大部分を占める NOは NOに低コストで酸ィ匕され、前  The reaction (1) accounts for the majority of the exhaust gas NO is oxidized to NO at low cost,
2  2
記反応 (2)により NOは無害で水溶性の Na SOと Nに還元される。なお Na SOとは異  According to the reaction (2), NO is reduced to harmless and water-soluble Na 2 SO 4 and N. It is different from Na SO
2 2 4 2 2 3 なる薬剤(例えば Na S,NaOH,Na S O,Ca(OH)等)を使用しても良い。  A drug such as Na 2 S 2, 2 3 2 3 3 (eg, Na 2 S, NaOH, Na 2 S 2 O 3, Ca (OH), etc.) may be used.
2 2 2 3 2  2 2 2 3 2
[0024] 本実施例では非平衡プラズマプロセス (前記反応 (1》において、従来の直接プラズ マ法に対し、非熱リモート(間接)プラズマ法を用いて実験を行い、両者の性能を比 較した。ここで、処理する排気ガスをリアクタに直接流し、 NOを NOに酸化させる方法  In this example, in the non-equilibrium plasma process (in the reaction (1) above, experiments were conducted using the non-thermal remote (indirect) plasma method as compared to the conventional direct plasma method, and the performances of the two were compared) Here, the exhaust gas to be treated flows directly into the reactor to oxidize NO to NO
2  2
を直接プラズマ法と名付ける。これに対し、空気あるいは少量の添加剤 (炭化水素、 アンモニアなど)をプラズマリアクタに流し、励起されたラジカルガスを排気ガス流路 に注入し、 NOを NOに酸ィ匕させる方法を非熱リモート(間接)プラズマ法と名付ける。 (2)本実施例の実験装置 Named as direct plasma method. On the other hand, non-thermal remote method is to flow air or a small amount of additive (hydrocarbon, ammonia, etc.) into the plasma reactor, inject excited radical gas into the exhaust gas flow path, and oxidize NO to NO. Name it (indirect) plasma method. (2) Experimental apparatus of this embodiment
本発明の非熱リモートプラズマ法を用いた実験装置 50の概略を図 1に示す。  An outline of an experimental apparatus 50 using the non-thermal remote plasma method of the present invention is shown in FIG.
[0025] コンプレッサー 32から圧縮空気を、エアフィルターを備えたドライヤー 33に供給し て乾燥空気をつくり、この乾燥空気をマスフローコントローラ 35により所定の流量で非 熱プラズマリアクタ 1に供給する。非熱プラズマリアクタ 1には、 IGBTパルス電源(増田 研究所製、 PPCP Pulsar SMC- 30/1000) 21により発生させた高速立ち上がり短幅 パルス高電圧を印加する。これにより、 0、 0*、 OH、 N等のラジカルを含む活性ィ匕ガ Compressed air is supplied from the compressor 32 to a dryer 33 equipped with an air filter to produce dry air, and this dry air is supplied to the non-thermal plasma reactor 1 at a predetermined flow rate by a mass flow controller 35. The non-thermal plasma reactor 1 is applied with a high-speed rising short width pulse high voltage generated by an IGBT pulse power supply (PPCP Pulsar SMC-30 / 1000, manufactured by Masuda Laboratories) 21. As a result, an active group containing radicals such as 0, 0 *, OH, N, etc.
3  3
スを生成した。非熱プラズマリアクタ 1の印加電圧、電流、消費電力はオシロスコープ (横河電機社製 DL1740) 37と高電圧プローブ、電流プローブ(SonyTektronix社製、 P6015A及び P6021)で測定し、瞬時電力の積分値から消費電力を求めた。このように して得られた活性ィ匕ガスは、湿式反応器のケミカルスクラバー 11に直接注入する。  Generated the The applied voltage, current, and power consumption of the non-thermal plasma reactor 1 are measured with an oscilloscope (Yokogawa DL1740) 37, a high voltage probe, and a current probe (SonyTektronix, P6015A and P6021), and the integrated value of instantaneous power I asked for power consumption. The activated gas thus obtained is directly injected into the chemical scrubber 11 of the wet reactor.
[0026] 一方、排気ガスのモデルガスである NOガスは、 2%NOボンべ 31からマスフローコ ントローラ 34により所定の流量で供給し、空気供給ライン 51からマスフローコントロー ラ 52により所定の流量で供給し、 NOと混合して、 NOが所定の濃度に調整された模 擬排ガス (空気希釈 NOx、濃度 300ppm)を、ケミカルスクラバー 11に直接注入する。 前記反応 (1)はケミカルスクラバー 11の下部の酸ィ匕反応領域 10で起こり、前記反応On the other hand, NO gas, which is a model gas of exhaust gas, is supplied at a predetermined flow rate from a 2% NO bomb 31 by a mass flow controller 34 and supplied at a predetermined flow rate from an air supply line 51 by a mass flow controller 52. The simulated exhaust gas (air-diluted NOx, concentration 300 ppm) in which NO is adjusted to a predetermined concentration is directly injected into the chemical scrubber 11 by mixing with NO. The reaction (1) takes place in the lower acid reaction zone 10 of the chemical scrubber 11 and the reaction
(2)はケミカルスクラバー 11の下部より上の部分で起こる。このようにしてケミカルスクラ バー 11内で、前記反応 (1)及び (2)を連続的に起こさせる。生成ガスは、オゾン除去ヒ 一ター 38を通し、ガス分析計(堀場製作所製 PG-235及び VIA-510) 39によって NO、 NO CO、 N 0、 CO、 0の濃度を測定した。 40はガス排出口、 41は Na SO水溶液タ(2) occurs above the lower part of the chemical scrubber 11. Thus, in the chemical scrubber 11, the reactions (1) and (2) occur continuously. The generated gas was passed through an ozone removal heater 38, and the concentration of NO, NO 2 CO, N 0, CO 2 0 was measured by a gas analyzer (PG-235 and VIA-510 manufactured by Horiba, Ltd.) 39. 40 is a gas outlet, 41 is a Na 2 SO 4 aqueous solution
X、 2 2 2 2 3 ンクである。 X, 2 2 2 3 3
(3)本実施例のプラズマリアクタ  (3) Plasma reactor of this embodiment
非熱プラズマリアクタの概略断面図を図 2に示す。非熱プラズマリアクタ 1は、内径 20mm,外径 24mmのパイレックス (登録商標)ガラス (石英ガラス)製円筒 2の内部空間 に、直径 1.5mmのステンレス製放電線電極 3を通し、円筒状の反応管 2の外壁に銅製 メッシュ (有効長 260mm)を卷 、て接地電極 4とした。放電線電極 3と接地電極 4との間 にはパルス高電圧電源 21を接続した。円筒 2の下と上の中空部は、シリコーンゴム栓 5, 6により密閉した。 7はポリテトラフルォロエチレン製の多孔板、 8はガス供給口、 9 はガス排出口、 a、 bはガス流を示す。このプラズマリアクタにより前記反応 (1)を実現 する。 A schematic cross-sectional view of the nonthermal plasma reactor is shown in FIG. The non-thermal plasma reactor 1 has a cylindrical reaction tube which has a 1.5 mm diameter stainless steel discharge wire electrode 3 passing through an inner space of a Pyrex (registered trademark) glass (quartz glass) cylinder 2 with an inner diameter of 20 mm and an outer diameter of 24 mm. A copper mesh (effective length: 260 mm) was placed on the outer wall of 2 to form a ground electrode 4. A pulsed high voltage power supply 21 was connected between the discharge wire electrode 3 and the ground electrode 4. The lower and upper hollow portions of the cylinder 2 were sealed by silicone rubber stoppers 5 and 6. 7 is a porous plate made of polytetrafluoroethylene, 8 is a gas supply port, 9 Indicates a gas outlet, and a and b indicate gas flows. The reaction (1) is realized by this plasma reactor.
(4)本実施例の湿式反応器  (4) Wet reactor of this example
湿式反応器であるケミカルスクラバー(充てん塔) 11の概略断面図を図 3に示す。 内径 55.5mm、外径 60.5mmのステンレス管 12の下部から上部へ被処理ガスを流し、 上部から液噴霧 (スプレー)ノズル 13により Na SO水溶液 14を噴霧して気液接触に  A schematic cross-sectional view of a chemical scrubber (packed column) 11 which is a wet reactor is shown in FIG. The gas to be treated is made to flow from the lower part to the upper part of the stainless steel tube 12 with an inner diameter of 55.5 mm and an outer diameter of 60.5 mm, and the Na 2 SO 4 aqueous solution 14 is sprayed from the upper part by a spray nozzle 13
2 3  twenty three
より前記湿式化学反応 (2)を行う。内部には反応を促進させるためにラシヒリング(円 筒型ガラス製、内径 5mm、外径 7mm、幅 7.2mm) 15を充てんしている。 15aはラシヒリ ングの拡大形状である。ラシヒリング 15の充てん高さは 160mm、液噴霧ノズル 13の高 さはガス注入口 16から 340mm、ガス注入口 16からラシヒリング開始点までの高さの差 は 100mmである。 17はガス排出口、 c、 dはガス流を示す。 18は液の高さを測るため のマノメーター、 19はバルブ、 20は液(ドレイン)排出口、 eは排出液流を示す。The wet chemical reaction (2) is carried out. The inside is filled with Raschig ring (made of cylindrical glass, inner diameter 5 mm, outer diameter 7 mm, width 7.2 mm) 15 in order to accelerate the reaction. The reference numeral 15a is an enlarged shape of the lashing. The filling height of the Raschig ring 15 is 160 mm, the height of the liquid spray nozzle 13 is from the gas inlet 16 to 340 mm, and the difference in height from the gas inlet 16 to the Raschig start point is 100 mm. 17 shows a gas outlet, c and d show gas flows. The numeral 18 is a manometer for measuring the height of the liquid, 19 is a valve, 20 is a liquid (drain) outlet, and e is the flow of the discharged liquid.
(5)比較例で用いた直接プラズマ法の実験装置 (5) Experimental apparatus for direct plasma method used in comparative example
直接プラズマ法の実験装置 30の概略を図 4に示す。 2%NOガスボンベ 31力ら NO ガスをマスフローコントローラ 34により所定の流量で供給する。一方、コンプレッサー 32から圧縮空気を、エアフィルターを備えたドライヤー 33に供給して乾燥空気をつく り、この乾燥空気をマスフローコントローラ 35により所定の流量で供給する。その後、 NOと混合して、 NOが所定の濃度に調整された模擬排ガス (空気希釈 NOx、濃度 300ppm)を、プラズマリアクタ 1に供給する。プラズマリアクタ 1には、 IGBTパルス電源 (増田研究所製、 PPCP Pulsar SMC-30/1000) 21により発生させた高速立ち上がり 短幅パルス高電圧を印加する。これにより、前記反応 (1)を起こさせ、次にケミカルスク ラバー 11にて前記還元処理反応 (2)を行う。次にオゾン除去ヒーター 38を通し、ガス 分析計(堀場製作所製 PG- 235及び VIA- 510) 39によって NO、 NO CO、 N 0、 CO、  An outline of the experimental apparatus 30 of the direct plasma method is shown in FIG. 2% NO gas cylinder 31 Force et al. NO gas is supplied by a mass flow controller 34 at a predetermined flow rate. On the other hand, compressed air is supplied from the compressor 32 to a dryer 33 equipped with an air filter to produce dry air, and this dry air is supplied by a mass flow controller 35 at a predetermined flow rate. Thereafter, the plasma reactor 1 is supplied with a simulated exhaust gas (air diluted NOx, concentration 300 ppm) in which NO is adjusted to a predetermined concentration by mixing with NO. The plasma reactor 1 is applied with a high-speed rising short width pulse high voltage generated by an IGBT pulse power supply (PPCP Pulsar SMC-30 / 1000, manufactured by Masuda Laboratory) 21. This causes the reaction (1) to occur, and then the reduction treatment reaction (2) is performed in the chemical scrubber 11. Next, let it pass through the ozone removal heater 38, gas analyzer (HORIBA's PG-235 and VIA-510) 39 and NO, NO CO, N 0, CO,
X、 2 2 X, 2 2
Oの濃度を測定した。非熱プラズマリアクタ 1の印加電圧、電流、消費電力はオシ口The concentration of O was measured. Applied voltage, current and power consumption of non-thermal plasma reactor 1
2 2
スコープ(横河電機社製 DL 1740) 37と高電圧プローブ、電流プローブ(Sony Tektronix社製、 P6015A及び P6021)で測定し、瞬時電力の積分値から消費電力を求 めた。 40はガス排出口、 41は Na SO水溶液タンクである。 The power consumption was determined from the integrated value of instantaneous power by measuring with a scope (Yokogawa Electric Corporation DL 1740) 37, a high voltage probe, and a current probe (P6015A and P6021 manufactured by Sony Tektronix). 40 is a gas outlet, 41 is a Na 2 SO 4 aqueous solution tank.
2 3  twenty three
(実施例 比較例 1一 3) 実施例 1は図 1に示す装置を用い、比較例 1は図 4の直接プラズマ処理装置 30の み、比較例 2は図 4に示す直接プラズマ装置 30と湿式反応器 11を直結した処理、比 較例 3は図 1に示す非熱リモートプラズマ装置 50のみとし、それぞれ模擬ガスの流量 を 5.0L/minとしたときの NOの除去実験を行った。 (Example Comparative Example 1 1 3) Example 1 uses the apparatus shown in FIG. 1, Comparative Example 1 deals with the direct plasma processing apparatus 30 of FIG. 4 only, and Comparative Example 2 deals with the direct plasma apparatus 30 and wet reactor 11 shown in FIG. In Comparative Example 3, only the non-thermal remote plasma apparatus 50 shown in FIG. 1 was used, and the removal experiment of NO was performed when the flow rate of the simulated gas was 5.0 L / min.
X  X
[0028] 模擬排ガスの流量を 5.0L/min、リモート時のラジカルガスの流量を 0.5L/min、 NOの 初期濃度は 300ppmとした。湿式反応器 11を用いる場合は、充てん塔に流す還元剤 水溶液の流量は 0.20L/minとし、 Na SOの濃度は 2.0g/Lとした。また、 IGBTパルス電  The flow rate of the simulated exhaust gas was 5.0 L / min, the flow rate of the radical gas at remote was 0.5 L / min, and the initial concentration of NO was 300 ppm. When the wet reactor 11 is used, the flow rate of the reducing agent aqueous solution to be flowed to the packed column is 0.20 L / min, and the concentration of Na 2 SO 4 is 2.0 g / L. Also, IGBT pulse power
2 3  twenty three
源の周波数は 420Hzに設定した。この時のプラズマリアクタにおける滞留時間は直接 法の場合で 0.84s、リモート法の場合 8.4sであった。  The source frequency was set to 420 Hz. The residence time in the plasma reactor at this time was 0.84 s for the direct method and 8.4 s for the remote method.
[0029] 以上の結果を図 5A— B、図 6A— Bに示す。図 5Aは直接プラズマ法のみ(比較例 1) 、図 5Bは直接プラズマ法と湿式反応器を直結した処理 (比較例 2)、図 6Aは非熱リ モートプラズマ法のみ (比較例 3)、図 6Bは非熱リモートプラズマ法と湿式反応器を直 結した処理 (実施例 1)のデータである。  The above results are shown in FIGS. 5A-B and 6A-B. Fig. 5A shows the direct plasma method only (Comparative Example 1), Fig. 5B shows the process in which the direct plasma method and the wet reactor are directly connected (Comparative Example 2), and Fig. 6A shows the non-thermal remote plasma method only (Comparative Example 3), 6B is data of a process in which a nonthermal remote plasma method and a wet reactor are directly connected (Example 1).
[0030] 図 5A— B、図 6A— Bを比較すると、直接プラズマ法(図 5A— B)に比べ、非熱リモー トプラズマ法(図 6A— B)のほうが、リアクタ消費電力が小さぐ NO、 NOxの減少量も大 きいことがわかる。また、図 6A— Bを比較すると、図 6Bのほうが、リアクタ消費電力が 小さぐ NO、 NOxの減少量も大きいことがわかる。プラズマ印加時に有害な副生成物 として N 0や COの発生が懸念された力 本発明の実施例である図 6Bは、 N 0は [0030] Comparing FIGS. 5A-B and 6A-B, the non-thermal remote plasma method (FIGS. 6A-B) consumes less reactor power than the direct plasma method (FIGS. 5A-B). It can be seen that the reduction in NOx is also large. In addition, comparing Figs. 6A-B, it can be seen that the reduction amount of NO and NOx in which the power consumption of the reactor is smaller is larger in Fig. 6B. Forces that concern about the generation of N 0 and CO as harmful by-products when the plasma is applied As shown in FIG.
2 2 lOppm前後、 COは 7ppm以下であった。また、 COの濃度は 360ppm前後で、数 ppmの About 22 lO ppm, CO was less than 7 ppm. In addition, the concentration of CO is around 360 ppm, several ppm
2  2
減少が見られた。  A decrease was seen.
[0031] (実施例 2、比較例 4一 6) (Example 2, Comparative Example 4 1 6)
実施例 2は図 1に示す装置を用い、比較例 4は図 4の直接プラズマ処理装置 30の み、比較例 5は図 4に示す直接プラズマ装置 30と湿式反応器 11を直結した処理、比 較例 6は図 1に示す非熱リモートプラズマ装置 50のみとし、それぞれ模擬ガスの流量 を 7.0L/minとしたときの NOの除去実験を行った。  Example 2 uses the apparatus shown in FIG. 1, Comparative Example 4 deals with the direct plasma processing apparatus 30 of FIG. 4 only, and Comparative Example 5 deals with the direct plasma apparatus 30 and wet reactor 11 shown in FIG. In Comparative Example 6, only the non-thermal remote plasma apparatus 50 shown in FIG. 1 was used, and NO removal experiments were conducted when the flow rate of the simulated gas was 7.0 L / min.
X  X
[0032] 次に模擬排ガスの流量 7.0L/min、リモート時のラジカルガスを 0.7L/min、 NOの初期 濃度は 300ppmとした。湿式反応器 11を用いる場合は、充てん塔に流す還元剤水溶 液の流量は 0.20L/minとし、 Na SOの濃度は 2.0g/Lとした。また、 IGBTパルス電源の 周波数は 420Hzに設定した。この時のプラズマリアクタにおける滞留時間は直接法の 場合で 0.6s、リモート法の場合 6.0sであった。 Next, the flow rate of the simulated exhaust gas was 7.0 L / min, the radical gas at the remote was 0.7 L / min, and the initial concentration of NO was 300 ppm. When the wet reactor 11 is used, the flow rate of the reducing agent aqueous solution to be flowed to the packed column was 0.20 L / min, and the concentration of Na 2 SO was 2.0 g / L. Also, for IGBT pulse power supplies The frequency was set to 420 Hz. The residence time in the plasma reactor at this time was 0.6 s for the direct method and 6.0 s for the remote method.
[0033] 結果を図 7A— B、図 8A— Bに示す。図 7Aは直接プラズマ法のみ(比較例 4)、図 7B は直接プラズマ法と湿式反応器を直結した処理 (比較例 5)、図 8Aは非熱リモートプ ラズマ法のみ (比較例 6)、図 8Bは非熱リモートプラズマ法と湿式反応器を直結した 処理 (実施例 2)のデータである。  The results are shown in FIGS. 7A-B and 8A-B. Fig. 7A shows the direct plasma method only (Comparative Example 4), Fig. 7B shows the process in which the direct plasma method and the wet reactor are directly connected (Comparative Example 5), and Fig. 8A shows the non-thermal remote plasma method only These are the data of the processing (Example 2) in which the non-thermal remote plasma method and the wet reactor were connected directly.
[0034] 図 7A— B、図 8A— Bを比較すると、図 5A— B、図 6A— Bの場合と同様に非熱リモー トプラズマ法(図 8A— B)のほうがリアクタ消費電力は小さい。また、図 8A— Bを比較す ると、図 8Bのほうが、リアクタ消費電力が小さぐ NO、 NOxの減少量も大きいことがわ かる。本発明の実施例である図 8Bは、 N 0は lOppm前後、 COは 7ppm以下であった。  [0034] Comparing FIGS. 7A-B and 8A-B, as in the cases of FIGS. 5A-B and 6A-B, the non-thermal remote plasma method (FIGS. 8A-B) consumes less reactor power. In addition, comparing Fig. 8A-B, Fig. 8B also shows that the reduction amount of NO and NOx, where the reactor power consumption is smaller, is larger. In FIG. 8B, which is an example of the present invention, NO was about 10 ppm and CO was 7 ppm or less.
2  2
COの濃度は 370ppm前後で、数 ppmの減少が見られた。  The concentration of CO was around 370 ppm, with a few ppm decrease.
2  2
[0035] なお、図 9A— Bにそれぞれ図 8A— Bに対応する電圧及び電流波形の例を示す。  FIGS. 9A-B show examples of voltage and current waveforms corresponding to FIGS. 8A-B, respectively.
[0036] (実施例 3、比較例 7)  (Example 3, Comparative Example 7)
図 1に示す非熱リモートプラズマ法と湿式反応器を直結した処理 (実施例 3)と、図 4 に示す直接プラズマ法と湿式反応器を直結した処理 (比較例 7)について、単位処理 ガス体積あたりのプラズマ消費エネルギー (SED)と除去効率の関係を検討した。すな わち、リアクタ消費電力から SED (単位処理ガス体積あたりのプラズマ消費エネルギー )を算出し、 SEDと NO、 NOxの除去効率の関係を調べた。  Unit treatment gas volume for the treatment in which the nonthermal remote plasma method shown in FIG. 1 and the wet reactor are directly connected (Example 3) and the treatment in which the direct plasma method and the wet reactor shown in FIG. We examined the relationship between the per unit plasma consumption energy (SED) and the removal efficiency. That is, the SED (plasma consumption energy per unit processing gas volume) was calculated from the reactor power consumption, and the relationship between SED and NO, NOx removal efficiency was investigated.
[0037] その結果を図 10に示す。これは流量 7L/minの場合にプラズマ処理と湿式ィ匕学処 理を同時に行った結果である。図 10より、非熱リモートプラズマ法を用いた場合 (remote)は、直接プラズマ法 (direct)を用いた場合の約 30%の SED=35J/L=10Wh/m3 で 80%程度の NO、 NOxを還元除去して!/、ることがわ力る。 The results are shown in FIG. This is the result of simultaneously performing plasma processing and wet processing at a flow rate of 7 L / min. From Fig. 10, when using the non-thermal remote plasma method (remote), about 30% of SED = 35 J / L = 10 Wh / m 3 and about 80% NO when using the direct plasma method (direct). Reduce and remove NOx!
[0038] 以上の実験から、本実施例の非熱リモートプラズマ法を用いたプラズマ ·ケミカルノヽ イブリットプロセスでは、エネルギー効率の大幅な改善が見られ、直接プラズマ法を 用いた場合と比べ、約 30%の単位流量当たりのエネルギーで NOxを還元除去すること が確認できた。  [0038] From the above experiments, the plasma-chemical nanolibritt process using the non-thermal remote plasma method of the present example shows a significant improvement in energy efficiency, and it is approximately compared to the case where the direct plasma method is used. It was confirmed that NOx was reduced and removed with energy per unit flow rate of 30%.
[0039] 以上の実験力 判明した非熱リモートプラズマ法の利点を以下に示す。  The above experimental powers The advantages of the non-thermal remote plasma method that has been found are shown below.
(a)プラズマ処理される気体力排気ガスに比べ少量のため、同じ大きさのプラズマリア クタを使用した場合、滞留時間が増し、小型化が可能となる。 (a) A plasma rear of the same size because it is small compared to the gaseous exhaust gas to be plasma-treated In the case of using a kuta, the residence time is increased, and miniaturization is possible.
(b)単位流量あたりのプラズマ消費エネルギーを下げ、エネルギー効率をさらに改善 することができる。  (b) The energy consumption can be further reduced by lowering the plasma consumption energy per unit flow rate.
(c)小流量の注入で最適化を図れば数十倍の NOを酸ィ匕できる。  (c) Several tens of times of NO can be oxidized if optimization is carried out with a small flow rate injection.
[0040] (実施例 4) Example 4
実施例 4においては、本発明のリモート非熱プラズマ 'ケミカルノヽイブリットプロセス 技術を立証するため、実際のボイラーを使用したパイロット試験を実施した。  In Example 4, a pilot test using an actual boiler was conducted to demonstrate the remote non-thermal plasma 'chemical no-e-blit process technology of the present invention.
[0041] 実験装置図を図 11に示す。図 1と共通する装置には同一の符号を付与し、説明は 省略する。ボイラーは A重油を燃料とした炉筒煙管式スモールボイラー 60を用いた。 このボイラー 60からの排ガスは、排気ガス供給ライン 23からケミカルスクラバー 11の 下部の酸化反応領域 10に供給した。非熱プラズマリアクタ 1にはパルス放電リアクタ を用いた。 21高電圧電源である。ケミカルスクラバー 11内は気液接触反応を促進さ せるために図 3に示すような充てん材が充てんされている。また、 Na SO水溶液はタ An experimental device diagram is shown in FIG. The same reference numerals are given to the devices common to FIG. 1 and the description is omitted. As a boiler, a small-sized smoke pipe type small boiler 60 using A fuel oil as fuel was used. The exhaust gas from the boiler 60 was supplied from the exhaust gas supply line 23 to the oxidation reaction zone 10 in the lower part of the chemical scrubber 11. A non-thermal plasma reactor 1 was a pulse discharge reactor. 21 high voltage power supply. The chemical scrubber 11 is filled with a filler as shown in FIG. 3 to promote gas-liquid contact reaction. Also, the Na 2 SO 4 aqueous solution is
2 3 ンク 41からケミカルスクラバー 11上部からスプレー 42に供給して噴霧し、底の部分 で回収し、ポンプを用いて再び上部に戻す循環式とした。  The chemical scrubber 11 was supplied from the top of the 2 3 4 tank 41 to the spray 42 to be sprayed, collected at the bottom, and pumped back to the top.
[0042] 外気を吸入し、非熱プラズマリアクタ 1で発生させたラジカルガスは、モーターで回 転するファン 61によって運ばれ、排ガス煙道に注入され、ケミカルスクラバー 11の下 部の酸化反応領域 10に供給された。排ガス中の NOはオゾンなどのラジカルにより N Oに酸ィ匕され、ケミカルスクラバー 11内で NOは Na SOにより Nに還元除去され、The radical gas generated by the non-thermal plasma reactor 1 by sucking the outside air is carried by the fan 61 rotated by the motor, injected into the exhaust gas flue, and oxidized in the lower part of the chemical scrubber 11. Was supplied. NO in exhaust gas is oxidized to NO by radicals such as ozone, and in the chemical scrubber 11, NO is reduced and removed to Na by Na 2 SO 4,
2 2 2 3 2 2 2 2 3 2
ケミカルスクラバー 11の上部力も排気された。  The upper force of the chemical scrubber 11 was also exhausted.
[0043] ボイラー 60からの排ガス流量 Q =450— 1170Nm3Zh、ラジカルガス流量 Q = 5 g rExhaust gas flow from the boiler 60 Q = 450-1170 Nm 3 Zh, radical gas flow Q = 5 gr
0— 180Nm3Zhと変化させたときの単位処理ガス体積あたりのプラズマ消費エネル ギ一と NO, NOx除去効率の関係を図 12に示す。図 12から、高温の排ガスであって も NO, NOxを効率よく除去できることが確認できた。 Figure 12 shows the relationship between plasma consumption energy per unit process gas volume and NO, NOx removal efficiency when changing to 0-180 Nm 3 Zh. From Fig. 12, it can be confirmed that NO and NOx can be removed efficiently even with high temperature exhaust gas.
[0044] この結果、本発明のリモート非熱プラズマ 'ケミカルノヽイブリットプロセス技術は、実 際のボイラー排ガスにも有効であることが示された。 [0044] As a result, it was shown that the remote non-thermal plasma 'chemical noble metal process technology of the present invention is also effective for actual boiler exhaust gas.
[0045] (産業上の利用可能性) [0045] (Industrial Applicability)
本発明の排気ガス処理方法及び装置は、ディーゼルエンジン、ボイラー、ガスター ビン、焼却炉等の燃焼システムに連結させて適用できる。 The exhaust gas treatment method and apparatus of the present invention are a diesel engine, a boiler, a gaster It can be connected to combustion systems such as bottles and incinerators.

Claims

請求の範囲 The scope of the claims
[1] 窒素酸ィ匕物を含む排気ガスを浄ィ匕する方法であって、  [1] A method of purifying exhaust gas containing nitrogen oxide,
空気を大気圧低温非平衡プラズマ反応器に供給してラジカルガスを生成し、前記 ラジカルガスを酸化反応領域に供給し、  Air is supplied to an atmospheric pressure low temperature non-equilibrium plasma reactor to generate a radical gas, and the radical gas is supplied to an oxidation reaction zone,
前記排気ガスを前記ラジカルガス生成ラインとは別個のラインカゝら前記酸ィ匕反応領 域に供給することにより、前記排気ガス中の窒素酸ィ匕物を前記ラジカルガスにより N Oを含む酸化ガスに酸化し、  The nitrogen gas in the exhaust gas is converted into an oxidizing gas containing NO by the radical gas by supplying the exhaust gas to the oxidation reaction region separate from the radical gas generation line. Oxidized
2  2
次に、前記酸化ガスを還元剤溶液と接触させることにより、 NOを窒素ガス (N )に  Next, NO is converted to nitrogen gas (N 2) by bringing the oxidizing gas into contact with the reducing agent solution.
2 2 還元反応させることを特徴とする排気ガスの処理方法。  2. A method of treating exhaust gas characterized by reducing reaction.
[2] 前記酸化反応領域と前記還元反応領域が、 1つの湿式反応器に存在する請求項 1 に記載の排気ガスの処理方法。  [2] The method for treating exhaust gas according to claim 1, wherein the oxidation reaction zone and the reduction reaction zone exist in one wet reactor.
[3] 前記湿式反応器が塔式又はカラム式反応器であり、前記湿式反応器の下部に前 記酸化反応領域が存在し、前記湿式反応器の上部に前記還元反応領域が存在す る請求項 1に記載の排気ガスの処理方法。 [3] The wet reactor is a column or column reactor, the oxidation reaction zone is present at the lower part of the wet reactor, and the reduction reaction zone is present at the upper part of the wet reactor. A method of treating exhaust gas according to Item 1.
[4] 前記還元剤溶液が Na SO ,Na S,NaOH,Na S O及び Ca(OH)力 選ばれる少なくと [4] The reducing agent solution may be selected from Na 2 SO 4, Na 2 S, NaOH, Na 2 S 2 O, and Ca (OH).
2 3 2 2 2 3 2  2 3 2 2 2 3 2
も 1つの化合物を含む水溶液である請求項 1に記載の排気ガスの処理方法。  The method for treating exhaust gas according to claim 1, which is also an aqueous solution containing one compound.
[5] 前記低温非平衡プラズマ反応器における反応温度が 300°C以下である請求項 1に 記載の排気ガスの処理方法。  [5] The method for treating exhaust gas according to claim 1, wherein the reaction temperature in the low temperature non-equilibrium plasma reactor is 300 ° C. or less.
[6] 前記低温非平衡プラズマ反応器における反応温度が 100°C以下である請求項 5に 記載の排気ガスの処理方法。  [6] The method for treating exhaust gas according to claim 5, wherein the reaction temperature in the low temperature non-equilibrium plasma reactor is 100 ° C. or less.
[7] 前記プラズマ発生手段が、交流又は直流電圧によるパルス放電方式、無声放電方 式、コロナ放電方式、沿面放電方式、バリア放電方式、ハニカム放電方式、ペレット 充填層放電方式、アーク放電方式、誘導結合型放電方式、容量結合型放電方式、 マイクロ波励起放電方式、レーザ誘起放電方式、電子線誘起放電方式、粒子線誘 起放電方式、又はこれらの結合である請求項 1に記載の排気ガスの処理方法。  [7] The plasma generating means may be a pulse discharge system by alternating current or DC voltage, silent discharge system, corona discharge system, creeping discharge system, barrier discharge system, honeycomb discharge system, pellet packed bed discharge system, arc discharge system, induction The exhaust gas according to claim 1, which is a coupled discharge system, a capacitively coupled discharge system, a microwave excitation discharge system, a laser induced discharge system, an electron beam induced discharge system, a particle beam induced discharge system, or a combination thereof. Processing method.
[8] 前記空気をラジカルィ匕させる非平衡プラズマ反応器における非平衡プラズマの発 生条件は、印加電圧: 10— 100kV、周波数: 250Hz— 1000Hzの範囲である請求 項 1に記載の排気ガスの処理方法。 [8] The exhaust gas treatment according to claim 1, wherein the non-equilibrium plasma generation conditions in the non-equilibrium plasma reactor which causes air to flow are in the range of applied voltage: 10-100 kV, frequency: 250 Hz-1000 Hz. Method.
[9] 前記非平衡プラズマが、パルスコロナ放電により発生した非平衡プラズマである請 求項 1に記載の排気ガスの処理方法。 [9] The method for treating exhaust gas according to claim 1, wherein the non-equilibrium plasma is a non-equilibrium plasma generated by pulse corona discharge.
[10] 窒素酸ィ匕物を含む排気ガスを浄ィ匕する装置であって、 [10] A device for purifying exhaust gas containing nitrogen oxides, wherein
空気をラジカルガスにするための大気圧低温非平衡プラズマ反応器と、 前記ラジカルガスを酸化反応領域に供給するラインと、  An atmospheric pressure low temperature non-equilibrium plasma reactor for converting air into a radical gas; a line for supplying the radical gas to an oxidation reaction zone;
前記排気ガスを前記ラジカルガス生成ラインとは別個のラインカゝら前記酸ィ匕反応領 域に供給するラインと、  A line for supplying the exhaust gas to the acid reaction region separately from the radical gas generation line;
前記排気ガス中の窒素酸ィ匕物を前記ラジカルガスにより NOを含む酸化ガスに酸  The nitrogen oxide in the exhaust gas is oxidized by the radical gas to an oxidizing gas containing NO.
2  2
化するための前記酸化反応領域と、  The oxidation reaction zone for
前記酸化ガスを還元剤溶液と接触させることにより、 NOを窒素ガス (N )に還元反  By contacting the oxidizing gas with a reducing agent solution, NO is reduced to nitrogen gas (N 2).
2 2 応させる還元反応領域を含み、  2 2 including a reduction reaction zone to react
前記酸化反応領域と前記還元反応領域を直結させたことを特徴とする排気ガスの 処理装置。  An exhaust gas treatment apparatus characterized in that the oxidation reaction area and the reduction reaction area are directly connected.
[11] 前記酸化反応領域と前記還元反応領域が、 1つの湿式反応器に存在する請求項 1 [11] The oxidation reaction zone and the reduction reaction zone are present in one wet reactor.
0に記載の排気ガスの処理装置。 A device for treating exhaust gas according to 0.
[12] 前記湿式反応器が塔式又はカラム式反応器であり、下部に前記ラジカルガスと前 記排気ガスの供給口と酸化反応領域が存在し、上部に還元剤溶液との接触反応領 域が存在する請求項 10に記載の排気ガスの処理装置。 [12] The wet reactor is a column type or column type reactor, the supply port for the radical gas and the exhaust gas and the oxidation reaction area exist at the lower part, and the catalytic reaction area with the reducing agent solution exists at the upper part. The exhaust gas treatment system according to claim 10, wherein:
[13] 前記還元剤溶液が Na SO ,Na S,NaOH,Na S O及び Ca(OH)力 選ばれる少なくと [13] The reducing agent solution may be selected from Na 2 SO 4, Na 2 S, NaOH, Na 2 S 2 O, and Ca (OH).
2 3 2 2 2 3 2  2 3 2 2 2 3 2
も 1つの化合物を含む水溶液である請求項 10に記載の排気ガスの処理装置。  The exhaust gas treatment system according to claim 10, wherein the exhaust gas is an aqueous solution containing one compound.
[14] 前記低温非平衡プラズマ反応器における反応温度が 300°C以下である請求項 10 に記載の排気ガスの処理装置。 [14] The apparatus for treating exhaust gas according to claim 10, wherein the reaction temperature in the low temperature non-equilibrium plasma reactor is 300 ° C. or less.
[15] 前記低温非平衡プラズマ反応器における反応温度が 100°C以下である請求項 14 に記載の排気ガスの処理装置。 [15] The apparatus for treating exhaust gas according to claim 14, wherein the reaction temperature in the low temperature non-equilibrium plasma reactor is 100 ° C. or less.
[16] 前記プラズマ発生手段が、交流又は直流電圧によるパルス放電方式、無声放電方 式、コロナ放電方式、沿面放電方式、バリア放電方式、ハニカム放電方式、ペレット 充填層放電方式、アーク放電方式、誘導結合型放電方式、容量結合型放電方式、 マイクロ波励起放電方式、レーザ誘起放電方式、電子線誘起放電方式、粒子線誘 起放電方式、又はこれらの結合である請求項 10に記載の排気ガスの処理装置。 [16] The plasma generation means may be a pulse discharge system by alternating current or DC voltage, silent discharge system, corona discharge system, creeping discharge system, barrier discharge system, honeycomb discharge system, pellet packed bed discharge system, arc discharge system, induction Coupled discharge method, Capacitively coupled discharge method, Microwave excited discharge method, Laser induced discharge method, Electron beam induced discharge method, Particle beam induction The exhaust gas treatment system according to claim 10, which is an electromotive discharge system or a combination thereof.
[17] 前記空気をラジカルィ匕させる非平衡プラズマ反応器における非平衡プラズマの発 生条件は、印加電圧: 10— 100kV、周波数: 250Hz— 1000Hzの範囲である請求 項 10に記載の排気ガスの処理装置。 [17] The exhaust gas treatment according to claim 10, wherein the non-equilibrium plasma generation conditions in the non-equilibrium plasma reactor for causing air to flow are in the range of applied voltage: 10-100 kV, frequency: 250 Hz-1000 Hz. apparatus.
[18] 前記非平衡プラズマが、パルスコロナ放電により発生した非平衡プラズマである請 求項 10に記載の排気ガスの処理装置。 [18] The exhaust gas processing device according to claim 10, wherein the non-equilibrium plasma is a non-equilibrium plasma generated by pulsed corona discharge.
PCT/JP2004/017049 2004-01-07 2004-11-17 Method of treating exhaust gas and apparatus therefor WO2005065805A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005516807A JP4472638B2 (en) 2004-01-07 2004-11-17 Exhaust gas treatment method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004002207 2004-01-07
JP2004-002207 2004-01-07

Publications (1)

Publication Number Publication Date
WO2005065805A1 true WO2005065805A1 (en) 2005-07-21

Family

ID=34747022

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/017049 WO2005065805A1 (en) 2004-01-07 2004-11-17 Method of treating exhaust gas and apparatus therefor

Country Status (2)

Country Link
JP (1) JP4472638B2 (en)
WO (1) WO2005065805A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008102708A1 (en) * 2007-02-21 2008-08-28 Osaka Prefecture University Public Corporation Method and apparatus for processing exhaust gas
JP2010061938A (en) * 2008-09-03 2010-03-18 Akitoshi Okino Device and method for controlling plasma temperature
JP2011529430A (en) * 2008-07-29 2011-12-08 ユニオン、エンジニアリング、アクティーゼルスカブ High-purity carbon dioxide recovery method
KR101408337B1 (en) 2012-08-07 2014-06-17 엠엔테크(주) Exhaust reduction device for recycling systems
US10940471B1 (en) 2019-10-30 2021-03-09 W. L. Gore & Associates, Inc. Catalytic efficiency of flue gas filtration
US11071947B2 (en) 2019-10-30 2021-07-27 W. L. Gore & Associates, Inc. Catalytic efficiency of flue gas filtration
US11448409B2 (en) 2020-01-28 2022-09-20 Samsung Electronics Co., Ltd. Device and method for purifying air purification device and method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104772014A (en) * 2015-04-10 2015-07-15 无锡华光新动力环保科技股份有限公司 Combined denitration device for flue gas of cement rotary kiln and denitration technology for flue gas

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6168126A (en) * 1984-09-10 1986-04-08 Ishikawajima Harima Heavy Ind Co Ltd Wet method for desulfurizing and denitrating stack gas

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6168126A (en) * 1984-09-10 1986-04-08 Ishikawajima Harima Heavy Ind Co Ltd Wet method for desulfurizing and denitrating stack gas

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101110667B1 (en) 2007-02-21 2012-02-17 도꾸리쯔교세이호징 가가꾸 기쥬쯔 신꼬 기꼬 Method and apparatus for processing exhaust gas
US8574506B2 (en) 2007-02-21 2013-11-05 Osaka Prefecture University Public Corporation Method and apparatus for processing exhaust gas
WO2008102708A1 (en) * 2007-02-21 2008-08-28 Osaka Prefecture University Public Corporation Method and apparatus for processing exhaust gas
JP5564722B2 (en) * 2007-02-21 2014-08-06 公立大学法人大阪府立大学 Exhaust gas treatment method and treatment apparatus
JP2011529430A (en) * 2008-07-29 2011-12-08 ユニオン、エンジニアリング、アクティーゼルスカブ High-purity carbon dioxide recovery method
US8866389B2 (en) 2008-09-03 2014-10-21 Akitoshi Okino Plasma temperature control apparatus and plasma temperature control method
JP2010061938A (en) * 2008-09-03 2010-03-18 Akitoshi Okino Device and method for controlling plasma temperature
JP4611409B2 (en) * 2008-09-03 2011-01-12 晃俊 沖野 Plasma temperature control device
KR101408337B1 (en) 2012-08-07 2014-06-17 엠엔테크(주) Exhaust reduction device for recycling systems
US10940471B1 (en) 2019-10-30 2021-03-09 W. L. Gore & Associates, Inc. Catalytic efficiency of flue gas filtration
US11071947B2 (en) 2019-10-30 2021-07-27 W. L. Gore & Associates, Inc. Catalytic efficiency of flue gas filtration
US11602717B2 (en) 2019-10-30 2023-03-14 W. L. Gore & Associates, Inc. Catalytic efficiency of flue gas filtration
US11448409B2 (en) 2020-01-28 2022-09-20 Samsung Electronics Co., Ltd. Device and method for purifying air purification device and method

Also Published As

Publication number Publication date
JPWO2005065805A1 (en) 2007-12-20
JP4472638B2 (en) 2010-06-02

Similar Documents

Publication Publication Date Title
Yamamoto et al. Plasma-assisted chemical process for NO/sub x/control
JP4590618B2 (en) Exhaust gas treatment method and treatment apparatus
JPH10165754A (en) Fuel injection system and method for treating nitrogen oxide in corona discharge pollution factor destroying apparatus
KR101567746B1 (en) Apparatus for treating exhaust gas
WO2016123843A1 (en) Plasma denitrification method for waste gas in medium or small-sized boiler
Jiang et al. High-efficiency removal of NO x from flue gas by multitooth wheel-cylinder corona discharge plasma facilitated selective catalytic reduction process
WO2005065805A1 (en) Method of treating exhaust gas and apparatus therefor
CN105642115A (en) Device and method for denitrifying flue gases
Brandenburg et al. Plasma-based depollution of exhausts: principles, state of the art and future prospects
KR20210134761A (en) Plasma-based SOx and NOx purification systems and methods
JP2000117049A (en) Purification method and device for removing nitrogen oxides and sulfur oxides
KR100355179B1 (en) Desulferrization and denitride method of exhaust gas depend on ozone and there of apparatus
Zhu et al. Experimental study of NO2 reduction in N2/Ar and O2/Ar mixtures by pulsed corona discharge
JPH06178914A (en) Waste gas treatment device
Kuroki et al. Performance of a Wet-type Nonthermal Plasma Reactor for NO x, SO x, and Wastewater Treatment
JP2993133B2 (en) Exhaust gas treatment method and apparatus
JP2001187319A (en) Method and device for cleaning gas
JPH0564721A (en) Method and apparatus for treating air containing nitrogen oxide in low concentration
JPH07229418A (en) Exhaust emission control device
KR100454427B1 (en) Harmful gas purifying apparatus and thereof method by using microwave
WO2016034153A2 (en) Waste gas processing apparatus using plasma
Koizumi et al. An experimental NOx treatment in diesel engine combustion exhaust gases by non-thermal plasma and activated carbon filter combinations
JP2007209897A (en) Apparatus and method for decomposing and removing nitrogen oxide in combustion exhaust gas
Jun et al. Reduction of NOx and SO2 in a non-thermal plasma reactor combined with catalyst and methanol
KR100593403B1 (en) Nitrogen oxide treatment device for exhaust gas and treatment method thereof

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005516807

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase