JPH0751536A - Denitration of combustion exhaust gas - Google Patents

Denitration of combustion exhaust gas

Info

Publication number
JPH0751536A
JPH0751536A JP5200663A JP20066393A JPH0751536A JP H0751536 A JPH0751536 A JP H0751536A JP 5200663 A JP5200663 A JP 5200663A JP 20066393 A JP20066393 A JP 20066393A JP H0751536 A JPH0751536 A JP H0751536A
Authority
JP
Japan
Prior art keywords
denitration
exhaust gas
combustion exhaust
hydrocarbon
nox
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5200663A
Other languages
Japanese (ja)
Inventor
Takafuru Kobayashi
敬古 小林
Kozo Iida
耕三 飯田
Shigeru Nojima
野島  繁
Akira Serizawa
暁 芹澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP5200663A priority Critical patent/JPH0751536A/en
Publication of JPH0751536A publication Critical patent/JPH0751536A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)

Abstract

PURPOSE:To remove NOX in combustion exhaust gas with high denitration efficiency by performing the ammonia denitration of NOX-containing combustion exhaust gas and subsequently reducing the denitrated gas with hydrocarbon to oxidize the remaining NOX and unreacted NH3 before decomposing and removing NOX. CONSTITUTION:At first, the NOX-containing combustion exhaust gas from a boiler 1 is guided to a dry denitration device 4-1 using NH3 as a reducing agent to be denitrated. Next, the denitrated gas is guided to a hydrocarbon denitration device 4-2 using hydrocarbon as a reducing agent and the remaining NOX and NOX generated by oxidation of unreacted NH3 are decomposed and removed. By this constitution, NH3 leaked to the gas to be treated is made zero and NOX in the combustion exhaust gas can be removed within a wide temp. range with high denitration efficiency of 90% or more.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はNOx含有燃焼排ガスの
脱硝方法、さらに詳しくはNH3 を還元剤とする乾式脱
硝装置と炭化水素を還元剤とする乾式脱硝装置とを組み
合わせた脱硝率の高い脱硝方法に関する。
The invention denitration process of the NOx-containing flue gas BACKGROUND OF THE, more particularly a high denitrification rate of a combination of a dry denitration apparatus for the dry denitration apparatus and hydrocarbons and NH 3 as a reducing agent and a reducing agent Regarding denitration method.

【0002】[0002]

【従来の技術】燃焼排ガス中のNOxを除去する方法と
しては図8及び図9に示すようにNH 3 を還元剤とする
乾式脱硝装置を用いる方法が一般的である。図8及び図
9において、1はボイラ、2はガスタービン、3はNH
3 注入ノズル、4−1はNH3脱硝装置、6は空気予熱
器、7は排ガスボイラ、8は煙突、9は燃焼用空気、1
0は節炭器を表す。この方法においては高い脱硝率を得
るためには過剰のNH3を添加することが必要であり、
未反応のNH3 がリークNH3 として処理ガス中に排出
されてくる。しかも、リークNH3 の量が5〜10pp
mとなるように過剰にNH3 を添加しても、なお達成可
能な脱硝率は80〜90%程度であった。また、燃焼排
ガス中にSOx、特にSO3 が含まれている場合、排ガ
ス中にNH3 が残存すると酸性硫酸アンモニウムが生成
する。このため、排ガスの後流側の機器(空気予熱器、
排ガスボイラの低温部など)において酸性硫酸アンモニ
ウムの付着によるトラブル発生の可能性があり、脱硝率
を犠牲にしても、極力リークNH3 を低減させる条件で
運転されているのが実状である。
2. Description of the Related Art A method for removing NOx in combustion exhaust gas and
Then, as shown in FIG. 8 and FIG. 3As a reducing agent
A method using a dry denitration device is generally used. Figure 8 and Figure
In 9, 1 is a boiler, 2 is a gas turbine, 3 is NH
3Injection nozzle, 4-1 is NH3Denitration device, 6 is air preheating
Vessel, 7 is an exhaust gas boiler, 8 is a chimney, 9 is combustion air, 1
0 represents a economizer. With this method, a high denitration rate was obtained.
Excess NH in order to3It is necessary to add
Unreacted NH3Leak NH3Discharged into the process gas as
Is coming. Moreover, leak NH3Amount of 5-10pp
Excess NH to reach m3Can still be achieved by adding
The effective denitration rate was about 80 to 90%. Also, combustion exhaust
SOx in gas, especially SO3If included,
NH in the space3Acid remains to form acidic ammonium sulfate
To do. Therefore, the equipment on the downstream side of the exhaust gas (air preheater,
In the low temperature part of the exhaust gas boiler)
There is a possibility of trouble due to the adhesion of um.
Leakage NH as much as possible3Under conditions that reduce
The reality is that they are being driven.

【0003】[0003]

【発明が解決しようとする課題】前記のようにNH3
還元剤とする乾式脱硝装置を単独で使用した場合には、
リークNH3 の量を10ppm以下に抑えようとすると
90%以上の脱硝率は期待できず、またSOxを含有す
る排ガスに適用する場合には、後流側の機器の酸性硫安
対策が必要であった。本発明は、前記従来技術の問題点
を解決し、リークNH3 の量を低く抑えながら90%以
上の脱硝率が達成でき、しかもSOxを含有する排ガス
に適用する場合でも後流側の機器において特別な酸性硫
酸アンモニウム対策を必要としない燃焼排ガスの脱硝方
法を提供することを目的とする。
When the dry denitration apparatus using NH 3 as a reducing agent is used alone as described above,
If the amount of leak NH 3 is to be suppressed to 10 ppm or less, a denitrification rate of 90% or more cannot be expected, and when applied to exhaust gas containing SOx, it is necessary to take measures against acidic ammonium sulfate in the downstream equipment. It was The present invention solves the above-mentioned problems of the prior art, achieves a denitrification rate of 90% or more while keeping the amount of leak NH 3 low, and even when it is applied to exhaust gas containing SOx, it is used in equipment on the downstream side. It is an object of the present invention to provide a method for denitration of combustion exhaust gas that does not require any special measures against ammonium ammonium sulfate.

【0004】[0004]

【課題を解決するための手段】本発明はNOxを含有す
る燃焼排ガスを先ずNH3 を還元剤とする乾式脱硝装置
(以下、NH3 脱硝装置と略称する)に導いて脱硝を行
い、次いで炭化水素を還元剤とする乾式脱硝装置(以
下、炭化水素脱硝装置と略称する)に導き残りのNOx
及び未反応のNH3 が酸化されて生じたNOxを分解除
去することを特徴とする燃焼排ガスの脱硝方法である。
本発明の燃焼排ガスの脱硝方法には、好ましい実施態様
として次の方法が含まれる。 (1)燃焼排ガス経路中の燃焼排ガスの温度が200〜
600℃の範囲となるような位置にNH3 脱硝装置及び
炭化水素脱硝装置を設置する排ガスの脱硝方法。 (2)NH3 脱硝装置において燃焼排ガス中に添加する
NH3 の量が、排ガス中のNOxに対し等モル以下であ
る排ガスの脱硝方法。 (3)燃焼排ガス中に還元剤として添加するNH3 及び
炭化水素の両者を、いずれもNH3 脱硝装置の上流側で
燃焼排ガス中に添加する排ガスの脱硝方法。 (4)炭化水素脱硝装置の排ガス出口付近に、酸化触媒
層を設け、未反応の炭化水素を分解除去するようにした
排ガスの脱硝方法。
According to the present invention, combustion exhaust gas containing NOx is first introduced into a dry denitration device (hereinafter abbreviated as NH 3 denitration device) using NH 3 as a reducing agent for denitration and then carbonization. Remaining NOx led to a dry denitration device (hereinafter abbreviated as hydrocarbon denitration device) using hydrogen as a reducing agent
And a method for denitrifying combustion exhaust gas, characterized by decomposing and removing NOx generated by oxidizing unreacted NH 3 .
The combustion exhaust gas denitration method of the present invention includes the following methods as preferred embodiments. (1) The temperature of the combustion exhaust gas in the combustion exhaust gas path is 200 to
An exhaust gas denitration method in which an NH 3 denitration device and a hydrocarbon denitration device are installed in a position such that the temperature is within a range of 600 ° C. (2) An exhaust gas denitration method in which the amount of NH 3 added to the combustion exhaust gas in the NH 3 denitration device is equal to or less than equimolar to NOx in the exhaust gas. (3) A method for denitration of exhaust gas in which both NH 3 and hydrocarbon added as a reducing agent to the combustion exhaust gas are added to the combustion exhaust gas on the upstream side of the NH 3 denitration device. (4) An exhaust gas denitration method in which an unreacted hydrocarbon is decomposed and removed by providing an oxidation catalyst layer near the exhaust gas outlet of the hydrocarbon denitration apparatus.

【0005】本発明の脱硝方法は、前段のNH3 脱硝装
置においてNOxをある程度まで低減させ、後段に炭化
水素脱硝装置を設置して残りのNOxを分解するように
している点に特徴がある。このような構成をとることに
より、リークNH3 の問題もなく、高い脱硝率が得られ
るようになったのである。
The denitration method of the present invention is characterized in that NOx is reduced to some extent in the NH 3 denitration apparatus in the first stage, and a hydrocarbon denitration apparatus is installed in the second stage to decompose the remaining NOx. With such a structure, a high denitration rate can be obtained without the problem of leak NH 3 .

【0006】NH3 脱硝装置において、NOxは脱硝触
媒の存在下にNH3 と反応して次の反応式に従って分解
される。 4NO+4NH3 +O2 →4N2 +6H2 O (1) ここで使用する脱硝触媒は特殊なものではなく、通常の
NH3 脱硝装置で使用される酸化チタンを担体としてバ
ナジウムやタングステンなどの活性金属成分を担持させ
た触媒などを使用すればよい。
In the NH 3 denitration apparatus, NOx reacts with NH 3 in the presence of a denitration catalyst and is decomposed according to the following reaction formula. 4NO + 4NH 3 + O 2 → 4N 2 + 6H 2 O (1) The denitration catalyst used here is not special, and titanium oxide used in ordinary NH 3 denitration equipment is used as a carrier to support active metal components such as vanadium and tungsten. A supported catalyst may be used.

【0007】炭化水素脱硝装置においては、NOxは脱
硝触媒の存在下に炭化水素(CH2で表示)あるいは炭
化水素から生成する含酸素炭化水素(CH2 Oで表示)
と反応して次の反応式に従って分解される。 CH2 +1/2O2 →CH2 O (2) 2NO+CH2 O→N2 +CO+H2 O (3) CH2 O+1/2O2 →H2 O+CO (4) CO+1/2O2 →CO2 (5) ここで炭化水素としては特に制限はなく、例えばエチレ
ン、プロピレン、ブタジエン、ベンゼン等取扱いが容易
なものを使用すればよい。また、ここでの脱硝触媒とし
てはCuイオン交換メタロシリケート触媒、結晶性シリ
ケートにイリジウム等の白金族元素を担持させた触媒な
どが使用できる。さらに、NH3 脱硝装置から排ガス中
に混入してくる未反応のNH3 は次式に従って酸化され
てNOxとなり、排ガス中のNOxとともに分解除去さ
れる。 2NH3 +5/2O2 →2NO+3H2 O (6) 2NO+CH2 O→N2 +CO+H2 O (7) CO+1/2O2 →CO2 (8)
In a hydrocarbon denitration apparatus, NOx is a hydrocarbon (represented by CH 2 ) or an oxygen-containing hydrocarbon (represented by CH 2 O) produced from hydrocarbon in the presence of a denitration catalyst.
And is decomposed according to the following reaction formula. CH 2 + 1 / 2O 2 → CH 2 O (2) 2NO + CH 2 O → N 2 + CO + H 2 O (3) CH 2 O + 1 / 2O 2 → H 2 O + CO (4) CO + 1 / 2O 2 → CO 2 (5) where The hydrocarbon is not particularly limited and, for example, ethylene, propylene, butadiene, benzene and the like which can be easily handled may be used. Further, as the denitration catalyst here, a Cu ion-exchange metallosilicate catalyst, a catalyst in which a platinum group element such as iridium is supported on a crystalline silicate, and the like can be used. Further, the unreacted NH 3 mixed in the exhaust gas from the NH 3 denitration device is oxidized into NOx according to the following equation, and is decomposed and removed together with NOx in the exhaust gas. 2NH 3 + 5 / 2O 2 → 2NO + 3H 2 O (6) 2NO + CH 2 O → N 2 + CO + H 2 O (7) CO + 1 / 2O 2 → CO 2 (8)

【0008】本発明の脱硝方法をボイラプラントの排ガ
ス処理に適用した実施態様を図1に、ガスタービンプラ
ントに適用した実施態様を図2に示す。図1及び図2に
おいて、1はボイラ、2はガスタービン、3はNH3
入ノズル、4−1はNH3 脱硝装置、4−2は炭化水素
脱硝装置、5は炭化水素等の注入ノズル、6は空気予熱
器、7は排ガスボイラ(排ガスボイラ内の熱交換器は図
示省略)、8は煙突、9は燃焼用空気、10は節炭器を
表す。ボイラプラントの場合には脱硝装置はボイラ1の
節炭器10と空気予熱器6との間に設置されるが、この
位置での排ガス温度はボイラの運用負荷を考慮すれば2
00〜450℃程度となる。また、ガスタービンプラン
トの場合には、脱硝装置は排ガスボイラ7の前又は内部
に設置されることになるがこの場合の排ガス温度は20
0〜600℃程度である。
FIG. 1 shows an embodiment in which the denitration method of the present invention is applied to exhaust gas treatment of a boiler plant, and FIG. 2 shows an embodiment in which it is applied to a gas turbine plant. 1 and 2, 1 is a boiler, 2 is a gas turbine, 3 is an NH 3 injection nozzle, 4-1 is an NH 3 denitration device, 4-2 is a hydrocarbon denitration device, 5 is an injection nozzle for hydrocarbons, etc., 6 is an air preheater, 7 is an exhaust gas boiler (a heat exchanger in the exhaust gas boiler is not shown), 8 is a chimney, 9 is combustion air, and 10 is a economizer. In the case of a boiler plant, the denitration device is installed between the economizer 10 of the boiler 1 and the air preheater 6, but the exhaust gas temperature at this position is 2 if the operational load of the boiler is taken into consideration.
It becomes about 00 to 450 ° C. Further, in the case of a gas turbine plant, the denitration device is installed in front of or inside the exhaust gas boiler 7, but the exhaust gas temperature in this case is 20
It is about 0 to 600 ° C.

【0009】NH3 を還元剤とするNH3 脱硝法と、炭
化水素を還元剤とする炭化水素脱硝法における脱硝率と
処理ガス温度との関係は、還元剤や脱硝触媒の種類、処
理ガスの濃度や通ガス条件等により異なるが、図3の
(a)及び(b)に示す試験結果からわかるように、両
方法とも200〜600℃の温度範囲で良好な脱硝活性
を示す。したがってこれらの方法は、前記のボイラプラ
ントあるいはガスタービンプラントの排ガス処理に適し
た脱硝方法であるといえる。
[0009] and NH 3 denitration method of the NH 3 and the reducing agent, the relation between the NOx removal efficiency and the processing gas temperature at the hydrocarbon denitration method using hydrocarbon as a reducing agent, the reducing agent and the type of the denitration catalyst, the process gas Although it depends on the concentration, the gas flow conditions, etc., as can be seen from the test results shown in FIGS. 3A and 3B, both methods show good denitration activity in the temperature range of 200 to 600 ° C. Therefore, it can be said that these methods are denitration methods suitable for the exhaust gas treatment of the above-mentioned boiler plant or gas turbine plant.

【0010】次に、NH3 脱硝法におけるNOxに対す
るNH3 のモル比と脱硝率及びークNH3 の量との関係
は図4のようになっている。この関係も、触媒の種類や
ガスの処理条件により若干異なるが、図4に示すように
リークNH3 が数ppm以下で、脱硝率が80%を越え
る条件がある。このような条件下でNH3 脱硝を行い、
次いで炭化水素脱硝法により残存するNOxの分解とN
3 の分解を行うことにより、高い脱硝率が達成でき、
リークNH3 もほとんどなく、SOxを含有するガスに
適用した場合でも、酸性硫酸アンモニウム対策を必要と
しない脱硝システムを構成することができる。
Next, the relationship between the molar ratio of NH 3 to NOx in the NH 3 denitration method, the denitration rate and the amount of slag NH 3 is as shown in FIG. This relationship also varies slightly depending on the type of catalyst and gas treatment conditions, but as shown in FIG. 4, there is a condition where the leak NH 3 is several ppm or less and the denitration rate exceeds 80%. Under such conditions, NH 3 denitration is performed,
Then, the remaining NOx is decomposed and N
By decomposing H 3 , a high denitration rate can be achieved,
There is almost no leak NH 3, and even when applied to a gas containing SOx, it is possible to configure a denitration system that does not require measures against ammonium ammonium sulfate.

【0011】なお、NH3 脱硝装置では炭化水素はほと
んど反応に関与しないでそのまま排出される。したがっ
て、図1及び2の実施態様では、NH3 及び炭化水素を
それぞれNH3 脱硝装置及び炭化水素脱硝装置の前で注
入しているが、図6及び7に示すようにNH3 及び炭化
水素を、前段のNH3 脱硝装置の前でNH3 及び炭化水
素等注入ノズル11から同時に注入するようにしてもよ
い。
In the NH 3 denitration apparatus, hydrocarbons are discharged as they are, with little involvement in the reaction. Thus, in the embodiment of FIG. 1 and 2, although injected NH 3 and hydrocarbons in front of each NH 3 denitration apparatus and hydrocarbons denitrator, NH 3 and hydrocarbons as shown in FIGS. 6 and 7 Alternatively, the NH 3 and hydrocarbons may be simultaneously injected from the injection nozzle 11 in front of the NH 3 denitration device in the previous stage.

【0012】炭化水素脱硝装置においては、脱硝反応を
効率よく進行させるため、過剰の炭化水素を注入する。
そのため、処理ガス中に未反応の炭化水素が流出する。
このような未反応炭化水素の混入が不都合な場合には、
炭化水素脱硝装置の出口付近にPt系、Pd系などの酸
化触媒の層を設置し、酸化処理を行う。この酸化触媒の
層は炭化水素脱硝装置と一体化させて設置してもよく、
また後流側に別途設けてもよい。
In the hydrocarbon denitration apparatus, an excess amount of hydrocarbon is injected in order to allow the denitration reaction to proceed efficiently.
Therefore, unreacted hydrocarbons flow out into the process gas.
When such unreacted hydrocarbon is unfavorable,
A layer of a Pt-based or Pd-based oxidation catalyst is installed near the outlet of the hydrocarbon denitration apparatus, and oxidation treatment is performed. This oxidation catalyst layer may be installed integrally with the hydrocarbon denitration device,
Alternatively, it may be separately provided on the downstream side.

【0013】[0013]

【実施例】以下実施例により本発明の方法をさらに具体
的に説明する。以下の試験は、担体としての酸化チタン
にバナジウム及びタングステンを活性金属として担持さ
せた触媒を充填したNH3 脱硝装置及び結晶性シリケー
トにイリジウムを担持させた触媒を充填した炭化水素脱
硝装置を用いて行った。実施例1〜4における試験条件
は次のとおりとした。 試料ガス:100ppmのNO及び1%のO2 を含み残
りがN2 、CO2 及びH2 O ガス量:200Nm3 /H 各脱硝装置におけるSV値:10000H-1 (実施例1)先ず、前記試料ガスに、NOに対し1.0
モル比のNH3 (100ppm)を添加して200〜6
00℃でNH3 脱硝装置に通し、処理温度と脱硝率の関
係を調べた。結果を図3(a)に示す。次に、前記試料
ガスに、NOに対し1.0モル比のC2 4 (100p
pm)及び0.34モル比のC3 6 (34ppm)を
添加して200〜600℃で炭化水素脱硝装置に通し処
理温度と脱硝率の関係を調べた。結果を図3(b)に示
す。図3(a)及び図3(b)から処理ガス温度200
〜600℃の範囲でいずれも60%以上の高い脱硝率が
得られていることがわかる。
EXAMPLES The method of the present invention will be described in more detail with reference to the following examples. The following tests were carried out by using an NH 3 denitration apparatus in which titanium oxide as a carrier was loaded with a catalyst supporting vanadium and tungsten as active metals and a hydrocarbon denitration apparatus in which a crystalline silicate was loaded with a catalyst supporting iridium. went. The test conditions in Examples 1 to 4 were as follows. Sample gas: NO of 100 ppm and 1% of O 2 and the rest are N 2 , CO 2 and H 2 O Gas amount: 200 Nm 3 / H SV value in each denitration apparatus: 10000H -1 (Example 1) First, 1.0 for NO in sample gas
NH 3 molar ratio (100 ppm) was added to 200-6
It was passed through an NH 3 denitration apparatus at 00 ° C., and the relationship between the treatment temperature and the denitration rate was investigated. The results are shown in Fig. 3 (a). Next, the sample gas was added with C 2 H 4 (100 p
pm) and 0.34 molar ratio of C 3 H 6 (34 ppm) were added and the mixture was passed through a hydrocarbon denitration apparatus at 200 to 600 ° C. to examine the relationship between the treatment temperature and the denitration rate. The results are shown in Fig. 3 (b). From FIG. 3A and FIG. 3B, the process gas temperature 200
It can be seen that a high denitration rate of 60% or more is obtained in the range of up to 600 ° C.

【0014】(実施例2)先ず、前記試料ガスに、NO
に対しそれぞれ0.8、0.9、1.0、1.1、及び
1.2モル比のNH3 を添加し、380℃の温度でNH
3 脱硝装置に通し、脱硝率及びリークNH3 量の変化を
調べた。結果は図4のグラフに示すとおりで、NH3
ル比1.0付近から90%を越える脱硝率が得られる
が、リークNH3 量も増加し、10ppmを越えるよう
になることがわかる。
(Embodiment 2) First, NO is added to the sample gas.
To each of 0.8, 0.9, 1.0, 1.1, and 1.2 molar ratios of NH 3 , respectively, and added at a temperature of 380 ° C.
3 Through a denitration device, changes in the denitration rate and the leak NH 3 amount were examined. The results are shown in the graph of FIG. 4, and it can be seen that a denitration rate of more than 90% is obtained from an NH 3 molar ratio of around 1.0, but the amount of leaked NH 3 also increases and exceeds 10 ppm.

【0015】次に、前記試料ガスに、NOに対し1.0
モル比のC2 4 (100ppm)及び0.34モル比
のC3 6 (34ppm)を添加して、380℃で炭化
水素脱硝装置に通し脱硝したところ、脱硝率は約90%
であった(図3(b)の点線で示す点)。 さらに、前
記試料ガスに、1.0モル比のNH3 (100ppm)
を添加しNH3 脱硝装置に通して脱硝を行い90%のN
Oを除去し、その処理ガスに残存するNOに対し1.0
モル比のC2 4 (10ppm)及び0.34モル比の
3 6 (3.4ppm)を添加し、200〜600℃
で炭化水素脱硝装置に通して残存するNOを分解した結
果は図5(a)に示すとおりで、総合の脱硝率は99%
以上となり、リークNH3 も5ppm以下であった。
Next, 1.0 is added to the sample gas for NO.
When C 2 H 4 (100 ppm) in a molar ratio and C 3 H 6 (34 ppm) in a 0.34 molar ratio were added and denitration was performed at 380 ° C. through a hydrocarbon denitration device, the denitration rate was about 90%.
(Dotted line in FIG. 3B). Furthermore, the sample gas was added with 1.0 molar ratio of NH 3 (100 ppm).
Is added, and denitration is performed by passing it through an NH 3 denitration device to obtain 90% N
O is removed, and 1.0 is applied to NO remaining in the processing gas.
Add a molar ratio of C 2 H 4 (10 ppm) and a 0.34 molar ratio of C 3 H 6 (3.4 ppm), and add 200 to 600 ° C.
Fig. 5 (a) shows the result of decomposing the remaining NO through the hydrocarbon denitration equipment, and the total denitration rate is 99%.
As described above, the leak NH 3 was 5 ppm or less.

【0016】(実施例3)前記試料ガスに、NOに対し
0.8モル比のNH3 (80ppm)を添加してNH3
脱硝装置に通して脱硝し(図4のNH3 /NO=0.8
の点)、その処理ガスに残存するNOに対し10ppm
のC2 4 及び3.4ppmのC3 6 を添加し、20
0〜600℃で炭化水素脱硝装置に通して残存するNO
を分解した結果は図5(b)に示すとおりで、総合の硝
率は98%を達成し、リークNH3はほとんど零とする
ことができた。このように適切な条件を選べば脱硝装置
出口のNH3 を殆ど零とすることができ、排ガス中にS
Oxを含む場合でも後続機器における酸性硫安対策を不
要にできることがわかる。
Example 3 NH 3 (80 ppm) in a 0.8 molar ratio to NO was added to the sample gas to produce NH 3
Denitration is performed through a denitration device (NH 3 /NO=0.8 in FIG. 4).
Point), 10 ppm relative to NO remaining in the processing gas
C 2 H 4 and 3.4 ppm C 3 H 6 were added, 20
NO remaining after passing through a hydrocarbon denitration device at 0-600 ° C
The result of decomposing is shown in FIG. 5 (b), and the overall glass rate reached 98%, and the leak NH 3 could be made almost zero. If proper conditions are selected in this way, NH 3 at the outlet of the denitration device can be made almost zero, and S
It can be seen that even if Ox is included, measures for acidic ammonium sulfate in subsequent devices can be eliminated.

【0017】(実施例4)前記試料ガスに、1.0モル
比のNH3 、0.1モル比のC2 4 及び0.034モ
ル比のC3 6 を添加し、380℃の温度で先ずNH3
脱硝装置に通して脱硝を行い、その処理ガスをさらに炭
化水素脱硝装置に通して残存するNOxを分解した結
果、総合の脱硝率は99%以上で、リークNH3 も5p
pm以下となり、図5(a)の例と同様の効果が得られ
た。このことから、NH3 脱硝装置内ではNH3 のみが
有効に反応し、炭化水素は反応せず下流に流出し、炭化
水素脱硝装置内で反応していることがわかる。したがっ
て図6及び図7に示すように、還元剤であるNH3 と炭
化水素とを同時に注入することができるので、十分に拡
散、混合するスペースが得られ、しかも注入ノズルスペ
ースも1カ所でよく、装置もコンパクトになる。
Example 4 To the sample gas, 1.0 molar ratio of NH 3 , 0.1 molar ratio of C 2 H 4 and 0.034 molar ratio of C 3 H 6 were added, and the mixture was heated at 380 ° C. NH 3 at temperature
As a result of denitration through the denitration equipment and passing the treated gas through the hydrocarbon denitration equipment to decompose the remaining NOx, the total denitration rate is 99% or more, and the leak NH 3 is 5 p
It was pm or less, and the same effect as that of the example of FIG. From this, it can be seen that only NH 3 reacts effectively in the NH 3 denitration device, hydrocarbons do not react and flow out downstream, and react in the hydrocarbon denitration device. Therefore, as shown in FIGS. 6 and 7, NH 3 as a reducing agent and hydrocarbon can be injected at the same time, so that a space for sufficiently diffusing and mixing can be obtained, and the injection nozzle space may be one place. , The device becomes compact.

【0018】(実施例5) 試験条件 試料ガス:100ppmのNO及び1%のO2 を含み残
りがN2 、CO2 及びH2 O ガス量:200Nm3 /H ガス温度:380° 炭化水素脱硝装置及び酸化触媒層におけるSV値:10
000H-1 前記試料ガスに、NOに対し1.0モル比(100pp
m)のC2 4 及び0.34モル比(34ppm)のC
3 6 を添加して炭化水素脱硝装置に通して脱硝処理を
行った。その結果図3(b)からわかるように約90%
の脱硝率が得られたが、処理ガス中にはC2 4 及びC
3 6 がそれぞれ20ppm及び7ppm流出してい
た。
(Example 5) Test conditions Sample gas: NO of 100 ppm and 1% of O 2 with the balance being N 2 , CO 2 and H 2 O gas amount: 200 Nm 3 / H Gas temperature: 380 ° Hydrocarbon denitration SV value in the apparatus and oxidation catalyst layer: 10
000H -1 1.0 molar ratio to NO in the sample gas (100 pp
m) C 2 H 4 and 0.34 molar ratio (34 ppm) C
3 H 6 was added, and the mixture was passed through a hydrocarbon denitration apparatus for denitration treatment. As a result, as shown in Fig. 3 (b), about 90%
Although denitration rate is obtained, the processing gas C 2 H 4 and C
20 ppm and 3 ppm of 3 H 6 were respectively discharged.

【0019】次に炭化水素脱硝装置の後流にPt触媒よ
りなる酸化触媒層を設置し、前記しょりガスを通したと
ころC2 4 及びC3 6 はほぼ零となった。このこと
から、NH3 脱硝装置、炭化水素脱硝装置及び酸化触媒
層を組み合わせることにより、処理ガス中のNH3 及び
炭化水素をほぼ零とし、高い脱硝率を達成することがで
きることがわかる。
Next, an oxidation catalyst layer made of a Pt catalyst was installed in the downstream of the hydrocarbon denitration apparatus, and when the above-mentioned soot gas was passed, C 2 H 4 and C 3 H 6 became almost zero. From this, it can be seen that by combining the NH 3 denitration device, the hydrocarbon denitration device, and the oxidation catalyst layer, NH 3 and hydrocarbons in the process gas can be made almost zero, and a high denitration rate can be achieved.

【0020】[0020]

【発明の効果】本発明の方法によれば、高い脱硝率が得
られ経済的に有利であるがリークNH 3 の問題があるN
3 脱硝装置とNOxに加えてNH3 も分解することの
できる炭化水素脱硝装置を組み合わせることにより、処
理ガス中へのリークNH3 をほぼ零とし、200〜60
0℃の広い温度範囲において、90%以上の高い脱硝率
で燃焼排ガス中のNOxを除去することができる。ま
た、処理ガス中へのリークNH3 がほとんど無いので、
脱硝装置の後流に設置される機器での酸性硫安対策も不
要である。さらに、酸化触媒層を併設することにより、
処理ガス中への炭化水素の流出も防ぐことができる。
According to the method of the present invention, a high denitration rate can be obtained.
And is economically advantageous, but leak NH 3There is a problem of N
H3In addition to denitration equipment and NOx, NH3Of disassembling
By combining the hydrocarbon denitration equipment that can
Leakage into the natural gas NH3Is set to almost zero, and 200 to 60
High denitration rate of 90% or more in a wide temperature range of 0 ℃
Thus, NOx in the combustion exhaust gas can be removed. Well
Leakage into the processing gas NH3Because there is almost no
Measures against acidic ammonium sulfate in equipment installed downstream of the denitration equipment are also not
It is important. Furthermore, by installing an oxidation catalyst layer,
The outflow of hydrocarbons into the process gas can also be prevented.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の方法をボイラプラントへ適用した1実
施態様を示す概略説明図。
FIG. 1 is a schematic explanatory view showing one embodiment in which the method of the present invention is applied to a boiler plant.

【図2】本発明の方法をガスタービンプラントへ適用し
た1実施態様を示す概略説明図。
FIG. 2 is a schematic explanatory view showing one embodiment in which the method of the present invention is applied to a gas turbine plant.

【図3】NH3 脱硝法と炭化水素脱硝法における、処理
ガス温度と脱硝率との関係を示すグラフ。
FIG. 3 is a graph showing the relationship between the treatment gas temperature and the denitration rate in the NH 3 denitration method and the hydrocarbon denitration method.

【図4】NH3 脱硝法における、NH3 とNOxのモル
比と脱硝率及びリークNH3 量との関係を示すグラフ。
FIG. 4 is a graph showing the relationship between the molar ratio of NH 3 and NOx, the denitration rate, and the amount of leaked NH 3 in the NH 3 denitration method.

【図5】NH3 脱硝装置と炭化水素脱硝装置とに連続で
通した際の処理ガス温度に対する脱硝率とリークNH3
の量との関係を示すグラフ。
FIG. 5: Denitration rate and leak NH 3 with respect to process gas temperature when continuously passing through an NH 3 denitration device and a hydrocarbon denitration device
A graph showing the relationship with the amount of.

【図6】本発明の方法をボイラプラントへ適用し、NH
3 と炭化水素とを同時に注入する一実施態様を示す概略
説明図。
FIG. 6 is a schematic diagram showing a method of applying the method of the present invention to a boiler plant,
Schematic explanatory drawing which shows one embodiment which injects 3 and hydrocarbon simultaneously.

【図7】本発明の方法をガスタービンプラントへ適用
し、NH3 と炭化水素とを同時に注入する一実施態様を
示す概略説明図。
FIG. 7 is a schematic explanatory view showing an embodiment in which the method of the present invention is applied to a gas turbine plant and NH 3 and hydrocarbon are simultaneously injected.

【図8】NH3 脱硝装置をボイラプラントへ適用した従
来の技術を示す概略説明図。
FIG. 8 is a schematic explanatory view showing a conventional technique in which an NH 3 denitration device is applied to a boiler plant.

【図9】NH3 脱硝装置をガスタービンプラントへ適用
した従来の技術を示す概略説明図。
FIG. 9 is a schematic explanatory view showing a conventional technique in which an NH 3 denitration device is applied to a gas turbine plant.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 芹澤 暁 長崎県長崎市飽の浦町1番1号 三菱重工 業株式会社長崎造船所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Akira Serizawa 1-1 1-1 Atsunoura-machi, Nagasaki-shi, Nagasaki Mitsubishi Heavy Industries, Ltd. Nagasaki Shipyard Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 NOxを含有する燃焼排ガスを先ずNH
3 を還元剤とする乾式脱硝装置に導いて脱硝を行い、次
いで炭化水素を還元剤とする乾式脱硝装置に導き残りの
NOx及び未反応のNH3 が酸化されて生じたNOxを
分解除去することを特徴とする燃焼排ガスの脱硝方法。
1. A combustion exhaust gas containing NOx is first converted to NH.
DeNOx by introducing it to a dry denitration device using 3 as a reducing agent, and then introducing it to a dry denitration device using hydrocarbon as a reducing agent to decompose and remove residual NOx and NOx generated by oxidation of unreacted NH 3. A method for denitration of combustion exhaust gas, characterized by:
【請求項2】 燃焼排ガス経路中の燃焼排ガスの温度が
200〜600℃の範囲となるような位置にNH3 を還
元剤とする乾式脱硝装置及び炭化水素を還元剤とする乾
式脱硝装置を設置することを特徴とする請求項1に記載
の燃焼排ガスの脱硝方法。
2. A dry denitration device using NH 3 as a reducing agent and a dry denitration device using hydrocarbon as a reducing agent are installed at a position in the combustion exhaust gas passage where the temperature of the combustion exhaust gas is in the range of 200 to 600 ° C. The method for denitrifying combustion exhaust gas according to claim 1, wherein
【請求項3】 NH3 を還元剤とする乾式脱硝装置にお
いて燃焼排ガス中に添加するNH3 の量が、排ガス中の
NOxに対し等モル以下であることを特徴とする請求項
1又は2に記載の燃焼排ガスの脱硝方法。
3. The dry denitration apparatus using NH 3 as a reducing agent, wherein the amount of NH 3 added to the combustion exhaust gas is equal to or less than equimolar to NOx in the exhaust gas. A method for denitrifying combustion exhaust gas according to the description.
【請求項4】 燃焼排ガス中に還元剤として添加するN
3 及び炭化水素の両者を、いずれもNH3 を還元剤と
する乾式脱硝装置の上流側で燃焼排ガス中に添加するこ
とを特徴とする請求項1ないし3のいずれかに記載の燃
焼排ガスの脱硝方法。
4. N added as a reducing agent to combustion exhaust gas
Both the H 3 and the hydrocarbon are added to the combustion exhaust gas at the upstream side of the dry denitration apparatus using NH 3 as a reducing agent, and the combustion exhaust gas according to any one of claims 1 to 3, wherein Denitration method.
【請求項5】 炭化水素を還元剤とする乾式脱硝装置の
排ガス出口付近に、酸化触媒層を設け、未反応の炭化水
素を分解除去することを特徴とする請求項1ないし4の
いずれかに記載の燃焼排ガスの脱硝方法。
5. An oxidation catalyst layer is provided in the vicinity of the exhaust gas outlet of a dry denitration apparatus using hydrocarbon as a reducing agent to decompose and remove unreacted hydrocarbons. A method for denitrifying combustion exhaust gas according to the description.
JP5200663A 1993-08-12 1993-08-12 Denitration of combustion exhaust gas Withdrawn JPH0751536A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5200663A JPH0751536A (en) 1993-08-12 1993-08-12 Denitration of combustion exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5200663A JPH0751536A (en) 1993-08-12 1993-08-12 Denitration of combustion exhaust gas

Publications (1)

Publication Number Publication Date
JPH0751536A true JPH0751536A (en) 1995-02-28

Family

ID=16428160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5200663A Withdrawn JPH0751536A (en) 1993-08-12 1993-08-12 Denitration of combustion exhaust gas

Country Status (1)

Country Link
JP (1) JPH0751536A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008161759A (en) * 2006-12-27 2008-07-17 Hitachi Zosen Corp Leak ammonia reducing method in non-catalytic denitrification of non-transfer type ash melting furnace exhaust gas
JP2011522987A (en) * 2008-05-15 2011-08-04 ジョンソン、マッセイ、インコーポレイテッド Emission reduction device used with heat recovery steam generator
JP2023512906A (en) * 2020-01-08 2023-03-30 株式会社イーエムコ Thermal power plant flue gas treatment method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008161759A (en) * 2006-12-27 2008-07-17 Hitachi Zosen Corp Leak ammonia reducing method in non-catalytic denitrification of non-transfer type ash melting furnace exhaust gas
JP2011522987A (en) * 2008-05-15 2011-08-04 ジョンソン、マッセイ、インコーポレイテッド Emission reduction device used with heat recovery steam generator
JP2023512906A (en) * 2020-01-08 2023-03-30 株式会社イーエムコ Thermal power plant flue gas treatment method

Similar Documents

Publication Publication Date Title
US6197268B1 (en) Reduction of toxic substances in waste gas emissions
EP1625883A1 (en) Process for treating ammonia-containing exhaust gases
TW200401746A (en) Selective non-catalytic reduction of NOx
JP4574918B2 (en) Flue gas purification device
DE69519137D1 (en) Exhaust gas denitrification process
JP2017006813A (en) Denitration apparatus and treatment method of nitrogen oxide
US5505919A (en) Method for the denitration of exhaust gas
JPH0751536A (en) Denitration of combustion exhaust gas
FI88363B (en) ROEKGASANLAEGGNING
KR101449244B1 (en) The De-NOx system for combined LNG gas turbine exhaust gas
JPH0691138A (en) Method for processing exhaust gas and device therefor
JPH0531327A (en) Treatment of exhaust gas from diesel engine
JP4652047B2 (en) Exhaust gas treatment method and urea SCR type automobile exhaust gas treatment device
JP2007327389A (en) Exhaust gas treatment device
EP0468205B1 (en) Apparatus for treating exhaust gas
JPH0653211B2 (en) Method for removing nitrogen oxides in exhaust gas
JP2607639B2 (en) DeNOx method
JPS63278530A (en) Exhaust gas denitration equipment for diesel engine
JPH11128686A (en) Apparatus for denitrificating stack gas
JP4045375B2 (en) Exhaust gas purification device
JPH04225842A (en) Recovering method for catalyst for denitrification of waste gas
JP2864689B2 (en) NOx gas treatment method
JPH03258326A (en) Method and apparatus for denitrating exhaust gas
JP2023519742A (en) Method for removal of NOx and nitrous oxide in process offgas
JPH0326318A (en) Waste gas treating device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20001031