JPH11128686A - Apparatus for denitrificating stack gas - Google Patents

Apparatus for denitrificating stack gas

Info

Publication number
JPH11128686A
JPH11128686A JP9292075A JP29207597A JPH11128686A JP H11128686 A JPH11128686 A JP H11128686A JP 9292075 A JP9292075 A JP 9292075A JP 29207597 A JP29207597 A JP 29207597A JP H11128686 A JPH11128686 A JP H11128686A
Authority
JP
Japan
Prior art keywords
oxidizing agent
denitration
catalyst layer
nox
injection pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9292075A
Other languages
Japanese (ja)
Inventor
Ryosuke Nakagawa
了介 中川
Masato Mukai
正人 向井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP9292075A priority Critical patent/JPH11128686A/en
Publication of JPH11128686A publication Critical patent/JPH11128686A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To reduce the consumption of NH3 as a reducing agent and to reduce the concn. of NOx at the outlet of a denitrificating catalyst bed to a regulated value or below by disposing an oxidizing agent injection pipe between the 0 catalyst bed and an ammonia decomposition type catalyst bed in an apparatus for denitrificating stack gas. SOLUTION: A reducing agent is injected from a reducing agent injection pipe 2 into waste gas which flows in an apparatus 1 for denitrificating stack gas and the waste gas is introduced into a denitrificating catalyst bed 3, where NOx is removed. An oxidizing agent is then injected from an oxidizing agent injection pipe 5, a part of unreacted NH3 is oxidized to NOx and the waste gas is introduced into an NH3 decomposition type catalyst bed 4, where the remaining unreacted NH3 and the NOx are brought into denitridificating reaction again and removed. When the NH3 decomposing ability of the NH3 decomposition type catalyst bed 4 deteriorates, the oxidizing agent is additionally injected, a part of the unreacted NH3 is oxidized to NOx and denitrification is carried out. The deterioration of the NH3 decomposing ability is compensated and successive operation of the apparatus 1 is enabled.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、事業用及び産業用
ボイラ等の排ガスを脱硝する装置に係り、特に高効率の
脱硝が要求される時に装置出口の排煙中に含まれる未反
応アンモニア(未反応NH3)を低減させる排煙脱硝装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for denitrifying exhaust gas from a commercial or industrial boiler or the like, and particularly to an unreacted ammonia contained in flue gas at an outlet of the apparatus when highly efficient denitration is required. The present invention relates to a flue gas denitration apparatus for reducing unreacted NH 3 ).

【0002】[0002]

【従来の技術】発電所、各種工場、自動車等から排出さ
れる排ガス中の窒素酸化物(NOx)は、光化学スモッ
グや酸性雨の原因物質であり、その効果的な除去方法と
して、アンモニア(NH3)又はアンモニア水を還元剤
とした選択的接触還元による排煙脱硝法が火力発電所等
を中心に幅広く用いられている。化学反応式を下記に示
す。 4NO+4NH3+O2→4N2+6H2O 通常、脱硝装置において排ガス中に注入されるNH3
は、NOxに対する容量比(モル比)で表わされ、脱硝
率(NOx除去率)の増加に従い、モル比を増加する。
例えば脱硝率80%時にはモル比は約0.8となる。
2. Description of the Related Art Nitrogen oxides (NOx) in exhaust gas emitted from power plants, various factories, automobiles, etc. are substances that cause photochemical smog and acid rain. 3 ) Or flue gas denitration by selective catalytic reduction using ammonia water as a reducing agent is widely used mainly in thermal power plants. The chemical reaction formula is shown below. 4NO + 4NH 3 + O 2 → 4N 2 + 6H 2 O Normally, the amount of NH 3 injected into exhaust gas in a denitration device is represented by a volume ratio (molar ratio) to NOx, and as the denitration ratio (NOx removal ratio) increases, Increase molar ratio.
For example, when the denitration rate is 80%, the molar ratio is about 0.8.

【0003】近年、環境規制の強化により排煙中のNO
xに関する排出規制も強化が予想され、高効率の排煙脱
硝技術の開発は重要課題である。高効率の排煙脱硝技術
の特徴は、NH3を過剰気味に排ガス中に注入(高モル
比注入/モル比≧1)した後、脱硝触媒層へ通ガスして
脱硝し、その後、排ガス中に含まれる未反応NH3の分
解処理を行うことにある。
In recent years, due to the tightening of environmental regulations, NO
It is expected that emission regulations for x will be strengthened, and the development of highly efficient flue gas denitration technology is an important issue. Feature of high efficiency denitrification technology, and after injection (high molar ratio infusion / molar ratio ≧ 1) in the exhaust gas to slightly excessive NH 3, and then through the gas to the denitration catalyst layer denitrification, then, in the exhaust gas To perform the decomposition treatment of unreacted NH 3 contained in the above.

【0004】これは図4に示すように、ボイラ6からの
燃焼排ガスが排煙脱硝装置1に導入され、排煙脱硝装置
1の下流に位置する空気予熱器(A/H)7において、
未反応NH3と排ガス中の硫黄酸化物(SOx)との反
応よりアンモニウム塩(酸性硫安)が生成され、アンモ
ニウム塩が空気予熱器7の熱交換器上に付着して閉塞を
引き起こすことから、未反応NH3の抑制はプラントシ
ステムにとって不可欠な要素である。このため、NH3
分解型触媒を脱硝触媒の後流に設置して未反応NH3
分解除去を行い、清浄な排ガスを電気集塵器(EP)8
を経て煙突9より大気に放出するようにしていた。
[0004] As shown in FIG. 4, the flue gas from the boiler 6 is introduced into the flue gas denitration device 1, and the flue gas is discharged from the air preheater (A / H) 7 located downstream of the flue gas denitration device 1.
Ammonium salt (ammonium acid sulfate) is generated from the reaction between unreacted NH 3 and sulfur oxide (SOx) in the exhaust gas, and the ammonium salt adheres to the heat exchanger of the air preheater 7 to cause blockage. Suppression of unreacted NH 3 is an essential element for a plant system. Therefore, NH 3
A decomposition type catalyst is installed downstream of the denitration catalyst to decompose and remove unreacted NH 3 , and clean exhaust gas is collected by an electrostatic precipitator (EP) 8.
Through the chimney 9 to the atmosphere.

【0005】すなわち図5に示すように、NH3分解型
触媒のNH3分解能が、ボイラ起動時等の300℃以下
の低温域運転時に低下するため、図6に示すように、排
煙脱硝装置1の脱硝触媒層3の入口における還元剤注入
管2による還元剤(NH3又はNH3水)の注入に加え、
酸化剤注入管5より酸化剤(O3(オゾン))又は過酸
化水素(H22)等を注入し、NH3→NOへの酸化反
応によりNH3分解型触媒4出口の未反応NH3を低減す
る方法が検討された(特開昭55−97231号公報及
び特公昭58−9692号公報参照)。しかし図6に示
す酸化剤の注入有り(6c)を参照のように、酸化剤に
よる酸化反応は脱硝触媒層入口でのNOx濃度を増大
し、還元剤であるNH3を大きく消費することから、脱
硝触媒層の後流付近におけるNH3が不足状態となり、
かえって脱硝触媒層出口のNOx濃度が規制値を大きく
上回る結果となっている。
That is, as shown in FIG. 5, since the NH 3 resolution of the NH 3 decomposition type catalyst is reduced during operation at a low temperature of 300 ° C. or less, such as at the time of starting a boiler, the flue gas denitration apparatus is used as shown in FIG. In addition to the injection of the reducing agent (NH 3 or NH 3 water) through the reducing agent injection pipe 2 at the entrance of the denitration catalyst layer 3,
Oxidant injection pipe 5 from the oxidant (O 3 (ozone)) or hydrogen peroxide (H 2 O 2) or the like is injected, unreacted NH of NH 3 decomposing catalyst 4 outlet by the oxidation reaction of the NH 3 → NO Methods for reducing the number 3 have been studied (see JP-A-55-97231 and JP-B-58-9692). However, as shown in FIG. 6 (6c) with the injection of the oxidizing agent, the oxidizing reaction by the oxidizing agent increases the NOx concentration at the inlet of the denitration catalyst layer and greatly consumes the reducing agent NH 3 . NH 3 near the downstream of the denitration catalyst layer is in an insufficient state,
Instead, the result is that the NOx concentration at the outlet of the denitration catalyst layer greatly exceeds the regulation value.

【0006】[0006]

【発明が解決しようとする課題】従来の排煙脱硝装置に
あっては、酸化剤による酸化反応は脱硝触媒層入口のN
Ox濃度を増加し、還元剤であるNH3を大きく消費す
ることから、脱硝触媒層の後流付近におけるNH3が不
足状態となり、かえって脱硝触媒層出口のNOx濃度が
規制値を大きく上回る等の問題があった。
In the conventional flue gas denitration apparatus, the oxidation reaction by the oxidizing agent is performed at N
Increasing the Ox concentration, since it consumes large NH 3 as a reducing agent, NH 3 becomes insufficient state near wake of the denitration catalyst layer, rather the NOx concentration in the denitration catalyst layer outlet such greatly exceeding the regulation value There was a problem.

【0007】本発明の課題は、還元剤であるNH3の消
費を低減し、かつ脱硝触媒層出口のNOx濃度を規制値
以下に低減することのできる排煙脱硝装置を提供するこ
とにある。
An object of the present invention is to provide a flue gas denitration apparatus capable of reducing the consumption of NH 3 as a reducing agent and reducing the NOx concentration at the outlet of a denitration catalyst layer to a regulated value or less.

【0008】[0008]

【課題を解決するための手段】前記の課題を達成するた
め、本発明に係る排煙脱硝装置は、排ガス中の窒素酸化
物を還元し除去する脱硝触媒層と、未反応アンモニアを
分解処理するアンモニア分解型触媒層とを配設してなる
排煙脱硝装置において、脱硝触媒層とアンモニア分解型
触媒層との間に酸化剤注入管を設置した構成とする。
In order to achieve the above object, a flue gas denitration apparatus according to the present invention comprises a denitration catalyst layer for reducing and removing nitrogen oxides in exhaust gas, and a decomposition treatment for unreacted ammonia. In a flue gas denitration apparatus provided with an ammonia decomposition type catalyst layer, an oxidant injection pipe is provided between the denitration catalyst layer and the ammonia decomposition type catalyst layer.

【0009】そして酸化剤注入管は、アンモニア分解型
触媒層が劣化した際に酸化剤を注入する構成でもよい。
The oxidizing agent injection pipe may be configured to inject an oxidizing agent when the ammonia decomposition type catalyst layer has deteriorated.

【0010】また排ガス中の窒素酸化物を還元し除去す
るとともに、未反応アンモニアを分解処理する複数の脱
硝触媒層を配設してなる排煙脱硝装置において、それぞ
れの脱硝触媒層の間に酸化剤注入管を設置し、酸化剤注
入管は、それぞれの脱硝触媒層のアンモニア分解能の低
下する低温度域で酸化剤を注入する構成でもよい。
[0010] In a flue gas denitration apparatus provided with a plurality of denitration catalyst layers for reducing and removing nitrogen oxides in exhaust gas and decomposing unreacted ammonia, oxidization is performed between the respective denitration catalyst layers. An agent injection tube may be provided, and the oxidant injection tube may be configured to inject the oxidant in a low temperature range where the ammonia decomposability of each denitration catalyst layer is reduced.

【0011】本発明によれば、NH3分解型触媒のNH3
分解能の劣化又は脱硝触媒層のNH3分解能が低下する
300℃以下の低温域でも、酸化剤を用いて未反応NH
3の抑制が可能となり、酸化剤注入により逆に脱硝触媒
層出口のNOx濃度が規制値を大きく上回ることが防止
される。
According to the present invention, the NH 3 decomposition type catalyst NH 3
Even in a low temperature range of 300 ° C. or lower where the resolution is deteriorated or the NH 3 resolution of the denitration catalyst layer is reduced, unreacted NH
Thus, the NOx concentration at the outlet of the denitration catalyst layer can be prevented from significantly exceeding the regulation value.

【0012】[0012]

【発明の実施の形態】本発明の実施の形態を図1を参照
しながら説明する。図1に示すように、発電所、各種向
上及び自動車等より排出される排ガス中の窒素酸化物を
還元し除去する脱硝触媒層3と、脱硝触媒層3より排出
された排ガス中の未反応アンモニアを分解処理するアン
モニア分解型触媒層4とを配設してなる排煙脱硝装置1
であって、脱硝触媒層3とアンモニア分解型触媒層4と
の間に酸化剤注入管5を設置した構成とする。そして酸
化剤注入管5は、アンモニア分解型触媒層4が経時変化
等で劣化した際に高温,低温のいずれの温度で運転中に
も酸化剤を注入するものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to FIG. As shown in FIG. 1, a denitration catalyst layer 3 for reducing and removing nitrogen oxides in exhaust gas discharged from power plants, various improvements and automobiles, etc., and unreacted ammonia in exhaust gas discharged from the denitration catalyst layer 3 Flue gas denitration apparatus 1 provided with an ammonia decomposition type catalyst layer 4 for decomposing water
The oxidizing agent injection pipe 5 is provided between the denitration catalyst layer 3 and the ammonia decomposition type catalyst layer 4. The oxidizing agent injection pipe 5 is for injecting the oxidizing agent during operation at either a high temperature or a low temperature when the ammonia decomposition type catalyst layer 4 is deteriorated due to aging or the like.

【0013】すなわち、ボイラ下流に位置する排煙脱硝
装置1を流れる排ガスに対し、還元剤注入管2より還元
剤が排ガス中に注入されて脱硝触媒層3へ流れる。この
脱硝触媒層3でNOxが除去(脱硝)される。脱硝触媒
層3を通過後、酸化剤注入管5より酸化剤が排ガス中に
注入され、ここで未反応NH3の一部がNOxに酸化さ
れた排ガスがNH3分解型触媒層4へ通される。このN
3分解型触媒層4では残りの未反応NH3と酸化剤によ
り生成されたNOxとにより、再度脱硝反応が起こり、
未反応NH3とNOxとが除去される。
That is, for the exhaust gas flowing through the flue gas denitration device 1 located downstream of the boiler, the reducing agent is injected into the exhaust gas from the reducing agent injection pipe 2 and flows to the denitration catalyst layer 3. NOx is removed (denitrified) in the denitration catalyst layer 3. After passing through the denitration catalyst layer 3, an oxidant is injected into the exhaust gas from the oxidant injection pipe 5, and the exhaust gas in which a part of unreacted NH 3 is oxidized to NOx is passed to the NH 3 decomposition type catalyst layer 4. You. This N
In the H 3 decomposition type catalyst layer 4, the remaining unreacted NH 3 and NOx generated by the oxidizing agent cause a denitration reaction again,
Unreacted NH 3 and NOx are removed.

【0014】図1に示すT>300℃酸化剤注入無し
(1a)では、高温運転のためNH3分解型触媒層4の
NH3分解能が高く、酸化剤注入管5からの酸化剤注入
無しでもNH3分解型触媒層4出口でNOx,NH3濃度
が規制値を満足している。しかし、T≦300℃酸化剤
注入無し(1b)では、低温のためNH3分解型触媒層
4のNH3分解能が低下しており、酸化剤注入管5から
の酸化剤注入無しではNH3分解型触媒層4出口でNH3
濃度のみが規制値を上回っている。またT≦300℃酸
化剤注入有り(1c)では、低温のためNH3分解型触
媒層4のNH3分解能が低下しているものの、酸化剤注
入管5からの酸化剤注入有りのため、NH3分解型触媒
4出口でNOx,NH3濃度がともに規制値以下であ
る。
In the case of T> 300 ° C. without oxidant injection (1a) shown in FIG. 1, the NH 3 decomposition type catalyst layer 4 has a high NH 3 resolution due to the high temperature operation, and even without oxidant injection from the oxidant injection pipe 5. NH 3 decomposing catalyst layer 4 NOx at the outlet, NH 3 concentration satisfies the regulation value. However, the T ≦ 300 ° C. oxidant injection without (1b), and NH 3 Resolution of the NH 3 decomposing catalyst layer 4 for low temperature is lowered, NH 3 decomposition without oxidizing agent injected from the oxidant injection pipe 5 NH 3 at the outlet of the catalyst layer 4
Only the concentration is above the regulation value. When T ≦ 300 ° C. and the oxidizing agent is injected (1c), although the NH 3 resolution of the NH 3 decomposition type catalyst layer 4 is lowered due to the low temperature, NH 3 is injected because the oxidizing agent is injected from the oxidizing agent injection tube 5. 3 decomposing catalyst 4 NOx at the outlet, NH 3 concentration is less than both the regulation value.

【0015】またNH3分解型触媒4のNH3分解能が劣
化した場合、通常の300℃以上の高温運転時において
も補助的に酸化剤を注入し、未反応NH3の一部のNO
xを酸化し脱硝することにより、NH3分解能の劣化を
補い、排煙脱硝装置1の継続運転を可能とするものであ
る。これは図2に示すように、NH3分解型触媒層の経
時劣化時、NH3分解能の低下に伴い、脱硝性能が向上
する性質を利用したものである。
If the NH 3 resolution of the NH 3 decomposition catalyst 4 is deteriorated, an oxidizing agent is additionally injected even during normal high-temperature operation of 300 ° C. or more, and a part of the unreacted NH 3
By oxidizing x and denitrifying x, the degradation of the NH 3 resolution is compensated, and the continuous operation of the flue gas denitration apparatus 1 is enabled. As shown in FIG. 2, when the NH 3 decomposition type catalyst layer is deteriorated with time, the property of improving the denitration performance with a decrease in NH 3 resolution is utilized.

【0016】次に本発明の他の実施の形態を図3に示
す。図1に示す実施の形態とはNH3分解型触媒層の代
わりに脱硝触媒層3を配置した点のみが異なる。排ガス
中の窒素酸化物を還元し除去するとともに、未反応アン
モニアを分解処理する上流側及び下流側の少なくとも二
つの脱硝触媒層3を配設してなる排煙脱硝装置1であっ
て、それぞれの脱硝触媒層3の間に酸化剤注入管5を設
置し、酸化剤注入管5は、それぞれの脱硝触媒層3のア
ンモニア分解能の低下する300℃以下の低温度域で酸
化剤を注入するものである。図3に示すT≦300℃酸
化剤注入無し(3b)では、低温のため脱硝触媒層3の
NH3分解能が低下しており、酸化剤注入管5からの酸
化剤注入無しでは脱硝触媒層3出口でNH3濃度のみが
規制値を上回っている。またT≦300℃酸化剤注入有
り(3c)では、低温のため脱硝触媒層3のNH3分解
能が低下しているものの、酸化剤注入管5からの酸化剤
注入有りのため、脱硝触媒層3出口でNOx,NH3
度がともに規制値以下となっている。
Next, another embodiment of the present invention is shown in FIG. This embodiment differs from the embodiment shown in FIG. 1 only in that a denitration catalyst layer 3 is arranged instead of the NH 3 decomposition catalyst layer. A flue gas denitration apparatus 1 comprising at least two upstream and downstream denitration catalyst layers 3 for reducing and removing nitrogen oxides in exhaust gas and decomposing unreacted ammonia, and comprising: An oxidizing agent injection tube 5 is provided between the denitration catalyst layers 3, and the oxidizing agent injection tube 5 injects the oxidizing agent in a low temperature range of 300 ° C. or lower where the ammonia resolution of each denitration catalyst layer 3 decreases. is there. At T ≦ 300 ° C. without oxidant injection (3b) shown in FIG. 3, the NH 3 resolution of the denitration catalyst layer 3 is reduced due to the low temperature. At the outlet only the NH 3 concentration is above the regulation value. In addition, when the oxidizing agent is injected at T ≦ 300 ° C. (3c), although the NH 3 resolution of the denitration catalyst layer 3 is lowered due to the low temperature, the oxidizing agent is injected from the oxidizing agent injection pipe 5 and thus the denitration catalyst layer 3 At the outlet, both NOx and NH 3 concentrations are below the regulation value.

【0017】この他の実施の形態は、NH3分解型触媒
のNH3分解機能が利用できない300℃以下の低温域
で運転される場合に用いられるもので、NH3分解型触
媒の代わりに廉価な脱硝触媒3を使用し、図1に示す実
施の形態と同様な効果を持たせたものである。具体的に
は例えば、排ガス入口に温度センサを挿着し、この温度
センサによる排ガス温度の300℃以下の低温を検知し
た信号により、酸化剤注入管5に設けた酸化剤注入弁を
開弁し、排ガス中に所定量の酸化剤を注入するもので、
注入量は排ガス及び酸化剤等の性状に応じて予め定めて
おくものとする。
This other embodiment is used when operating in a low temperature range of 300 ° C. or lower where the NH 3 decomposition function of the NH 3 decomposition type catalyst cannot be used, and is inexpensive instead of the NH 3 decomposition type catalyst. The present embodiment uses a simple denitration catalyst 3 and has the same effect as the embodiment shown in FIG. Specifically, for example, a temperature sensor is inserted into the exhaust gas inlet, and the oxidizing agent injection valve provided in the oxidizing agent injection pipe 5 is opened by a signal that detects a low temperature of 300 ° C. or less of the exhaust gas temperature by the temperature sensor. Injecting a predetermined amount of oxidizing agent into exhaust gas,
The injection amount is determined in advance according to the properties of the exhaust gas, the oxidizing agent, and the like.

【0018】本発明によれば、高効率脱硝時の低温域に
おいても装置出口における未反応NH3の抑制が容易に
可能になることから、これまで低温時の未反応NH3
対応して設けた余分なNH3分解型触媒が不要となり、
装置がコンパクト化されて立地上の制約の解消が望め
る。またNH3分解型触媒のNH3分解能が利用できない
300℃以下の低温域における未反応NH3の抑制も容
易に可能になることから、高効率脱硝の適用範囲が拡大
可能となる。
According to the invention, since the suppression of the unreacted NH 3 it is easily in even device outlet in the low temperature range at a high efficiency denitrification, provided corresponding to the unreacted NH 3 at a low temperature until now No need for extra NH 3 decomposition catalyst
The equipment can be made more compact and the restrictions on location can be resolved. In addition, since it is possible to easily suppress unreacted NH 3 in a low temperature range of 300 ° C. or lower where the NH 3 resolution of the NH 3 decomposition catalyst cannot be used, the applicable range of high-efficiency denitration can be expanded.

【0019】[0019]

【発明の効果】本発明によれば、複数の触媒層の間に酸
化剤を注入するため、触媒層のアンモニア分解能が低下
しても装置出口における未反応アンモニアの抑制が容易
になり、高効率脱硝の適用範囲が拡大可能となる。また
アンモニアの消費が低減して経済的になるとともに、装
置がコンパクト化されて立地条件の制約が解消される。
According to the present invention, since an oxidizing agent is injected between a plurality of catalyst layers, it is easy to suppress unreacted ammonia at the outlet of the apparatus even if the ammonia resolution of the catalyst layers is reduced, and high efficiency is achieved. The application range of denitration can be expanded. In addition, the consumption of ammonia is reduced to be economical, and the apparatus is downsized, so that restrictions on location conditions are eliminated.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態を示す構成図及び排ガス中
のNOx及びNH3の濃度変化を示す図である。
FIG. 1 is a configuration diagram showing an embodiment of the present invention and a diagram showing a change in the concentration of NOx and NH 3 in exhaust gas.

【図2】NH3分解型触媒の脱硝率及びNH3分解率の経
時変化を示す図である。
FIG. 2 is a graph showing a change over time in a denitration rate and an NH 3 decomposition rate of an NH 3 decomposition type catalyst.

【図3】本発明の他の実施の形態を示す構成図及び排ガ
ス中のNOx及びNH3の濃度変化を示す図である。
FIG. 3 is a configuration diagram showing another embodiment of the present invention and a diagram showing a change in concentration of NOx and NH 3 in exhaust gas.

【図4】発電設備の一例を示す図である。FIG. 4 is a diagram illustrating an example of a power generation facility.

【図5】NH3分解型触媒のNH3分解率−温度特性を示
す図である。
FIG. 5 is a diagram showing NH 3 decomposition rate-temperature characteristics of an NH 3 decomposition type catalyst.

【図6】従来技術及び排ガス中のNOx及びNH3の濃
度変化を示す図である。
FIG. 6 is a diagram showing a change in the concentration of NOx and NH 3 in exhaust gas according to the related art and FIG.

【符号の説明】 1 排煙脱硝装置 2 還元剤注入管 3 脱硝触媒層 4 NH3分解型触媒層 5 酸化剤注入管[Description of Signs] 1 flue gas denitration device 2 reducing agent injection pipe 3 denitration catalyst layer 4 NH 3 decomposition type catalyst layer 5 oxidant injection pipe

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 排ガス中の窒素酸化物を還元し除去する
脱硝触媒層と、未反応アンモニアを分解処理するアンモ
ニア分解型触媒層とを配設してなる排煙脱硝装置におい
て、前記脱硝触媒層と前記アンモニア分解型触媒層との
間に酸化剤注入管を設置したことを特徴とする排煙脱硝
装置。
1. A flue gas denitration apparatus comprising: a denitration catalyst layer for reducing and removing nitrogen oxides in exhaust gas; and an ammonia decomposition type catalyst layer for decomposing unreacted ammonia. An exhaust gas denitration apparatus, wherein an oxidizing agent injection pipe is provided between the exhaust gas denitrification apparatus and the ammonia decomposition type catalyst layer.
【請求項2】 酸化剤注入管は、アンモニア分解型触媒
層が劣化した際に酸化剤を注入することを特徴とする請
求項1記載の排煙脱硝装置。
2. The flue gas denitration apparatus according to claim 1, wherein the oxidizing agent injection pipe injects the oxidizing agent when the ammonia decomposition type catalyst layer is deteriorated.
【請求項3】 排ガス中の窒素酸化物を還元し除去する
とともに、未反応アンモニアを分解処理する複数の脱硝
触媒層を配設してなる排煙脱硝装置において、それぞれ
の脱硝触媒層の間に酸化剤注入管を設置し、該酸化剤注
入管は、それぞれの脱硝触媒層のアンモニア分解能の低
下する低温度域で酸化剤を注入することを特徴とする排
煙脱硝装置。
3. A flue gas denitration apparatus comprising a plurality of denitration catalyst layers for reducing and removing nitrogen oxides in exhaust gas and decomposing unreacted ammonia, between the respective denitration catalyst layers. A flue gas denitration apparatus, comprising: an oxidizing agent injection pipe, wherein the oxidizing agent injection pipe injects the oxidizing agent in a low temperature region where the ammonia resolution of each denitration catalyst layer is reduced.
JP9292075A 1997-10-24 1997-10-24 Apparatus for denitrificating stack gas Pending JPH11128686A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9292075A JPH11128686A (en) 1997-10-24 1997-10-24 Apparatus for denitrificating stack gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9292075A JPH11128686A (en) 1997-10-24 1997-10-24 Apparatus for denitrificating stack gas

Publications (1)

Publication Number Publication Date
JPH11128686A true JPH11128686A (en) 1999-05-18

Family

ID=17777220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9292075A Pending JPH11128686A (en) 1997-10-24 1997-10-24 Apparatus for denitrificating stack gas

Country Status (1)

Country Link
JP (1) JPH11128686A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008512243A (en) * 2004-09-08 2008-04-24 ヘッドウォーターズ インコーポレーテッド Method and system for reducing ammonia leakage after selective reduction of nitrogen oxides
JP2008529787A (en) * 2005-02-16 2008-08-07 バスフ・カタリスツ・エルエルシー Ammonia oxidation catalyst for coal burning public facilities
US10898855B2 (en) 2017-04-26 2021-01-26 Haldor Topsoe A/S Method and system for the removal of noxious compounds from flue-gas using fabric filter bags with an SCR catalyst
KR20210035240A (en) 2018-08-31 2021-03-31 미츠비시 파워 가부시키가이샤 Flue gas purification device
US11007479B2 (en) 2017-04-26 2021-05-18 Haldor Topsoe A/S Method and system for the removal of particulate matter and noxious compounds from flue-gas using a ceramic filter with an SCR catalyst

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008512243A (en) * 2004-09-08 2008-04-24 ヘッドウォーターズ インコーポレーテッド Method and system for reducing ammonia leakage after selective reduction of nitrogen oxides
JP2008529787A (en) * 2005-02-16 2008-08-07 バスフ・カタリスツ・エルエルシー Ammonia oxidation catalyst for coal burning public facilities
JP2013173147A (en) * 2005-02-16 2013-09-05 Basf Catalysts Llc Ammonia oxidation catalyst for the coal fired utilities
KR101326359B1 (en) * 2005-02-16 2013-11-11 바스프 카탈리스트 엘엘씨 Ammonia oxidation catalyst for the coal fired utilities
US10898855B2 (en) 2017-04-26 2021-01-26 Haldor Topsoe A/S Method and system for the removal of noxious compounds from flue-gas using fabric filter bags with an SCR catalyst
US11007479B2 (en) 2017-04-26 2021-05-18 Haldor Topsoe A/S Method and system for the removal of particulate matter and noxious compounds from flue-gas using a ceramic filter with an SCR catalyst
RU2759275C2 (en) * 2017-04-26 2021-11-11 Хальдор Топсёэ А/С Method and system for removing nitrogenous compounds from flue gas using cloth filter bags and scr catalyst
KR20210035240A (en) 2018-08-31 2021-03-31 미츠비시 파워 가부시키가이샤 Flue gas purification device
US11408318B2 (en) 2018-08-31 2022-08-09 Mitsubishi Heavy Industries, Ltd. Exhaust gas purification device

Similar Documents

Publication Publication Date Title
JP4512238B2 (en) Method for removing nitrogen oxides from a waste gas stream
JP2006051499A (en) Method for treating exhaust gas containing ammonium
JP3556728B2 (en) Exhaust gas denitration method and apparatus
JPH08103636A (en) Low-temperature denitrator
JPH11128686A (en) Apparatus for denitrificating stack gas
JP2741464B2 (en) Exhaust gas treatment apparatus and method
JP3366417B2 (en) Prevention method of ammonium sulfate precipitation in selective reduction denitration method
KR101449244B1 (en) The De-NOx system for combined LNG gas turbine exhaust gas
JP2993133B2 (en) Exhaust gas treatment method and apparatus
RU2759275C2 (en) Method and system for removing nitrogenous compounds from flue gas using cloth filter bags and scr catalyst
JP3112570B2 (en) Exhaust gas heating device for flue gas denitration equipment
KR100406510B1 (en) Method and system for removing nitrogen oxide using oxidation catalyst
JP3568566B2 (en) Method of using denitration equipment for exhaust gas containing nitrogen dioxide and nitric oxide
JP2001070749A (en) Waste gas treatment system
JPH08257363A (en) Exhaust gas treatment method
KR20210120195A (en) Duct structure
JPH11165043A (en) Treatment of waste gas of waste incinerator
JP3795114B2 (en) Waste incinerator exhaust gas treatment method and apparatus
JPH07265666A (en) High temperature denitrification equipment
JPH0994437A (en) Removal method of nitrogen oxides in waste gas and flue gas denitrification device
CN114191964A (en) Flue gas denitration method
JPH10118456A (en) Method and apparatus for treating exhaust gas
JP2864689B2 (en) NOx gas treatment method
KR100580082B1 (en) Method for removing of nitrogen oxides and heavy metals in flue gases
JP2005076575A (en) Exhaust emission control device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060206

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060808